
HAL Id: hal-01387744
https://hal.science/hal-01387744

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Methodology Approach for Developing
a Repository of Models

Brahim Hamid

To cite this version:
Brahim Hamid. A Model-Driven Methodology Approach for Developing a Repository of Models. 4th
International Conference On Model and Data Engineering (MEDI 2014), Sep 2014, Larnaca, Cyprus.
pp.29-44, �10.1007/978-3-319-11587-0_5�. �hal-01387744�

https://hal.science/hal-01387744
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15256

The contribution was presented at MEDI 2014:
http://medi2014.cs.ucy.ac.cy/

To cite this version : Hamid, Brahim A Model-Driven Methodology Approach
for Developing a Repository of Models. (2014) In: 4th International Conference
On Model and Data Engineering (MEDI 2014), 24 September 2014 - 26
September 2014 (Larnaca, Cyprus).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Model-Driven Methodology Approach for Developing

a Repository of Models

Brahim Hamid

IRIT, University of Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France

hamid@irit.fr

Abstract. To cope with the growing complexity of embedded system design,

several development approaches have been proposed. The most popular are those

using models as main artifacts to be constructed and maintained. The wanted

role of models is to ease, systematize and standardize the approach of the con-

struction of software-based systems. In order to enforce reuse and to interconnect

the process of models’ specification and the system development with models,

we promote a model-based approach coupled with a repository of models. In

this paper, we propose a Model-Driven Engineering methodological approach

for the development of a repository of models and an operational architecture for

development tools. In particular, we show the feasibility of our own approach

by reporting some preliminary prototype providing a model-based repository of

security and dependability (S&D) pattern models.

Keywords: Modeling artifact, Repository, Meta-model, Model Driven Engineer-

ing, Embedded Systems, Pattern.

1 Introduction

It is widely acknowledged that designers and developers of new-generation embed-

ded systems are facing an exponential effort to manage the continuous increasing re-

quirements of such systems [22]. Such systems come with a large number of common

characteristics, including real-time and temperature constraints, security and depend-

ability as well as efficiency requirements. In particular, the development of Resource

Constrained Embedded Systems (RCES) has to address constraints regarding memory,

computational processing power and/or energy consumption. The integration of these

features requires the availability of both application domain specific knowledge and

feature expertise at the same time. As a result, new recommendations should be consid-

ered to build novel methods capable of handling the complexity and reducing the cost

of the development of these systems.

Model Driven Engineering (MDE) based solutions seem very promising to meet the

needs of trusted embedded system applications development. The idea promoted by

MDE is to use models at different levels of abstraction for developing systems. In other

words, models provide input and output at all stages of system development until the

final system itself is generated. MDE allows to increase software quality and to reduce

the software systems development life cycle. Moreover, from a model, it is possible to

.

automatize some steps by model refinements and generate code for all or parts of the

application. Domain Specific Modeling Languages (DSML) [8] has recently increased

in popularity to cover a wider spectrum of concerns. As we will see, such a process

reuses many practices from Model Driven Engineering. For instance, metamodeling

and transformation techniques.

We believe that the use of a repository providing constructs for componentization of

modeling artifacts can provide an efficient way to address these problems, improving

the industrial efficiency and fostering technology reuse across domains (reuse of models

at different levels), reducing the amount of effort and time needed to design a complex

system. According to Bernstein and Dayal [3], a repository is a shared database of in-

formation on engineered artifacts. They introduce the fact that a repository has (1) a

Manager for modeling, retrieving, and managing the components in a repository, (2) a

Database to store the data and (3) Functionalities to interact with the repository. In our

work, we go one step further: a model-based repository to support the specifications, the

definitions and the packaging of a set of modeling artifacts to assist developers of trusted

applications for embedded systems. Here, we describe a methodological approach for

the creation of a flexible repository of modeling artifacts and for managing the models

in that repository. To show the feasibility of our approach, we are developing an oper-

ational implementation in the context of the FP7 TERESA project [6]. Besides in this

task some services dedicated to repository features will be developed. The goal is to

integrate features together thanks to model-based repository engineering coupled with

MDE technology; hence this will attempt to leverage reuse of model building blocks

from the repository.

The rest of this paper is organized as follows. In Section 2, we discuss the model-

ing framework around a repository of modeling artifacts. Section 3 presents modeling

language to support the design of the repository structure and its interfaces. In Sec-

tion 4, we describe the approach for designing and exploiting the repository of model-

ing artifacts. Section 5 describes the architecture of the tool-suite and an example of an

implementation of a repository. Section 6 describes the usage of the defined modeling

framework in the context of FP7 TERESA project through the railway case study. In

Section 7, we present a review of the most important related work. Finally, Section 8

concludes and draws future work directions.

2 The Framework for Software System Modeling Artifacts

The proposed approach promotes model-based development coupled with a repository

of modeling artifacts. This approach aims to define an engineering discipline to enforce

reuse and to share expertise. The main goal of this section is to define a modeling

framework to support the packaging of a set of modeling artifacts for system software

engineering. We start with a set of definitions and concepts that might prove useful in

understanding our approach.

Definition 1 (Modeling Artifact.) We define a modeling artifact as a formalized piece

of knowledge for understanding and communicating ideas produced and/or consumed

during certain activities of system engineering processes. The modeling artifact may be

classified in accordance with engineering processes levels.

Adapting the definition of pattern language given by Christopher Alexander [1], we

define the following:

Definition 2 (Modeling Artifact System.) A modeling artifact language is a collec-

tion of modeling artifacts forming a vocabulary. Such a collection may be skillfully

woven together into a cohesive "whole" that reveals the inherent structures and rela-

tionships of its constituent parts toward fulfilling a shared objective.

In our work, we promote a new discipline for system engineering around a model-

based repository of modeling artifacts. The proposed framework addresses two kind of

processes: the process of modeling artifacts development and system development with

modeling artifacts. The main concern of the first process is designing modeling artifacts

for reuse and the second one is finding the adequate modeling artifacts and evaluating

them with regard the system-under-development’s requirements. Therefore, we add a

repository as a tier which acts as intermediate agent between these tow processes. A

repository should provide a modeling container to support modeling artifacts life-cycle

associated with different methodologies.

Fig. 1. The Modeling Artifact-based Development Process

Once the repository is available (the repository system populated with modeling ar-

tifacts), it serves an underlying engineering process. In the process model visualized in

Fig. 1, as activity diagram, the developer starts by system specification (A1) fulfilling

the requirements. In a traditional approach (non repository-based approach) the devel-

oper would continue with the architecture design, module design, implementation and

test. In our vision, instead of following these phases and defining new modeling arti-

facts, that usually are time and efforts consuming, as well as errors prone, the system

developer merely needs to select appropriate modeling artifacts from the repository and

integrate them in the system under development.

For each phase, the system developer executes the search/select from the repository

to instantiate modeling artifacts in its modeling environment (A4 and A9) and integrates

them in its models (A5 and A10) following an incremental process. The model specified

in a certain activity An − 1 is then used in activity An. In the same way, for a certain

development stage n, the modeling artifacts identified previously in stage (phase) n − 1

will help during the selection activity of a current phase. Moreover, the system devel-

oper can use a modeling artifact design process to develop their own solutions when the

repository fails to deliver appropriate modeling artifact at this stage. It is important to

remark that the software designer does not necessarily need to use one of the artifacts

stored in the repository previously included. He can define custom software architecture

for some modeling artifact (components), and avoid using the repository facilities (A6

and A11).

3 Repository Metamodel

Concretely, the repository system is a structure that stores specification languages, mod-

els and relationships among them, coupled with a set of tools to manage, visualize, ex-

port, and instantiate these artifacts in order to use them in engineering processes (see

Fig. 7).

3.1 System and Software Artifact Repository Model Specification(SARM)

The specification of the structure of the repository is based on the organization of its

content, mainly the modeling artifacts and the specification languages. Moreover, we

identified an API as a specification of the repository interaction system architecture.

That is, we propose a metamodel to capture these two main parts: the first one is ded-

icated to store and manage data in the form of Compartments, the second one is about

the Interfaces in order to publish and to retrieve modeling artifacts and to manage in-

teractions between users and the repository. The principal classes of the metamodel are

described with the Ecore notations in Fig. 2. The following part depicts in details the

meaning of principal concepts used to specify the repository:

– SarmRepository. Is the core element used to define a repository.

– SarmCompartment. Is used for the categorization of the stored data. We have

identified two main kinds of compartments:

• SarmSpecLangCompartment. Is used to store the specification languages

(SeSpecLang) of the modeling artifacts (SeArtefact).

• SarmArtefactCompartment. Is used to store the modeling artifacts. To sim-

plify the identification of a modeling artifact regarding the software develop-

ment stage in which it’s involved, an SeArtefact has an lifecycleStage typed

with an external model library SeLifecycleStage.

Fig. 2. The Repository Specification Metamodel (SARM)

– SarmStorable. Is used to define a set of characteristics of the model-based repos-

itory content, mainly those related to storage. We can define: artefactURI, storage-

Date, sizeByte, etc. . .

In addition, it contains a set of references (SarmReference) to describe the dif-

ferent links with the other artifacts. The set of possible links is defined through and

external model library SeReferenceKind.

– SarmSpecLangKeyEntry. Is the key entry to point towards a specification language

model in the repository.

– SarmArtefactKeyEntry. Is the key entry to point towards a modeling artifact speci-

fication in the repository.

– SarmAccesRight. Is used to define the characteristics regarding the access right to

the repository and its its content.

– SarmUser. Is used to define the user profile.

– SarmUserList. Is used to store the list of users in the repository.

For the interaction purposes, the repository exposes its content through a set of inter-

faces (SarmInteractionInterface), as depicted in Fig. 3. The meaning of the proposed

concepts is presented in the following:

– SarmAdministrationInterface. Manages the repository.

– SarmSpecLangDesignerInterface. Offers a set of operations including the connec-

tion/disconnection to the repository and to populate the repository with

metamodels.

– SarmSpecLangUserInterface. Offers a set of operations mainly connection/discon-

nection to the repository, search/selection of the specification languages.

– SarmArtifactDesignerInterface. Offers a set of operations including the connec-

tion/disconnection to the repository and to populate the repository with artifacts.

– SarmArtefactUserInterface. Offers a set of operations mainly connection/discon-

nection to the repository, search/selection of the modeling artifacts.

Fig. 3. The Repository API Specification Metamodel

4 Methodology

In this section, we describe a methodological approach for the creation of a flexible

repository of modeling artifacts and for managing the models in that repository, such as

visualized in Fig.4.

For illustration purpose, we will focus in the rest of the paper on the repository

of security and dependability patterns, which acts as a specific demonstration for the

TERESA resource constrained embedded systems, called TeresaRepository.

The following sections introduce the example of the TeresaRepository and describe

in detail the process to be followed by the repository developers, including the designers

of the metamodels of the artifacts and the modelers of these artifacts. The process de-

scribes the whole cycle from the creation of the artifacts’ metamodels, the instantiation

of the repository metamodel, the instantiation of these metamodels as modeling artifact

for populating the repository, the management of the repository, and an overview on

how the resulting repository software will support system engineering process.

Fig. 4. Overview of the model-based repository building process

4.1 An S&D Pattern Repository

In the context of the TERESA project, we deal with three kinds of modeling artifacts:

S&D patterns, S&D property models and resource property models. In this vision, the

S&D pattern, derived from (resp. associated with) domain specific models, aims at help-

ing the system engineer to integrate application S&D building blocks. Now, we briefly

describe the modeling languages used to specify these artifacts. For more details, the

reader is referred to [21] and [9] for property modeling language and for pattern mod-

eling language, respectively.

4.1.1 Generic Property Modeling Language (GPRM)

The Generic PRoperty Metamodel (GPRM) [21], which is depicted with the Ecore no-

tations in Fig. 5, is a metamodel defining a new formalism (i.e. language) for describing

property libraries including units, types and property categories. For instance, security

and dependability attributes [2] such as authenticity, confidentiality and availability are

defined as categories. These categories require a set of measures types (degree, metrics,

. . .) and units (boolean, float,. . .). For that, we instantiate the appropriate type library

and its corresponding unit library. These models are used as external model libraries to

type the properties of the patterns. Especially during the editing of the pattern we define

the properties and the constraints using these libraries.

GprmMeasurementT...

symbol : EString

GprmPropertyCateg... GprmType

GprmPrimitiveType

GprmProperty

computable : EBoolean

GprmResourceCategory

GprmValueSpeci cation

description : EString

GprmSimple...

types 1..*

valueSepci cation0..1

category 1

gprmProperty0..1

resourceCategory

0..*

inherits
0..*

inherits

0..*

defaultType 1

Fig. 5. The (simplified) GPRM Metamodel

4.1.2 Pattern Specification Metamodel

The System and Software Engineering Pattern Metamodel (SEPM) [9] is a metamodel

defining a new formalism for describing S&D patterns, and constitutes the base of our

pattern modeling language. Here we consider patterns as sub-systems that expose ser-

vices (via interfaces) and manage S&D and Resource properties (via features) yielding

a unified way to capture meta-information related to a pattern and its context of use.

The following figure describes the principal concepts of the SEPM metamodel with the

Ecore notations.

4.2 Model-Based Repository Building Process

(a) Create the artifacts’ metamodel: Specify the metamodel of each artifact to be stored

in the repository, as shown in the top part of Fig. 4. For instance, SEPM and GPRM

metamodels are created and stored as Ecore models (Fig. 5 and Fig. 6).

(b) Create tools to support the repository modeling process: Write editors for the spec-

ification of the repository structure and APIs.

(c) Specify model libraries for classifications of artifacts: At each stage of the sys-

tem engineering development process, identify the appropriate modeling artifacts

to use by classifying them. In our context, we use the pattern classification of

Riehle and Buschmann [17,5], which is (1) System Patterns, Architectural Pat-

terns, Design Patterns and Implementation Patterns to create the model library

SeLifecycleStage.

SepmPattern

publisher_identity : EString

origin : EString

also_known_as : EString

consequences : EString

problem : EString

context : EString

examples : EString

SepmDSPattern

SepmInterface

kind : SepmInterfaceKind

SepmKeyWord

name : EString

SepmDIPattern

SepmExternalInterface

SepmTechnicalInterface

SeArtefact

(from core)

SepmPrope...

SepmConstraint

GprmProperty

(from gprm)

tyyyyyyyyyyyyyyyyyyyyy

keywords1..*

0..*

0..*

properties

0..*

constraints

0..*

Fig. 6. The (simplified) SEPM Metamodel

(d) Specify model libraries for relationships between artifacts: At each stage n of the

system engineering development process, the modeling artifacts identified previ-

ously in stage (phase) n − 1 will help during the selection activity of a current

phase. For instance, a pattern may be linked with other patterns and associated with

property models using a predefined set of reference kinds. For example refines, spe-

cializes, uses etc. Here, we create the SeReferenceKind model library to support

specifying relationships across artifacts.

(e) Specify the repository structure: Use the editors, the metamodels and the model li-

braries to instantiate the SARM metamodel to create the model of the

repository comprising the creation of metamodels’ compartments, the artifacts’

compartments, the users’ list etc. The structure of the repository and its APIs are

then available to modelers for populating and managing the repository (as seen in

the middle part of Fig. 4). In our example, we define TeresaRepository as an in-

stance of the SarmRepository: a model-based repository of S&D patterns and

their related property models. To implement S&D pattern models and property

models, we use a MetamodelCompartment as an instance of the SarmSpecLang-

Compartment, which has two instances of SarmSpecLangKeyEntry to store the

pattern modeling language and the property modeling language. We also define a

set of compartments to store the artifacts. In addition to the repository structure, we

present define the model of interfaces (APIs) to exhibit the content of the repository

and its management.

(f) Create tools for generating code: The resulting model is then used as input for the

model transformations in order to generate the repository and APIs software im-

plementation targeting a specific technological platform, for instance CDO 1 (as

shown in the middle part of Fig. 4). Also, specify scripts to perform the installation

and deployment of the resulted repository software system.

1
http://www.eclipse.org/cdo/

(g) Specify views on the repository for access tools: Creating views on the repository

according to its APIs, its organization and on the needs of the targeted system engi-

neering process. For instance, a key word based-search access tool is implemented

for the TeresaRepository.

(h) Create tools to support the populating of the repository: Creating editors to support

the instantiation of the metamodels of artifacts. Furthermore, these tools includes

mechanisms to validate the conformity of the modeling artifact and to publish the

results into the repository using the appropriate interface.

(i) Create tools to support the administration of the repository: Creating editors to sup-

port the administration of the repository, the evolution of existing model libraries,

users, artifacts relationships etc.

4.3 Exploitation of the Repository

We identified several roles. The modeling expert interacts with the repository to specify

the modeling artifacts and then to store these artifacts, and the domain expert interacts

with the repository in order to instantiate and then to reuse these artifacts. The repository

manager is responsible for the repository administration. Finally, the system developer

selects the modeling artifact for building an application. The following steps depicts the

process to be followed to use the repository.

(a) Installation and deployment: The repository software system is deployed on an ap-

propriate host while the accompanying development tools are installed in the user

development environment.

(b) Define access security: Create users’ list and grant them access rights to compart-

ments.

(c) Create models: Create instances of the modeling artifacts metamodels and publish

the results into the repository using appropriate editors. During this activity the pat-

tern artifacts were built conforming to the pattern modeling language. An activity

is added at this point to check the design conformity of the pattern.

(d) Generate reports and documentation: At this point, the modeling artifact designer

may generate documentation. If the pattern has been correctly defined, i.e conforms

the pattern modeling language, the pattern is ready for the publication to the model-

based repository. Otherwise, we can find the issues from the report and re-build the

pattern by correcting or completing its relevant constructs.

(e) Define relationships between models: Create instances of artifacts relationships

model libraries. Also, each artifact is studied in order to identify its relationships

with the other artifacts belonging to the same application domain with respect to

the engineering process’ activity in which it is consumed. The goal of this activ-

ity, in our case, is to organize patterns, to give them a structure of a set of pattern

systems.

(f) Reuse of existing artifacts: Once the repository system is available, it serves an un-

derlying trust engineering process through access tools, conforming to the process

model visualized in Fig. 1.

sitory of Model 39

5 Architecture and Implementation Tools

In this section, we propose an Model-Driven Engineering tool-chain supporting the

repository system, and hence to assist the developers of software embedded systems. We

provide four integrated sets of software tools: (i) Tool set A for populating the repository,

(ii) Tool set B for retrieval from the repository, (iii) Tool set C as the repository software

and (iv) Tool set D for managing the repository. The following details this software

system from the specification, over target technology, evolution and maintenance for

acquiring organizations, end-users and front-end support provider.

5.1 Tool-suite Architecture

To build our repository system, we use the well known architectural style: multitiered

architectures as an alternative client-server organizations, as shown in Fig. 7.

Fig. 7. An overview of repository system architecture

The server part (middle part of Fig. 7) is responsible for managing and storing the

data interacting with storage mechanisms (down part of Fig. 7). In addition, the server

part provides the implementation of the common APIs to interact with the repository

content. For this, we identify a set of interfaces (APIs) for applications in order to create

modeling artifact, in order to use them and in order to manage the repository. The user

application part (top part of Fig. 7) is responsible for populating the repository and for

using its content using the common APIs.

5.2 Implementation Details

Using the proposed metamodels, the Connected Data Objects (CDO) and the Eclipse

Modeling Framework (EMF) [19], ongoing experimental work is done with SEMCOMDT
2 (SEMCO Model Development Tools, IRIT’s editor and platform plugins). For our ex-

ample, the tool-suite is composed of:

2
http://www.semcomdt.org

– Gaya. for the repository platform (structure and interfaces) conforming to SARM,

– Tiqueo. for specifying models of S&D properties conforming to GPRM,

– Arabion. for specifying patterns conforming to SEPM,

– Admin. for the repository management,

– Retrieval. for the repository access.

The server part of Gaya is composed of two components: (1) GayaServer provid-

ing the implementation of the common API and (2) GayaMARS providing the storage

mechanisms. The client part of Gaya provides interfaces, such as Gaya4Pattern (imple-

ments the API4PatternDesigner), Gaya4Property (implements the API4PropDesigner),

Gaya4Admin (implements API4Admin) and Gaya4SystemDeveloper (implements the

API4PatternUser). For pupulating purpose, we build two design tools, (1) The property

designer (Tiqueo), to be used by a property designer and (2) The pattern designer (Ara-

bion), to be used by a pattern designer. Tiqueo (resp. Arabion) interacts with the Gaya

repository for publication purpose using the Gaya4Property (resp. Gaya4Pattern API).

For accessing the repository, to be used by a system engineer, the tool provides a set

of facilities to help selecting appropriate patterns including key word search, lifecycle

stage search and property categories. The Tool includes features for exportation and in-

stantiation as dialogues targeting domain specific development environment. Moreover,

the tool includes dependency checking mechanisms. For example, a pattern can’t be

instantiated, when a property library is missing, an error message will be thrown.

The server part of the repository is provided as an Eclipse plugin that will handle the

launch of a CDO server defined by a configuration file. This configuration file indicates

that a CDO server will be active on a given port and it will make available a CDO repos-

itory identified by its name. In addition, the configuration file is used to select which

type of database will be used for the proper functioning of the CDO model repository.

The repository APIs are implemented as CDO clients and provided as an Eclipse

plugin. The implementation is based firstly on the automatic code generation from the

APIs model defined above. The generated Java code defines the different interfaces and

functions provided by the repository APIs. The skeleton of the APIs implementations

are then completed manually based on CDO technology.

The user applications for populating the repository are implemented as a set of EMF

tree-based editors, to create patterns and the required libraries, and provided as Eclipse

plugins. We also provide software, as a Java based GUI application, to manage the

repository and for accessing. For more details, the reader is referred to [10].

6 Application of a Model-Based Repository of S&D Patterns to a

Railway System Case Study

In the context of the TERESA project3, we evaluated the approach to build an engineer-

ing discipline for trust that is adapted to RCES combining MDE and a model-based

repository of S&D patterns and their related property models. We used the Tiqueo ed-

itor and Arabion editor to create the corresponding property libraries and the set of

patterns, respectively. Arabion uses the property libraries provided by Tiqueo to type

3
http://www.teresa-project.org/

the patterns property. Finally, we used the Gaya manager tool to set the relationships

between the patterns. The TERESA repository contains so far (on January 2014):

– Compartments. 21 compartments to store artifacts of the TERESA domains.

– Users. 10 users.

– Property Libraries. 69 property model libraries.

– Pattern Libraries. 59 patterns.

One of the case studies acting as TERESA demonstrators is set in the railway domain

throw the Safe4Rail demonstrator. Safe4Rail is in charge of the emergency brake of a

railway system. Its mission is to check whether the brake needs to be activated. Most

important, the emergency brake must be activated when something goes wrong.

The process flow for the example can be summarized with the following steps:

– Once the requirements are properly captured and imported into the development

environment, for instance Rhapsody, the repository may suggest possible patterns

to meet general or specific S&D needs (according to requirements and applica-

tion domain): e.g. if the requirements contain the keywords Redundancy or SIL4,

a suggestion could be to use a TMR pattern at architecture level. In addition, some

diagnosis techniques imposed by the railway standard may be suggested:

• TMR (suggested by the tool),

• Diagnosis techniques (suggested by the tool),

• Sensor Diversity (searched by the System Architect).

– Based on the selected patterns, the repository may suggest related or complemen-

tary patterns. For instance, if the TMR has been integrated , the following patterns

may be proposed in a second iteration, for instance at design phase:

• Data Agreement

• Voter

• Black Channel

• Clock Synchronization

7 Related Work

In Model-Driven Development (MDD), model repositories [13,7,3] are used to facilitate

the exchange of models through tools by managing modeling artifacts. Model reposito-

ries are often built as a layer on top of existing technologies (for instance, databases).

In order to ease the query on the repository, metadata can be added to select the

appropriate artifacts. Therefore, there exist some repositories that are composed solely

of metadata. For instance, as presented in the standard ebXML [15] and an ebXML

Repository Reference Implementation [16], a service repository can be seen as a meta-

data repository that contains metadata about location information to find a service. In

[13], the authors proposed a reusable architecture decision model for setting-up model

and metadata repositories. They aimed to design data model and metadata repositories.

In addition, some helpers are included in the product for selecting a basic repository

technology, choosing appropriate repository metadata, and selecting suitable modeling

levels of the model information stored in the repository. In [14], they proposed a repos-

itory implementation with storing and managing of artifacts support. The supported ar-

tifacts are: metamodels, models, constraints, specifications, transformation rules, code,

templates, configuration or documentation, and their metadata.

Moogle [12] is a model search engine that uses UML or Domain Specific Language

meta-model in order to create indexes that allow the evaluation of complex queries. Its

key features include searching through different kind of models, as long as their meta-

model is provided. The index is built automatically and the system tries to present only

the relevant part of the results, for example trying to remove the XML tags or other

unreadable characters to improve readability. The model elements type, attributes and

hierarchy between model elements can be used as a search criteria. Models are searched

by using keywords (Simple Search), by specifying the types of model elements to be

returned (Advanced Search) and by using filters organized into facets (Browse). In or-

der to properly use the advanced search engines, the user needs to know the metamodel

elements. Moogle uses the Apache SOLR ranking policy of the results. The most im-

portant information of the results are highlighted to make them more clear to the user.

The MORSE project [11] proposes a Model-Aware Service Environment repository,

for facilitating dynamically services to reflection models. MORSE addresses two com-

mon problems in MDD systems: traceability and collaboration. The model repository

is the main component of MORSE and has been designed with the goal to abstract from

specific technologies. MORSE focuses on runtime services and processes and their in-

tegration and interaction with the repository.

The work described in [4] is a general-purpose approach using graph query pro-

cessing for searching repository of models represented as graphs. First the repository

models are translated into directed graphs. Then, the system receives a query conform-

ing to the considered DSL metamodel. In order to reduce the matching problem into a

graph matching one, the submitted query is also transformed in a graph. Matches are

calculated by finding a mapping between the query graph and the project graphs or

sub-graphs, depending on the granularity. The results are ranked using the graph edit

distance metric by means of the A-Star algorithm. The prototype considers the case of

the domain-specific WebML language.

The work in [20] presents a survey of business process model repositories and their

related frameworks. This work deals with the management of a large collections of busi-

ness processes using repository structures and providing common repository functions

such as storage, search and version management. It targets the process model designer

allowing the reuse of process model artefacts. A comparison of process model reposi-

tories is presented to highlight the degree of reusability of artefacts.

Another issue is graphical modeling tool generation as studied in the GraMMi project

[18]. In this project the repository is based on three levels of abstraction (metameta-

model, metamodel and model). The repository stores both metamodels (notation defi-

nitions) and models (instantiation definitions). The repository access is made thanks to

an interface provided by itself. GraMMi’s Kernel allows to manage persistent objects.

So this kernel aims at converting the objects (models) in an understandable form for the

user via the graphical interface.

The metamodel and the methodology described in this paper may be used to specify

the management and the use of these kinds of repositories. In fact, models aspects or the

assets as a whole of the aforementioned repositories can be seen as artifacts supported

by our metamodel. In return, the provided technologies to support repository imple-

mentations may be used in our work as targets platforms for repository generation.

8 Conclusion

Repositories of modeling artifacts have gained more attention recently to enforce reuse

in software engineering. In fact, repository-centric development processes are more

adopted in software/ system development, such as architecture-centric or pattern-centric

development processes.

The proposed framework for building a repository is based on metamodeling, which

allows to specify the structure of a repository and modeling artifacts at different levels

of abstraction, and model transformation techniques for generation purposes. Moreover,

we proposed an operational architecture for the implementation of a repository. In addi-

tion, the tool suite promotes the separation of concerns during the development process

by distinguishing the roles of the different stakeholders. Mainly, the access to the repos-

itory is customized regarding the development phases, the stakeholder’s domain and his

system knowledge.

The approach presented here has been evaluated in in the context of the TERESA

project for a repository of S&D patterns and property models, where we walk through

a prototype with EMF editors and a CDO-based repository supporting the approach.

Currently the tool suite named SEMCOMDT is provided as Eclipse plugins.

In a wider scope, new specification languages may be designed and stored with their

related artifact in the repository. For instance, components, resources, analysis and sim-

ulations are important kinds of artifacts that we can consider in our framework to serve

systematic construction of large complex systems with multiple concerns. As a result,

specification languages, roles and compartments related to each of them can be clearly

defined and applied in system development for more flexibility and efficiency.

As future work, we plan to study the automation of the search and instantiation of

models and a framework for simpler specification of constraints would be beneficial. In

addition, we will study the integration of our tooling with other MDE tools. Also, we

will seek new opportunities to apply the framework to other domains.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Environmental

Structure Series, vol. 2. Oxford University Press, New York (1977)

2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Comput-

ing 1, 11–33 (2004)

3. Bernstein, P.A., Dayal, U.: An Overview of Repository Technology. In: Proceedings of the

20th International Conference on Very Large Data Bases, VLDB 1994, pp. 705–713. Morgan

Kaufmann Publishers Inc. (1994)

4. Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali, P.: Graph-based search over web

application model repositories. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011.

LNCS, vol. 6757, pp. 90–104. Springer, Heidelberg (2011)

5. Buschmann, G., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-

ware Architecture: a system of patterns, vol. 1. John Wiley and Sons (1996)

6. TERESA Consortium. TERESA Project (Trusted Computing Engineering for Resource Con-

strained Embedded Systems Applications), http://www.teresa-project.org/

7. France, R.B., Bieman, J., Cheng, B.H.C.: Repository for Model Driven Development (Re-

MoDD). In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 311–317. Springer, Hei-

delberg (2007)

8. Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-Specific

Modeling. Chapman & Hall/CRC (2007)

9. Hamid, B., Gürgens, S., Jouvray, C., Desnos, N.: Enforcing S&D Pattern Design in RCES

with Modeling and Formal Approaches. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS

2011. LNCS, vol. 6981, pp. 319–333. Springer, Heidelberg (2011)

10. Hamid, B., Ziani, A., Geisel, J.: Towards Tool Support for Pattern-Based Secure and De-

pendable Systems Development. In: ACadeMics Tooling with Eclipse (ACME), Montpellier,

France, pp. 1–6. ACM DL (2013)

11. Holmes, T., Zdun, U., Dustdar, S.: MORSE: A Model-Aware Service Environment (2009)

12. Lucrédio, D., de M. Fortes, R.P., Whittle, J.: MOOGLE: A model search engine. In: Czar-

necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,

pp. 296–310. Springer, Heidelberg (2008)

13. Mayr, C., Zdun, U., Dustdar, S.: Reusable Architectural Decision Model for Model and Meta-

data Repositories. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.) FMCO 2008.

LNCS, vol. 5751, pp. 1–20. Springer, Heidelberg (2009)

14. Milanovic, N., Kutsche, R.-D., Baum, T., Cartsburg, M., Elmasgünes, H., Pohl, M., Widiker,

J.: Model&Metamodel, Metadata and Document Repository for Software and Data Integra-

tion. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.

LNCS, vol. 5301, pp. 416–430. Springer, Heidelberg (2008)

15. Oasis. ebXML: Oasis Registry Services Specification v2.5 (2003)

16. Oasis. freebXML: Oasis ebxml registry reference implementation project (2007),

http://ebxmlrr.sourceforge.net/

17. Riehle, D., Züllighoven, H.: Understanding and using patterns in software development.

TAPOS 2(1), 3–13 (1996)

18. Sapia, C., Blaschka, M., Höfling, G.: GraMMi: Using a Standard Repository Management

System to Build a Generic Graphical Modeling Tool. In: Proceedings of the 33rd Hawaii

International Conference on System Sciences, HICSS 2000, p. 8058. IEEE Computer Society

(2000)

19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

2.0, 2nd edn. Addison-Wesley Professional (2009)

20. Yan, Z., Dijkman, R.M., Grefen, P.: Business process model repositories - framework and

survey. Information & Software Technology 54(4), 380–395 (2012)

21. Ziani, A., Hamid, B., Trujillo, S.: Towards a Unified Meta-model for Resources-Constrained

Embedded Systems. In: 37th EUROMICRO Conference on Software Engineering and Ad-

vanced Applications, pp. 485–492. IEEE (2011)

22. Zurawski, R.: Embedded systems in industrial applications - challenges and trends. In: SIES

(2007)

