
HAL Id: hal-01387743
https://hal.science/hal-01387743

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of Secure and Dependable Applications Based
on a Repository of Patterns: The SEMCO Approach

Brahim Hamid

To cite this version:
Brahim Hamid. Modeling of Secure and Dependable Applications Based on a Repository of Patterns:
The SEMCO Approach. Reliability, 2014, Trustworthy computing and cybersecurity, Special, pp.9-17.
�hal-01387743�

https://hal.science/hal-01387743
https://hal.archives-ouvertes.fr

To link to this article :
URL :

http://rs.ieee.org/images/files/newsletters/2014/RD5._Prof._Brahim_Hamid_last.pdf

To cite this version : Hamid, Brahim Modeling of Secure and Dependable
Applications Based on a Repository of Patterns: The SEMCO Approach. (2014)
Reliability Digest, Special (Nov. 2014). pp. 9-17.

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15255

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Reliability Di

Modeling of Secure and Dependable Applications
Based on a Repository of Patterns:

The SEMCO Approach
Brahim Hamid

IRIT- University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

hamid@irit.fr

Abstract—The requirement for higher quality and seamless

development of systems is continuously increasing, even in

domains traditionally not deeply involved in such issues.

Security and Dependability (S&D) requirements are

incorporated to an increasing number of systems. These newer

restrictions make the development of those systems more

complicated than conventional systems. In our work, we

promote a new approach called SEMCO (System and software

Engineering with Multi-COncerns) combining Model-Driven

Engineering (MDE) with a model-based repository of S&D

patterns to support the design and the analysis of pattern-

based secure and dependable system and software

architectures.

The modeling framework to support the approach is based on a

set of modeling languages, to specify security and dependability

patterns, resources and a set of property models, and a set of

model transformation rules to specify some of the analysis

activities. As part of the assistance for the development of S&D

applications, we have implemented a tool-chain based on the

Eclipse platform to support the different activities around the

repository, including the analysis activities. The proposed

approach was evaluated through a case study from the railway

domain.

Keywords— Security, Dependability, Resource, Pattern,

Model-driven Engineering, Embedded Systems Engineering.

I. INTRODUCTION

During the last decades, the systems have grown with an

increasing in terms of complexity and connectivity. In the past

Security and Dependability (S&D) was not such a critical

concern of system development teams, since it was possible to

rely on the fact that a system could be easily, controlled due to

its limited connectivity and, in most of the cases, its dedicated

focus. However, nowadays, systems are growing in terms of

complexity, functionality and connectivity not only in safety-

critical areas (defense, nuclear power generation, etc.), but

also in areas such as finance, transportation, medical

information management and system using web applications.

Just consider Resource Constrained Embedded Systems

(RCES) [1] and their added complexity and connectivity. The

aforementioned challenges in modern system development

push the Information and Communication Technologies (ICT)

community to search for innovative methods and tools for

serving these new needs and objectives. Regarding system

security and dependability, in the cases of modern systems, the

“walled-garden” paradigm is unsuitable and the traditional

security and dependability concepts are ineffective, since it

was based on the fact that it is possible to build a wall between

the system and the outer world. In our opinion the foundation

for comprehensive security and dependability engineering is a

deep understanding of the modern systems, ongoing or

previous security and dependability incidents and their

implications on the underlying critical infrastructure.

The industrial context conducting our work is how to take

into account several constraints, mainly those related to

security and dependability, that are not satisfied by the well-

known and the widely used technology for building

applications for Resource-Constrained Embedded Systems.

These requirements introduce conflicts on the three main

factors that determine the cost of ownership of applications: (a)

cost of the production, (b) cost of engineering and (c) cost of

maintenance. In other words, systems with high dependability

requirements for which the security level must be

demonstrated and certified use almost exclusively technical

solutions strongly oriented by the application domains.

Applications based on these solutions are by definition

dedicated, hardly portable between different execution

platforms and require specific engineering processes. These

specificities greatly increase the cost of the development in the

different phases of their lifecycle.

Embedded systems share a large number of common

characteristics, including real-time and physical constraints

(e.g. temperature), as well as energy efficiency requirements.

Specifically, Resource Constrained Embedded Systems refer

to systems which have memory and/or computational

processing power constraints computing resources of RCES,

e.g. memory, tasks, and buffers, are generally statically

determined. The generation of RCES therefore involves

specific software building processes. These processes are often

error-prone because they are not fully automated, even if some

level of automatic code generation or even model driven

engineering support is applied. Furthermore, many RCES also

have assurance requirements, ranging from very strong levels

involving certification (e.g. DO178 and IEC-61508 for safety-

relevant embedded systems development) to lighter levels

based on industry practices. Consequently, the conception and

design of RCES is an inherently complex endeavor. To cope

with the growing complexity of embedded system design,

several development approaches have been proposed. The

most popular are those using models as main artifacts to be

constructed and maintained.

In embedded system design field, the integration of non-

functional requirements from Security and Dependability

(S&D) [2], [3] are exacerbating this complexity, mainly in the

context of trade-offs. For instance, in the automotive domain,

a car may need to have secure communication mechanisms for

secure download or for secure data transfer. In the railway

domain, a supervision system needs to have secure

communication mechanisms to be able to activate the

emergency brake when something goes wrong. The

development of systems with security and dependability

requires specialized expertise and skills. The cost of designing

such features from scratch could easily exceed the cost of the

rest of the system. For example (see Fig. 1), the development

of a security component for a railway signaling system

requires expertise in security that is seldom available in the

railway industry and it requires expertise in the engineering

process and validation practices of railway which are not

always available in the S&D community. In fact, capturing

and providing this expertise by the way of security and

dependability patterns can support the integration of S&D

features by design to foster reuse during the process of

software system development. Patterns are specified and

validated by security and dependability experts and stored in a

repository to be reused as security and dependability building

block function by software engineer in several domains.

Fig. 1. Patterns for engineering systems with security and dependability

requirements

Recent times have seen a paradigm shift in terms of design

by combining multiple software engineering paradigms,

namely, Model-Driven Engineering (MDE) [4] and

Component Based Software Engineering (CBSE) [5]. Such a

paradigm shift is changing the way systems are developed

nowadays, reducing development time significantly.

In our work, we promote a new discipline for systems

engineering around a model-based repository of modeling

artifacts using a pattern as its first class citizen: Pattern-based

System Engineering (PBSE). The proposed approach called

SEMCO for System and software Engineering with Multi-

COncern
1

addresses two kinds of processes: the process of

modeling artifacts development and system development with

modeling artifacts. Therefore, we add a repository as a tier

which acts as intermediate agent between these two processes.

1
http://www.semcomdt.org/

A repository should provide a modeling container to support

modeling artifacts lifecycle associated with different

methodologies. The patterns that are at the heart of our system

engineering process reflect design solutions at domain

independent and specific level, respectively.

II.BACKGROUND

A. Incorporating Security and Dependability in System

Engineering

In system engineering, security and dependability may be

compromised in several system layers. Usually, security is

considered when design decisions are made leading to

potential conflicting situations. The integration of security and

dependability features requires the availability of system

architecture expertise, application domain specific knowledge

and security expertise at the same time to manage the potential

consequences of design decisions on the security of a system

and on the rest of the architecture. For instance, at

architectural level, incorporating security means to have a

mechanism (it may be a component or integrated into a

component). Development processes for system and software

construction are common knowledge and mainstream practice

in most development organizations. Unfortunately, these

processes offer little support in order to meet security and

dependability requirements. Over the years, research efforts

have been invested in methodologies and techniques for secure

and dependable software engineering, yet dedicated processes

have been proposed only recently, namely OWASP’s CLAS
2
,

Microsoft’s SDL
3

and McGraw’s Touchpoints
4
.

In SEMCO, our aim is (1) to identify the commonalities,

discuss the specificity of each approach, and (2) to evaluate

the integration of the SEMCO outcomes in these process

models. The overall goal in SEMCO is to support any security

and dependability engineering process.

B. Pattern-Based Development

Patterns are widely used today to provide architects and

designers with reusable design knowledge. They refer to

triples that describe solutions for commonly occur- ring

problems in specific contexts. There are patterns for generic

architecture problems [6], for security [7] and for other non-

functional requirements.

Pattern-based development has gained more attention

recently in software engineering by addressing new challenges

that are not targeted in the past. In fact, they are applied in

modern software architecture for distributed systems including

middlewares [8], and real-time embedded systems [9], and

recently in security and dependability engineering [7]. The

related approaches promote the use of patterns in the form of

reusable design artifacts.

The supporting research activities in PBSE examine three

distinct challenges: (a) mining (discovering patterns from

existing systems), (b) hatching (selection of the appropriate

pattern); (c) application (effective use during the system

development process). These three challenges often involve

2
http://www.owasp.org

3
http://msdn2.microsoft.com/en-us/library/ms995349.aspx

4
http://www.swsec.com/resources/touchpoints/

widely diverse core expertise including formal logic,

mathematics, stochastic modeling, graph theory, hardware

design and software engineering.

In our work, we study only the two last challenges,

targeting the (i) development of an extendible design language

for modeling patterns for secure and dependable distributed

embedded systems [10] and (ii) a methodology to improve

existing development processes using patterns [11]. The

language has to capture the core elements of the pattern to

help its (a) precise specification, (b) appropriate selection and

(c) seamless integration and usage. The first aspect is pattern-

definition oriented while the second and the third aspects are

more problem-definition oriented.

Usually, these design artifacts are provided as a library of

models (sub-systems) and as a system of patterns (framework)

in the more elaborated approaches. However, there are still

lacks of modeling languages and/or formalisms dedicated to

specify these design artifacts and the way how to reuse them

in software development automation. More precisely, a gap

between the development of systems using patterns and the

pattern information still exists.

The SEMCO vision is to use S&D and architecture patterns

and their interactions as parameters for the computation,

analysis, selection and development of secure and dependable

system and software architectures.

C. Model Driven Engineering (MDE)

MDE has the potential to greatly ease daily activities of

S&D experts. In fact, MDE supports the designer to specify in

a separate way S&D requirements issues at a greater

abstraction level. MDE promotes models as first class

elements. A model can be represented at different levels of

abstraction and the MDE vision is based on (1) the

metamodeling techniques to describe these models and (2) the

mechanisms to specify the relations between them. Model

exchange is within the heart of the MDE methodology as well

as the transformation/refinement relation between two models.

Domain Specific Modeling Languages (DSML) [12] in

software engineering is used as a methodology using models

as first class citizens to specify applications within a particular

domain. There are several DSML environments, one of them

being the open- source Eclipse Modeling Framework (EMF)

[13]. EMF provides an implementation of EMOF (Essential

MOF), a subset of the Meta Object Facility (MOF)
5
, called

Ecore. EMF offers a set of tools to specify metamodels in

Ecore and to generate other representations of them. Query

View Transformation (QVT)
6
is a standard to specify model

transformations in a formal way, between metamodels

conforming to MOF.

In the context of SEMCO, design decisions are one of

the most important artefacts during architecting. Models of

both security and dependability decisions and other

architecture concerns decisions need to be complete, and need

to be specified precisely and traced to other models. The

SEMCO vision is that metamodeling and model

transformation, within MDE (specification, design, analysis,

implementation, test), allows reducing time/cost of

understanding and analyzing system artefacts description due

5
http://www.omg.org/spec/MOF/

6
http://www.omg.org/spec/QVT/

to the abstraction mechanisms and reducing the cost of

development process thanks to the generation mechanisms.

III. THE SEMCO APPROACH

A. Objectives

SEMCO (System and software Engineering with Multi-

COncern) aims at developing a model and pattern-based

modeling framework for handling security and dependability

for system and software architecture that semi-automatically

supports the analysis and evaluation of secure and dependable

architectures for verification and validation purposes,

providing the subsequent re-design that optimizes both.

The framework provides several artifacts types representing

different engineering concerns (Security, Dependability,

Safety and Resources) and architectural information. These

artifacts are stored in a model-based repository and provided

in the form of modeling languages (SEMCO-ML), tools

(SEMCO-MDT) and methods (SEMCO-PM). The nearest goal

of SEMCO is going to contribute on “Understanding System

and software Engineering with security and dependability

features by design in resource constrained systems”.

B. Our Approach Through an Example: The Stakeholders

We propose a solution based on the reuse of software

subsystems that have been pre-engineered to adapt to a

specific domain. In order to understand our security and

dependability engineering framework with patterns better, we

provide a description of a one usage scenario.

In the example of Fig. 2, first a security expert develops a

security subsystem called pattern. The security expert focuses

mainly on security solution development in the form of

patterns elements or mining patterns from existing systems.

Next a software engineering expert adapts the pattern to

engineering reuse. The main output of this activity is a

specification of a pattern in suitable format for repository

storage, to enforce reuse during system and software

development processes. The activity of creating the blue

artifacts is performed by the software engineer in collaboration

with the security expert. The achieved role can be called a

security and dependability pattern engineer. Then a domain

process expert, for instance a railway domain expert adapts the

security pattern into a version that is usable in the railway

system development process, ensuring compliance of these

artifacts with appropriate standards and that other engineering

artifacts are available throughout each phase of a development

process, creating the red artifacts.

Moreover, with the help of a software engineering expert,

the pattern and its associated artifacts should be transformed

into a version (green artifacts) that is adapted to the railway

development environment. The activity of reusing the red

artifacts is performed by dedicated tools that are customized

for a given software engineering environment (development

platform). Finally, a domain engineer, for instance a railway

system and software developer reuses the resulting adapted

and transformed pattern (green artifacts) to develop a railway

system.

Fig.2. Our approach through an example: The Stakeholders

C. Conceptual

The SEMCO foundation is a model-based repository of

modeling artifacts, including pattern, resource and property

models and thereby supporting a pattern-based development

methodology. The pattern is the first class citizen of these

modeling artifacts to describe security and dependability

solutions. The resource will capture the computing system

platform and the property will allow to govern the use of

patterns and to evaluate their security level for analysis for

reuse. Specifically, we tend to overlook the three rules that

govern pattern-based system development (1) the specification

of these artifacts at different levels of abstraction, (2) the

specification of relationships that govern their interactions and

complementarity and the specification of the relationship

between patterns and other artifacts manipulated during the

development lifecycle and those related to the assessment of

critical systems. It is a good application and promotion of

model- driven engineering.

In SEMCO, a pattern is a subsystem dedicated to security

and dependability aspects [14], to be specified by a security

and dependability experts, and reused by domain engineers to

improve systems/software engineering facing security and

dependability requirements.

The core of SEMCO is a set of DSMLs, a repository, search

and transformations engines. The DSMLs are devoted to

specify patterns, a system of patterns and a set of models to

govern their use, and thereby to organize, analyze, evaluate

and finally validate the potential for reuse. In order to enforce

reuse and to interconnect the process of the specification of

these modeling artifacts and the system development with

these artifacts, we developed a structured model-based

repository to store these artifacts. Therefore, instead of

defining new modeling artifacts, that usually are time and

effort consuming as well as error prone, the system developer

merely needs to select appropriate patterns from the repository

and integrate them in the system under development. This is

the role of search and transformation engines, where an

artifact is identified/ selected from a repository and then the

results are transformed towards specific domain development

environments such as UML.

Fig. 3. The SEPM metamodel -Overview

IV. TECHNICAL FOUNDATION

The SEMCO vision is to create an integrated set of soft-

ware tools to enable S&D RCES applications development by

design, with the following objectives:

The tools will improve the design, implementation,

configuration and deployment of S&D RCES

applications through:

- Best-practice design methods: patterns and

models

- Innovative modeling and optimization techniques:

Model Driven Engineering (MDE), Domain

Specific Modeling Languages (DSML),

- To foster reuse in multiple domains: repository.

The tools will target multiple stakeholders in the

RCES markets.

The tools will provide and manage all interfaces with

a common and evolving underlying core models and

technologies.

As introduced in the previous section, security and

dependability pattern engineer and the domain specific

engineer use a number of tools. Those tools, based on model

driven engineering techniques to create and then to reuse

information that is stored in an engineering repository.

We now present an overview of our modeling framework

building process as:

SEMCO-ML: a set of DSMLs for the specification of

the SEMCO modeling artifacts.

SEMCO-MDT: a set of tools to support the SEMCO

methods, the specification of the SEMCO modeling

artifacts and the repository system.

SEMCO-PM: a set of methodologies for the

description of the PBSE methods.

Additional and detailed information will be provided during

the implementation of the related design environment. Then,

we detail the description of the integrated process used for the

development of the Safe4Rail application in Section V.

A. SEMCO-ML

To foster reuse of patterns in the development of critical

systems with S&D requirements, we are building on a

metamodel for representing S&D patterns in the form of

subsystems providing appropriate interfaces and targeting

S&D properties. Interfaces will be used to exhibit the pattern’s

functionality in order to manage its application. In addition,

interfaces support interactions with security primitives and

protocols, such as encryption, and specialization for specific

underlying software and/or hardware platforms, mainly during

the deployment activity.

The System and software Pattern Metamodel (SEPM) is a

metamodel defining a new formalism for describing patterns,

while the Generic Property Metamodel (GPRM) is used to

specify property model libraries to define the S&D and

resource properties of the patterns. The principal classes of the

SEPM metamodel are described with the Ecore notation in Fig.

3. In the following, we detail the meaning of principal

concepts used to edit a pattern.

SepmPattern. This block represents a modular part of a

system representing a solution of a recurrent problem. A

SepmPattern is defined by its behavior and by its

provided and required interfaces. A SepmPattern may be

manifested by one or more artifacts, and in turn, that

artifact may be deployed to its execution environment.

The SepmPattern has attributes to describe the related

recurring design problem that arises in specific design

contexts.

Fig. 4. The tool flow architecture

SepmInternalStructure. Constitutes the implementation

of the solution proposed by the pattern. Thus the

InternalStructure can be considered as a white box

which exposes the details of the pattern.

SepmInterface. A pattern interacts with its environment

with Interfaces which are composed of Operations. We

consider two kinds of interface:

(1) SepmExternalInterface for specifying interactions

with regard to the integration of a pattern into an

application model or to compose patterns, and

(2) SepmTechnicalInterface for specifying interactions

with the platform.

SepmProperty. Is a particular characteristic of a pat- tern

related to the concern dealing with and dedicated to

capture its intent in a certain way. Each property of a

pattern will be validated at the time of the pattern

validation process and the assumptions used will be

compiled as a set of constraints which will have to be

satisfied by the domain application.

In addition to defining pattern artifacts, our pattern

metamodel provides a way to formalize an S&D Pattern

System, as a set of S&D patterns and their potential

relationships, that enables an incremental support of our PBSE

framework.

The Generic Property (GPRM) metamodel captures the

common concepts of the two main concerns of trusted RCES

applications: Security, Dependability and Resource on the one

hand and Constraints on these properties on the other hand.

The libraries of properties and constraints include units, types

and categories. For instance, security and dependability

attributes [5] such as authenticity, confidentiality and

availability are categories of S&D properties. These categories

require a set of measures types (degree, metrics…) and units

(boolean, float…).

B. SEMCO-MDT

The tool-suite to support the SEMCO approach has to

provide the following features:

Repository life cycle: Allow the management of the

repository, including deployment, set-up and

organization.

Modeling artefact life cycle: Provide the ability to

editing S&D patterns and models, their validation, and

their deposit in repository (DEP).

System life cycle: Provide the ability to retrieve S&D

patterns and models from repository (RET) by querying

the repository, instantiate and integrate the results.

Using the proposed metamodels, the Eclipse Modeling

Framework (EMF), and a CDO-based repository
7

ongoing

experimental work is conducted with semcomdt (Semco

Model Development Tools, IRIT’s editor plugins) to produce

an MDE Tool-chain, such as visualized in Fig. 4, supporting

the approach. semcomdt provides a set of software tools, for

instance for the design and for populating the repository and

for retrieval and transform from the repository. For accessing

the repository, semcomdt provides a set of facilities to help

selecting appropriate patterns including keyword search,

lifecycle stage search and property categories search.

7
http://www.eclipse.org/cdo/

Currently the tool suite is provided as Eclipse plugins. For

more details, the reader is referred to [15].

The following tools to perform the activities of management

and populating the repository were developed:

Gaya: a repository based on MDE technology was

developed. This repository allows to store engineering

and process knowledge associated with S&D patterns.

Arabion: a tool for editing S&D patterns. These

patterns must be stored in such a way that they can be

reused later, enhanced and modified.

Tiqueo: a tool for editing S&D properties and

constraints. The focus is on the non-functional

requirements that are associated with S&D patterns.

Moreover, a set of dedicated tools that are customized

for a given software engineering environment (development

platform) were developed: Access tools for Safe4Rail. The

tool transforms the Gaya representation of S&D patterns

into a representation that is consistent with the Safe4Rail set

of tools (mostly Rhapsody UML-based) and the Safe4Rail

process.

C. SEMCO-Methodology: From Pattern Repository to Sys-

tem Development

Along this description, we will give the main keys to

understand why our process is based on a generic, incremental

and a constructive approach. Once the repository
8

is available,

it serves an underlying trust engineering process. In the

process model visualized in Fig. 5 (the numbers in parentheses

correspond to the numbers in Fig. 5), as activity diagram, the

developer starts by system specification (A1) fulfilling the

requirements. In a traditional approach (non pattern-based

approach) the developer would continue with the architecture

design, module design, implementation and test. In our vision,

instead of following these phases and defining new modeling

artifacts, that usually are time and effort consuming, as well as

error prone, the system developer merely needs to select

appropriate patterns from the repository and integrate them in

the system under development.

For each phase, the system developer executes the

search/select from the repository to instantiate patterns in

its modeling environment (A4 and A9) and to integrate them

in its models (A5 and A10) following an incremental process.

The model specified in a certain activity is then used as an

input work product in the following activities. Also, thanks to

the system of patterns organization, the patterns identified in a

certain stage will help during the selection activity of the

following phases. Moreover, the system developer can

develop their own solutions when the repository fails to

deliver appropriate patterns at this stage. It is important to

remark that the software designer does not necessarily need to

use one of the artifacts stored in the repository previously

included. He can define custom software architecture for some

patterns (components), and avoid using the repository

facilities (A6 and A11).

8
The repository system populated with S&D Patterns.

15

Fig. 5. The S&D pattern-based development process

Fig. 6. An example of a railway engineering process

V.APPLICATION DOMAIN EXAMPLE

SEMCO is an effective approach, relying on an MDE tool-

suite, to supporting secure and dependable system and

software architecture engineering methodology and thus in our

context supporting automated pattern-based building and

access in industry
9
. We discuss the benefits, such as reduced

modeling effort and improved readability, achieved when

applying the methodology to an industrial case study. We have

used the SEMCO modeling framework to model and to

analyze secure and dependable pattern- based architectures

for an application acting as one of the TERESA

demonstrators for the railway domain called Safe4Rail.

Safe4Rail is in charge of the emergency brake of a railway

system. Its mission is to check whether the brake needs to be

activated. Most important, the emergency brake must be

activated when something goes wrong.

A. The TERESA Repository

An instance of the Gaya repository called teresaRepository

was built in the context of the TERESA project to demonstrate

reuse in a railway engineering environment and a metrology

engineering environment. The railway and metrology domains

analysis lead to identify a set of patterns to populate

teresaRepository. We used the Tiqueo editor and Arabion

editor to create the corresponding property libraries and the set

of patterns, respectively. Arabion use the property libraries

provided by Tiqueo to type the patterns property. Finally, we

used the Gaya manager tool to set the relationships between

the patterns.

The TERESA repository contains so far (on January 2014):

Compartments. 21 compartments to store artifacts of the

TERESA domains.

Users. 10 users.

Property Libraries. 69 property model libraries.

Pattern Libraries. 59 patterns.

B. Application of the SEMCO Approach to a Railway

System Case Study

Here, we examine the process flow for the example

following the design process of Section IV-C and a very strict

engineering process was followed, such as visualized in Fig.6,

where specific activities were performed in order to achieve

certification using the presented approach (the numbers in

parentheses correspond to the numbers in Fig. 5). In this case,

SIL4 level is targeted.

Once the requirements are properly captured and imported

into the development environment, the process can be

summarized with the following steps:

Activity A2: Develop architecture model of a system: (A3) The

analysis of the requirements results in the needs of an

architectural pattern for redundancy. Thus, activity (A4) is the

instantiation of S&D patterns from the repository using the

9
The approach is evaluated in the context of the

TERESA project (http://www.teresa-project.org/)

repository access tools. The running of the Retrieval tool using

keywords Redundancy and SIL4, suggests to use a TMR

pattern at architecture level. In addition, some diagnosis

techniques imposed by the railway standard are suggested,

thanks to the repository structure and the support of the system

of patterns organization for the railway application domain.

(A5) Finally, at architecture level, we will integrate the

following patterns: (a) TMR (searched by the System

Architect), (b) Diagnosis techniques (suggested by the tool)

and (c) Sensor Diversity (searched by the System Architect).

Activity A7: Develop design model of a system: This activity

involves the development of the design model of the system.

(A8) The analysis of the requirements the architecture model

and the identified architectural patterns will help during the

instantiation activity of the design phase (A9). Based on the

selected patterns, the repository may suggest related or

complementary patterns. For instance, if the TMR has been

integrated, the following patterns may be proposed for the

design model iteration: (d) Data Agreement, (e) Voter, (f)

Black Channel and (g) Clock Synchronization.

VI. CONCLUSION AND DISCUSSION

A Pattern Based System Engineering (PBSE) methodology

based on a repository was specified. This engineering

methodology fully takes into account the need for separation

of roles by defining three distinct processes, the pattern

modeling process, the repository specification process, and the

pattern integration process. The implementation of a PBSE

for S&D patterns is discussed in detail through a use case from

railway domain. A set of languages were specified for the

specification of S&D patterns, of S&D properties, of

processes, and of the repository structure and content. By

developing an effective model- and pattern- based engineering

approach, SEMCO will contribute to the establishment of

security and dependability as an engineering discipline in the

area of embedded systems.

Our objective is to design frameworks to assist system and

software developers in the domain of security and safety

critical systems to capture, implement and document

distributed system applications. We worked on the “theory of

how”. We addressed four fundamental questions: (1) what is

design solutions for the precise and valuable specifications of

patterns and how can a pattern be specified hierarchically with

all its facets? (2) what is a repository of patterns, and how

can repository be built and used to instantiate its content? (3)

what is PBSE and (4) how can pattern be integrated into a

system under development? We also worked on a “practice of

how” by providing the SEMCO tool-chain. We studied the

first three questions, and we are now confronted with the

fourth question.

We plan to extend this work in the following directions: We

will investigate new design techniques to improve the

pattern’s representation to ease their integration in existing

software engineering processes targeting secure and

dependable architectures. Furthermore, we will study the

relation of our approach to the notion of pattern systems

for security and safety critical systems, as a first step for

MBSA (Model Based Safety Analysis). We wish to promote a

framework to define reference models and patterns (sub-

systems) for modeling and analysis of systems with strong

security and safety requirements. The results will be provided

in a SEMCO repository.

We also aim to build an experimental study in part of a

software development environment based on UML. This is to

judge the relevance of the artifacts produced for the

assessment process.

ACKNOWLEDGMENT

This work is initiated in the context of SEMCO framework.

It is supported by the European FP7 TERESA project and by

the French FUI 7 SIRSEC project. In addition, we would like

to thank the TERESA consortium who gave us valuable

feedback on this paper.

REFERENCES

[1] A. Ziani, B. Hamid, and S. Trujillo, Towards a Unified

Metamodel for Resources-Constrained Embedded

Systems, in 37th EUROMICRO Conference on Software

Engineering and Advanced Applications, pp. 485–492,

IEEE, 2011.

[2] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady,

Security in embedded systems: Design challenges, ACM

Trans. Embed. Comput. Syst., vol. 3, no. 3, pp. 461–491,

2004.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,

Basic concepts and taxonomy of dependable and secure

computing, IEEE Transactions on Dependable and

Secure Computing, vol. 1, pp. 11–33, 2004.

[4] D. Schmidt, Model-driven engineering, in IEEE computer,

vol. 39, no. 2, pp. 41–47, 2006.

[5] I. Crnkovic, M. R. V. Chaudron, and S. Larsson,

Component- based development process and component

lifecycle, in Proceedings of the International Conference

on Software Engineering Advances (ICSEA 2006), p. 44,

IEEE Computer Society, 2006.

[6] F. Buschmann, K. Henney, and D. Schmidt, Pattern-

Oriented Software Architecture, Volume 4: A Pattern

Language for Distributed Computing. Wiley, 2007.

[7] M. Schumacher, Security Engineering with Patterns -

Origins, Theoretical Models, and New Applications, vol.

2754 of Lecture Notes in Computer Science. Springer,

2003.

[8] D. C. Schmidt and F. Buschmann, Patterns, frameworks,

and middleware: Their synergistic relationships, in ICSE,

pp. 694– 704, IEEE Computer Society, 2003.

[9] B. P. Douglass, Real-Time Design Patterns: Robust

Scalable Architecture for Real-Time Systems. Boston,

MA, USA: Addison- Wesley Longman Publishing Co.,

Inc., 2002.

[10] B. Hamid, S.Gurgens, C. Jouvray, and N. Desnos,

Enforcing S&D Pattern Design in RCES with Modeling

and Formal Approaches, in ACM/IEEE International

Conference on Model Driven Engineering Languages and

Systems (MODELS) (J. Whittle, ed.), vol. 6981, pp. 319–

333, Springer, octobre 2011.

[11] B. Hamid, J. Geisel, A. Ziani, J. Bruel, and J. Perez,

Model- Driven Engineering for Trusted Embedded

Systems Based on Security and Dependability Patterns,

in SDL Forum, pp. 72– 90, 2013.

[12] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema,

and J. Sprinkle, Domain-Specific Modeling. Chapman &

Hall/CRC, 2007.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,

EMF: Eclipse Modeling Framework 2.0. Addison-

Wesley Professional, 2nd ed., 2009.

[14] B. Hamid and C. Percebois, A modeling and formal

approach for the precise specification of security patterns,

in Engineering Secure Software and Systems - 6th

International Symposium, ESSoS 2014, vol. 8364 of

Lecture Notes in Computer Science, pp. 95–112,

Springer, 2014.

[15] B. Hamid, A. Ziani, and J. Geisel, Towards Tool Support

for Pattern-Based Secure and Dependable Systems

Development, in ACadeMics Tooling with Eclipse

(ACME), Montpellier, France, pp. 1–6, ACM DL, 2013.

Dr Brahim Hamid: B. Hamid

received his PhD degree from the

University of Bordeaux (France), his

PhD thesis was on the study of

dependability in distributed

computing systems. Then he worked

at the CEA-Saclay List (French

laboratory specialized on real-time

embedded system modelling) where

he worked on distributed component-based applications for

dependable embedded and real-time. Currently, he is an

associate professor at the University of Toulouse (France) and

member of the IRIT-MACAO team. His main research topic is

software languages engineering, at both the foundations and

application level, for the development of secure and

dependable distributed systems using model-driven

engineering and design patterns. He participated in several

research projects. In particular, he has led successfully the

IRIT effort on the TERESA European project, and several

national projects.

