
HAL Id: hal-01387731
https://hal.science/hal-01387731v1

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Majority Quorum Protocol Dedicated to General
Threshold Schemes

Théodore Jean Richard Relaza, Jacques Jorda, Abdelaziz M’Zoughi

To cite this version:
Théodore Jean Richard Relaza, Jacques Jorda, Abdelaziz M’Zoughi. Majority Quorum Protocol
Dedicated to General Threshold Schemes. 15th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2015), May 2015, Shenzhen, Guangdong, China. pp. 785-788.
�hal-01387731�

https://hal.science/hal-01387731v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15254

The contribution was presented at CCGrid 2015 :
https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_

ID=34548

To cite this version : Relaza, Théodore Jean Richard and Jorda, Jacques and
M'zoughi, Abdelaziz Majority Quorum Protocol Dedicated to General
Threshold Schemes. (2015) In: 15th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2015), 4 May 2015 - 7 May 2015 (Shenzhen,
Guangdong, China).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Majority Quorum Protocol Dedicated to General Threshold Schemes

Theodore J. R. RELAZA

TOULOUSE UNIVERSITY - IRIT

Email: relaza@irit.fr

Jacques Jorda

TOULOUSE UNIVERSITY - IRIT

Email: jorda@irit.fr

Abdelaziz M’zoughi

TOULOUSE UNIVERSITY - IRIT

Email: mzoughi@irit.fr

Abstract—In this paper, we introduce a majority quorum
system dedicated to p-m-n general threshold schemes where
p, n and m are respectively the minimal number of chunks
that provide some information (but not necessarily all) on the
original data, the total number of nodes in which the chunks of
an object are stored and the minimal number of nodes needed
to retrieve the original data using this protocol. In other words,
less than p chunks reveal absolutely no information about the
original data and less than m chunks can’t reconstruct the
original data. The p-m-n general threshold schemes optimize
the usage of storage resources by reducing the total size of
data to write and ensure fault-tolerance up to (n −m) nodes
failure. With such a data distribution, a specific value of m can
be set to have a good tradeoff between resources utilization and
fault-tolerance. The only drawback of such schemes is the lack
of any consistency protocol.

If fact, consistency protocols like classical majority quorum
are based on full replication. To successfully read or write a
data using the majority quorum protocol, an absolute majority
of replicas must be read / written correctly. This condition
ensures that any read and write operations will contain at
least one common replica, which guarantees their consistency.
However, when a threshold scheme is used, an adaptation is
needed. In fact, classical majority quorum protocol can no
longer ensure that m chunks will have the latest version when
⌊n
2
⌋+1 < m ≤ n. In this paper, we introduce a new majority

quorum protocol dedicated to general threshold schemes. As
for the classical majority quorum protocol, the complexity of
the quorum size of our protocol is O(n) but the utilization of
storage resources is greatly optimized.

Keywords-Data availability; error codes; coherency; quo-
rums;

I. INTRODUCTION

Data replication is heavily used to ensure data availability in
distributed storage systems. Both grid storage systems (like GFarm
or XtreemFS) and cloud storage systems (like Ceph or GlusterFS)
use this mechanism to handle network and / or nodes failures.
However the replication introduces an additional overhead due to
replicas management and the consistency of replicated data must be
ensured. The simplest solution to maintain the consistency of the
replicas is the ROWA (Read-One Write-All) protocol [13] a single
node is enough to read the data while all nodes are required for a
successful write operation. The strong point of the ROWA protocol
is the reliability of read operations. However, the main drawbacks
of this protocol are the large overhead and the lack of fault-
tolerance for write operations: all replicas must be written for each
write operation, and if only one node fails to write successfully, the
whole operation fails. Moreover, full replication involves an under-
utilization of storage resources making this solution of high cost
when large data should be stored. For data consistency protocols,

the goal is to reduce the minimum number of nodes (called size
of the write quorum) needed to write data while maintaining a
high level of availability, to make the protocol fault-tolerant and
to guarantee the consistency for each replica of the same data. For
data replication protocol, the goal is to reduce the total space used
while maintaining a high level of availability.

The existing data consistency protocols are almost all dedicated
to full replication. Although the quorum protocol allows to reduce
the number of nodes required to write data, the problem due to full
replication remains. To minimize the usage of storage resources, we
decided to use p−m−n general threshold schemes because of the
adaptability of the algorithm to users’ needs. Both availability and
high storage resources utilization may be ensured with adequate
values of p, m and n. We will propose an adaption of classical
majority quorum protocol in the general threshold schemes context.

The remaining of the paper is organized as follows. Section 2
reviews the context and related work. We describe the classical data
distribution and data consistency protocols in section 3. Numerical
evaluations and analysis are given in section 4 and we conclude in
section 5.

II. CONTEXT AND RELATED WORK

We are first going to present classical way to distribute data
to ensure availability, presenting existing solutions used either at
nodes or disks levels. We will then introduce the most commonly
used data consistency protocols, and we will conclude by the
general context of our study.

A. Data distribution

The mostly used solution to increase data availability and
reliability is the full replication. This data distribution implies the
higher availability possible, but incurs an excessive usage of system
resources [12]. It also increases a system’s costs by 40% to 60% [8].
Moreover, the write operations in full replication cause a scalability
problem in the bandwidth usage [12].

The erasure resilient codes (ERC-codes) are beginning to move
from disks to distributed storage systems. However, almost all
studies focus on in-place updates and I/Os / network usage op-
timization on nodes failure. To achieve these goals, data are often
considered as (nearly) immutable: updates are done by writing new
data - the old blocks being cleaned using a background garbage
collector process. Moreover, the data consistency is either not
discussed [10] or the protocols used are not strict: for example,
a ”reasonably strong consistency” may be used [3]where a read
concurrent to write operations returns a non deterministic value.
To our best knowledge, the only implementation of a strong
consistency protocol seals the writes on failures to guarantee the
consistency [5]. However, these solutions are not adequate for
some kind of storage. For example, data disks of users’ virtual
machines in a virtualization context need a strong consistency of
the underlying files to guarantee a proper execution of applications.

In order to generalize our discussion, we consider General
Threshold Schemes [7] as they can represent a broad class of data

distribution. This type of protocol may be particularly suited to the
context of cloud storage where many levels of quality of services
are often proposed. The flexibility is one of the strengths of the
general threshold schemes: the p, m and n parameters may be set
according to the storage system requirements (cost, performance,
etc.).

B. Data consistency protocol

The most basic replica control is the ROWA protocol. The non
fault-tolerance and the high cost for write operations are the major
drawbacks of the ROWA protocol [13]. Some protocols have been
developed to ensure not only data consistency but also concurrency
control over replicated data (e.g., quorum consensus protocol [9]).
But with these protocols, the communication cost is high (O(N))
due to the large quorum size.

Facing with this dilemma, many protocols impose a logical
structure on the infrastructure [1], [6], [11]. These structures are
logical and do not tie in the actual physical structures of the
infrastructure containing the nodes storing the replicas [1]. The
Tree Quorum protocol [1], [2] requires a quorum of size O(logN),
in which the nodes are structured to form a tree. The Hierarchical
Quorum Consensus [11] is based on logically organizing the data
replicas into a multilevel tree. With this protocol, the quorum size
required is O(N0.63). The Triangular Mesh protocol [6] uses a

quorum of size O(
√
N), in which the nodes are structured to form

a triangle. In the General Hybrid Data Replication protocol [4],
organizes replicas in a logical trapeze.

C. Context of our work

To reduce the storage space needed to ensure data availability,
we focus on general threshold schemes to distribute data among
nodes . All data consistency protocols described above being based
on full replication, we need to modify them to make them fit
into our distribution model. In this paper, we study the data
consistency in the presence of general threshold schemes using
Majority Quorum Protocol. Actually, majority quorum protocol can
only ensure that ⌊n

2
⌋+1 chunks (absolute majority) have the latest

version while m chunks are required by p−m−n general threshold
schemes to reconstruct the original data (with 1 ≤ m ≤ n).
Therefore, ⌊n

2
⌋ + 1 is not enough to reconstruct the original data

using a threshold scheme when ⌊n
2
⌋ + 1 < m ≤ n. Thus we

are going to show how to modify the existing algorithm and what
performance can be expected from this new storage system.

III. MODEL

The storage system we are going to study is made of two
parts. The first part is the data distribution method which ensures
the data slicing, the redundancy schemes and the data recovery
mechanisms.The second part is the replica control protocol which
goal is to maintain the consistency of the replicas. Our replica
control protocol will be based on the Majority Quorum Protocol,
adapted to the chosen data distribution solution.

A. General Threshold Schemes

In our storage system, we use general threshold schemes to store
the data. It is a flexible data distribution mechanism which can be
adapted according to the users’ objectives and constraints(e.g.,
storage cost, data availability or data confidentiality).A p−m−n
general threshold scheme divides data into n chunks such that any
m of the chunks can reconstruct the original data and less than
p chunks reveal absolutely no information about the original data.
The p, m and n parameters must satisfy the following conditions:
1 ≤ p ≤ m ≤ n. Table I shows a list of specifics threshold scheme
depending on the values of the parameters p and m.

Threshold scheme Description
1− 1− n Full replication
1− n− n Decimation (Striping)
n− n− n Splitting (XORing)
1−m− n Information Dispersal
m−m− n Secret Sharing
p−m− n Ramp Scheme

Table I
LIST OF SPECIFICS THRESHOLD SCHEME [7]

B. Data Consistency Protocol

In this section, we will define the read and write quorum of
majority quorum protocol dedicated to general threshold schemes.
A general threshold scheme compliant write quorum (WQ) is
any set of |WQ| nodes required to write data, where

|WQ| = max(m, ⌊n
2
⌋+ 1) (1)

WRITE procedure in algorithm 1 describes the way write opera-
tions are implemented for a majority quorum protocol dedicated
to threshold schemes. For any two quorum WQ1 and WQ2, the
property WQ1 ∩WQ2 6= ∅ is always verified.

A general threshold scheme compliant read quorum (RQ) is
any set of |RQ| nodes among which at least m nodes contain the
latest version of the data, where

|RQ| = max(m, ⌈n
2
⌉) (2)

Given any read quorum RQ and write quorum WQ, they satisfy
RQ∩WQ 6= ∅. READ procedure in algorithm 1 describes the way
write operations are implemented for a majority quorum protocol
dedicated to threshold schemes. The write quorum and read quorum
are described in algorithms later in this section. The symbols used
in the following algorithms and their explanations are listed in
Table II on page 2.

Symbol Description
p, m, n Threshold scheme parameters
x Object x
idx ID of object x
r Replica ID of object x
Lnode List of node in the system

Table II
SYMBOLS USED IN THE FOLLOWING ALGORITHMS

IV. ANALYSIS

In this part, we will evaluate the impact of each parameter on the
availability, the storage space used and the confidentiality. We will
model the availability using a probabilistic approach. Then we will
show some numerical evaluations of our majority quorum protocol
dedicated to general threshold schemes compared to the classical
version dedicated to full replication.
Notations

• a: denotes node availability
• MQP-FR and MQP-GTS: refer to Majority Quorum Protocol

in the Full Replication respectively the General Threshold
Schemes context.

• w and r: denote size of the write respectively read quorum
for the MQP-GTS context.

• Φ(i, j)refer the probability that at least i nodes out of j would
be available.

Algorithm 1 Write and read an object x

1: procedure WRITE(idx, x, p,m, n, Lnode) ⊲ Write n chunks
2: Tchunks ←GENERATE-BLOCKS(p,m, n, x) ⊲ Generate n blocks from x
3: v ←GET-HIGHEST-VERSION(idx, n,m,Lnode)
4: S ← ∅
5: size← GET-WRITE-QUORUM-SIZE(n,m)
6: for all chunk ∈ Tchunks do
7: r ← ID of replica chunk
8: node←SELECT-NODE(idx, r, Lnode)
9: write chunk in node

10: if ”write is OK” then
11: S ← S ∪ {node}
12: SETVERSION(idx, node, v + 1)
13: end if
14: end for
15: if |S| ≥ size then
16: return OK ⊲ WRITE operation is done
17: else
18: for all node ∈ S do
19: INVALIDATE-WRITE(idx, node)
20: SETVERSION(idx, node, v)
21: end for
22: return NO OK ⊲ WRITE operation failed
23: end if
24: end procedure

25: procedure READ(idx, p,m, n, Lnode) ⊲ Read the object x
26: x← ∅
27: v ←GET-HIGHEST-VERSION(idx, n,m,Lnode)
28: counter ← 0
29: Xchunks ← ∅
30: for all r ∈ replicas of object with ID idx do
31: node←SELECT-NODE(idx, r, Lnode)
32: get the version vr of the replica r of object x stored in node
33: if v = vr then
34: chunk ←read replica r of object ID idx in node
35: Xchunks(counter)← chunk
36: counter ← counter + 1
37: end if
38: if counter = m then
39: x← decode(idx, p,m, n,Xchunks)
40: break
41: end if
42: end for
43: return x
44: end procedure

Φ(i, j) ≡
k=j
∑

k=i

(

j

k

)

a
k(1− a)j−k

(3)

With no loss of generality, we assume that node availability is
the same and equal to a for all nodes in the system, nodes fail
independently of each other, each node stops on failure (fail-stop)
and there is no failure on communication links.

A. Write availability

The write availability represents the probability that the data
can be written into the system. The MQP-FR requires at least an
absolute majority of nodes to validate the write operation. Then, at
least ⌊n

2
⌋+ 1 nodes out of n should be available. Whereas in the

case of MQP-GTS the validation of chunks’ write operation on at
least w nodes out of n is required. Therefore,

Pwrite =

{

Φ(⌊n
2
⌋+ 1, n) for MQP-FR

Φ(w, n) for MQP-GTS
(4)

B. Read availability

The read availability represents the probability that the data can
be read from the system. The MQP-FR requires at least ⌈n

2
⌉ nodes

to validate the read operation. Using β(i, j) to refer the probability
that exactly i nodes out of j would be available and ψi(k) to
refer the probability that at least i nodes out of k nodes which
are available during the current read operation was also available
during the last valid write operation, we have:

Figure 1. Write availability of MQP-FR and MQP-GTS as a
function of the node availability a

Figure 2. Read availability for MQP-FR and MQP-GTS as a
function of the node availability a

Pread =

{

Φ(⌈n
2
⌉, n) for MQP-FR

∑k=n

k=r
ψm(k).β(k, n) for MQP-GTS

(5)

C. Simulations

Simulation results (Figure 1-4) show the highlights of MQP-
GTS compared to MQP-FR. For any m lower or equal to 8, these
two protocols have the same write and read availability (igure 1 and
Figure 2) but MQP-GTS allows to save more than 80% of storage
space compared to MQP-FR (Figure 3). In Figure 3, storage space
used by MQP-FR is taken as a reference to compute the percentage
of storage space used by each protocol to store a data. The storage
space used by MQP-GTS is inversely proportional to p (Figure 4).
By contrast, increasing p increases the degree of confidentiality.
For n = 15 and a = 0.9, using MQP-GTS instead of MQP-FR
allows to save storage space up to about 85% while keeping the
same performance.

Table III shows an example of numerical evaluations of write
availability (Pwrite), read availability (Pread) and storage space
used (SPused) for a node availability greater than 0.9.

V. CONCLUSION

General threshold schemes give the theoretical framework to
study data distribution in a parallel storage system. They allow
to define precisely the way data is splited and distributed among
nodes. Given three parameters, any choice can be made to balance

Figure 3. Percentage of storage space used in MQP-GTS compared
to MQP-FR as a function of m

Figure 4. Percentage of storage space saved in MQP-GTS
compared to MQP-FR as a function of m for different values of p

availability, cost and confidentiality. However, no data consistency
protocol exists on such schemes.

Traditional consistency protocols only refer to full data distri-
bution. In such contexts, each replica is identical to others and
a single one is enough to retrieve the original data. Thus such
protocols cannot be used with general threshold schemes.

In this paper, we have introduced an adaptation of the majority
quorum protocol dedicated to general threshold schemes. We have
detailed the read and write operations, and show the balance
between availability and storage space saved. This gain is at no
cost since the complexity of the algorithm is unchanged.

We are now going to explore more data consistency protocols in
the context of general threshold schemes since the majority quorum
protocol is one of the simpler and least efficient one.

REFERENCES

[1] D. Agrawal and A. El Abbadi. The tree quorum protocol : An
efficient approach for managing replicated data. Proceedings
of the 16th VLDB Conference Brisbane, Australia, 1990.

[2] D. Agrawal and A. El Abbadi. An efficient and fault-tolerent
solution for distributed mutual exclusion. ACM Transactions
on Computer Systems, 9(1):1–20, feb 1991.

[3] Marcos K. Aguilera, Ramaprabhu Janakiraman, and Lixao
Xu. Using erasure codes efficiently for storage in a distributed
system. In Proceedings of the 2005 International Conference

a type Pwrite Pread SPused

0.93 Full replication 0.999997 0.999997 100%

Threshold
scheme 0.999967 0.999602 11.11%

0.96 Full replication 0.999999 0.999999 100%

Threshold
scheme 0.999999 0.999988 11.11%

Table III
EXAMPLE OF NUMERICAL EVALUATIONS OF WRITE

AVAILABILITY, READ AVAILABILITY AND STORAGE SPACE

USED AS A FUNCTION OF NODE AVAILABILITY a AND THE

DATA DISTRIBUTION PROTOCOL

onDependable Systems and Networks, DSN’05, pages 336–
345. IEEE, 2005.

[4] Masayuki Arai, Tabito Suzuki, and Mamoru Ohara. Analysis
of read and write availability for generalized hybrid data
replication protocol. Proceedings of the 10th IEEE Pacific
Rim International Symposium on Dependable Computing
(PRDC’04), 2004.

[5] Brad Calder et al. Windows azure storage: A highly available
cloud storage service with strong consistency. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 143–157, New York, NY, USA,
2011. ACM.

[6] Ye-In Chang and Yao-Jen Chang. A fault-tolerant trangular
mesh protocol for dirstibuted mutual exclusion. Proceedings.
Seventh IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 694–701, 1995.

[7] Gregory R. Ganger, Pradeep K. Khosla, and Mehmet
Bakkaloglu. Survivable storage systems. DARPA Information
Survivability Conference & Exposition II, 2:184–195, 2001.

[8] G.A. Gibson. Redundant disks arrays: Reliable, parallel sec-
ondary storage. PhD dissertation, Dept. Computer Science,
UC Berkeley, Apr 1991.

[9] David K. Gifford. Weighted voting for replicated data. in
Proc. of the 7th Symposium on Operating Systems Principles,
pages 150–159, 1979.

[10] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes:
Flexible schemes to trade space for access efficiency in
reliable data storage systems. Trans. Storage, 9(1):3:1–3:28,
March 2013.

[11] Akhil Kumar. Hierarchical quorum consensus : A new
algorithm for managing replicated data. IEEE Transactions
on Computers, 40(9):996–1004, sep 1991.

[12] Gunnar Mathiason et al. Virtual full replication by adaptative
segmentation. 13th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications
(RTCSA), pages 327–336, 2007.

[13] Michael Rabinovich and Edward D. Lazowska. An efficient
and highly available read-one write-all protocol for replicated
data management. Proceedings of the Second International
Conference on Parallel and Distributed Information Systems,
pages 56–65, 1993.

