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Abstract—The model composition provides support to build
systems based on a set of less complex sub-models. This operation
allows managing complexity while supporting the modularity and
reusability tasks. Due to the increase number of the involving
models, their composition becomes a tedious task. For that, the
need for maintaining traceability information is raised to help
managing the composition operation. We propose in this work
a graph-based model transformations approach, which aims to
keep track of the model composition operation. Our objective is
to capture traces in an automatic and reusable manner. Finally,
a composition scenario is given to demonstrate the feasibility of
our proposal.

Keywords—model traceability, model composition, aspect-
oriented modeling, graph transformations.

I. INTRODUCTION

Large and heterogeneous systems are too complex to be
described using a single model. Indeed, the model composition
provides support to build systems based on different models.
Each one refers to a specific concern, perspective, point of
view or component [1]. Such modularization allows managing
the system complexity by reasoning about less complex sub-
models.

Despite of the model composition benefits such as: vali-
dation of involving models and models synchronization; this
operation remains a laborious and error prone activity. We
argue that a traceability mechanism is a key factor to handle
this task. Traces help designer to comprehend the exact effects
of the composition and reveal the interactions among involving
models. Besides, such information provides means to validate
the composition and assist the propagation of changes during
the evolution of the system.

In this context, we propose a traceability approach for the
model composition operation. Within our proposal, we con-
sider the traceability management as a crosscutting concern,
while the weaving of the traces generation patterns is specified
using graph transformations [2]. The incorporated structure
allow the generation of the trace model as an additional target
model. Such an extra output model has manifold application
in the model composition field:

• To validate the composition: trace links provide a de-
tailed view of the flow of execution. Indeed, they rep-
resent relationships between source model elements
and their target equivalents. Through these links, we
can verify the consistency and the completeness of the
model composition operation.

• To support co-evolution of models: the trace model
specifies how source artifacts participate in the pro-
duction of the composed model. Those links are useful
to analyze the impact of changing sub-models during
the evolution of the system.

• To optimize the composition chain: As part of a
model composition chain, the restriction to source
artifacts of a given stage of the overall chain confuses
its management. Hence, the use of the trace model
can broaden its scope, through the reuse of previous
valuable links.

The remained of this paper is structured as follows: Section
II presents a review on the traceability management and a
discussion about the need of a traceability mechanism ad-
dressing the model composition operation. In Section III we
propose an overview of our approach. Thereafter, in Section
IV we implement our traceability aspect for the ATL language;
while Section V presents a case study that demonstrates the
applicability of our proposal. In Section VI we review the
related approaches. Finally Section VII summaries this paper
and represents future works.

II. BACKGROUND AND MOTIVATION

The IEEE Standard Glossary of Software Engineering
Terminology [3] defines traceability as:

”the degree to which relationship can be established be-
tween two or more products of the development process,
especially products having a predecessor-successor or master-
subordinate relationship to one other; for example, the degree
to which the requirements and design of a given software
component match”

The definition is tied to the abstraction level of the managed
artifacts and the traceability scenario. Indeed, it is closely



related to the requirements traceability field. As regard to
model transformations, traceability is defined as:

• ”Any relationship that exists between artifacts involved
in the software engineering life cycle” [4].

• ”The runtime footprint of model transformation .Es-
sentially, trace links provide this kind of information
by associating source and target model element with
re-spect of the execution of a certain model transfor-
mation” [5].

Essentially, traceability refers to the ability to manage links
between elements handled by a model management operation.
It provides a view of the changes that have occurred in these
model elements and reveals the complexity of logical relations
[6] existing among them.

Trace links of a model transformation can either be gen-
erated naturally with an internal traceability tool (implicit
traceability) or produced using an external support (explicit
traceability). In the former case, the generation task does not
require an additional effort; however, the generation process is
fixed and cannot be configured to produce the required traces
with respect to a given traceability scenario. In addition, the
structuring of traces is often simple to allow an advanced post
configuration. As for the implicit traceability, even if there
is a need for encoding the traces generation; but it provides
manifold configuration tracks. Indeed, both the traceability
metamodel and the application scope can be chosen freely by
the developer.

An outline of the grand challenges concerning the traceabil-
ity management has been stated by the Center of Excellence
for Software Traceability [7]. The first challenge is the purpose
of generating traces. Indeed, the traceability concern has to
fit the user’s intensions. In addition, the authors argue that
traces have to be configurable, portable and generated in a
scalable manner. In order to satisfy these requirements, we
propose a traceability approach for the model composition
operation. Actually, we have found in the literature various
traceability solutions that address the model transformation
field; however, we have not encountered a specific approach
concerning the composition operation. Therefore, adopting
such solutions does not deal with the purpose challenge,
because the composition has particular intensions and the
traceability support has to be aware of them. On the other
hand, we believe that existing solutions do not provide means
to express configurable traces, since they are designed in such
a way that disregards the composition process. Our objective
is to gather the benefits of the existing model transformation
traceability solutions while focusing on the model composition
field. In fact, we have set the traceability requirements below
according to the analysis we have conducted of the main model
transformation traceability approaches [8]:

• The traceability data has to be stored in a separate
model in order to keep the managed models clean.
Besides, this trace model has to be expressed us-
ing a generic metamodel to reduce effort to achieve
traceability. This mechanism allows the reusability of
traces.

• The traceability metamodel must provide an extensi-
bility mechanism for expressing highly configurable

traces with respect to the traceability purpose and
specifications of contributing models.

• Regarding the scalability challenge, we have to gener-
ate traces with an automatic mechanism. Besides, the
generation process must be configurable with respect
to the traceability scenario.

Finally, we have taken into account the fact that our
proposal must support a visualization system for expressing
the trace model in a user friendly representation.

III. OVERVIEW OF THE APPROACH

A. Traces generation process

In this section we provide an overview of the way traces are
captured and structured. We aim through our approach keep
track of the model composition operation. For that, we propose
to generate the trace model as being an additional target model
of the specification to trace (see Fig. 1). We consider the
traceability concern as being a cross-cutting concern. Indeed,
we define a traceability aspect that automatically weaves the
traces generation patterns. Traces are conforming to a generic
traceability metamodel that deals with the configuration and
portability challenges.

Fig. 1. Traceability generation process

B. Traces structuring

we presents in Fig. 2 the traceability metamodel accounting
for structuring of traces. This formalism allows expressing
the composition relationship kinds in a trivial manner. The
composition operation has a particular process [9]. It consists
of detecting matching elements that describe the same concept
in the left and right models. These pairs of elements are
merged while other elements are eventually transformed into
the target model. Hence, the structuring of traces must take
account of these specificities in order to express purposed links.
Accordingly, we have set two types of trace links: merging and
transformation links.

• TraceLink: generalizes the relationship between the
source and target model elements handled by the
model composition operation.

• MergingLink: connects the left and right model ele-
ments to the merged ones.



• TransformationLink: expresses a transition from a
source model element (belonging to the left or right
model) to their target equivalents.

• ModelElement: This concept refers the linked model
elements.

• Context: allows expressing semantically rich traces
through the assignment of further information to a sub-
set of traces. This extensibility mechanism is based on
the definition of the relevant context attributes.

• ContextAttribute: represents the additional information
to be assigned to a sub-set of trace links, such as:
the intension of capturing those traces, the rule that
generates them. . .

• TraceModel: it is the root element which contains all
the generated trace links and contexts.

Besides, we represent the rule invocation through parent-
child relations among trace links. This provides a multi-scales
character to the trace model, and allows the user to examine
traces at different granularity degree.

Fig. 2. Composition traceability metamodel

C. Traces generation

Aspect Oriented Modeling (AOM) [10] applies aspect
oriented programming [11] in the context of model driven
engineering. It focuses on modularizing and composing cross-
cutting concerns during the design phase of a software system.
Aspect oriented approaches aim at separating crosscutting
concerns (security, persistence. . . ) from the base concerns of
a system. In AOM, both the aspects that encapsulate the
crosscutting structures and the base model they crosscut are
models. An aspect is defined principally by:

• A pointcut: it is a predicate over a model used to
determine the places where the aspect should be
applied (joinpoints).

• An advice: it is the new structure that replaces the
relevant jointpoints.

Within our approach, we consider traceability as a cross-
cutting concern to deal with the generation task while sup-
porting the portability and scalability challenges. Indeed, the
traceability concern is encapsulated in a reusable aspect that
is used to automatically weave the traces generation patterns.
Furthermore, AOM provides support to keep track of the
composition operation regardless the concrete syntax of the
composition language (textual or graphical) by abstracting the
specification through its corresponding model.

The weaving mechanism is implemented using graph trans-
formations. A graph transformation rule consists of two parts,
a left-hand side (LHS) and a right-hand side (RHS). A rule
is applied by replacing the objects of the left-hand side with
the objects of the right-hand side, only if the pattern of
the left-hand side can be matched to a given graph [12].
In what follows, the traceability aspect corresponds to a set
of graph transformation rules. The LHS parts determine the
places where the aspect should be applied (joinpoints) and the
RHS parts define the new structures that replace the relevant
joinpoints (advice).

The graph transformation unit depicted in Fig. 3 presents an
overview of the weaving process. The TraceModelDeclaration
rule allows declaring the trace model to be an additional
target model. Thereafter, the second rule is applied to trace
composition rules. The tracing of a rule consists of providing it
with the behavior it needs to produce a trace link that connects
the source elements with the composed ones. Basically, this
is based on the declaration of an additional output element
that refers the traceability link and the assignment of the
traceability data (left, right and targets reference) to it (see
Fig.2). Subsequently, the rule TraceLinksNesting weaves the
patterns responsible of the nesting of traces with respect to
the rule calls. Finally, the last rule deletes all the temporary
information we use to perform the weaving process. The next
section illustrates the application of this weaving process to
trace a specification written in the ATL language [13].

Fig. 3. Traces generation weaving unit



IV. APPLICATION OF GRAPH TRANSFORMATIONS FOR

TRACES GENERATION

In this section, we apply the traceability weaving process
for the ATL language. ATL is a model transformation language
that provides tools to compute a set of target models from
source models. Nevertheless, it does not support means to
express the composition scenario in a native manner. We
have experienced the applicability of our solution to trace
composition oriented approaches like EML [14] and amar et
al. [1]. By choosing the ATL language, we aim to reveal the
generic character of our proposal and present the way we
master the specificities of a given language using AOM.

A. Traceability management within ATL

Jouault [15] proposed a traceability approach to overcome
the limitation of the implicit traceability in ATL. It addresses
two configuration dimensions: the range and the format. The
range refers to the possibility to select a sub-set of elements to
trace, while the format corresponds to the traces structuring.
The generation of trace links is based on a Higher-Order Trans-
formation (HOT) named TraceAdder. This HOT automatically
inserts the traces generation code to any existing ATL program.

Yie and Wagelaar [16] presented a solution that enlarges
the limited access to the implicit links which is handled by
the resolveTemp operation. They proposed two mechanisms to
provide this rich access. The first one consists of an extension
of the ATL virtual machine to provide the selection of the
target elements by type and copying the implicit transient links
into an external trace model. Furthermore, they present another
mechanism that allows generating the trace model on demand
through byte code adaptation.

Although the proposal of the aforementioned approaches is
structured around the configuration issue, they use very simple
traceability metamodels which are not amenable to generate
highly configurable trace models. Actually, the authors have
not proposed way for adding customized tracing information
or for adapting their generation process to other traceability
metamodel mean to express valuable and interesting traces
depending on the traceability context which is the model
composition in our case.

B. Traces generation for ATL

We have chosen the ATL language as an example of
transformation language used to specify the merging scenarios
in a non-native way. Indeed, ATL is not a dedicated compo-
sition language and does not categorize rules on merging and
transformation classes. It used matched rules to specify the
transformation behavior in a declarative way; while lazy and
called rules allow defining imperative transformations.

We have proposed to employ graph transformations to
perform the weaving of the traceability aspect. For that, we
use the ATL EMF-specific injector/extractor1 to generate the
corresponding model of an ATL concrete specification. There-
after, a specific graph transformation unit is applied on the
resulting model to weave the traces generation patterns. In the
following sections, we detailed the main graph transformation

1See https://wiki.eclipse.org/ATL/Developer Guide

rules which constitute this unit. The Henshin project [17] is
used for specifying these graph transformations. We have to
notice that the rule declaration in the Henshin formalism does
not explicit the description of the left and right hand sides.
Instead, it is based on the following stereotypes to depict the
rule application semantic:

• preserve: all elements (edges or nodes) labeled with
this stereotype must be sought to enable the rule ap-
plication. Furthermore, those elements will be copied
in the resulting graph.

• create: it is used to describe the new elements to be
added to the graph.

• delete: it references the elements to be removed from
the graph.

• require: this stereotype allows expressing of the con-
ditions necessary for the rule application.

• forbid: by contrast, the presence of such a pattern
prohibits the rule application.

1) Trace model declaration: The purpose of the rule de-
picted in Fig. 4 is to declare the trace model as an additional
output of the module to trace. This model conforms to our
generic traceability metamodel (cf. Section III-B) which cor-
responds to the other created node.

Fig. 4. Trace model declaration rule

2) Trace ATL rules: We have presented that ATL does
not categorize rules on merging and transformation rules.
Therefore, the user assistance is required to resolve the rule
category in a composition scenario. For that, we have aug-
mented the rule concept in the ATL abstract syntax with the
type attribute. This attribute admits two values: Merge and
Transform which are assigned manually depending on the
intension of defining the rule. Note that we have experienced
an automatic resolution of the rule category based on the
number of input patterns. Actually, we consider rules with
two input elements as simulating the merging behavior and the
others as transformation rules. However, this hypothesis does
not support a realistic selection, since a rule with two inputs
may encapsulates a transformation behavior. Hence, we argue
that even if this annotation mechanism is time consuming but
it allows generating trusted [7] traces.

The Fig. 5 describes the graph transformation rule that
allows tracing an ATL merge rule. Keeping track of such a



rule consists of declaring the traceability link that captures the
relationship between the contributing model elements and the
target ones as being an extra output. Indeed, this graph trans-
formation rule looks for an ATL rule annotated with the Merge
type. Subsequently, it creates a new SimpleOutPatternElement
node of type MergingLink that refers to the traceability link to
be generated. The tracing of transformation rules is performed
using a similar mechanism.

Fig. 5. Declaration of the traceability parameter for merge rules

In addition, we define additional transformation rules to
connect traces to the model elements they link. These graph
transformation rules look for the InPattern elements, param-
eters and OutPattern elements, then each one is assigned as
a left, right or targets reference of the link generated by the
current rule (which produces to the selected element). As an
example, the rule depicted in Fig. 6 allows the assignment of
targets references. It adds the selected OutPattern element as
a further target of the trace link (referenced by the tr element)
through the created ExpressionStat node.

3) Trace links nesting: During the execution of the result-
ing ATL module, the application of the pervious rules allows
the generation of trace links while producing the target model
elements. The links nesting will be closely modeled on the

Fig. 6. Assignment of targets references

rules invocation sequence. Basically, we catch every call of
a rule; then the traceability element created by the calling
rule will be assigned as being a parent of the link generated
by the called one. In ATL, the rule call can be performed
with two mechanisms: an explicit call of lazy and called rules
and an implicit call of matched rules through the use of the
resolveTemp operation.

In the former case, we allow called and lazy rules to
access the traceability element generated by the calling rule
and assign it as parent of their trace link. This parent must be
passed as parameter in the call expression. The rule depicted in
Fig. 7 inserts the code responsible of this kind of nesting. This
graph transformation rule matches a call of an operation which
corresponds to a called rule name. Thereafter, it augments this
call with a new parameter value referencing the parent link.
Thus, the definition of the called rule has to be modified to
take account of the newly passed value. For that, we add a
new parameter (resp. an InPattern element in the case of lazy
rules) of type TraceLink and create the ExpressionStat node
that connects this parameter to the trace link generated by the
rule that have been matched.

We have to notice that the same rule may be called several
times, while the definition of the called rule has to be changed
once. Actually, we use two rules to allow the explicit nesting.
The first one adds the trace parent reference to the rule
call expression and annotates the called rule. Thereafter, the
second one browses all the annotated rules and changes their
definition.

Regarding the explicit call, the rule responsible of nesting
traces searches for a call of the resolveTemp operation. This
ATL operation returns a target equivalent of a given source
element. Considering that it results from the tracing of all
matched rules, the production of additional outputs corre-
sponding to the traceability data; those links can be returned
as target equivalents of the element to resolve. Essentially,
the nesting mechanism adds two statements. The first one
copies the original call of the resolveTemp operation. The other
statement assigns the selected trace equivalent to be a parent
of the sibling trace link of the resolved source element. This
filtering is based on the second parameter of resolveTemp that
encodes the name of the target pattern element.

4) Context assignment: The use of generic purpose trace-
ability metamodel proves advantages to support the reusability
task. However, traceability data has to bring interesting in-
formation with respect to the traceability scenario. For that,
the generic traceability metamodel need to be augmented
with an extensibility mechanism to allow defining relevant
expressiveness data regarding the traceability point of view
and the models to compose specifications. The context and
contextAttribute concepts defined in our traceability metamodel
deal with this task. Basically, the definition of a context
attribute is tied to the additional information to be appended
to a specific set of traces, while the context concept is a well
thought out combination of attributes.

In order to assign further information to trace links, the
user has to provide the structuring of data to be appended
using the proposed extensibility mechanism. Thereafter, all
the possible contexts have to be generated. We define two
ATL rules that support this task: the createContextAttribute



Fig. 7. Trace links nesting for explicit calls

rule (see Listing 1) that allows the production of a context
attribute with respect to a given combination of the attribute
name and value, thereafter, it binds the created attribute to its
relevant context which is produced by the createContext rule
(see Listing 2). Note that the possible values corresponding to
a context attribute are either given by the user or automatically
resolved through the definition of specific graph transformation
rules. In either case, the context name is automatically assigned
depending on the aggregated context attributes and can be
viewed as a context key. The createContext rule is defined as
unique lazy to prohibit the creation of multiple contexts with
the same key.

rule createContextAttribute(atName:String, atValue:

String, cName:String){

to t:TraceMM!ContextAttribute()

do{

t.name<-atName;

t.value<-atValue;

t.owningContext<-thisModule.

createContext(cName);

}

}

Listing 1. create context attribute for ATL

unique lazy rule createContext{

from cName:String

to t:TraceMM!Context()

do{

t.name<-cName;

}

}

Listing 2. create context for ATL

Once all the contexts are generated, a graph transformation
rule matches the declared traceability parameters; thereafter, it
resolves the key of the context to be assigned to the selected
parameter according to its connected contextual information.
As a basic example, we propose to structure traces by the
generating rule name. For this purpose, the context definition
includes one context attribute which references the rule name
contextual data. The declaration of contexts is performed using
the graph transformation rule depicted in Fig.8. This rule looks
for a Rule node, then, it creates the corresponding context

through the invocation of the createContextAttribute rule. The
passed arguments refer respectively to the context attribute
name, the attribute value which corresponds to the selected
rule name and the context name. The appendTraceToContext
rule (Fig.9) allows connecting the traceability parameter to its
context by calling the createContext operation, which returns
the context identified by the selected rule name. Note that the
status attribute has been added to the ATL abstract syntax to
prohibit multiple application of these graph transformations to
the same ATL rule (resp. traceability parameter).

Fig. 8. The context declaration rule

V. CASE STUDY

In this section, we illustrate the application of our trace-
ability approach. The composition scenario we have chosen
is the merging of two UML class diagrams into a VUML
class diagram. We first briefly overview the VUML profile and



Fig. 9. Appending the traceability parameter to its context

introduce the case study. Thereafter, we present the results we
obtain with our traceability framework.

A. The VUML profile

The VUML approach was developed to meet the needs
of complex systems analysis and design according to various
viewpoints [18]. In VUML, a viewpoint represents the per-
spective from which a given actor interacts with the system.
In other words, at the requirements analysis step, a viewpoint
expresses requirements and needs of one actor. At the design
step, VUML extends the UML language by adding the concept
of multiview class which is composed of a base class (shared
by all viewpoints), and a set of view classes (extensions of the
base class), each view class being specific of a given viewpoint.
An actor’s viewpoint on the system is expressed by a set of
UML diagrams obtained by focusing on the relation of this
actor with the system. A process was defined for VUML [19].
It begins by defining, for each actor, the use case diagram
related to its needs, and then scenarios are modeled by means
of sequence diagrams. Finally, static class diagrams are de-
fined. Once all viewpoints are modeled, diagrams of the same
type are merged into VUML diagrams, in order to express
all viewpoints on a unique diagram, while preserving the
possibility of selective access. VUMLs semantics is described
by a metamodel, a set of well-formed rules expressed in OCL,
and a set of textual descriptions in natural language.

B. Case study

In what follows, we illustrate the results of our traceability
framework through the composition of two class diagrams that
have been extracted from the Course Management System
(CMS) [19]. The CMS is used by different users. It allows
distant students to apply for courses, access related docu-
mentation (slides, web pages, text. . . ), solve/create exercises,
communicate with teachers and take exams. It allows teachers

to edit their own courses, plan learning experiences and units
of work, and record student assessments. The CMS is managed
by an administrator whose job consists in recording students
and managing resources.

According to the VUML process, the CMS is designed
through a set of viewpoints (Student, Teacher and Manager).
For each viewpoint, a set of UML diagrams (class diagrams,
state machines, sequence diagrams...) are produced. The sce-
nario we propose to trace is the composition of class diagrams.
Fig.10 shows an excerpt of the class diagram of the Student’s
viewpoint focusing on the Course class, while Fig.11 depicts
the class diagram that model the Teacher’s requirements.

Fig. 10. Excerpt of the class diagram of the Student’s viewpoint

Fig. 11. Excerpt of the class diagram of the Teacher’s viewpoint

These viewpoint models are composed to produce a VUML
model. Fig.12 depicts the VUML class diagram resulting
from the composition of the two class diagrams presented
above. Classes appearing in both viewpoint models, with the
same name and with different properties (attributes, operations,
associations. . . ), are merged as single multiview classes (
Course and Exercise classes). Properties of the class Course
that are shared by the two considered viewpoints have been put
into the class stereotyped by base; properties that are specific
of one viewpoint have been put into classes stereotyped by
view.

The composition of viewpoint models requires a trace-
ability mechanism for manifold applications. Actually, traces
can be used to validate the consistency and the completeness
of the resulting VUML model. Besides, they exposes the
interactions between the managed models and provides means
to support the propagation of changes occurred in viewpoints.



An extract of the ATL specification that allows performing
the composition scenario is given in Listing 3, while Listing
4 depicts the modification resulting from the weaving of our
traceability aspect.

Fig. 12. Excerpt of the VUML class diagram of CMS system

1 module VUMLComp;

2 create VUML:UML2 from MPV1:UML2, MPV2:UML2, PRO:UML2;

3 ...

4 entrypoint rule CreateCorrespModel(){

5 to cm : UML2!Package (name <- ’VUMLModel’)

6 do{

7 ...

8 }

9 }

10 rule ClassSimilarity {

11 from l : UML2!Class, r : UML2!Class

12 (not(l.match(r)) and l.name=r.name and l.isLeft() and r.

isRight())

13 to t : UML2!Class , v1 : UML2!Class, v2 : UML2!Class

14 do{...

15 for (it in l.getAttributes()){

16 if(not(it.getRightCorresp().oclIsUndefined())){

17 t.ownedAttribute <- thisModule.MergeAttributes(it,it.

getRightCorresp());}

18 else{

19 v1.ownedAttribute<-thisModule.TransfomLAttributes(it);}

20 }

21 for(it in r.getAttributes()){

22 if(it.getLeftCorresp().oclIsUndefined()){

23 v2.ownedAttribute<-thisModule.TransfomRAttributes(it);}

24 }

25 ...}

26 }

27 lazy rule MergeAttributes{

28 from l:UML2!Property, r:UML2!Property

29 to t:UML2!Property

30 do{

31 t.name<-l.name;

32 t.type<-thisModule.resolveTemp(Tuple{l=l.type,r=r.type},’t’)

;}

33 }

34 rule MergePrimitiveTypes{

35 from l : UML2!PrimitiveType, r: UML2!PrimitiveType (l.isLeft

() and r.isRight() and l.match(r))

36 to t : UML2!PrimitiveType()

37 do{

38 t.name<-l.name;

39 thisModule.VUMLModel.packagedElement<-t;}

40 }

Listing 3. Extract of the initial VUML composition module

1 module VUMLComp;

2 create VUML : UML2, trace:TraceMM from MPV1 : UML2, MPV2 :

UML2, PRO : UML2;

3 ..

4 helper def : element : OclAny = OclUndefined;

5 entrypoint rule CreateCorrespModel(trp:TraceMM!TraceLink){

6 to cm : UML2!Package (name <- ’VUMLModel’),tr:TraceMM!

TransformationLink()

7 do {

8 ....

9 tr.targets.add(cm);

10 thisModule.createContextAttribute(’ruleName’, ’

CreateCorrespondenceModel’, ’

rnCreateCorrespondenceModel’);

11 thisModule.createContextAttribute(’ruleName’, ’

ClassSimilarity’, ’rnClassSimilarity’);

12 thisModule.createContextAttribute(’ruleName’, ’

MergeAttributes’, ’rnMergeAttributes’);

13 thisModule.createContextAttribute(’ruleName’, ’

TransfomLAttributes’, ’rnTransfomLAttributes’);

14 thisModule.createContextAttribute(’ruleName’, ’

MergePrimitiveTypes’, ’rnMergePrimitiveTypes’)

15 ...

16 tr.contexts.add(thisModule.createContext(’

rnCreateCorrespondenceModel’));}

17 }

18 rule ClassSimilarity {

19 from l : UML2!Class, r : UML2!Class

20 (not(l.match(r)) and l.name=r.name and l.isLeft() and r.

isRight())

21 to t : UML2!Class , v1 : UML2!Class, v2 : UML2!Class , tr:

TraceMM!MergingLink()

22 do{

23 ...

24 for (it in l.getAttributes()){

25 if(not(it.getRightCorresp().oclIsUndefined())){

26 t.ownedAttribute <- thisModule.MergeAttributes(it,it.

getRightCorresp(),tr);}

27 else{

28 v1.ownedAttribute<-thisModule.TransfomLAttributes(it,tr);}

29 }

30 for(it in r.getAttributes()){

31 if(it.getLeftCorresp().oclIsUndefined()){

32 v2.ownedAttribute<-thisModule.TransfomRAttributes(it,tr);}

33 }

34 tr.left<-l;

35 tr.right<-r;

36 tr.targets.add(t);

37 tr.targets.add(v1);

38 tr.targets.add(v2);

39 tr.contexts.add(thisModule.createContext(’rnClassSimilarity

’));}

40 }

41 lazy rule MergeAttributes{

42 from l:UML2!Property, r:UML2!Property, trp:TraceMM!TraceLink

43 to t:UML2!Property, tr:TraceMM!MergingLink()

44 do{

45 t.name<-l.name;

46 thisModule.element<-Tuple{l=l.type,r=r.type};

47 t.type<-thisModule.resolveTemp(thisModule.element,’t’);

48 tr.parents.add(thisModule.resolveTemp(thisModule.element,’tr

’));

49 tr.left<-l;

50 tr.right<-r;

51 tr.targets.add(t);

52 tr.parents.add(trp);

53 tr.contexts.add(thisModule.createContext(’rnMergeAttributes

’));}

54 }

55 rule MergePrimitiveTypes{

56 from l : UML2!PrimitiveType, r: UML2!PrimitiveType (l.isLeft

() and r.isRight() and l.match(r))

57 to t : UML2!PrimitiveType() , tr:TraceMM!MergingLink()

58 do{

59 t.name<-l.name;

60 thisModule.VUMLModel.packagedElement<-t;

61 tr.left<-l;

62 tr.right<-r;

63 tr.targets.add(t);

64 tr.contexts.add(thisModule.createContext(’

rnMergePrimitiveTypes’));}

65 }

Listing 4. Extract of the resulting composition module with traces generation



As a result of applying the first rule of the traceability
weaving unit, the trace model is declared as an additional target
model of the VUML composition module (Listing 4: line 2).
Thereafter, depending on the rule type (Merge or Transform),
the traceability parameter is declared as another target param-
eter and the traceability information is assigned to it through
the application of the relevant graph transformations (Listing
4: lines 21,34-38). During the execution of the composition
module, these added parameters allow the generation of trace
links that capture correspondences between the source model
elements and the targets ones. Besides, in order to represent
multi-scaled trace model, traces thus generated, will be nested
with respect to the rules application sequence. Indeed, the
graph transformation responsible of catching explicit calls,
searches a call for a lazy rule (Listing 3: line 17). Then, it
assigns the traceability element to be a child of the trace link
created by the called rule (Listing 4: lines 26,42,52). As for
the implicit call, the relevant links nesting rule searches for
a call of the resolveTemp operation (Listing 3: line 32); and
divides its return to trace model elements and target elements.
The first sub-set is used to copy the original call of the called
operation (Listing 4: line 47), while the traceability element is
assigned as a parent of current trace link (Listing 4: line 48).

Recalling from Section IV-B4, the context concept is used
to express highly configurable and semantically rich trace
models through the assignment of further information to traces.
To illustrate this augmentation mechanism, we have proposed
two graph transformations that allow structuring traces ac-
cording to their generating rules. The first one declares the
possible contexts (Listing 4: lines: 10-14);while the second rule
connects the trace link to its corresponding context (Listing 4:
line: 39).

Fig.13 gives an extract of the generated trace model. Note
that we have used the Emf2gv project1 to provide a user
friendly representation of traces. Trace links are presented with
green rectangles and contexts with blue ones. The red, green
and blue lines represent respectively the left, right and targets
references. Dashed lines connect traces to their contexts. The
trace links nesting is presented with solid lines.

The generated trace model is conforming to our compo-
sition traceability metamodel and represents how viewpoint
elements contribute on the production of the VUML model.
It contains two types of trace links that are generated with
respect of the user’s intensions. For instance, the root merging
link connects the Course classes corresponding respectively
to the Teacher and Student viewpoints to the target ele-
ments referencing the base class and the two generated views
(StudentCourse and TeacherCourse).The Fig.13 depicts also
a transformation link that represents the transition from the
creditNumber attribute belonging to the Course class to its
equivalent in the view class StudentCourse. Besides, the trace
model includes further information to express semantically rich
traces. Indeed, the user can visualize the rule that generates
each trace link thanks to the use of the context concept.

VI. RELATED WORKS

Jouault [15] presented an approach to trace model trans-
formations written in the ATL language. This work was

1See http://sourceforge.net/projects/emf2gv

considered as a basis for several approaches addressing the
transformation traceability management. The author proposed
to generate the trace model in the same way other target models
are generated. Actually, the code responsible of producing this
extra output is inserted using a HOT named TraceAdder. This
mechanism deals with the scalability challenge, since it allows
automating the trace model generation task. Nevertheless, the
definition of this HOT is closely tied to the proposed trace-
ability metamodel which is very simple to express configurable
traces. Moreover, the use of a practical metamodel requires a
laborious and complex adaptation of the HOT TraceAdder.

In [20], the authors provide a traceability framework for
the Kermeta language. The imperative character of such trans-
formations makes them difficult to be analyzed. Indeed, they
proposed to manually add the traces generation code. Their
traceability metamodel expanded the one proposed in [15]
by structuring traces into steps. This concept allows a basic
configuration to the trace model. Besides, the manual encoding
of the generation concern allows the user to trace the required
elements, but this is to the detriment of scalability.

Aspect Oriented Programming (AOP) provides means to
address the traceability management issues. Essentially, the
traceability concern is encapsulated in a reusable aspect. Its ap-
plication allows inserting the traces generation code automat-
ically into the transformation specification. Within this scope,
Amar et al. [21] proposed a traceability framework based on
AOP to trace imperative transformations written in JAVA. The
framework defines categories of traceable operations and their
respective poincuts. Besides, the programmer can define new
custom categories or restrict the predefined ones in order to
take into account all the operations to trace. On the other
hand, the authors apply the composite design pattern and the
LinkType concept in view of expressing configurable traces.

Grammel and Kastenholz [22] have defined a generic
framework to augment transformation supports with a trace-
ability mechanism. The authors do not treat a specific trans-
formation language, they provide a generic interface which
involves specific connectors for various transformation sup-
ports instead. The augmentation is based on a generic trace-
ability metamodel extensible with facets to express highly
configurable trace models. Regarding the traces generation, the
authors describe two mechanisms: transforming the implicit
trace model to conform to their generic metamodel or capturing
traces using AOP.

The aforementioned approaches can be used to keep track
of the model composition operation. However, the fact that
they disregard the composition process and intensions prevents
them to express configurable and interesting traces. Against
this context, our approach takes advantages of the existing
solutions while focusing on the composition operation. We
proposed to use an AOM approach to generate trace links. This
mechanism allows encapsulating the traceability concern in a
reusable aspect that automatically weaves the traces generation
patterns. On the other hand, the abstraction of the specification
to trace through its corresponding model provides support
to master the composition language’s features such as: the
concrete syntax nature (textual, graphical) or the resolution
of the rule category (merge or transformation).

As for the configuration challenge, we use a generic



Fig. 13. Extract of the generated trace model

traceability metamodel to express reusable trace models. This
metamodel was designed with respect to the typical compo-
sition process. Indeed, it categorizes traces on two sub-sets:
merging links and transformation links. This allows expressing
the composition relationships kinds in a trivial manner and
will guide the reuse of traces. In addition, the context concept
provides us with the mechanism to express highly configurable
trace links. Actually, it allows the assignment of valuable in-
formation to the generated traces depending on the traceability
point of view and specifications of managed models.

VII. CONCLUSION AND FUTURE WORK

We proposed in this paper a graph transformation based
approach to trace the model composition operation. Our objec-
tive is to define a purposed traceability approach that generates
valuable traces for this particular operation, in an automatic,
reusable and configurable manner. For that, we considered the
traceability as being a cross-cutting concern. The weaving
of the traces generation patterns is performed using graph
transformations rules. This mechanism allows us to master the
specificities of model composition approaches. Besides, we use
a generic metamodel to express semantically rich traces.

We are currently working on a generic framework that al-
lows defining the traceability aspect regardless the composition
language. This framework will be augmented with a specializa-
tion mechanism for suitable application for a given language.
Furthermore, we are planning to explore the possible reuses of
traces. Our major intension is to optimize composition chains
by using the previous generated links while executing a given
step.
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