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Summary

The visualization of sounds facilitates their identification and classification. However, in the case of

audio recording websites, the access to a sound is usually based on the metadata of the sounds, i.e.

sources and recording conditions. As sonic environments, or soundscapes, are mostly composed of

multiples sources, their compact description is an issue that makes difficult the choice of an item

in a sound corpus. The time-component matrix chart, which is abbreviated as TM-chart, has been

proposed recently as a tool to describe and compare sonic environments. However their process of

creation is based on a subjective annotation that makes their creation time-consuming. In this paper,

we present a new method for urban soundscape corpus visualization. In the context of the CIESS

project, we propose Samochart: an extension of the TM-chart that is based on sound detection

algorithms. We describe three original algorithms that allow the detection of alarms, footsteps, and

motors. Samocharts can be computed from the results of these algorithms. This process is applied

to a concrete case study: 20 urban recordings of 5 minutes each, from different situations (places

and time). An application case shows that Samocharts allow an identification of different situations.

Finally, the whole method provides a low-cost tool for soundscape visualization that can easily be

applied to the management and use of a sound corpus.

1. Introduction

The visualization of sounds has always been a source
of questioning. If the composer Olivier Messiaen,
known as synesthetes, was able to perceive colors
when he heard certain musical chords, the transla-
tion of sound to image is generally not easy to for-
malize. In the case of ethnomusicological studies for
instance, transcriptions have traditionally been dis-
tinguished between descriptive and prescriptive nota-
tions according to their aims: the former are intended
for analysis purpose, and the latter to reproduce the
music [1]. This illustrates the difficulty to find an rep-
resentation adapted to the needs of the users.

In the framework of environmental recordings, or
soundscapes as introduced by Murray Schaffer, the
issue of representation has been addressed since the
1970s [2]. If some works have been done in the focus of
designing soundscapes (see [3] for interesting articles
on this topic), one objective of soundscape represen-
tations is to analyze and compare them.

When looking at the websites that propose brows-
ing and downloading of field recordings, the display-
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ing of the sounds is usually based on a time/energy
representation which can be slightly informative [4].
It seems indeed difficult to choose a sound from its
waveform without hearing it. On websites such as
freesound1, textual metadata add a relevant informa-
tion but remains generally insufficient to get an idea
of what sounds compose the soundscape.

Through the CIESS project2, we investigate the
field of soundscape analysis and representation. Per-
ception studies lead us to identify some sound events
that seem characteristic of modern urban sound-
scapes [5]. We assume that a representation based on
this sound events can be efficient to represent a sound
corpus.

Beside temporal representation, we decided to focus
on illustrations that could globally display the pres-
ence or absence of these sound events. The TM-chart
representation provides us an efficient tool to repre-
sent these recordings [6]. However, the costly human
annotation makes it difficult to use in the context of
a big corpus. In the regard of the growing improve-
ment of automatic sound detection, we proposed a
new framework of representation, inspired by TM-

1 https://www.freesound.org/

2 http://www.irit.fr/recherches/SAMOVA/pageciess.html



charts, that we call Samocharts [4]. Unlike TM-charts,
Samocharts can be based on automatic detection algo-
rithms, that makes their use possible without human
annotation.

In this paper, we present a new approach for sound-
scape visualization based on automatic event detec-
tion algorithms. Section 2 introduces some relative
works in this domain. Section 3, 4, and 5 describe
our algorithms of sound detection to obtain confidence
values, respectively on alarms, footsteps and motors.
Section 6 presents an application case through the ur-
ban recordings of the CIESS project.

2. Relative works

2.1. Soundscape visualization

Soundscapes are usually materialized as quite long
recordings, as its relative concepts focus significantly
on the relationship with time. For instance, the du-
ration of our recordings from the CIESS project are
usually about 5 minutes. Longer observation record-
ings have also been made in the context of acoustical
ecology. For example, a recent study reports the vi-
sualization of temporal change in soundscape power
over a 4-year period [7], and revealed discrete patterns
such as changes in the time of the occurrence of dawn
and dusk choruses.

With long recordings, the traditional tools of au-
dio representation, based on the temporal evolution
of the signal, are slightly informative [4]. For exam-
ple, urban recordings are too noisy to make appear
semantic information from a waveform or a spectro-
gram. However, these recordings are usually composed
of the same kind of sound events, for instance vehi-
cles, voices or birds. This fact provides an interesting
entry point to alternative representations of sounds.

A new paradigm has been introduced in 2008 by
Hiramatsu and al [6]. The time-component matrix
chart, which is abbreviated as TM-chart, allows de-
scribing and comparing sonic environments. It is a
matrix that can be easily visualized as a figure to anal-
yse and rapidly compare sonic environments. From a
set of predetermined sound events, TM-charts provide
a SoundSource×Soundlevel information for each tar-
get sound. It shows the percentage of time of the
sound source audibility and the percentage of time
of its level range. However, their production process
rely on the identification of the predominant sound
at each time, which can be very costly in time. Thus,
the TM-charts seem quite difficult to use on a big data
set.

In a previous paper, we introduced Samocharts, a
new approach inspired by TM-charts [4]. As the TM-
charts, the Samocharts are matrices that represent the
percentage time of sound sources. Moreover, they can
be computed from confidence values of sound detec-
tion algorithms.

2.2. Audio event detection

Automatic annotation of audio recordings made sig-
nificant progress these last years. These developments
can be observed in the field of human voice with au-
tomatic transcription, and emerge in the field of mu-
sic with some applications like Shazam3. From these
observations, we shall assume that the detection of
sound events in field recordings will become reliable
in coming years.

Yet, various methods have been proposed on Au-
dio Event Detection (AED) from audio files that have
been recorded in real life. These works can be divided
in two categories. The first one aims at detecting a
large set of sounds in various contexts. These ap-
proaches generally use machine learning techniques
to automatically model a set of sounds from the evo-
lution of acoustic features [8]. For example, the detec-
tion of 61 sound events, such as bus door, footsteps or
applause, has been reported in [9]. In this work the
author model each sound class by an Hidden Markov
Model (HMM) with 3 states, and Mel-Frequency Cep-
stral Coefficients (MFCC) features.

A second category of methods aims at detecting
specific sound events. These works are built up priv-
ileging accuracy over the number of sounds that can
be detected. They generally rely on a specific model-
ing of the target sound that is based on acoustic ob-
servations. For example, some studies propose to de-
tect gunshots [10], water sounds [11], or alarms sounds
[12, 13].

In this last reference, the authors compare the re-
sults of alarm sounds detection with the two kinds
of method mentioned. They show that a specific and
simple approach can be more efficient that blind ma-
chine learning techniques.

Moreover, due to numerous overlapping sound
events, the urban sound recordings of our project are
very noisy. In this context, the machine learning ap-
proach seems currently inefficient. Thus, we choose to
focus on particular sounds that slightly emerge from
the noisy background and try to formalize the reasons
of this emergence. Therefore, we built up ad hoc algo-
rithms to detect these sounds. In the following parts,
we will present our methods to detect alarms (such as
car-horns), footsteps and motors.

3. Alarm detection

3.1. Overview

Alarms are emblematic of urban soundscapes. They
produce a sound event that convey urgent information
or prevent efficiently a danger. In this regard, alarms
such as car horns, sirens, and bicycle bell are usually
built up to be easily audible and clearly identifiable.

3 http://www.shazam.com/



Thus, humans seem able to identify a particular
sound as an alarm even when they have never heard
it before. However, the distinctive characteristics of
alarm sounds are not formally defined. We suppose
in the following work these sounds include acoustic
invariants.

3.2. Method

In the CIESS corpus, we focused on three kinds of
sound alarms: car horn, bus horn, and bicycle bell.
Based on the observation of these sounds, we notice
different acoustical properties that can be considered
as invariants of alarm sounds. Our detection of these
sounds is based on the following properties:

• duration longer than half a second,

• frequential stability over time (spectral lines),

• medium and high frequencies preferred.

Moreover, the different kinds of alarms seen in the
CIESS project show different distribution on spec-
tral lines. Car horns are generally highly harmonic
sounds. Bicycle bells in our corpus show one spectral
line around 4000 Hz. Buses of the city of Toulouse
show a particular horn with a spectral line around
1200 Hz. Figure 1 represent a spectrogram on which
we can see two examples of these sounds.

Figure 1. Spectrogram of an urban soundscape extract
from the CIESS project. Spectral lines from alarm sounds
appear around 2 seconds at 1200 Hz, and at 6 seconds at
3800 Hz. The first sound is produced by a bus of the city
of Toulouse and the second one by a bicycle.

Our method for alarm sound detection is based on
the following steps: high-pass filtering, computation
of a spectrogram, selection of spectral lines and iden-
tification or reject of the founded candidates.

3.2.1. High-pass filtering

As alarm sounds are generally higher than 1000 Hz,
we use a high-pass filter to suppress low frequencies
and avoid potential false alarms. We use a high-pass
digital Butterworth filter at order 10 with a cut fre-
quency of 1500 Hz.

3.2.2. Computation of a spectrogram

We compute a spectrogram on the sound signal with
a Fast Fourier Transform algorithm. As we look for a
good frequency resolution, we compute each spectrum
on windows of 120 milliseconds (2048 samples) with
an overlapping of 75%.

3.2.3. Selection of spectral lines

The next step is to extract spectral lines from the
spectrogram. We focus on small time/frequency rect-
angles of 0.4 second width that are extracted from the
spectrogram. We assume this duration is the minimal
duration of an alarm sound.

On each rectangle, we compute temporal mean for
each frequency. Each mean is afterwards compared
with its neighbors on a frequency band of 300 Hz.
If the mean if 3 times higher than its neighborhood,
we consider that the spectral line is detected. Each
rectangle of the signal which contains spectral lines is
then considered as a potential candidate.

3.2.4. Identification or reject of candidates

We use a simple algorithm based on our observations
mentioned above to validate the candidate. This algo-
rithm relies on conditions on the number of spectral
lines and their frequencies. This validation step allows
to reject a false candidate or to identify a rectangle as
car-horn, bus alarm, or bicycle bell sound.

This identification is then converted into values be-
tween 0 and 1.

4. Footstep detection

4.1. Overview

As walking remains one of the main way of moving,
lots of people still walk in our city. Depending on their
movement, their body and their shoes, these persons
produce various sounds.

The footstep sounds are characterized by regular
impacts. In the following method, we analyze the sig-
nal to detect regular impacts.

4.2. Method

4.2.1. Computation of a spectrogram

We compute a spectrogram on the sound signal with
a Fast Fourier Transform algorithm. As we look for a
good temporal resolution, we compute each spectrum
on windows of 30 milliseconds (512 samples) without
overlapping. From this spectrogram, we focus on fre-
quency bins ranging between 300 and 4000 Hz.



4.2.2. Peak extraction

We extract peaks from frames whose energy content
is 3 times superior to the mean of its temporal neigh-
borhood (on 100 frames around). We obtain a list of
attack times.

4.2.3. Rhythm spectrum

To compute a rhythm spectrum, we focus on windows
of 5 seconds and consider the attacks detected. We
compute the Fourier transform of this attack times,
as shown in the following equation:

RS(freq) =
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Where RS is the rhythm spectrum, NbAttacks the
number of attacks, and time(i) the time of the ith

attack. This equation is applied to frequencies varying
between 0.2 and 10 Hz.

Thus, on a particular frequency, a significant value
in the rhythm spectrum reflects recursive attacks at
this frequency.

4.2.4. Tempogram computation

By computing a rhythm spectrum at each sliding win-
dow of the signal and concatenating them, we obtain
a matrix that we call tempogram [14]. Each frame of
the tempogram is a rhythm spectrum.

We extract the values of the tempogram that are
superior to a masking threshold. We can see on figure
2 the orignal tempogram (2a) and tempogram supe-
rior to a masking threshold (2b).

Then for each frame of the tempogram, we compute
its sum divided by our decision threshold. We use 0.6
for the masking threshold and 250 for the decision
threshold.

Figure 2. Tempograms and confidence values of footstep
sound events on a 5 minutes urban soundscape extract
from the CIESS project. The highlight parts correspond
to the segment where we distinctly heard footsteps.

With setting values between 0 and 1, we obtain a
confidence of repeated impacts at each time (2c).

5. Motor detection

5.1. Overview

Motors of vehicles such as cars, mopeds, scooters and
trucks, produce important noises that are characteris-
tic of urban sound environment. In this step, we aim at
detecting passages of motorized vehicles that emerge
from the background sound.

5.2. Method

5.2.1. Computation of a spectrogram

We compute a spectrogram on the sound signal with a
Fast Fourier Transform algorithm. We compute each
spectrum on windows of 120 milliseconds (2048 sam-
ples) with an overlap of 50%.

5.2.2. Spectral spread of low frequencies

We suppose that the motors sounds can be retrieved
from their low frequencies. Thus, we extract from the
spectrogram the frequency bins of the spectrogram
ranging between 0 and 250 Hz. For each frame, we
compute the spectral spread [15] on this frequency
band.

5.2.3. Normalized local minimum

We compute the mean of these values on the whole
signal. Local minima are then computed on group of
frames of 6 second total duration, and divided by this
mean.

Figure 3. Confidence values of motor sound events on
a 5 minutes urban soundscape extract from the CIESS
project. The highlight parts correspond to the segment
where we distinctly heard the passage of a motor vehicle.

With setting values between 0 and 1, we obtain a
probability of motors at each time.



6. Application

6.1. Corpus

We use audio files from the CIESS project. From the
city of Toulouse, at different place and time, we have
recorded sound environment. There are three different
schedules and situations:
• Non pedestrian street at 8 am,
• Pedestrian street at noon,
• Non pedestrian street at 9 pm.

The duration of each file is about 5 minutes. The
recordings have been made with a Soundfiled SPS 200
microphone and a Tascam DR-680 recorder.

6.2. Sound event detection

The recordings are transformed in mono files with 16
kHz sampling rate. Our three detection algorithms are
tuned on a recording of the corpus. Afterwards, we ran
them on the full corpus and obtain time confidences
for car horns, footsteps and motors for each file.

For each recording, our extraction methods give us
temporal values of confidence on the presence of car-
horns, footsteps, and motors. These values are inter-
esting but cannot directly be interpreted as global and
semantic information.

6.3. Visualization

As defined in [4], we use the Samochart visualization
to represent our corpus. The figure 4 represents all
the Samocharts we plotted from our corpus. In these
figures, we can see important duration of the signal (in
white) where none of our target sounds were detected.

A quick viewing shows differences in the recordings
that are mainly relative to the presence of motors and
footsteps. For instance, we notice that the last three
recordings (in the direction of reading) exhibit a rel-
ative larger part of footsteps. These recordings have
indeed been made in pedestrian streets. Moreover, the
other recordings, that have been recorded in different
kind of streets, show a presence of motors more or
less important. This could reflect different intensity
of traffic according to different streets.

A zoom on the Samochart from the recordings lets
appear the alarms (horns) sounds. Indeed, as horns
sounds are usually very short events, the cumulative
duration of these sounds can be very brief in com-
parison of the duration of the whole signal. We can
see on figure 5 two Samocharts, the first one with no
car horn detected and the second one with car horn
sounds.

7. Conclusions and perspectives

In this paper, we presented methods to detect au-
tomatically particular sound events in sound record-
ings and to plot them with a new paradigm, the
Samocharts.

Figure 4. Samocharts of recordings of the CIESS project.
Each recording is represented by a square showing the
percentage of time of presence of sound events. On each
sound event, the confidence of the detection algorithm is
shown by shades of colors.

Figure 5. Zoom on Samocharts of two recordings of the
CIESS project.

7.1. Sound detection algorithms

The sound detection algorithms provide time values of
confidence for the following sound events: car horns,
footsteps and motors. Overall the algorithms seem to
produce interesting results. However, they could be
significantly improved with more annotated data. In-
deed, the methods have been set up on a single anno-
tated file, and could be tuned to a larger set on hetero-
geneous files. Moreover, a greater number of manually
annotated recordings could make possible to obtain a
test data set and objective results of our algorithms.
In this regard, our algorithms could be compared to
state-of-the-art methods in order to choose the best
approach. Some improvements could also be consid-
ered, based for instance on the use of the Doppler
effect in the motors sounds or the onset of the alarm
sounds.

Furthermore, other methods and target sound
events, such as voice, could also be added to our pack-
age. After obtaining a stable version of our whole
method, we should also consider saving computation
time by pooling common processing, as the Fourier
transform.

7.2. Browsing a sound corpus

The Samocharts based on automatic annotation al-
gorithms provide an efficient way to browse a corpus
of soundscapes. The whole method allows a fast com-
parison of recordings. It seems to make possible the
identification of particular situations, such as pedes-



trian streets. However, some experiments should be
conducted to validate this concept.

Beside the zoom function, some improvements
could be considered in our online displaying to facili-
tate the browsing. For example, we could add research
and sort functions based on sound events.

Elsewhere, it shall be mentioned that our approach
describes a recording by the sum of its sound events,
but does not take into consideration a more global
perception of the Soundscapes (for example, we could
consider a globally frightening recording). The con-
cepts and methods needed to recognize such global
feeling and display them should give us some works
for coming years.
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