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POSITIVE LEGENDRIAN ISOTOPIES AND FLOER THEORY

Positive loops of Legendrian embeddings are examined from the point of view of Floer homology of Lagrangian cobordisms. This leads to new obstructions to the existence of a positive loop containing a given Legendrian, expressed in terms of the Legendrian contact homology of the Legendrian submanifold. As applications, old and new examples of orderable contact manifolds are obtained and discussed. We also show that contact manifolds filled by a Liouville domain with non-zero symplectic homology are strongly orderable in the sense of Liu.

Introduction

Since the groundbreaking work [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF] by Eliashberg-Polterovich, the notion of orderability has played an important role in the study of contact geometry. Recall that a contact manifold is orderable if and only if it admits no positive loop of contactomorphisms which is contractible (amongst loops of arbitrary contactomorphisms). In [START_REF] Eliashberg | Geometry of contact transformations and domains: orderability versus squeezing[END_REF] it was shown that a large class of subcritical fillable contact manifolds are non-orderable, including the standard odd-dimensional contact spheres, while it follows from Givental's non-linear Maslov index in [START_REF] Givental | Nonlinear generalization of the Maslov index[END_REF] that the standard contact structures on the odd-dimensional real projective spaces are orderable. In some cases orderability is known to imply the existence of an unbounded bi-invariant metric on the space of contactomorphisms (see [START_REF] Fraser | On Sandon-type metrics for contactomorphism groups[END_REF]), having a number of important consequences; see [START_REF] Sandon | An integer-valued bi-invariant metric on the group of contactomorphisms of R 2n Ŝ1[END_REF], [START_REF] Colin | The discriminant and oscillation lengths for contact and Legendrian isotopies[END_REF], and [START_REF] Sandon | Bi-invariant metrics on the contactomorphism groups[END_REF] for more details.

There are conditions in terms of Floer homology that imply that a contact manifold is orderable. Notably, in [START_REF] Albers | Orderability, contact non-squeezing, and Rabinowitz Floer homology[END_REF] Albers-Merry showed that if the Rabinowitz Floer homology of a Liouville domain is nonzero, then its contact boundary must be orderable. Since it is known that Rabinowitz Floer homology vanishes if and only if Symplectic homology vanishes [START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF]Theorem 13.3], bounding a Liouville domain with nonzero symplectic homology is thus another condition that ensures orderability.

In this article we consider this notion from the relative point of view, i.e. from the perspective of Legendrian submanifolds. Let pM, ξ " ker αq be a co-oriented contact manifold. Through the paper we always assume that the contact form α induces the given co-orientation. A Legendrian isotopy tΛ s u, s P r0, 1s, (where Λ s : Λ ãÑ M is a smooth family of Legendrian embeddings) is positive if for every q P Λ and s P r0, 1s we have [START_REF] Abbas | An introduction to compactness results in symplectic field theory[END_REF] Hps, qq :" α ´9 Λ s pqq ¯ą 0.
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This definition only depends on the co-orientation of ξ and not on the parametrisation of Λ s , nor on the choice of contact form α (as long as it induces the positive co-orientation). The most basic example of a positive isotopy is the displacement of a Legendrian submanifold by the Reeb flow associated to a choice of contact form. A positive isotopy for which Λ 0 " Λ 1 will be called a positive loop of Legendrians containing Λ 0 . Since Legendrian isotopies are realised by ambient contact isotopies, the property of admitting such a positive loop does not depend on the representative of the Legendrian isotopy class of Λ 0 .

Our goal is finding new obstructions for the existence of positive loops as well as contractible positive loops containing a given Legendrian submanifold. By a contractible positive loop of Legendrians we mean a positive loop which is contractible as a loop of Legendrian embeddings. The obstructions that we find are in terms of Legendrian contact homology (LCH for short) as well as wrapped Floer cohomology. These are two related symplectic invariants that algebraically encode counts of different types of pseudoholomorphic curves. Obviously, in the case when the contact manifold is not orderable, each of its Legendrian submanifolds lives in a contractible positive loop of Legendrians. Thus, when our obstructions apply, they can be used as a condition that ensures orderability of the ambient contact manifold.

1.1. Previous results. Concerning positive loops of Legendrian submanifolds, the second author together with Ferrand and Pushkar used generating family techniques to show the following.

Theorem 1.1 (Colin-Ferrand-Pushkar [START_REF] Colin | Positive isotopies of legendrian submanifolds and applications[END_REF]). Let Q denote a smooth, not necessarily closed, manifold.

(1) There exists no positive loop of Legendrians containing the zero-section in pJ 1 Q, ξ std q. (2) If the universal cover of Q is R n then there exists no positive loop of Legendrians containing a Legendrian fibre of the canonical projection π : SpT ˚Qq Ñ Q in pSpT ˚Qq, ξ std q.

The analogue of the above theorem cannot be expected to hold for general Legendrian submanifolds, as is shown by the following example.

Example 1.2. The global contact isotopy pq, p, zq Þ Ñ pq `t, p, zq of J 1 S 1 , generated by the contact Hamiltonian Hpq, p, zq " p for the standard contact form, is a loop of contactomorphisms starting and ending at the identity. Moreover, it is positive when restricted to either of the two Legendrian knots with the front diagrams shown in Figure 1: the positive stabilisation S `p0 S 1 q of the zero-section 0 S 1 Ă J 1 S 1 on the left, as well as the representative of the standard Legendrian unknot shown on the right.

Example 1.3. Since there is a contact embedding of a neighbourhood of the zerosection of J 1 S 1 into any three-dimensional contact manifold, any Legendrian unknot can be seen to sit inside a positive loop of Legendrians. Such a positive Legendrian loop inside a Darboux ball, which moreover is contractible, is shown in Figure 2. The isotopy is indeed positive if, in the parts I and III of the isotopy, the translation is in a direction whose slope is less than the maximal slope of the front projection of the unknot. If the z-coordinate is decreased sufficiently during step I and III of the isotopy, the rotation of the front taking place in steps II and IV can Figure 1. Fronts of Legendrian submanifolds in the subspace tp ą 0u Ă J 1 S 1 . On the left: the positive stabilisation S `p0 S 1 q of the zero-section. On the right: a representative of the standard Legendrian unknot. be made positive. Finally, observe that this loop is contractible amongst loops of Legendrian submanifolds I III II IV Figure 2. A positive isotopy of the standard Legendrian unknot inside J 1 R that, moreover, is contractible.

The above constructions of positive loops of Legendrians are generalised in Liu's work [START_REF] Liu | On positive loops of loose Legendrian embeddings[END_REF][START_REF] Liu | On positive loops of loose Legendrian embeddings[END_REF]: Theorem 1.4 (Liu [START_REF] Liu | On positive loops of loose Legendrian embeddings[END_REF]). Every loose Legendrian submanifold is contained in a contractible positive loop of Legendrians.

We also refer to the more recent work [START_REF] Pancholi | A simple construction of positive loops of Legendrians[END_REF] by Pancholi-Pérez-Presas. Part (2) of Theorem 1.1 was generalised by Chernov-Nemirovski to more general spaces of contact elements. Notably, they showed the following: Theorem 1.5 (Chernov-Nemirovsky [START_REF] Chernov | Non-negative Legendrian isotopy in ST ˚M[END_REF], [START_REF] Chernov | Universal orderability of Legendrian isotopy classes[END_REF]). When Q is a connected open manifold, there are no positive loops of Legendrians containing a Legendrian fibre of SpT ˚Qq. For general Q there is no positive loop containing the Legendrian fibre in SpT ˚Qq which is contractible amongst loops of Legendrians. Also, see the work [START_REF] Dahinden | The Bott-Samelson theorem for positive Legendrian isotopies[END_REF] by Dahinden for obstructions in certain cases when the universal cover is not open.

In the second case of Theorem 1.5 the contractibility condition is essential. Indeed, if S n denotes the round sphere in R n`1 , the Reeb flow on the unit cotangent bundle SpT ˚Sn q for the contact form pdq given by the restriction of the Liouville form corresponds to the geodesic flow. In this way we see that any Legendrian submanifold sits inside a positive loop. However, for the Legendrian fibre, such a loop fails to be contractible in the space of Legendrian embeddings by the above results.

Remark 1. [START_REF] Albers | Orderability, contact non-squeezing, and Rabinowitz Floer homology[END_REF]. In [START_REF] Guillermou | Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems[END_REF] Guillermou-Kashiwara-Shapira reprove Theorem 1.5 using the method of microsupports of constructible sheaves. In the present paper we consider a class of contact manifolds that is strictly larger than jet-spaces and spaces of contact elements, i.e. contact manifolds where the methods based upon the microsupport of sheaves are not yet applicable.

1.2. Results. In this paper we obtain generalisations of the above results. We say that a contact manifold pM, ξq is hypertight if it admits a (possibly degenerate, see Section 2.4) contact form having no contractible periodic Reeb orbits; the latter contact form will be called hypertight as well. Likewise, a Legendrian submanifold Λ Ă pM, ξq is called hypertight if there is a hypertight contact form for which Λ, moreover, has no contractible Reeb chords (i.e. Reeb chords in the homotopy class 0 P π 1 pM, Λq).

The contactisation of a Liouville manifold pP, dθq is the (non-compact) hypertight contact manifold pP ˆR, α std q, α std " θ `dz, with z denoting the coordinate on the R-factor. In such manifolds, lifts of exact Lagrangian in P are particular cases of hypertight Legendrians.

Example 1.7. The archetypal example of a contact manifold of the above form is the jet-space J 1 Q of a smooth manifold, which is the contactisation of pT ˚Q, ´dλ Q q for the Liouville form λ Q (note the sign in our convention!). The zero-section 0 Q Ă T ˚Q is an exact Lagrangian submanifold which lifts to the zero-section of J 1 Q; this is an embedded hypertight Legendrian submanifold.

In the present paper, when talking about hypertight contact manifolds, we also assume that outside a compact set they are equivalent to the contactisation of a Liouville manifold. The hypertightness assumption is mainly a technical one, and we refer to Section 1.3 below for an explanation of what we expect to hold more generally.

The first result is an obstruction to the existence of a positive Legendrian loop expressed in terms of Legendrian contact cohomology. This is a Legendrian isotopy invariant originally defined in [START_REF] Yu | Differential algebra of Legendrian links[END_REF] by Chekanov, and also sketched in [START_REF] Eliashberg | Introduction to symplectic field theory[END_REF] by Eliashberg-Givental-Hofer. The theory has been rigorously defined in a wide range of contact manifolds; see [START_REF] Yu | Differential algebra of Legendrian links[END_REF] for one-dimensional Legendrians and [START_REF] Ekholm | Legendrian contact homology in P ˆR[END_REF] for the case of a general contactisation.

Let Λ, Λ 1 Ă pP ˆR, α std q be Legendrian submanifolds of the contactisation of a Liouville domain, each of which having a Chekanov-Eliashberg algebra admitting augmentations ε and ε 1 , respectively. As described in Section 2.2 below, there is an associated linearised Legendrian contact cohomology complex LCC ε,ε 1 pΛ, Λ 1 q generated by Reeb chords from Λ 1 to Λ (observe the order!). The homotopy type of the complex LCC ε,ε 1 pΛ, Λ 1 q can be seen to only depend on the Legendrian isotopy class of the link Λ Y Λ 1 and the augmentations chosen; see e.g. [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF].

Theorem 1.8. Assume that LCC ε,ε 1 pΛ, Λ 1 q is not acyclic for Λ, Λ 1 Ă pP ˆR, θ`dzq. Then Λ is not part of a positive loop of Legendrian submanifolds of the complement M zΛ 1 . Under the additional assumption that min Λ z ą max Λ 1 z is satisfied, then Λ is not contained inside any positive loop of Legendrians.

Remark 1.9. Under the stronger assumption min Λ z ą max Λ 1 z, the homotopy type of the complex LCC ε,ε 1 pΛ, Λ 1 q can be interpreted as also being invariant under Legendrian isotopy of each Λ and Λ 1 separately with the following caveat: we must first make the two Legendrian isotopies disjoint by translating the second family Λ 1 t very far in the negative z-direction (i.e. by applying the negative Reeb flow, which is a contact form preserving isotopy).

In the case when min Λ z ą max Λ 1 z is satisfied, the complex LCC ε,ε 1 pΛ, Λ 1 q can be interpreted a version of the Floer homology complex CF pΠ Lag pΛq, Π Lag pΛ 1 qq Ă pP, dθq for a pair of exact Lagrangian immersions. We refer to [START_REF] Akaho | Immersed Lagrangian Floer theory[END_REF] for general treatment of Lagrangian Floer homology in the immersed case.

When neither of Λ nor Λ 1 have any Reeb chords their Lagrangian projections are exact Lagrangian embeddings. In this case, both Legendrian submanifolds have a unique canonical augmentation and, given that min Λ z ą max Λ 1 z, there is a canonical identification with the classical Lagrangian Floer homology complex CF ˚pΠ Lag pΛq, Π Lag pΛ 1 qq defined by Floer [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF]. In the case when Λ 1 moreover is obtained from Λ by an application of the negative Reeb flow followed by a sufficiently C 1 -small Legendrian perturbation, Floer's original computation in [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF] shows that there is an isomorphism LCC ε,ε 1 pΛ, Λ 1 q " CF ˚pΠpΛq, ΠpΛ 1 qq " C ˚pΛq of the Floer homology complex and Morse homology complex. From this we now conclude that Corollary 1.10. The Legendrian lift Λ L Ă pP ˆR, α std q of an exact Lagrangian embedding L Ă pP, dθq is not contained in a positive loop of Legendrians.

Theorem 1.8 is proven using Lagrangian Floer homology for Lagrangian cobordisms (which also goes under the name 'Cthulhu homology'), which was developed in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] by the first and third authors together with Ghiggini and Golovko. In particular, we use this theory to produce the crucial long exact sequence in Theorem 4.1 below. By a variation of these techniques we are also able to establish the following related result. Theorem 1.11. A hypertight Legendrian submanifold Λ Ă pM, αq of a closed hypertight contact manifold is not contained inside a contractible positive loop of Legendrians.

Example 1.12. There are indeed examples of hypertight Legendrian submanifolds contained in a positive non-contractible loop. Consider e.g. the conormal lift of the simple closed curve S 1 ˆtθu Ă T 2 to a Legendrian knot inside SpT ˚T2 q. The Reeb flow for the flat metric on T 2 restricted to this conormal lift induces a positive loop which is not contractible simply by topological reasons.

The above example should be contrasted with the following result, whose proof is similar to that of Theorem 1.11. Theorem 1.13. Let Λ Ă pM, αq be a hypertight Legendrian submanifold of a closed contact manifold having vanishing Maslov number. If every two Reeb chords γ 1 , γ 2 on Λ in the same homotopy class have Conley-Zehnder indices satisfying either CZpγ 1 q ´CZpγ 2 q " 0 or | CZpγ 1 q ´CZpγ 2 q| ą dim Λ, then Λ is not contained in a positive loop of Legendrians.

Examples of Legendrian manifolds satisfying the hypothesis of the previous theorem are given by cotangent fibres in the space of contact elements of manifolds with non-positive curvature.

Corollary 1.14 (Chernov-Nemirovsky [START_REF] Chernov | Non-negative Legendrian isotopy in ST ˚M[END_REF]). The unit cotangent fibre of a manifold with non-positive sectional curvature is not contained in a positive loop of Legendrians.

The ideas used for proving the above results can also be applied in the case when the Legendrian submanifold admits an exact Lagrangian filling. In this case, instead of the Floer theory from [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF], ordinary wrapped Floer cohomology can be used.

Theorem 1.15. If Λ admits an exact Lagrangian filling L Ă pX, ωq inside a Liouville domain with contact boundary pBX " M, ξq having non-vanishing wrapped Floer cohomology for some choice of coefficients, then Λ is not contained inside a contractible positive loop of Legendrians.

We remind the reader that, in the case when we can exclude a Legendrian submanifold from being contained in a positive loop, it also follows that the ambient contact manifolds involved are orderable in the sense of [START_REF] Eliashberg | Partially ordered groups and geometry of contact transformations[END_REF]: non-orderability would imply that any Legendrian is in a contractible positive loop of Legendrians.

Remark 1.16. Recall that, since wrapped Floer cohomology HW ˚pLq is a module over symplectic cohomology SH ˚pX q, the hypothesis in Theorem 1.15 implies that SH ˚pX q " 0. Since Rabinowitz Floer homology then also is non-vanishing by Ritter [START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF], (i.e. RF ˚pM, Xq " 0 iff SHpXq " 0), we can hence also use [START_REF] Albers | Orderability, contact non-squeezing, and Rabinowitz Floer homology[END_REF] in order to deduce the orderability of pM, ξq. In the hypertight case, orderability of the contact manifold is proved in [START_REF] Albers | Orderability and the Weinstein conjecture[END_REF].

We notice also that we can state the following consequence, relying on Bourgeois-Ekholm-Eliashberg [START_REF] Bourgeois | Effect of Legendrian surgery[END_REF]: Corollary 1.17. Let pM `, ξ `q obtained by performing a contact surgery along a Legendrian link Λ Ă pM ´, ξ ´q of spheres where ' pM ´, ξ ´q is the boundary of a subcritical Weinstein domain, ' the Legendrian contact homology DGA of each component of Λ is not acyclic. Then there is no contractible positive Legendrian loop containing a Legendrian cocore sphere in pM ´, ξ ´q created by the surgery. Indeed as predicted in [START_REF] Bourgeois | Effect of Legendrian surgery[END_REF], the wrapped Floer cohomology of the co-core of a attaching handle is isomorphic to the Legendrian contact homology of Λ. Hence, Theorem 1.15 shows that the co-core spheres are not contained in a positive loop of Legendrians when LCHpΛq " 0.

Our methods also apply to prove strong orderability of some contact manifolds by passing to contact products (see below for the definition). Let pM, ξ " ker αq be a contact manifold. The contact product is the contact manifold pM ˆM ˆR, α 1 ét α 2 q, where α i is the pullback of α by the projection π i : M ˆM ˆR Ñ M on the ith factor, i " 1, 2. If φ is a contactomorphism of pM, ξq with φ ˚α " e gptq α, then the graph ∆ φ of φ is the Legendrian submanifold tpx, φpxq, gpxqq, x P M u of the contact product. To a contact isotopy pφ t q tPr0,1s of pM, ξq we can thus associate a Legendrian isotopy p∆ φt q tPr0,1s starting from the diagonal ∆ Id " tpx, x, 0qu. When pφ t q tPr0,1s is positive, then p∆ φt q tPr0,1s is negative. Following Liu, we can say that pM, ξq is strongly orderable whenever there is no contractible positive loop of Legendrians based at the diagonal in the contact product. In that case, we can endow the universal cover of the identity component of the group of contactomorphisms of pM, ξq with a partial order, by saying that rpφ t q tPr0,1s s ď rpψ t q tPr0,1s s if there exists a positive path of Legendrians from ∆ φ1 to ∆ ψ1 which is homotopic to the concatenation of the opposite of p∆ φt q tPr0,1s together with p∆ ψt q tPr0,1s . This is possibly a different notion from Eliashberg-Polterovich's order since the latter also requires paths of Legendrians to stay amongst graphs of contactomorphisms.

In [START_REF] Liu | On positive loops of loose Legendrian embeddings[END_REF], Liu proved that if pM, ξq is overtwisted (in the sense of Borman-Eliashberg-Murphy [START_REF] Borman | Existence and classification of overtwisted contact structures in all dimensions[END_REF]), then the contact product pM ˆM ˆR, α 1 ´et α 2 q is also overtwisted and its diagonal is a loose Legendrian. Thus the diagonal is the base point of a contractible positive loop by Theorem 1.4 and pM, ξq is not strongly orderable.

Here we prove the following.

Theorem 1.18. If pM, ξ " ker αq is the contact boundary of a Liouville domain pW, ω " dαq whose symplectic cohomology does not vanish for some choice of coefficients, i.e. SH ˚pW, ωq ‰ 0, then pM, ξq is strongly orderable.

Theorem 1.11 also relates to strong orderability of closed hypertight contact manifolds. Namely, by using Zenaïdi's compactness result [START_REF] Zenaïdi | Thèrorèmes de Künneth en homologie de contact[END_REF]Theorem 5.3.9], one can extend Theorem 1.11 to the Legendrian diagonal ∆ Id in M ˆM ˆR. Indeed, when pM, αq is hypertight, the contact product constructed above is hypertight as well as the Legendrian diagonal ∆ Id . Thus one has Theorem 1.19. If pM, ξq is hypertight then pM, ξq is strongly orderable. This is equivalent to say that any weakly non orderable (i.e. not strongly orderable) have a contractible periodic orbit and thus satisfies the Weinstein conjecture. Note that the orderability of hypertight manifolds is already proved by Albers-Fuchs-Merry in [START_REF] Albers | Orderability, contact non-squeezing, and Rabinowitz Floer homology[END_REF] and Sandon in [START_REF] Sandon | Floer homology for translated points[END_REF].

Theorem 1.11 was also recently announced by Sandon using a relative version of her Floer homology for translated points defined in [START_REF] Sandon | Floer homology for translated points[END_REF]. 1.3. A note about the hypotheses. The results here are not proven in the full generality that we would wish. The reason is that, for technical reasons, the construction of Cthulhu homology [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] is currently restricted to symplectisation of contactisations (or, more generally, symplectisations of hypertight contact manifolds). However, using recent work of Bao-Honda in [START_REF] Bao | Semi-global Kuranishi charts and the definition of contact homology[END_REF] or Pardon [START_REF] Pardon | Contact homology and virtual fundamental cycles[END_REF], it should be possible to define Legendrian contact homology as well as Cthulhu homology in a less restrictive setup. The authors believe that the correct restrictions are as follows:

(1) The non-existence of a positive loop of one of the components of a link Λ \ Λ 1 , such that the loop is contained in the complement of the other component, should also hold in a general contact manifold in the case when LCC ˚pΛ, Λ 1 q ‰ 0 is nonzero. In other words, Theorem 1.8 and its corollaries should hold more generally. Observe that having a non-zero Legendrian contact homology in particular implies that the full contact homology of the ambient contact manifold is also non-zero. (2) The non-existence of a contractible positive loop in Theorem 1.11 is also expected to hold in a general contact manifold, under the assumption that the Legendrian submanifold Λ satisfies the following property: Consider a C 1 -small push-off Λ 1 obtained as the one-jet j 1 f Ă J 1 Λ of a negative Morse function f : Λ Ñ p´ǫ, 0q where the jet-space is identified with a standard contact neighbourhood of Λ. Then, we either require that the Reeb chord corresponding to the minimum of f is a cycle (which, since a priori it is not a boundary, defines a non-zero class in LCH ε,ε pΛ, Λ 1 q) or, equivalently, that the chord at the maximum is not a boundary (which, since it a priori is a cycle, defines a non-zero class in LCH ε,ε pΛ, Λ 1 q). This would provide a generalisation of Theorem 1.15 in the non-fillable case; and (3) The long exact sequence produced by Theorem 4.1 should be possible to construct in the general case of a contact manifold whose full contact homology algebra is not acyclic. Again we must here make the assumption that the Legendrian submanifolds admit augmentations. The existence of this long exact sequence, along with its properties, is at the heart of the arguments for the results that we prove here.

1.4. Acknowledgements. A part of this work was conducted during the symplectic program at the Mittag-Leffler institute in Stockholm, Sweden, the autumn of 2015. The authors would like to thank the institute for its hospitality and great research environment. This project was finalised while the third author was professeur invité at Université de Nantes, and he would like to express his gratitude for a very pleasant stay.

Floer theory for Lagrangian cobordisms

In this section we recall the necessary background needed regarding the Floer homology complex constructed in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] by the first and third authors together with Ghiggini-Golovko. This is a version of Lagrangian intersection Floer homology defined for a pair consisting of two exact Lagrangian cobordisms in the symplectisation. In order to circumvent technical difficulties, we here restrict attention to the cases when either ' pM, αq is a contactisation pP ˆR, α std q of a Liouville manifold endowed with its standard contact form, or ' pM, αq as well as all Legendrian submanifolds considered are hypertight.

We refer to Section 1.3 for a discussion about these requirements, along with descriptions of less restrictive settings in which we believe our results hold.

2.1. Generalities concerning Lagrangian cobordisms. An exact Lagrangian cobordism Σ Ă pR ˆM, dpe t αqq from Λ ´Ă pM, ξq to Λ `Ă pM, ξq is a submanifold satisfying the following properties: ' Σ Ă R ˆM is properly embedded and half-dimensional, and e t α is exact when pulled back to Σ. (I.e. Σ is an exact Lagrangian submanifold.) ' Outside of a subset of the form pT ´, T `q ˆM for some numbers T ´ď T `, the submanifold Σ coincides with the cylinders p´8, T ´s ˆΛ´( the so-called negative end ) and rT `, `8q ˆΛ`( the so-called positive end ), respectively. (The Lagrangian condition implies that Λ ˘Ă pM, ξq are Legendrian submanifolds.) ' There is a primitive of the pull-back of e t α which is globally constant when restricted to either of the two cylindrical ends above. (When Λ ˘both are connected, this automatically holds.)

In the case when Λ

´" H we say that Σ is a filling. A Lagrangian cobordism for which L X rT ´, T `s ˆM is diffeomorphic to a cylinder is called a Lagrangian concordance. Note that the exactness of the pull-back of e t α is automatic in this case.

The exactness allows us to associate a potential f Σ : Σ Ñ R defined uniquely by the requirements that it is the primitive of the pull-back of e t α that vanishes on the negative end of Σ.

Given exact Lagrangian cobordisms Σ ´from Λ ´to Λ, and Σ `from Λ to Λ `, their concatenation is the following exact Lagrangian cobordism. After a translation of the R-coordinate, we may assume that Σ ´X tt ě ´1u and Σ `X tt ď 1u both are trivial cylinders over Λ. The concatenation is then defined to be

Σ ´d Σ `" pΣ ´X tt ď 0uq Y pΣ `X tt ě 0uq Ă R ˆM,
which can be seen to be an exact Lagrangian cobordism from Λ ´to Λ `.

2.2. Linearised Legendrian contact cohomology. We start with a very brief recollection of the Chekanov-Eliashberg algebra, which is a differential graded algebra (DGA for short) pApΛq, Bq associated to a Legendrian submanifold Λ Ă pM, αq together with an auxiliary choice of cylindrical almost complex structure on the symplectisation pR ˆM, dpe t αqq. The algebra is unital, fully non commutative, and freely generated by the set of Reeb chords RpΛq on Λ (which are assumed to be generic). Here we restrict attention to the case when the algebra is defined over the ground field Z 2 of two elements. There is a grading defined by the Conley-Zehnder index, which we omit from the description. The differential is defined by counts of pseudoholomorphic discs in the symplectisation pR ˆM, dpe t αqq that are rigid up to translation. In the cases under consideration, the details can be found in [START_REF] Ekholm | Legendrian contact homology in P ˆR[END_REF]. Also see [START_REF] Rizell | Lifting pseudo-holomorphic polygons to the symplectisation of P ˆR and applications[END_REF] for the relations between the version defined by counting pseudoholomorphic discs on the Lagrangian projection (which makes sense when M " P ˆR is a contactisation) and the version defined by counting pseudoholomorphic discs in the symplectisation.

We will be working on the level of the so-called linearised Legendrian contact cohomology complexes; these are complexes obtained from the Chekanov-Eliashberg DGA by Chekanov's linearisation procedure in [START_REF] Yu | Differential algebra of Legendrian links[END_REF]. The latter complex has an underlying graded vector space with basis given by the Reeb chords, and the differential is associated to a so-called augmentation of the DGA, which is a unital DGA morphism

ε : pApΛq, Bq Ñ Z 2 .
Observe that augmentations need not exist in general. Even if augmentations are purely algebraic objects, they are in many cases geometrically induced. For instance, an exact Lagrangian filling of Λ gives rise to an augmentation; see [START_REF] Ekholm | Rational symplectic field theory over Z 2 for exact Lagrangian cobordisms[END_REF] by Ekholm as well as [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF] by Ekholm-Honda-Kálmán.

Given augmentations ε i : ApΛ i q Ñ Z 2 , i " 0, 1, the fact that the differential counts connected discs implies that there is an induced augmentation ε of the Chekanov-Eliashberg algebra ApΛ 0 Y Λ 1 q of the disconnected Legendrian submanifold uniquely determined as follows: it restricts to ε i on the respective components while it vanishes on the chords between the two components. Using this augmentation, Chekanov's linearisation procedure can be used to produce a complex pLCC ε0,ε1 ˚pΛ 0 , Λ 1 q, B ε0,ε0 q with underlying vector space having basis given by the Reeb chords RpΛ 1 , Λ 0 q from Λ 1 to Λ 0 (note the order!). We will instead be working with the associated dual complex pLCC ε0,ε1 pΛ 0 , Λ 1 q, d ε0,ε0 q, called the linearised Legendrian contact cohomology complex, with induced cohomology group LCH ε0,ε1 pΛ 0 , Λ 1 q.

Remark 2.1. Closed Legendrian submanifolds of a contactisation generically have a finite number of Reeb chords. In the hypertight case, we will restrict our attention to Reeb chords living in a fixed homotopy class α P π 1 pM, Λq, denoting the resulting complex by pLCC α,ε 0 ,ε1 pΛ 0 , Λ 1 q, d ε0,ε0 q. In this case, however, we cannot exclude the possibility of the existence of infinitely many Reeb chords in a given homotopy class. The latter complex thus has an underlying vector space which is a direct product.

We proceed by giving some more details concerning the definition of the differential of the Legendrian contact cohomology complex for a pair of Legendrian submanifolds.

Use γ ˘P RpΛ 1 , Λ 0 q to denote Reeb chords from Λ 1 to Λ 0 , and δ " δ 1 ¨¨¨δ i´1 , ζ " ζ i`1 ¨¨¨ζ d to denote words of Reeb chords in RpΛ 0 q and RpΛ 1 q, respectively. The differential is defined by the count

(2) d ε0,ε0 pγ ´q " ÿ δ,ζ,γ `#2 Mpγ `; δ, γ ´, ζqε 0 pδqε 1 pζqγ `.
of pseudoholomorphic discs in R ˆM having boundary on R ˆpΛ 0 Y Λ 1 q and striplike ends, and which are rigid up to translation of the R-factor. More precisely, the solutions inside Mpγ `; δ, γ ´, ζq are required to have a positive puncture asymptotic to γ `at t " `8, and negative punctures asymptotic to γ ´, δ j , and ζ j , at t " ´8. We refer to [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] for more details on the definition of these moduli spaces.

The length of a Reeb chord is defined by the formula ℓpγq :"

ż γ dz ą 0, γ P RpΛq.
The positivity of the so-called dα-energy of the above pseudoholomorphic discs implies that the differential respects the filtration induced by the length of the Reeb chords in the following way: the coefficient of γ `above vanishes whenever ℓpγ `q ď ℓpγ ´q. Also, see Lemma 2.2 below.

One can interpret augmentations as being bounding cochains (in the sense of [START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction. Part I[END_REF]) for Legendrians. Using this terminology, the differential defined by Equation ( 2) is induced by the choices of bounding cochains ε i for Λ i , i " 0, 1.

2.3. The Cthulhu complex. We proceed to describe the construction of the Cthulhu complex from [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] defined for a pair pΣ 0 , Σ 1 q of exact Lagrangian cobordisms inside the symplectisation pRˆM, dpe t αqq. The starting point for this theory is the version of wrapped Floer cohomology defined [START_REF] Ekholm | Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology[END_REF] by Ekholm using the analytic setup of symplectic field theory. Wrapped Floer homology is a version of Lagrangian intersection Floer homology for exact Lagrangian fillings. The theory in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] is a generalisation to the case when the negative end of the cobordism is not necessarily empty.

In order to deal with certain bubbling phenomena involving negative ends, one must require that the Legendrians at the negative ends admit augmentations. Again, augmentations will be used as bounding cochains. In the following we thus assume that we are given a pair Σ i , i " 0, 1, of exact Lagrangian cobordisms from Λ í to Λ ì , together with choices of augmentations ε i of Λ í . There are augmentations ε ì " ε i ˝ΦΣi of Λ ì obtained as the pull-backs of the augmentation ε í under the unital DGA morphism induced by the cobordism Σ i ; see [START_REF] Ekholm | Rational symplectic field theory over Z 2 for exact Lagrangian cobordisms[END_REF] by Ekholm as well as [START_REF] Ekholm | Legendrian knots and exact Lagrangian cobordisms[END_REF] for more details. Let CF ˚pΣ 0 , Σ 1 q be the graded Z 2 -vector space with basis given by the intersection points Σ 0 X Σ 1 (which all are assumed to be transverse). Again, we omit gradings from the discussion.

We are now ready to define the Cthulhu complex, which is the graded vector space Cth ˚pΣ 0 , Σ 1 q :" C ˚8 ' CF ˚pΣ 0 , Σ 1 q ' C ˚´1 ´8 , C ˚8pΣ 0 , Σ 1 q :" LCC ε0,ε1 pΛ 0 , Λ 1 q, C ˚8pΣ 0 , Σ 1 q :" LCC ε0 ,ε 1 pΛ 0 , Λ 1 q.

with differential of the form

d ε0,ε1 " ¨d``d`0 d `0 d 00 d 00 d ´0 d ´´' .
The entries d ``" d ε 0 ,ε 1 and d ´´" d ε0,ε1 are the linearised Legendrian contact cohomology differentials described in Section 2.2, while the rest of the entries are defined by augmented counts of pseudoholomorphic strips with boundary on Σ 0 and Σ 1 having appropriate asymptotics. See Figure 3 for a schematic picture of the strips involved. Recall that, typically, the strips also have additional negative asymptotics to Reeb chords on Λ í , i " 0, 1, and that all counts are 'weighted' by the values of the chosen augmentations on these chords (similarly to as in Formula (2)).

For us it will be important to consider the behaviour of d ε0,ε1 with respect to a particular action filtration. To that end, for an intersection point p P Σ 0 X Σ 1 we associate the action appq :" f Σ1 ppq ´fΣ0 ppq P R. Assuming that Σ i are both cylindrical outside of pT ´, T `q ˆM , to a Reeb chord generator γ ˘P RpΛ 1 , Λ 0 q we can then associate the action where f Σi P R are defined to be the value of f Σi on the positive and negative cylindrical ends, respectively (thus f Σi " 0 by our conventions). Lemma 2.2. If the coefficient of y is non-vanishing in the expression d ε0,ε1 pxq, then it follows that apyq ą apxq.

apγ ˘q :" e T˘ℓ pγ ˘q `f Σ1 ´f Σ0 P R, R ˆΛ0 R ˆΛ1 d ``Σ 0 Σ 1 d `0 Σ 0 Σ 1 d `Σ 0 Σ 1 d 00 Σ 0 Σ 1 d 0Σ 0 Σ 1 d ´0 R ˆpΛ 1 \ Λ 0 q Σ 0 Σ 1 d ´óut in out
We now state the well-definedness and invariance properties of the Cthulhu complex. For the precise requirements concerning the almost complex structure we refer to [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF]Section 3.1].

Assume that pM, αq is the contactisation of a Liouville manifold, and that Σ i Ă pR ˆM, dpe t αqq, i " 0, 1, are exact Lagrangian cobordisms whose negative ends Λ í admit augmentations ε i .

Theorem 2.3 (Theorems 6.1, 8.6 in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF]). For an appropriate choice of an almost complex structure on the symplectisation, d 2 ε0,ε1 " 0 and the induced complex Cth ˚pΣ 0 , Σ 1 q is acyclic.

Theorem 2.4 (Proposition 8.4 in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF]). If the cobordisms Σ i , i " 0, 1, are compactly supported Hamiltonian isotopic to Σ 1 i , then there is an induced quasi-isomorphism

φ : Cth ˚pΣ 0 , Σ 1 q Ñ Cth ˚pΣ 1 0 , Σ 1 1 q, φ " ¨φ`˚0 ˚0 φ ´0 Id C´8pΛ 0 ,Λ 1 q ',
where φ ´0 vanishes in the case when there are no Reeb chords from Λ 0 to Λ 1 , and:

(1) The component

φ `: LCC ε0˝ΦΣ 0 ,ε1˝ΦΣ 1 pΛ 0 , Λ 1 q Ñ LCC ε0˝Φ Σ 1 0 ,ε1˝Φ Σ 1 1 pΛ 0 , Λ 1 q
is an isomorphism of complexes which for generators a, b satisfies xφ `paq, ay " 1, while xφ `paq, by " 0 holds whenever ℓpaq ą ℓpbq.

(2) Consider the subspaces Cth ra0,`8q ˚pΣ s 0 , Σ s 1 q Ă Cth ˚pΣ s 0 , Σ s 1 q consisting of the generators of action at least a 0 P R where pΣ s 0 , Σ s 1 q is the Hamiltonian isotopy of the pair of cobordisms. Under the additional geometric assumption that a neighbourhood of these generators, as well as their actions, are fixed during the entire isotopy, it follows that φpCth ra0,`8q ˚pΣ 0 , Σ 1 qq Ă Cth ra0,`8q ˚pΣ 1 0 , Σ 1 1 q holds as well.

Proof. The claims not contained in the formulations of the referred result in [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF] are the following:

(i) The condition for the vanishing of φ ´0;

(ii) The statement in Part (1) which claims that the chain isomorphism φ `is 'upper triangular' with respect to the action filtration; and (iii) The action preserving properties stated in Part (2). The statements follow from studying the proof of the invariance result [13, Proposition 8.4] which is shown using bifurcation analysis. Here there is one caveat: it is necessary first to apply Proposition 8.2 in the same article. This is done in order to interchange the Reeb chord generators of C ˚8pΣ 0 , Σ 1 q with intersection points by geometrically 'wrapping' the ends, e.g. by an application of the Hamiltonian isotopy φ s pβ´1qBz to the component Σ 0 (see Section 2.5). According to the aforementioned result, we may assume that the isomorphism class of the complex is left unchanged under such a modification. Alternatively, one may also argue as the invariance proof [24, Section 4.2.1], which is based upon abstract perturbations (and which stays in the more symmetric setup of SFT).

The bifurcation analysis roughly works as follows. A generic Hamiltonian isotopy produces a finite number of 'handle-slides' and 'birth/deaths' on the geometric side. On the algebraic side handle-slides and birth/deaths then correspond to chain isomorphisms of the form x Þ Ñ x `Kpxq (defined on each generator) and stabilisations by an acyclic complex (up to a chain isomorphism), respectively.

In this case we are only concerned with generators which cannot undergo any birth/death moves, and we can therefore ignore them. What suffices is thus to check the action properties for each chain isomorphism induced by a handle-slide. Recall that the term Kpxq in such a chain isomorphism is defined by a count of pseudoholomorphic discs of expected dimension -1.

Claim (i): This follows by a neck-stretching argument, since a pseudoholomorphic disc contributing to a nonzero term Kpxq in the definition of φ ´0 would break into a configuration involving a Reeb chord from Λ 0 to Λ 1 . This configuration is similar to the one which in the definition of the term d ´0 of the differential shown in Figure 3.

Claims (ii) and (iii): The claims follow by the same reason as to why the differential is action increasing, i.e. since non-constant pseudoholomorphic discs are of positive energy.

It will also be useful to formulate the following refined invariance properties, which applies under certain additional assumptions on the cobordisms.

Corollary 2.5 ([13]

). In the above setting, we make the additional assumption that there are no Reeb chords starting on Λ 0 and ending on Λ 1 , and that each cobordism Σ i is compactly supported Hamiltonian isotopic to cobordisms Σ 1 i satisfying Σ 1 0 X Σ 1 1 " H. Then, d ´0 " 0, and the quasi-isomorphism φ in Theorem 2.4 can be assumed to map all intersection points into the subcomplex

C ˚8pΣ 1 0 , Σ 1 1 q Ă Cth ˚pΣ 1 0 , Σ 1 1 q.
2.4. The Cthulhu complex in the hypertight case. We are also interested in the (very) special situation when the negative ends Λ í Ă pM, αq of the cobordisms are hypertight Legendrian submanifolds of a closed hypertight contact manifold. This setting introduces no additional difficulties when defining the above theory except for the following caveat (recall that our notion of hypertightness does not require the Reeb chords, or orbits, to be non-degenerate):

In the case when the Legendrian is hypertight, we do not know if it is possible to make a small perturbation Λ 1 of Λ 0 that simultaneously satisfies the properties that:

(1) each of Λ i is hypertight and has non-degenerate Reeb chords, (2) the contact manifold is hypertight with non-degenerate Reeb orbits, and (3) the Reeb chords between Λ 0 and Λ 1 are non-degenerate.

However, given any choice of L ą 0, it is possible to ensure that the above properties are satisfied for all the chords of length at most L.

For that reason, we must use the following modified versions of the complexes. We always restrict attention to the generators below some fixed, but sufficiently large, action L " 0 when defining the different complexes. That this indeed makes sense follows from the action properties satisfied by the differential and the maps appearing in the invariance statements.

Obviously, working below a fixed action is in general not possible to combine with a full invariance. However, when interested in the invariance under a fixed deformation, we can always adjust the parameter L ą 0 in order for this invariance to hold. Here it is important to note that we only consider invariance properties under compactly supported Hamiltonian isotopies of a pair of exact Lagrangian cobordisms. For a fixed such deformation, all generators concerned that can undergo a deformation thus satisfy an a priori action bound (depending only on the involved cobordisms together with the fixed Hamiltonian isotopy).

In this case the Chekanov-Eliashberg algebra generated by the contractible chords has a canonical augmentation that sends every generator to zero. Restricting to action small than L the induced differential d L is defined by counting honest pseudoholomorphic strips, i.e. strips without additional boundary punctures asymptotic to Reeb chords of Λ ´. This situation is very similar to that in the paper [START_REF] Eliashberg | Lagrangian intersections in contact geometry[END_REF], in which both Lagrangians also are non-compact.

Theorem 2.6 ([13]

). For any two exact Lagrangian cobordisms Σ i Ă pRˆM, dpe t αqq having hypertight negative ends in a hypertight contact manifold, we have d 2 L " 0.

In the hypertight case, we only formulate the invariance theorem for the special case that is needed in our proofs. Assume that the two Legendrian submanifolds Λ i Ă pM, αq, i " 0, 1, are hypertight, where Λ 0 moreover is obtained from Λ 1 by the time-T Reeb flow, T ą 0, followed by a generic C 1 -small Legendrian perturbation.

We begin with the case when the two exact Lagrangian cobordisms Σ i Ă pR M, dpe t αqq have been obtained from R ˆΛi by a compactly supported Hamiltonian isotopy. We consider the Cthulhu complex generated by only those Reeb chords and intersection points living in the component 0 P π 0 pΠpR ˆM ; Σ 0 , Σ 1 qq of paths from Σ 1 to Σ 0 in R ˆM containing the (perturbations of the) Reeb chords from tT ´u ˆΛ1 to tT ´u ˆΛ0 of length precisely equal to T . Since the differential counts strips, it is clear that this defines a subcomplex that will be denoted by Cth 0 ˚pΣ 0 , Σ 1 q.

Theorem 2.7. Under the above assumptions, the complex Cth 0 ˚pΣ 0 , Σ 1 q is acyclic and satisfies d ´0 " 0. Moreover, there is a homotopy equivalence φ : Cth 0 ˚pΣ 0 , Σ 1 q Ñ Cth 0 ˚pR ˆΛ0 , R ˆΛ1 q of acyclic complexes such that:

(1) Its restriction to the subcomplex C ˚8pΣ 0 , Σ 1 q is the identity map

C ˚8pΣ 0 , Σ 1 q " Ý Ñ C 0 `8pR ˆΛ0 , R ˆΛ1 q of complexes
having the same set of generators; and (2) All intersection points are mapped into the subcomplex

C ˚8pR ˆΛ0 , R ˆΛ1 q Ă Cth 0 ˚pR ˆΛ0 , R ˆΛ1 q.
Proof. The proof is similar to that of Corollary 2.5. Observe that, since the cylindrical ends are fixed during the isotopy, it makes sense to restrict attention to the specified homotopy class of intersection points whilst performing the bifurcation analysis.

We have d ´0 " 0 when restricted to the generators in the homotopy class under consideration. Here the crucial point is that, by hypertightness together with the choice of push-off, there are no Reeb chords from Λ 0 to Λ 1 living in the homotopy class 0 P π 0 pΠpR ˆM ; Σ 0 , Σ 1 qq when parametrised by reversed time. The rest follows as in the aforementioned proof.

Note that the restriction of the homotopy equivalence to C ˚8pΣ 0 , Σ 1 q is the identity morphism, as opposed to the more general isomorphism of complexes in Part (1) of Theorem 2.4. This follows by the same reason as to why, in the hypertight case under consideration, the pull-back of the canonical augmentation under a cobordism map induced by a cylinder again is the canonical augmentation.

The following invariance holds in the more general situation when Σ i both are invertible Lagrangian cobordisms; by this, we mean that there are cobordisms U i , V i for which the concatenations Σ i d U i as well as U i d V i both can be performed, and such that the resulting exact Lagrangian cobordisms all are compactly Hamiltonian isotopic to trivial cylinders. See [START_REF] Rizell | Lifting pseudo-holomorphic polygons to the symplectisation of P ˆR and applications[END_REF]Section 5.3] for the basic properties of invertible Lagrangian cobordisms.

Remark 2.8. In the case when Σ i is not compactly supported Hamiltonian isotopic to a trivial cylinder, a path inside the slice tT ´u ˆM living in the component 0 P π 0 pΠpR ˆM ; Σ 0 , Σ 1 qq specified above (e.g. a Reeb chord from Λ 1 to Λ 0 ) may end up in a different homotopy class when placed inside the slice tT `u ˆM . Theorem 2.9 (Theorem 5.7 in [START_REF] Rizell | Lifting pseudo-holomorphic polygons to the symplectisation of P ˆR and applications[END_REF]). In the case when Σ i are invertible exact Lagrangian cobordisms with hypertight negative ends, then Cth 0 ˚pΣ 0 , Σ 1 q is an acyclic complex.

Proof. Since the negative ends are kept fixed during the Hamiltonian isotopy considered, the statement follows from the same proof as in the case of a pair of fillings (i.e. in the case when the negative ends are empty). See e.g. the proof of [21, Theorem 5.7], which is based upon [24, Section 4.2].

In the situation where the Legendrian is the diagonal in the contact product of an hypertight contact manifold, we apply the theory from Zenaïdi's work [START_REF] Zenaïdi | Thèrorèmes de Künneth en homologie de contact[END_REF] in the following way. One can consider a contact form of the type p α " f 1 α 1 `f2 α 2 on the contact product, where f 1 , f 2 : R Ñ R are linear away from a compact set r´N, N s and δptq " f 1 1 ptqf 2 ptq ´f 1 2 ptqf 1 ptq ‰ 0 for all t P R (this is the contact condition). The associated Reeb vector field is R p α " p´f

1 2 δ R, f 1 1 δ R, 0q.
Note that periodic orbits of R p α are given as curves on the product of orbits of R, and thus the form is still hypertight. A chord of the Legendrian diagonal is given by a path pγ 1 ptq, γ 2 ptq, 0q such that γ 1 ‹ γ ´1 2 is a periodic orbit of R, thus ∆ is also relatively hypertight. Since R p α has vanishing B t -component, all chords are confined in M ˆM ˆt0u. By an argument based upon the maximum principle (see Theorem 5.3.9 in [START_REF] Zenaïdi | Thèrorèmes de Künneth en homologie de contact[END_REF]) it follows that all holomorphic curves asymptotic to periodic orbits stay in the symplectisation of the compact region M ˆM ˆr´ε, εs. For this reason, the Floer theory for cobordisms considered here can also be extended to the non-compact settings of the contact product.

2.5. Wrapping. In the Hamiltonian formulation of wrapped Floer cohomology the Reeb chord generators are exchanged for Hamiltonian chords arising when 'wrapping' the ends of one of the Lagrangians. It will sometimes be necessary for us to perform such a wrapping as well, and for that reason we need to introduce the following Hamiltonian vector fields.

We start by observing the general fact that the isotopy φ s gptqR generated by a vector field of the form gptqR P T pR ˆM q generates a Hamiltonian isotopy, where R denotes the Reeb vector field and g : R Ñ R is an arbitrary smooth function.

Now consider the function β : R Ñ R ě0 shown in Figure 4, which satisfies the following properties: ' βptq " 0 for all t R r´δ, T `δs, ' βptq " 1 for all t P r0, T s, and ' β 1 ptq ą 0 and β 1 ptq ă 0 holds for t P p´δ, 0q and t P pT, T `δq, respectively.

The induced Hamiltonian vector field φ s pβ´1qR can now be seen to wrap the ends of R ˆM by the negative Reeb flow. We also use β `ptq to denote the function which is constantly equal to β `ptq " 1 when t ď T and which coincides with βptq on rT, `8q; and β ´ptq to denote the function which is constantly equal to β ´ptq " 1 when t ě 0 and which coincides with βptq on p´8, 0q.

2.6. Stretching the neck. Consider a (possibly disconnected) hypersurface tt 1 , . . . , t n u ˆM Ă pR ˆM, dpe t αqq of contact type near which both Lagrangian cobordisms Σ i , i " 0, 1, are cylindrical. As described in [10, Section 3.4], we can stretch the neck along this hypersurface by considering an appropriate sequence J τ , τ ě 0, of compatible almost complex structures and then applying the SFT compactness theorem [START_REF] Bourgeois | Compactness results in symplectic field theory[END_REF]. More precisely, in neighbourhoods rt i ´ǫ, t i `ǫs ˆM the almost complex structure J τ is induced by pulling back a fixed choice of cylindrical almost complex structure on prt i ǫ ´τ, t i `ǫ `τ s ˆM, dpe t αqq by a diffeomorphism induced by an identification rt i ´ǫ, t i `ǫs -rt i ´ǫ ´τ, t i `ǫ `τ s. Also, see [13, Section 7.1] for a description in the setting considered here.

When stretching the neck by taking τ Ñ `8, a sequence of J τ -holomorphic curves in RˆM with boundary on Σ 0 YΣ 1 have subsequences converging to so-called pseudoholomorphic buildings; we refer to [START_REF] Bourgeois | Compactness results in symplectic field theory[END_REF] and [START_REF] Abbas | An introduction to compactness results in symplectic field theory[END_REF] for its definition. Roughly speaking, a pseudoholomorphic building consists of many levels containing pseudoholomorphic curves with boundary on the (completed) Lagrangian cobordisms contained between pt i , t i`1 q ˆM for i " 0, . . . , t n , and where t 0 " ´8, t n`1 " `8. See Figure 5 below for an example in the case when the building has three levels.

In order to obtain a bijection between rigid configurations before the limit and rigid pseudoholomorphic buildings one must assume that all involved components are transversely cut out, and then perform a pseudoholomorphic gluing argument.

Positive isotopies and Lagrangian concordance

The starting point of our analysis is the construction of a Lagrangian concordance from a Legendrian isotopy which should be though of as the 'trace' of the isotopy. We choose to follow the construction of Eliashberg and Gromov [START_REF] Eliashberg | Lagrangian intersection theory: finite-dimensional approach[END_REF]. Given a Legendrian isotopy φ : r0, 1s ˆΛ ãÑ pM, ξq, Λ s :" φps, Λq, from Λ 0 to Λ 1 , they produce an associated Lagrangian concordance Σ tΛ s u Ă pR ˆM, dpe t αqq from Λ 0 to Λ 1 inside the symplectisation. Remark 3.1. Lagrangian concordances can be constructed out of a Legendrian isotopy in several different ways; see e.g. [START_REF] Chantraine | Lagrangian concordance of Legendrian knots[END_REF] or [START_REF] Ekholm | Rational symplectic field theory over Z 2 for exact Lagrangian cobordisms[END_REF] for alternatives to the construction presented here. Note that, the primitive of e t α for the construction from [START_REF] Chantraine | Lagrangian concordance of Legendrian knots[END_REF] has the same value on the negative and positive ends. For the construction in [START_REF] Ekholm | Rational symplectic field theory over Z 2 for exact Lagrangian cobordisms[END_REF], the symplectic and Liouville structure are changed, making action considerations more delicate. The advantage of the techniques in [START_REF] Eliashberg | Lagrangian intersection theory: finite-dimensional approach[END_REF] that we here choose to adapt is that, in the case of a positive (resp. negative) isotopy, the obtained cobordism has a primitive with value at the positive end being strictly greater (resp strictly smaller) than the negative end. This property will turn out to be crucial.

Using a standard construction (for instance described in [START_REF] Colin | The discriminant and oscillation lengths for contact and Legendrian isotopies[END_REF]), deforming the above Legendrian isotopy while fixing the endpoints, we can assume that the Legendrian isotopy tΛ s u has an associated contact Hamiltonian

H : r0, 1s ˆΛ Ñ R, Hps, qq " α ˆd dt ˇˇˇt "s Λ t pqq ˙,
that satisfies the following properties. There exists a decomposition 0 " s 0 ă s 1 ă ¨¨¨ă s k " 1 of the interval, and a number δ ą 0, such that for all i " 0, . . . , k ´1: ' Hps, qq| psi´δ,si`δq " ρ i psq (i.e. H does not depend on q near s i ); ' Hps, qq| psi,si`1q " 0 (i.e. the isotopy is either positive or negative); and ' Hps i , qq " 0. The third condition enables us to extend the isotopy to be constant in the time intervals s ă 0 and s ą 1, while the contact Hamiltonian H smoothly extends to zero for these times. Such an isotopy will be called a zig-zag isotopy.

To construct the sought concordance it suffices to perform the construction for the isotopy Λ s restricted to each interval rs i , s i`1 s. The resulting concordances can then be stacked together by repeated concatenations in order to produce the sought Lagrangian concordance from Λ 0 to Λ 1 .

3.1.

The concordance in the definite case. In view of the above, we now restrict our attention to an isotopy tΛ s u sPr0,1s for which the contact Hamiltonian Hps, qq satisfies Hps, qq " ρ 0 psq for s ă δ, Hps, qq " ρ 1 psq for s ą 1 ´δ, ρ 0 p0q " ρ 1 p1q " 0, and |Hps, qq| " 0 for all s P p0, 1q. For all ǫ ă 1 4 we choose a function χ ε : R Ñ R such that (1) χ ǫ psq " 0 for s ă 0 and s ą 1;

(2) χ ǫ psq " 1 for s P r2ǫ, 1 ´2ǫs;

(3) χ ǫ psq " |ρ 0 psq| for s ă mintδ, ǫu; and (4) χ ǫ psq " |ρ 1 psq| for s ą maxt1 ´ǫ, 1 ´δu. Given numbers T ą 0 and ǫ ą 0 we are now ready to define the smooth map

C T,ε : R ˆΛ Ñ R ˆM ps, qq Þ Ñ $ ' & ' %
pT s `ln χǫpsq |Hps,qq| , Λ s pqqq, for s P r0, 1s, pT s, Λ 0 pqqq, for s ă 0, pT s, Λ 1 pqqq, for s ą 1.

(

) 3 
Note that, from the definition of χ, it follows that C T,ε is a smooth map. Namely, the function χpsqǫ Hps,qq approaches 1 as s approaches either 0 or 1. The following theorem is from [29, Lemma 4.2.5]. Proposition 3.2. For all T, ε ą 0 the map C T,ε is an immersed Lagrangian concordance. For T sufficiently large, C T,ε is an embedded Lagrangian concordance from Λ 0 " Λ to Λ 1 . Moreover, the pull back pC T,ε q ˚pe t αq is exact with primitive given by f C T ,ε ps, qq " signpHq ż s ´1 χ ε ptqe T t dt, vanishing at ´8. In particular, for a positive (resp. negative) isotopy, the primitive is positive (resp. negative) when restricted to the positive cylindrical end.

Proof. A simple computation shows that pC T,ε q ˚pe t αq " H |H| χ ε psqe T s ds which implies the first and last statements.

For the second statement, we note first that, since the isotopy is transverse to ξ for all s P r0, 1s, there always exists a small δ ą 0 such that the projection of C T,ε | ps´δ,s`δqˆΛ to M is an embedding. This imply that every pair of points ps 1 , q 1 q and ps 2 , q 2 q (with s 2 ą s 1 ) such that Cps 1 , q 1 q " Cps 2 , q 2 q satisfies s 2 ´s1 ą 2δ, (4) T ps 2 ´s1 q " ln Hps 2 q Hps 1 q ´ln χ ǫ ps 2 q χ ǫ ps 1 q . (5) After choosing

T ą 1 2δ ln max H min H ,
it follows that no such double point can exist.

Remark 3.3. After increasing T " 0 even further, it is the case that C T,ǫ pR ˆΛq X pp´8, 0q ˆM q " p´8, 0q ˆΛ0 , C T,ǫ pR ˆΛq X ppT, 8q ˆM q " pT, 8q ˆΛ1 , are satisfied. We assume that such choices are made when using these concordances.

3.2. The general case. Given a general Legendrian isotopy tΛ s u, we homotope it to a zig-zag isotopy. Concatenating the pieces of concordances produced Proposition 3.2 above, we thus obtain the sought Lagrangian concordance Σ tΛ s u Ă pR ˆM, dpe t αqq from Λ 0 to Λ 1 .

Proposition 3.4. For a contractible Legendrian loop tΛ s u with Λ " Λ 0 , the Lagrangian concordance constructed above is compactly supported Hamiltonian isotopic to R ˆΛ.

Proof. The construction of these cylinders and of the homotopy making the Legendrian isotopy a zig-zag isotopy as in Lemma 2.1 of [START_REF] Colin | The discriminant and oscillation lengths for contact and Legendrian isotopies[END_REF] is parametric. Thus, a homotopy of Legendrian isotopies will lead to an isotopy of Lagrangian concordances fixed outside of a compact subset. Since concordances are exact Lagrangians, this gives rise to a compactly supported Hamiltonian isotopy of the Lagrangian concordances, as sought. More precisely, if tΛ s u is a contractible loop, the parametric construction gives a homotopy of zig-zag Legendrian isotopies from a small deformation of tΛ s u to a small deformation of the constant isotopy tΛ 0 u. The latter deformation is a concatenation of isotopies of the form tφ εχptq pΛ 0 qu where φ is the Reeb flow and χ is a bump function similar to the one considered above.

By construction the resulting Lagrangian concordance associated to tΛ s u is isotopic through exact Lagrangian embeddings, and by a standard result hence Hamiltonian isotopic, to the cylinder associated to to the cylinder C 1 pt, qq that is the concatenation of the 'graphs' tpt, qq; q P φ εχptq pΛ 0 qqu. The latter cylinder can finally be explicitly seen to be Hamiltonian isotopic to the trivial cylinder R ˆΛ0 by taking ε Ñ 0 in each piece simultaneously.

The Floer homology of the trace of a positive loop

Consider the Lagrangian concordance Σ 0 :" Σ tΛ s u obtained from the trace of a positive loop as constructed in Section 3. We assume that the starting point of the loop is the Legendrian Λ 0 " Λ 0 , and we let Σ 1 :" R ˆΛ1 be the trivial cylinder over the Legendrian Λ 1 . In other words, each of Σ i , i " 0, 1, is an exact Lagrangian concordance from Λ i to itself.

In this section we compute the Floer homology complex Cth ˚pΣ 0 , Σ 1 q for this pair of cobordisms, as defined in Section 2, and then use this to deduce several results. To that end, we make the assumption that Λ i has an augmentation ε i , and use ε ì :" ε i ˝ΦΣi to denote its pull-back under the DGA morphism associated to Σ i . The differential of the complex d ε0,ε1 will be taken to be induced by the augmentations ε i , and we denote its components by d `´, d `0, . . ., etc.

Our first goal is establishing the following long exact sequence (or, in the ungraded case, exact triangle) which exists in the above setting. Its existence depends heavily on the fact that Σ tΛ s u is the trace of a positive Legendrian loop. Theorem 4.1. In the case when either (1) pM, αq is a contactisation pP ˆR, α std q endowed with its standard symplectic form, or (2) the Legendrian submanifolds Λ 0 , Λ 1 Ă pM, αq are hypertight, then there is a long exact sequence (6)

¨¨¨/ / LCH k´1 ε 0 ,ε 1 pΛ 0 , Λ 1 q δ HF k ε0,ε1 pΣ tΛ s u , R ˆΛ1 q d´0 / / LCH k ε0,ε1 pΛ 0 , Λ 1 q d`/ / LCH k ε 0 ,ε 1 pΛ 0 , Λ 1 q / / ¨¨¨, in which δ :" rπs ˝"`d `0 d `´˘‰ ´1 ,
for the canonical projection π : CF ˚pΣ 1 , Σ 0 q ' C ˚8 Ñ CF ˚pΣ 0 , Σ 1 q. Moreover in the hypertight case (i.e. under Assumption (2)), it moreover follows that d ´0 " 0.

Remark 4.2. The formulation of Theorem 4.1 has the following caveats:

' In either of the Cases (1) and (2) above, there may be a relative difference of Maslov potentials of the Legendrians at the positive and negative ends induced by the cobordism Σ tΛ s u . Such a difference would induce a shift of grading in the rightmost homology group. ' In Case (2), i.e. the hypertight case, there is a unique and canonical augmentation for each of Λ i , i " 0, 1. This does however not mean that the two Legendrian contact homology groups appearing in the long exact sequence are the same (even up to a shift in grading). Recall that in this case we consider only generators living in the connected component 0 P π 0 pΠpR M ; Σ 0 , Σ 1 qq of the path space, as described in Section 2.4. The middle homology group in the above exact sequence is given by LCH 0,˚p Λ 0 , Λ 1 q, while the rightmost homology group well may be of the form LCH α,˚p Λ 0 , Λ 1 q for some α ‰ 0. See Remark 2.8 for an explanation.

Proof. The Cthulhu differential takes the form

d ε0,ε1 " ¨d``d`0 d `0 d 00 0 0 d ´0 d ´´' ,
since d 0´" 0 by the action computation in Proposition 4.4 which we have postponed to Section 4.1 below. In other words, the complex Cth ˚pΣ tΛ s u , R ˆΛ1 q is the mapping cone of the chain map `d`0 d `´˘: CF pΣ 0 , Σ 1 q ' C ´8pΣ 0 , Σ 1 q Ñ C `8pΣ 0 , Σ 1 q, whose domain, in turn, is the mapping cone of

d ´0 : CF pΣ 0 , Σ 1 q Ñ C ´8pΣ 0 , Σ 1 q.
By Theorem 2.3 (in Case (1)) or Theorem 2.9 (in Case (2)) the total complex is moreover acyclic. For Case (2) we must here use the fact that the trace of a Legendrian isotopy as constructed in Section 3 always is an invertible Lagrangian cobordism, as follows from Proposition 3.4.

The existence of the long exact sequence is now standard consequence of this double cone structure, together with the acyclicity of the total complex.

In certain particular situations the above long exact sequence degenerates into the statement that d `´is an isomorphism. (1) the Legendrian submanifolds Λ 0 , Λ 1 Ă pP ˆR, α std q satisfy the properties that no Reeb chord starts on Λ 0 and ends on Λ 1 , (2) in the hypertight case, the positive loop of Legendrians is contractible amongst Legendrian loops, respectively, then it moreover follows that d `´is an isomorphism or, equivalently, that d ´0 " δ " 0.

Proof. First we note that in Case (1) we can 'wrap' the inner part of the cobordism Σ 1 by an application of the negative Reeb flow, thereby removing all intersection points with Σ 0 . More precisely, we can use e.g. the Hamiltonian flow φ s ´βBz generated by the Hamiltonian vector field ´βptqB z for the compactly supported bump-function β : R Ñ R ě0 shown in Figure 4. See Section 2.5 for more details. We thus take Σ 1 0 :" Σ 0 and Σ 1 1 :" φ s ´βBz pΣ 1 q, and then note that Σ 1 0 X Σ 1 1 " H whenever s " 0 is taken to be sufficiently large.

In Case (2) it follows by assumption of the contractibility of the positive loop, together with Proposition 3.4, that Σ 0 is compactly supported Hamiltonian isotopic to the trivial cylinder Σ 1 0 :" R ˆΛ0 . In this case, we write Σ 1 1 :" Σ 1 . In either of the Cases (1) and ( 2), the result is now a consequence of the refined invariance results Corollary 2.5 (in the case of a contactisation) and Theorem 2.7 (in the hypertight case); the previously established Hamiltonian isotopies imply that the assumptions of these theorems indeed are satisfied. We proceed with the details.

First, the refined invariance results give us d ´0 " 0. To show δ " 0, we consider the quasi-isomorphism

`d`0 d `´˘: CF ˚pΣ 0 , Σ 1 q ' C ˚8pΣ 0 , Σ 1 q Ñ C ˚8pΣ 0 , Σ 1 q,
where the latter is a subcomplex of Cth ˚pΣ 0 , Σ 1 q, and where the former is the corresponding quotient complex. (The property of being a quasi-isomorphism is equivalent to the acyclicity of Cth ˚pΣ 0 , Σ 1 q.) The vanishing δ " 0 will be established by showing that the restriction `d`0 d `´˘| CF˚pΣ0,Σ1q : pCF ˚pΣ 0 , Σ 1 q, d 00 q Ñ pC ˚8pΣ 0 , Σ 1 q, d ``q vanishes in homology; c.f. the definition of δ in the formulation of Theorem 4.1.

For any cycle a P pCF ˚pΣ 0 , Σ 1 q, d 00 q, the vanishing d ´0 " 0 implies that `d`0 d `´˘ˆa 0 ˙" d ε0,ε1 paq P C ˚8pΣ 0 , Σ 1 q.

I.e. the quasi-isomorphism restricted to the intersection points coincides with the differential of the Cthulhu complex. The aforementioned invariance results Corollary 2.5 and Theorem 2.7, moreover, produce a homotopy equivalence φ from Cth ˚pΣ 0 , Σ 1 q to the complex Cth ˚pΣ 1 0 , Σ 1 1 q, where the latter has no generators corresponding to intersection points. We then use the chain map property together with the fact that φpaq P C ˚8pΣ 1 0 , Σ 1 1 q (c.f. the refined invariance results) in order to deduce that φpd ε0,ε1 paqq "

d ε 1 0 ,ε 1 1 ˝φpaq.
In other words, the image

φ ˆ`d `0 d `´˘ˆa 0 ˙˙P C ˚8pΣ 1 0 , Σ 1 1 q
vanishes in homology. Since, moreover, φ `: C ˚8pΣ 0 , Σ 1 q Ñ C ˚8pΣ 1 0 , Σ 1 1 q is a chain isomorphism (again, c.f. the refined invariance), we thus conclude that `d`0 d `´˘ˆa 0 ˙P C ˚8pΣ 0 , Σ 1 q also vanishes in homology, as sought.

Action computations.

The assumption that the isotopy is positive implies that Proposition 4.4. The generators of CF ˚pΣ tΛ s u , RˆΛ 1 q are all of negative action.

In particular, the term d 0´i n the Cthulhu differential vanishes.

Proof. The first statement follows from the computation in Proposition 3.2. Observe that the potential f RˆΛ1 " 0 necessarily vanishes by our conventions. Since the Reeb chord generators at the negative end are of positive action, the fact that d 0´" 0 is now an immediate consequence of Lemma 2.2.

The following simple action computation will also be used repeatedly.

Lemma 4.5. When computing the action in Cth ˚pΣ tΛ s u , R ˆΛ1 q, we may take T ´" 0 and T `" T (i.e. the constant from the construction in Section 3). With these conventions, a Reeb chord generator γ `P C ˚8pΣ tΛ s u , R ˆΛ1 q has action equal to apγ `q " e T ℓpγ `q ´f ΣtΛ s u , with a positive constant f ΣtΛ s u ą 0.

Proof. The positivity f ΣtΛ s u ą 0 follows from Proposition 3.2, while f RˆΛ1 " 0 is a consequence of our conventions.

4.2.

The proof of Theorem 1.11 (the hypertight case). We argue by contradiction. Let Λ 0 :" Λ be our given hypertight Legendrian submanifold and let Σ tΛ s u be the cylinder induced by a contractible positive loop containing Λ. We take Λ 1 to be obtained from Λ by, first, applying the time-p´ǫq Reeb flow and, second, perturbing the resulting Legendrian by the one-jet j 1 f Ă J 1 Λ inside a standard Legendrian neighbourhood (in which Λ is identified with the zero-section). Here f : Λ Ñ r´ǫ, 0s is assumed to be a Morse function.

Lemma 4.6. For ǫ ą 0 sufficiently small, the generators of the subcomplex and quotient complex C ˚8pΣ tΛ s u , R ˆΛ1 q Ă Cth 0 ˚pΣ tΛ s u , R ˆΛ1 q correspond bijectively to the critical points of the above Morse function f . In the case of the subcomplex C ˚8pΣ tΛ s u , R ˆΛ1 q, these generators may all be assumed to be of negative action.

Proof. There is a correspondence between critical points tpu Ă Λ of f and a subset of the Reeb chords from Λ 1 to Λ 0 . Moreover, the length of the Reeb chord corresponding to the critical point p P Λ is equal to ´f ppq `ǫ ď 2ǫ.

First, using the assumption that tΛ s u is contractible, and hence that Σ tΛ s u is Hamiltonian isotopic to a trivial cylinder by Proposition 3.4, it follows that all these Reeb chords also are generators of C ˚8. Second, using the assumption of hypertightness (i.e. that there are no contractible Reeb chords on Λ), it follows that these are all of the generators of C ˚8.

The negativity of the action can be concluded from the inequality apγ `q ď e T p2ǫq ´f ΣtΛ s u ,

given that ǫ ą 0 is chosen sufficiently small (see Lemma 4.5).

Lemma 4.7. ǫ ą 0 sufficiently small, the subcomplex and quotient complex C ˚8pΣ tΛ s u , R ˆΛ1 q Ă Cth 0 ˚pΣ tΛ s u , R ˆΛ1 q both compute the Morse homology of Λ.

Proof. The identification on the level of generators follows from Lemma 4.6. The differential can be identified with the Morse differential, following a standard computation that carries over from the computation made 'locally' in the jet-space of Λ (see e.g. [START_REF] Ekholm | A duality exact sequence for Legendrian contact homology[END_REF]). To that end, some additional care must be taken when choosing the almost complex structure in a neighbourhood U Ă M of Λ contactomorphic to a neighbourhood of the zero-section of J 1 Λ. (The monotonicity property for the symplectic area of pseudoholomorphic discs can then be used to ensure that the strips in the differential do not leave the neighbourhood R ˆU Ă R ˆM of R ˆΛ in the symplectisation; see e.g. the proof of [START_REF] Rizell | Lifting pseudo-holomorphic polygons to the symplectisation of P ˆR and applications[END_REF]Lemma 6.4].)

The proof of Theorem 1.11 can now be concluded by using the above lemmas.

Proof of Theorem 1.11. The rightmost term HpC ˚8, d ``q in the long exact sequence produced by Theorem 4.1 is non-zero by Lemma 4.7, while the map d `´in this long exact sequence vanishes by Lemma 4.6. This is in contradiction with the fact that d `´is an isomorphism, as established by Theorem 4.3.

4.3.

The proof of Theorem 1.13. We consider the setup of the proof of Theorem 1.11 given in Section 4.2 above, but where Σ tΛ s u is not necessarily compactly supported Hamiltonian isotopic to a trivial cylinder. The only difference with the case above is that the consequences of Lemmas 4.6 and 4.7 might not hold for the subcomplex C ˚8pΣ tΛ s u , R ˆΛ1 q. However, we note that it still is the case that C ˚8pΣ tΛ s u , R ˆΛ1 q is the Morse homology complex of Λ.

The reason for why Lemmas 4.6 and 4.7 can fail is that, depending on the homotopy properties of Σ tΛ s u , it is possible that the subcomplex

C ˚8pΣ tΛ s u , R ˆΛ1 q Ă Cth ˚pΣ tΛ s u , R ˆΛ1 q
is in fact generated by chords corresponding to the non-contractible Reeb chords on Λ in some fixed homotopy class α ‰ 0 (see part (2) of Remark 4.2).

Notwithstanding, when α ‰ 0 we can use our assumptions on the Conley-Zehnder indices in order to show that d `´is not injective in this case either (thus leading to a contradiction). Namely, the map d `´restricted to the two-dimensional subspace of HpC ˚8pΣ tΛ s u , R ˆΛ1 q, d ´´q that is generated by the maximum and the minimum of the Morse function must have a non-trivial kernel. Indeed, the maximum and the minimum are two non-zero classes of degrees that differ by precisely dim Λ " n; however, by the assumptions, the target homology group does not contain two classes with such an index difference unless α " 0. This non-injectivity is again in contradiction with d ´0 " 0 and the exactness of the sequence in Theorem 4.1.

4.4.

Spectral invariants for pairs of Legendrians. Spectral invariants where introduced by Viterbo [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF] and later developed by Oh [START_REF] Oh | Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle[END_REF]. They are now a wellestablished technique in symplectic topology. They have also been defined for Legendrian submanifolds in certain contact manifolds by Zapolsky in [START_REF] Zapolsky | Geometry of contactomorphism groups, contact rigidity, and contact dynamics in jet spaces[END_REF], and Sabloff-Traynor considered some of their properties under Lagrangian cobordisms in their work [START_REF] Sabloff | The Minimal Length of a Lagrangian Cobordism between Legendrians[END_REF]. Here we study further properties that are satisfied under Lagrangian cobordisms and positive isotopies which will be used when proving Theorem 1.8.

For any pair of Legendrian submanifolds Λ i Ă pM, αq, i " 0, 1, together with a pair ε i of augmentations, we consider the canonical inclusion ι ℓ : LCC ε0,ε1 pΛ 0 , Λ 1 q rℓ,`8s Ă LCC ε0,ε1 pΛ 0 , Λ 1 q of the subcomplex spanned by the Reeb chords being of length at least ℓ ě 0 and use rι ℓ s to denote the induced map on the homology level.

Definition 4.8. The spectral invariant of the pair pε 0 , ε 1 q of augmentations is defined to be c ε0,ε1 pΛ 0 , Λ 1 q :" sup tℓ P R; cokerrι ℓ s " 0u P p0, `8s, which is a finite positive real number if and only if LCH ε0,ε1 pΛ 0 , Λ 1 q ‰ 0.

Note that the definition makes sense since all Reeb chords have positive length and that, if rι ℓ s is not surjective for some ℓ ą 0 (i.e. cokerrι ℓ s ‰ 0), then it follows that rι ℓ 1 s is not surjective for ℓ 1 ě ℓ either. By construction we also obtain a non-zero homology class whenever the spectral capacity is finite, namely: Lemma 4.9. If all non-zero homology classes in LCH ε0,ε1 pΛ 0 , Λ 1 q can be represented by a linear combination of generators of length at least ℓ ą 0, then c ε0,ε1 pΛ 0 , Λ 1 q ě ℓ.

Conversely, there exists a non-zero class α ε0,ε1 pΛ 0 , Λ 1 q P imrι cε 0 ,ε 1 pΛ0,Λ1q s P LCH ε0,ε1 pΛ 0 , Λ 1 q which is not in the image of rι ℓ s for any ℓ ą c ε0,ε1 pΛ 0 , Λ 1 q.

The following propositions give the crucial behaviour for our spectral invariant under the relation of Lagrangian cobordisms.

Let Σ 0 " Σ tΛ s u be a concordance from Λ 0 to Λ 0 induced by a Legendrian isotopy as constructed in Section 3, while Σ 1 :" R ˆΛ1 is a trivial Lagrangian cylinder over a Legendrian Λ 1 " Λ 1 .

Proposition 4.10. For any choice of augmentations ε i of Λ ì , i " 0, 1, there exists augmentations ε í of Λ í for which

c ε 0 ,ε 1 pΛ 0 , Λ 1 q " c ε0,ε1 pΛ 0 , Λ 1 q is satisfied with ε ì :" ε í ˝ΦΣi .
Proof of Proposition 4.10. We prove this by using Part (1) of the invariance result Theorem 2.4 combined with a neck-stretching argument. The augmentation ε 0 will be taken to be equal to ε 0 ˝ΦΣ tΛ 1´s u .

To show the statement we consider the concatenation r Σ :" Σ tΛ 1´s u d Σ tΛ s u Ă pR ˆM, dpe t αqq of Lagrangian concordances, which is compactly supported Hamiltonian isotopic to the trivial cylinder R ˆΛ0 by Proposition 3.4. After a neck-stretching along the hypersurface tt 0 u ˆM along which the two cobordisms in the concatenation are joined, together with a gluing argument (see Section 2.6), we can establish the last equality in

ε 0 :" ε 0 ˝ΦΣ tΛ s u " ε 0 ˝ΦΣ tΛ 1´s u ˝ΦΣ tΛ s u " ε 0 ˝Φr Σ .
See e.g. [START_REF] Chantraine | Floer theory for Lagrangian cobordisms[END_REF]Lemma 7.4] for a similar result.

The claim now follows from the existence of the isomorphism

φ `: C ˚8pR ˆΛ0 , R ˆΛ1 q Ñ C ˚8p r Σ, R ˆΛ1 q,
established in Part (1) of Theorem 2.4, where

C ˚8pR ˆΛ0 , R ˆΛ1 q " LCH ε0,ε1 pΛ 0 , Λ 1 q, C ˚8p r Σ, R ˆΛ1 q " LCH ε0 ,ε 1 pΛ 0 , Λ 1 q.
More precisely, the latter theorem has here been applied to the complex pCth ˚pR Λ0 , R ˆΛ1 q, d ε0,ε1 q while using the existence of the previously established Hamiltonian isotopy from R ˆΛ0 to r Σ. Here it is crucial that φ `, and hence φ ´1 `as well, are upper triangular with respect to the action filtration, from which one readily deduces that c ε 0 ,ε 1 pΛ 0 , Λ 1 q " c ε0,ε1 pΛ 0 , Λ 1 q holds as sought.

Theorem 4.11. Further assume that Σ 0 XΣ 1 " H and that the Legendrian isotopy tΛ s u is positive. For any pair of augmentations ε í of Λ í it is then the case that

c ε 0 ,ε 1 pΛ 0 , Λ 1 q ą c ε 0 ,ε 1 pΛ 0 , Λ 1 q
for the pull-back augmentations ε ì :" ε í ˝ΦΣi . Moreover, c ε 0 ,ε 1 pΛ 0 , Λ 1 q " `8 holds if and only if c ε 0 ,ε 1 pΛ 0 , Λ 1 q " `8.

The following subsection will be devoted to the proof of this theorem. 4.5. Proof of Theorem 4.11. There are two possible strategies for proving this theorem. One is by studying the invariance properties of the Legendrian contact homology complex under a Legendrian isotopy, and one involves studying the Floer homology of the Lagrangian cobordism corresponding to the trace of the isotopy as constructed in Section 3. Here the latter approach is taken.

For technical reasons we will in the following need to make use of the so-called cylindrical lift J P of a tame almost complex structure J P on pP, dθq; these are cylindrical almost complex structures for which the canonical projection Π : RˆP R Ñ P is p r J P , J P q-holomorphic. In particular, such an almost complex structure r J P is invariant under translations of both the t and z coordinates.

First we perform some general computations for a pair Λ i , i " 0, 1, of Legendrians together with augmentations ε i . By Λ s 1 we denote the image of Λ 1 under the time-s Reeb flow, i.e. translation of the z coordinate by s P R. Lemma 4.12. For a suitable cylindrical lift of an almost complex structure on P and generic ℓ ě 0, the canonical isomorphism LCC ε0,ε1 pΛ 0 , Λ 1 q rℓ,`8s " LCC ε0,ε1 pΛ 0 , Λ ℓ 1 q is an isomorphism of complexes.

Proof. The fact that the differentials agree follows from [21, Theorem 2.1]. Namely, the differentials of both complexes can be computed in terms of J P -holomorphic discs inside P that have boundary on the Lagrangian projection ΠppR ˆΛ0 q Y pR ˆΛ1 qq " ΠppR ˆΛ0 q Y pR ˆΛℓ 1 qq Ă pP, dθq, which is an exact Lagrangian immersion. In particular, the translation in the zcoordinate does not play a role for the counts of the relevant pseudoholomorphic discs. Now consider the exact Lagrangian cobordism φ 1 β `Bz pR ˆΛ1 q from pΛ 1 q ℓ to Λ 1 induced by wrapping the trivial cylinder, where β `ptq is the function described in Section 2.5.

Lemma 4.13. Consider the complex Cth ˚pRˆΛ 0 , φ 1 β `Bz pRˆΛ 1 qq with differential d p`q ε0,ε1 . The cylindrical lift r J P may be assumed to be regular for the strips in the differential of this complex, for which we compute

C ˚8pR ˆΛ0 , φ 1 β `Bz pR ˆΛ1 qq " LCC ε0 ,ε 1 pΛ 0 , Λ 1 q, C ˚8pR ˆΛ0 , φ 1 β `Bz pR ˆΛ1 qq " LCC ε0,ε1 pΛ 0 , Λ 1 q,
and there is an equality ε 1 ˝Φφ 1 β `Bz pRˆΛ 1 q " ε 1 of augmentations. Furthermore, the component d p`q `´of d p`q ε0,ε 1 is equal to the canonical inclusion ι ℓ , i.e. d p`q `´" ι ℓ : LCC ε0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q Ñ LCC ε0,ε1 pΛ 0 , Λ 1 q. (See Lemma 4.12 for the identifications used here.)

Proof. The computations are analogous to those carried out in [START_REF] Chantraine | Floer homology and Lagrangian concordance[END_REF]Lemma 2.10]. We here give the details only for how to establish the identification

ε 1 ˝Φφ 1 β `Bz pRˆΛ 1 q " ε 1 ,
where the left-hand side is the pull-back of the augmentation ε 1 under the DGA morphism induced by the cobordism φ 1 β`Bz pR ˆΛ1 q. The remaining claims follow by similar arguments.

It suffices to show that the DGA morphism induced by the cobordism φ 1 β `Bz pRΛ 1 q is the canonical identification of complexes. This is indeed the case, given the assumption that the DGA morphism is defined using an almost complex structure that is a cylindrical lift. Namely, the image under the canonical projection Π : R ˆP ˆR Ñ P of the discs in the definition of the DGA morphism are J P -holomorphic discs having boundary on ΠpR ˆΛ1 q. By a simple index computation (see e.g. [21, Lemma 8.3]) these discs are, moreover, of negative expected dimension and must hence be constant (under the assumption that J P is regular).

Finally, the discs in the definition of the DGA morphism can even be seen to bijectively correspond to the double points of the Lagrangian projection ΠppR Λ0 q Y pR ˆΛ1 qq Ă pP, dθq; namely, there is an explicit and uniquely defined rigid r J P -holomorphic disc in R ˆP ˆR contributing to the DGA morphism living above each such double point. The regularity of the latter explicitly defined discs was shown in [START_REF] Rizell | Lifting pseudo-holomorphic polygons to the symplectisation of P ˆR and applications[END_REF]Lemma 8.3].

Similar computations can be made concerning the exact Lagrangian cobordism φ 1 β ´Bz pR ˆΛ1 q from Λ 1 to pΛ 1 q ℓ (again, see Section 2.5). Namely, we have: Lemma 4.14. Consider the complex Cth ˚pRˆΛ 0 , φ 1 β ´Bz pRˆΛ 1 qq with differential d p´q ε 0 ,ε 1 . The cylindrical lift r J P may be assumed to be regular for the strips in the differential of this complex, for which we compute

C ˚8pR ˆΛ0 , φ 1 β ´Bz pR ˆΛ1 qq " LCC ε0 ,ε 1 pΛ 0 , Λ 1 q, C ˚8pR ˆΛ0 , φ 1
β ´Bz pR ˆΛ1 qq " LCC ε0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q, and there is an equality ε 1 ˝Φφ 1 β ´Bz pRˆΛ1q " ε 1 of augmentations. (See Lemma 4.12 for the identifications made here.)

Consider the non-zero element α ε 0 ,ε 1 pΛ 0 , Λ 1 q P LCH ε0 ,ε 1 pΛ 0 , Λ 1 q as in Lemma 4.9 for ε ì " ε í ˝ΦΣi . Here Σ 0 " Σ tΛ s u and Σ 1 " φ ℓ βBz pR ˆΛ1 q, where the function βptq is as described in Section 2.5. Recall that each of its representatives is a linear combination of Reeb chord generators of which at least one is of length equal to c ε 0 ,ε 1 pΛ 0 , Λ 1 q ą 0. Lemma 4.15. Assume that tΛ s u is a positive isotopy from Λ 0 to Λ 0 , that Σ tΛ s u X pR ˆΛ1 q " H, and that 0 ă ℓ ă c ε 0 ,ε 1 pΛ 0 , Λ 1 q.

It follows that any representative of α ε 0 ,ε

1 pΛ 0 , Λ 1 q ‰ 0 P LCH ε0 ,ε 1 pΛ 0 , Λ 1 q is in the image of the component d 1 `´of the differential d 1 ε 0 ,ε 1 of the complex CthpΣ tΛ s u , φ ℓ βBz pR ˆΛ1 qq. Proof. Take a P C ˚8pΣ tΛ s u , R ˆΛ1 q satisfying d 2 ε 0 ,ε 1 paq " d 2
`´paq as well as (7) rd 2 `´paqs " rpφ `q´1 spα ε 0 ,ε 1 pΛ 0 , Λ 1 qq. This is possible since the complex CthpΣ tΛ s u , R ˆΛ1 q is acyclic by the invariance result Theorem 2.3. The non-zero element ras P LCH ε0 ,ε 1 pΛ 0 , Λ 1 q can be represented by Reeb chords all being of length at least c ε 0 ,ε 1 pΛ 0 , Λ 1 q by Lemma 4.9, and we replace a by such a representative.

An intersection point generator of CF ˚pΣ tΛ s u , φ r βBz pR ˆΛ1 qq can be computed to be of action equal to at most ℓ ą 0 whenever 0 ă r ď ℓ. Part (2) of Theorem 2.4 with a 0 " ℓ thus shows that the chain homotopy

φ : pCthpΣ tΛ s u , R ˆΛ1 q, d 2 ε 0 ,ε 1 q Ñ pCthpΣ tΛ s u , φ ℓ βBz pR ˆΛ1 qq, d 1 ε 0 ,ε 1 q satisfies φpaq " pA ´, A `q P C ˚8pΣ tΛ s u , φ ℓ βBz pR ˆΛ1 qq ' C ˚8pΣ tΛ s u , φ ℓ βBz pR ˆΛ1 qq. In addition, φ `˝d 2 `´paq " φ ˝d2 ε 0 ,ε 1 paq " d 1 ε 0 ,ε 1 ˝φpaq " pd 1 `´`d 1 ´´qA ´`d 1 ``A `,
where the last equality follows from the above action considerations of φpaq. From this together with Equality (7) we then conclude that rd 1 `´pA ´qs " α ε 0 ,ε 1 pΛ 0 , Λ 1 q holds as sought. Lemma 4.16. Under the assumptions of Lemma 4.15, we consider the element α ε 0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q ‰ 0 P LCH ε0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q induced by the identification in Lemma 4.12. It follows that any representative of α ε 0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q satisfies the properties that

(1) it is a linear combination of the basis of Reeb chords of which at least one chord of length c ε 0 ,ε 1 pΛ 0 , Λ 1 q ´ℓ ą 0 appears with a non-zero coefficient, and (2) it is contained in the image of the component d `´of the differential d ε 0 ,ε 1 of the complex CthpΣ tΛ s u , R ˆpΛ 1 q ℓ q.

Proof. (1): This is a straight-forward consequence of Lemma 4.9.

(2): This follows from analysing the possible breakings when stretching the neck along the disconnected hypersurface t0, T u ˆP ˆR Ă pR ˆP ˆR, dpe t α std qq of contact type (see Section 2.5).

Namely, let us consider a generator A ´P C ˚8pΣ tΛ s u , φ ℓ βBz pRˆΛ 1 qq which gives a non-zero contribution xd 1 `´pA ´q, ι ℓ pα 0 qy ‰ 0, where ι ℓ pα 0 q is a generator appearing with a non-zero coefficient in a representative α ε 0 ,ε 1 pΛ 0 , pΛ 1 qq; this is possible by Lemma 4.15 combined with Lemma 4.9. The limit of a pseudoholomorphic disc of this type when stretching the neck is shown in Figure 5. The pseudoholomorphic curve in the middle level corresponds to a non-zero contribution to xd 1 `´pbq, α 0 y ‰ 0, and the claim now follows.

R ˆΛ0 φ 1 β `Bz pR ˆΛ1 q d p`q `ί ℓ pα 0 q α 0 d `Σ tΛ s u R ˆΛℓ 1 b d p´q `Ŕ ˆΛ0 φ 1 β ´Bz pR ˆΛ1 q A Figure 5.
Possible limits of pseudoholomorphic discs contributing to xd 1 ε 0 ,ε 1 pA ´q, ι ℓ pα 0 qy after stretching the neck along t0, T u ˆP R. The middle level is a pseudoholomorphic disc contributing to xd ε 0 ,ε 1 pbq, α 0 y.

The proof of Theorem 4.11 can now be finished without much effort by considering the complex CthpΣ tΛ s u , R ˆpΛ 1 q ℓ qq with differential d ε 0 ,ε 1 . The computation in the proof of Lemma 4.5 shows that the action of a Reeb chord generator γ ˘from Λ 1 to pΛ 0 q ℓ is given by apγ ´q " ℓpγ ´q, apγ `q " e T ℓpγ `q ´f ΣtΛ s u , for a constant f ΣtΛ s u ą 0. By Part (1) of Lemma 4.16 we see that any representative of α ε 0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q ‰ 0 P LCH ε0 ,ε 1 pΛ 0 , Λ 1 q must contain a generator of action equal to e T pc ε 0 ,ε 1 pΛ 0 , Λ 1 q ´ℓq ´f ΣtΛ s u .

We now argue by contradiction, assuming that

c ε 0 ,ε 1 pΛ 0 , Λ 1 q ą c ε 0 ,ε 1 pΛ 0 , Λ 1 q
holds. Hence, we can choose a number ℓ for which c ε 0 ,ε 1 pΛ 0 , Λ 1 q ´ℓ ă 0 is negative, while the assumption 0 ă ℓ ă c ε 0 ,ε 1 pΛ 0 , Λ 1 q of Lemmas 4.15 and 4.16 is still satisfied. In other words, every representative of α ε 0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q contains a non-zero multiple of a generator of negative action. The fact that the differential increases action (see Lemma 2.2) finally implies that

α ε 0 ,ε 1 pΛ 0 , pΛ 1 q ℓ q R im d `´,
which clearly contradicts Lemma 4.16.

4.6. The proof of Theorem 1.8 (the case of a contactisation). Write Λ 0 :" Λ and Λ 1 :" Λ 1 . Let Σ tΛ s u be the cylinder induced by a positive loop of Legendrians inside M zΛ 1 starting at Λ 0 " Λ 0 . By the construction in Section 3, this cylinder may be assumed to be disjoint from the cylinder Σ 1 :" R ˆΛ1 . We argue by contradiction and assume that there are augmentations ε i , i " 0, 1, of the Chekanov-Eliashberg algebra of Λ i for which LCC ε0,ε1 pΛ 0 , Λ 1 q is not acyclic. Remark 4.17. Note that the non-existence of a (not necessarily contractible) positive loop of Legendrians containing Λ under the stronger assumption that the Legendrian submanifolds have separated z-coordinates is an immediate consequence of this. Namely, in this case we may always assume that Σ tΛ s u and RˆΛ 1 are disjoint after a translation of the latter component sufficiently far in the negative z-direction.

First observe that the assumption of having a non-vanishing Legendrian contact homology can be translated into the fact that 0 ă c ε0,ε1 pΛ 0 , Λ 1 q ă `8 is a finite positive number. Since the length of the Reeb chords from Λ 1 to Λ 0 form a discrete subset of p0, `8q by the genericity assumptions, after possibly replacing the above augmentations we may even assume that the pair of augmentations is minimal in the sense that [START_REF] Borman | Existence and classification of overtwisted contact structures in all dimensions[END_REF] 0 ă c ε0,ε1 pΛ 0 , Λ 1 q ď c ε 1 0 ,ε 1 1 pΛ 0 , Λ 1 q is satisfied for any other pair pε 1 0 , ε 1 1 q of augmentations. By Proposition 4.10 we can find augmentations ε ì for which c ε 0 ,ε 1 pΛ 0 , Λ 1 q " c ε0,ε1 pΛ 0 , Λ 1 q where ε ì " ε í ˝ΦΣi . This, however, is in contradiction with the Inequality [START_REF] Borman | Existence and classification of overtwisted contact structures in all dimensions[END_REF] together with the Inequality

c ε 0 ,ε 1 pΛ 0 , Λ 1 q ą c ε 0 ,ε 1 pΛ 0 , Λ 1 q
established by Theorem 4.11 (here the assumption Σ 0 X Σ 1 " H must be used).

Wrapped Floer cohomology and non-existence of contractible positive loops

Here we prove Theorem 1.15, which gives an obstruction to the existence of a contractible positive loop of a Legendrian in terms of the wrapped Floer cohomology of an exact Lagrangian filling. This theory was originally defined in [START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF] by Abbondandolo-Schwarz and later developed by Abouzaid-Seidel [START_REF] Abouzaid | An open string analogue of Viterbo functoriality[END_REF] and Ritter [START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF]. 5.1. Setup of wrapped Floer cohomology. Here we give a very brief outline of the definition of wrapped Floer cohomology. We refer to [START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF] as well as [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF] for more details.

Consider a Legendrian Λ Ă pY, ξ " ker αq living in the contact boundary of a compact Liouville domain pX, dθq, and assume that Λ admits an exact Lagrangian filling L Ă pX, dθq inside the completion of the latter. More precisely, we will assume that pXzX, dθq " pp´1, `8q ˆY, dpe t αqq, L X pXzXq " pp´1, `8q ˆΛ, are convex cylindrical ends, while L :" LXX is compact with Legendrian boundary BL " Λ Ă pY " BX, αq. Now, for each generic λ ą 0, consider the autonomous Hamiltonian H λ : X Ñ R which vanishes in the compact part X, while it is of the form λρptqe t ´e2T λ in the cylindrical end r´1, `8q ˆY . Here the function ρ : R Ñ R ě0 satisfies ρptq " 1 for t ě 2T `δ, ρptq " 0 for t ď 2T ´δ, and d 2 dt 2 pρptqe t q ě 0 for all t P R, where 0 ă δ ă 1 is small. Such a function along with its induced Hamiltonian vector field is schematically depicted in Figure 6.

Given two generic Lagrangian fillings L i , i " 0, 1, which are cylindrical inside the subset rT, `8q ˆY , the associated Floer cohomology complex pCF ˚pL 0 , L 1 ; H λ q, Bq is now defined as follows.

' The generators: These are the Hamiltonian time-one chords xptq of H λ from xp0q P L 0 to xp1q P L 1 . Equivalently, such chords are intersection points φ 1 H λ pL 0 q X L 1 , which moreover can be seen to be of the following two kinds:

-Intersection points inside t2T ´δ ď t ď 2T `δu: these are in bijective correspondence with the Reeb chords from Λ 0 to Λ 1 of length at most λ, and -Intersection point inside tt ă 2T ´δu: these are simply the intersection points L 0 X L 1 . ' The differential: For two generators x ˘, the coefficient xBpx `q, x ´y of the differential B counts the number of rigid finite-energy solutions of the Bequation with Hamiltonian perturbation term $ ' ' ' & ' ' ' % u : R ˆr0, 1s Ñ X, B s ups, tq `Jt pB t ups, tq ´XH λ pups, tqqq " 0, ups, iq P L i , i " 0, 1, lim sÑ˘8 ups, tq " x ˘ptq,

i.e. so called Floer strips with boundary on L 0 Y L 1 . The chords x `and x áre also called the input and output, respectively, for obvious reasons. Recall that there are primitives f i : L i Ñ R of the pull-back of the Liouville form θ to L i , i " 0, 1, by the exactness assumption. For a choice of such primitives, the action of a Hamiltonian chord xptq " φ t H λ from xp0q P L 0 to xp1q P L 1 is defined to be [START_REF] Bourgeois | Effect of Legendrian surgery[END_REF] Apxq :" f 0 pxp0qq ´f1 pxp1qq `ż 1 0 px ˚θ ´Hλ pxptqqdtq.

It follows that the differential decreases the action in the sense that xBpx `q, x ´y ‰ 0 implies that Apx ´q ă Apx `q. Furthermore, whenever λ " 0 is sufficiently large and δ ą 0 is sufficiently small (both depending on L i , i " 0, 1), Part (1.b) of Lemma 5.2 below shows that there is a subcomplex pCF 0 pL 0 , L 1 ; H λ q, B 0 q Ă pCF ˚pL 0 , L 1 ; H λ q, Bq consisting of the generators L 0 XL 1 Ă Xzpr2T ´δ, `8qˆY q. Moreover, the quotient complex pCF ˚8pL 0 , L 1 ; H λ q, B 8 q :" pCF ˚pL 0 , L 1 ; H λ q, Bq{CF 0 pL 0 , L 1 ; H λ q has a canonical generating set which is in a canonical bijective correspondence with the set of Reeb chords from Λ 0 to Λ 1 of length less than λ.

The wrapped Floer cohomology is finally defined as the direct limit HW ˚pL 0 , L 1 q :" lim λÑ`8

HF ˚pL 0 , L 1 ; H λ q for a directed system defined by suitable continuation maps. Note that HW ˚pL 0 , L 1 q, L 0 " L 1 is a unital algebra; we refer to [START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF] for the details.

Remark 5.1. In the cases when it is possible to define the Floer complex Cth ˚pL 1 , L 0 q of Section 2.3 (which with the current technology imposes some constraints), there is an isomorphism HW ˚pL 0 , L 1 q » HpCth ˚pL 1 , L 0 qq (note the order!) where the right-hand side is the homology of the associated dual complex.

hplog τ q " hptq d dτ H λ plog τ q " e ´t d dt H λ ptq τ " e t τ " e t λ e 2T e 2T
Figure 6. Above: The autonomous Hamiltonian H λ ptq " H λ plog τ q that is used for wrapping the cylindrical end of the Lagrangian filling L 0 . Below: the corresponding Hamiltonian vector field is given by e ´t d dt H λ ptqR α , which is parallel to the Reeb vector field. 5.2. Proof of Theorem 1.15. In the following we will make heavy use of the fact that, if on an exact Lagrangian i : L Ñ X the Liouville form θ satisfies i ˚θ " df and if φ 1

G is the time one flow of a Hamiltonian G, then pφ 1 G ˝iq ˚θ " dpf `Kq for the function [START_REF] Bourgeois | Compactness results in symplectic field theory[END_REF] Kpqq "

ż 1 0 pθpX G q φ t G pqq ´Hpφ t G pqqqqdt
(compare with the definition of action in Equation ( 9)).

A central technique that also will be used over and over is to use neck stretching in order prevent Floer strips from crossing a given barrier (in the form of a dividing contact hypersurface). There are several different conditions that will be used for this purpose, all which are more or less standard; see e.g. [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF]Section 2.3] as well as [START_REF] Dimitroglou Rizell | An energy-capacity inequality for Legendrian submanifolds[END_REF]Section 6.1]. For the sake of completeness we here recollect the needed results.

For now we assume that the exact Lagrangian cobordisms L i Ă pX, ωq, i " 0, 1, both are cylindrical in a neighbourhood of the slice tt 0 u ˆY in the cylindrical end; this is a dividing hypersurface of contact type intersecting L i in a Legendrian submanifold. We moreover assume that G s : X Ñ R is a time-dependent Hamiltonian that vanishes near this slice. The subsets that we consider are X L , X R Ă X in the decomposition X " X L Y X R into connected closed subsets such that X L X X R " tt 0 u ˆY , i.e. X R " rt 0 , `8q ˆY while X L " XzX R . When here speaking about Floer strips or continuation strips we mean either a Floer strip defined for the Hamiltonian G, or a continuation strip involving the vanishing Hamiltonian and G. The latter continuation strips are those appearing in the definition of the continuation maps that turn on or off the Hamiltonian perturbation-term G, as well as for the chain homotopies between their compositions. Also, recall the definition }G s } osc :"

ż 1 0 pmax X G s ´min X G s qdt ě 0
of the oscillatory norm. Lemma 5.2. Under the above assumptions, and while computing the action for the choices of primitives f i : L i Ñ R that vanish in the slice L i X tt " t 0 u, the following is satisfied:

(1) A Floer strip or continuation strip with either (a) input being a generator of negative action contained in X R , or (b) output being a generator of positive action contained in X R , has both of its asymptotics contained inside X R ; (2) (a) A Floer strip whose input and output chords are both contained in X L is contained entirely inside X L , (b) The same is true for a continuation strip, under the additional assumptions that G s vanishes inside X L , while its input and output chords satisfies Apx out q ě Apx in q ě }G s } osc ; and (3) Under the additional assumption that G s vanishes inside X R , it follows that a continuation strip having both input and output contained inside X R satisfies the property that (a) the action of the output is not greater than the action of the input, and (b) if its symplectic area moreover vanishes (i.e. if the actions of the input and output agree), then the strip is contained entirely inside X R (and is thus constant).

Proof. It was shown in [START_REF] Dimitroglou Rizell | An energy-capacity inequality for Legendrian submanifolds[END_REF]Lemma 6.2] that stretching the neck along tt 0 u ˆY can be interpreted as having the following effect on the action of the generators:

' the action of a generator in X R is rescaled by an arbitrarily large positive constant e λ , λ " 0, while ' the action of a generator in X L is kept fixed. Also, recall that the following basic facts about the symplectic area of Floer strip and continuation strip (see e.g. [START_REF] Dimitroglou Rizell | An energy-capacity inequality for Legendrian submanifolds[END_REF]Section 3.2]). First, the symplectic area of either a Floer strip or a continuation strip is given by the action difference Apx in q Ápx out q. Second, (i) in the case of a Floer strip this quantity is non-negative and vanishing if and only if the strip is constant, while (ii) in the case of a continuation strip the symplectic area is bounded from below by the oscillatory norm ´}G s } osc ď 0 on any open domain U Ă R ˆr0, 1s of the strip satisfying the property that G vanishes on some neighbourhood of U zU (we can always take U " R ˆr0, 1s).

( (2.b): This is similar to the no escape lemma, but where we first must use the SFT compactness theorem [START_REF] Bourgeois | Compactness results in symplectic field theory[END_REF] applied to the neck-stretching sequence in order to extract a piece of the strip inside X L which is of symplectic area greater than }G s } osc . The existence of such a strip implies the existence of a piece inside X R with symplectic area smaller than ´}G s } osc , thus contradicting Property (ii) above. (N.B. here we do not rescale the symplectic form on X R whilst stretching the neck: we only deform the conformal structure.) (3.b): This follows from the monotonicity property of the symplectic area of pseudoholomorphic curves with boundary [49, Propositions 4.3.1 and 4.7.2], together with the effect on the action by a neck stretching. Namely, the total symplectic area still vanishes after the neck has been stretched, while the symplectic area concentrated near tt 0 u ˆY becomes arbitrarily large by the monotonicity property. In other words, the piece of the strip contained inside X L necessarily has arbitrarily negative symplectic area, which is in contradiction with the above bound.

Step 1: Write L 1 :" L. Consider a small push-off L 0 of L obtained by, first, applying the small negative Reeb flow φ ǫ ´et : pr´1, `8q ˆY, dpe t αqq Ñ pr´1, `8q ˆY, dpe t αqq, ǫ ą 0, in the cylindrical end and, second, performing a generic Hamiltonian perturbation in the compact part. Consider the Legendrian boundaries Λ i " BL i Ă Y, i " 0, 1, of the fillings. After a small Hamiltonian isotopy of the cylindrical end induced by a contact isotopy, we may assume that Λ 1 is identified with a section ´j1 f Ă pJ 1 Λ 1 , dz ´pdqq inside a standard Legendrian neighbourhood in which Λ 0 is identified with the zero-section. Here the function f : Λ 1 Ñ p0, ǫq is taken to be a C 2 -small positive Morse function. We write γ M for the Reeb chord from Λ 0 to Λ 1 corresponding to the maximum of f , which from now on is assumed to be unique. Note that γ M is the shortest Reeb chord on Λ 0 Y Λ 1 .

Consequently, L 0 is a section dF Ă pT ˚L1 , dppdqqq in a standard Weinstein neighbourhood of L 1 Ă pX, dθq which satisfies B t F ą 0 outside of a compact subset. We further assume that F : L 1 Ñ R is a Morse function with no local maximum.

Note that the two potential functions f 0 and f 1 on the two Lagrangian fillings L 0 and L 1 can be taken to be C 2 -close at this step (under the obvious identifications).

q γ M p γ M γ M τ " e t L 1 " L L 0
e 1 e 2 e 3 e 2T Figure 7. A schematic picture of the perturbation of L 0 after wrapping by φ 1 H λ together with L 1 . In this picture the Floer strips contributing to both identities Bpγ M q " q γ M " Bpp γ M q are both visible here. Lemma 5.3. For each λ ą 1 the chain γ M given as the Reeb chord from Λ 0 to Λ 1 corresponding to the maximum of f is a cycle whose limit as λ Ñ `8 is the unit in HW ˚pL, Lq.

Proof. Partially wrap the end of L so that the chords corresponding to critical points of f becomes intersection points contributing to CF 0 pL, L, H λ q, the proposition follows now from the description of the unit in [44, Section 6.3 and 6.13].

Step 2: Inside the cylindrical part XzX there is a Weinstein neighbourhood identifying L 1 with the zero-section in pT ˚L1 , dppdqqq such that, for a careful construction of this a Weinstein neighbourhood, L 0 is given by dpe t f q, where the coordinate t : L 1 Ñ R is induced by the coordinate on the R-factor of the symplectisation R ˆY . Now we perform the following modification inside the subset r0, 4s ˆY . Consider a Morse function g : r´1, `8q Ñ R satisfying gptq " t for t ě 4 as well as for t ď 0, while g 1 p1q " g 1 p3q " 0, g 2 p1q ă 0, g 2 p3q ą 0, are its unique critical points. I.e. gptq has a non-degenerate local maximum at t " 1 and a non-degenerate local minimum at t " 3. We moreover require that g 1 ptq " ´C ă 0 is constant in the subset t2 ´2δ ď t ď 2 `2δu.

We replace L 0 by the graph dpe gptq f q and again denote the resulting Lagrangian cobordism by L 0 . There are now additional intersection points of L 0 X L 1 contained in the slices tt " 1u and tt " 3u. In particular, we have the unique local maximum p γ M of e gptq f contained in the slice tt " 1u and the unique critical point q γ M of index dim L ´1 contained in the slice tt " 3u. If gptq ´t is chosen to be sufficiently C 0 -small, it follows that the new potential function f 0 is C 2 -close to the original one. Also, see Figure 7.

Lemma 5.4. For each λ ą 1 the chain p γ M `γM is a cycle whose limit as λ Ñ `8 is the unit in HW ˚pL, Lq. Moreover, Bpγ M q " q γ M " Bpp γ M q is satisfied. (Also, see Figure 7.) Proof. The first statement is the same as Lemma 5.3 as now the unit in HF 0 pL 0 , L 1 0 q where L 1 0 is the partially wrapped Lagrangian is given by the sum of intersection points coming from p γ M and γ M . The second statement follows from the explicit description of holomorphic curves in the Weinstein neighbourhood similarly to Floer's computation in [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF] of the differential in the case of a small Hamiltonian pushoff.

hplog τ q " hptq d dτ hplog τ q " e ´t d dt hptq

τ " e t

τ " e t e 2´δ e 2 e 2`δ e 2´δ e 2 e 2`δ 1 Figure 8. Above: The autonomous Hamiltonian hptq " hplog τ q that is used to perform the 'finger move' in Step 3. Below: the corresponding Hamiltonian vector field is given by e ´t d dt hptqR α , which is parallel to the Reeb vector field.

Step 3: We use a C 0 -small Hamiltonian to introduce a very long 'finger move' at t " 2. More precisely, we apply a Hamiltonian isotopy of the form φ κ h for κ " 0, where the Hamiltonian hptq satisfies the property that e ´t d dt hptq ě 0 is a bumpfunction supported inside p2 ´δ, 2 `δq Ă r´1, `8q and which is constantly equal to e ´t d dt hptq " 1 near t " 2. Moreover, we assume that d dt pe ´t d dt hptqq ď 0 and d dt pe ´t d dt hptqq ě 0 holds on t ě 2 and t ď 2, respectively. Such a bump function is shown in Figure 8. We denote the resulting filling by L κ 0 . Note that it follows from Equation (10) that for κ " 0, the newly created intersection points all correspond to Reeb chords from Λ 0 to Λ 1 of length longer than the chords corresponding Critpf q; these chords themselves correspond to Reeb chords on Λ being of length at most κ. More precisely, for each such Reeb chord γ on Λ of length ℓpγq ď κ there is a corresponding pair of intersection points γ a P t2 ´δ ă t ă 2u and γ b P t2 ă t ă 2 `δu, both being of action roughly equal to e 2 ℓpγq.

Part (1.a) of Lemma 5.2 applied to t2u ˆY then shows that the Floer differential B 0 satisfies the property that the generators contained in r2, `8q ˆY form a subcomplex pCF rel pL κ 0 , L 1 ; H λ q, B rel q Ă pCF pL κ 0 , L 1 ; H λ q, Bq whenever κ " 0 is sufficiently large. This is related to the definition of relative wrapped Floer cohomology in [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF] as well as the construction of the Viterbo transfer map. By elementary action reasons, we also have a subcomplex CF rel,ď0 pL κ 0 , L 1 ; H λ q, B rel,ď0 q Ă pCF rel pL κ 0 , L 1 ; H λ q, B rel q, CF rel,ď0 pL κ 0 , L 1 ; H λ q :" CF rel pL κ 0 , L 1 ; H λ q X CF 0 pL κ 0 , L 1 ; H λ q. generated by intersection points L 0 X L 1 as well as those intersection points of L κ 0 X L 1 contained inside t2 ă t ă 3u, i.e. corresponding to Reeb chords from Λ 0 to Λ 1 being of length at most κ.

Lemma 5.5. For any κ ě 0 we still have q γ M " Bpγ M q " B rel pγ M q " Bpp γ M q " B 0 pp γ M q P pCF rel pL κ 0 , L 1 ; H λ q, B rel q. Moreover, if the cycle q γ M is a B rel,ď0 -boundary for some κ ě 0, then HW ˚pL, Lq " 0.

Proof. Since the Hamiltonian h : X Ñ R used to perform the finger move is C 0small, the continuation map φ κ induced by h may be assumed to be action decreasing. Recall that φ κ : CF pL 0 , L 1 ; H λ q " Ý Ñ CF pL κ 0 , L 1 ; H λ q, φ κ | CF0pL0,L1;H λ q : CF 0 pL 0 , L 1 ; H λ q " Ý Ñ CF 0 pL κ 0 , L 1 ; H λ q is a chain homotopy equivalence defined by counting 'continuation' strips. Here, Part (1.b) of Lemma 5.2 has been applied to the slice t2T ´δu ˆY in order to infer that also φ κ | CF0pL0,L1;H λ q is a homotopy equivalence.

Moreover, we have the identities φ κ pp γ M q " p γ M , φ κ pq γ M q " q γ M , φ κ pγ M q " γ M .

To see this, recall that h vanishes near the generators p γ M , q γ M and γ M by construction. These three equalities now follow from Lemma 5.2, by inferring that only the constant strips give contributions. More precisely, the first equality is shown by applying Part (2.b) to t2 ´δu ˆY , while the second and third equalities are shown by applying Part (3.b) to t2 `δu ˆY . Combining these three equalities with the explicit computation made in Lemma 5.4, we can now conclude the first claim. Now assume that B rel,ď0 paq " q γ M , where the action of a thus can be assumed to be significantly larger than that of both q γ M and p γ M . By the above, we now compute B 0 pp γ M ´aq " 0, i.e. p γ M ´a is a nontrivial cycle. However, since no chain of the form p γ M ´a `B0 pbq is in the image of φ κ by its action-decreasing properties, and since φ κ | CF0pL0,L1;H λ q is a chain homotopy equivalence, the cycle p γ M ´a must be a B 0 -boundary. In particular, there exists a chain c for which B 0 pcq " p γ M holds modulo an element in CF rel pL κ 0 , L 1 ; H λ q. Note that the quotient complex pCF 0 pL κ 0 , L 1 ; H λ q, B 0 q{CF rel pL κ 0 , L 1 ; H λ q again can be used to compute HW ˚pL, Lq, when taking the appropriate direct limit κ Ñ `8. C.f. the definition of the Viterbo transfer map whose construction goes via such a quotient. (In this case we are computing the Viterbo transfer of a trivial cobordism, which hence gives an isomorphism). Since the limit of p γ M , moreover, becomes the unit of HW ˚pL, Lq, the statement now follows.

shortest Reeb chord from Λ 0 to Λ 1 , it is of least action amongst the generators of the quotient CF pL κ 0 , L 1 ; H λ q{CF 0 pL κ 0 , L 1 ; H λ q. What remains is thus now to show that xφpγ M q, γ M y " 1. This count is established by inferring that a continuation strip which contributes to this count must be confined to the subset tt ě 2T ´δu where the Hamiltonian vanishes. We can then use the standard fact that a rigid continuation strip must be constant for a vanishing Hamiltonian. That the strip is contained in the region is the case by Part (3.b) of Lemma 5.2 applied to t2T ´δu ˆY .

We now continue with the second claim. Part (2.a) of Lemma 5.2 applied to t4u ˆY shows that [START_REF] Chantraine | Lagrangian concordance of Legendrian knots[END_REF] xB 1 0 pa 1 q, a 2 y " xB 0 pa 1 q, a 2 y whenever a i , i " 1, 2, are generators contained inside tt ă 4u. Namely, the Floer strips contributing to these counts must be confined to the subset tt ď 4u in which r L κ 0 X tt ď 4u " L κ 0 X tt ď 4u holds. If, in addition, κ " 0 is taken sufficiently large, a further application of Part (2.b) of Lemma 5.2 to t2u ˆY shows that φpp γ M q " p γ M `c, c P CF rel,ď0 p r L κ 0 , L 1 ; H λ q holds as well. Indeed, in this case the strips contributing to xφpa 1 q, a 2 y, for generators a i , i " 1, 2, contained inside tt ă 2u, must be contained entirely inside the subset tt ă 2u where the Hamiltonian vanishes. Again, such strips must thus be constant.

The chain map property now gives φpq γ M q " φpB 0 pp γ M qq " B 1 0 pφpp γ M qq " B 1 0 pp γ M `cq " B 0 pp γ M q `d `B1 rel,ď0 pcq where we rely on Lemma 5.5 for the first equality and Equality [START_REF] Chantraine | Lagrangian concordance of Legendrian knots[END_REF] for the last equality.

Step 5: We are now ready to finish the proof of Theorem 1.15. From the chain map property together with Lemma 5.8 we see that B 1 pγ M `bq " B 1 pφpγ M qq " φpBpγ M qq " φpq γ M q " q γ M `B1 rel,ď0 pcq `d, where b, c, d P CF rel,ď0 p r L κ 0 , L 1 ; H λ q, and d is a sum of generators of negative action. Since xB 1 paq, q γ M y " xB 1 rel,ď0 paq, q γ M y " 0, @a P CF rel,ď0 p r L κ 0 , L 1 ; H λ q, holds by Lemma 5.7 together with the assumption that HW ˚pL, Lq ‰ 0, we now conclude that necessarily xB 1 pγ M q, q γ M y ‰ 0. This, however, is in contradiction with the action computation in Lemma 5.6. In other words, the hypothetical contractible positive Legendrian isotopy containing Λ 0 cannot exist.

Applications to strong orderability

In this paragraph, we apply our techniques to the study of strong orderability in the sense of Liu [START_REF] Liu | On positive loops of loose Legendrian embeddings[END_REF]: we prove Theorem 1.18 by using Theorem 1.15.

The proof of Theorem 1.18 relies on the following equivalence, known to experts: Theorem 6.1. Let pW, ω " dαq be a Liouville domain and denote by p x W , p ωq its completion by addition of the positive half symplectisation pr0, `8qˆBW, dpe s αqq of pBW, αq along BW . Let ∆ x W ˆx W be the Lagrangian diagonal in the symplectic product p x W ˆx W , p ω ' ´p ωq. Then the wrapped Floer cohomology of ∆ x W ˆx W is isomorphic to the symplectic homology of pW, dαq.

Proof. We sketch a proof following closely the lines proposed by Zenaïdi. We start from a time-dependant Hamiltonian function H : R ˆx W Ñ R which equals to (a perturbation of) e 2s in r0, `8q ˆBW , s P r0, `8q. On x W ˆx W , we consider the split Hamiltonian H ' : R ˆx W ˆx W Ñ R defined by H ' pt, x, yq " Hpt, xq `Hpt, yq, as well as a split almost complex structure J ' " J ' p´Jq compatible with p ω ' ´p ω. With these data, we define a relative symplectic homology, by counting Floer strips in p x W ˆx W , J ' , H ' q with boundary on ∆ x W ˆx W between time-1 chords of the Hamiltonian Φ H' . Notice here that a Hamiltonian chord from px, xq to py, yq consists of H-chords from x to y on the first factor and from y to x on the second factor.

We first show that this homology is isomorphic to SHpW q. For that, we let τ : pR ˆr0, 1s, iq Ñ pR ˆr0, 1s, iq be the anti-holomorphic involution of the strip given by τ ps, θq " ps, 1 ´θq. It switches the two boundary components. If u : pR ˆr0, 1s, iq Ñ p x W ˆx W , J ' , H ' q is a Floer strip, then its projection/twisted projection to the first and second factors u 1 " π 1 ˝u and u 2 " π 2 ˝u ˝τ satisfy the Floer equation in p x W , J, Hq. Moreover, since ups, 1q " pu 1 ps, 1q, u 2 ps, 0qq and ups, 0q " pu 1 ps, 0q, u 2 ps, 1qq belong to ∆ x W ˆx W , one has that u 1 ps, 1q " u 2 ps, 0q and u 1 ps, 0q " u 2 ps, 1q. This means that we can glue the two strips u 1 and u 2 together along their boundary components to obtain a Floer cylinder u 1 7u 2 : R ˆS1 Ñ p x W , J, Hq which is exactly of the type counted by the differential in symplectic Floer homology of p x W , J, Hq (defined by the time-2 periodic orbits of the Hamiltonian H). Conversely, if we parametrise the circle S 1 by R{p2Zq, any cylinder u : R ˆS1 Ñ p x W , J, Hq counted in the differential of the Floer complex of p x W , J, Hq can be decomposed in two strips u 1 : Rˆr0, 1s Ñ p x W , J, Hq and u 2 : Rˆr1, 2s Ñ p x W , J, Hq with matching boundary conditions. We reparametrise u 2 to u 1 2 ps, θq " u 2 ps, θ ´1q. The map u " pu 1 , u 1 2 ˝τ q : pR ˆr0, 1s, iq Ñ p x W ˆx W , J ' , H ' q is then a Floer strip with boundary on ∆ x W ˆx W . To conclude, it remains to deform the Hamiltonian data pJ ' , H ' q to one pJ , Hq needed to define the wrapped complex. This can be done amongst Hamiltonians with exponential growth in the direction of the Liouville vector field in p x W ˆx W , p ω ' ´p ωq. Such a path of data induces an isomorphism at the homology level given by continuation maps defined by counts of strips satisfying parametrised Floer equations, as carried out by Oancea in his thesis [START_REF] Oancea | La suite spectrale de Leray-Serre en cohomologie de Floer pour variétés sympelctiques compactes à bor de type contact[END_REF]. We also recall the standard fact that the homology counting Hamiltonian self chords on ∆ x W ˆx W and Floer strips with boundary on ∆ x W ˆx W is isomorphic to the Lagrangian Floer homology counting intersection points between ∆ x ˆx W and Φ H' p∆ x W ˆx W q as well as holomorphic strips.

We now complete the proof of Theorem 1.18.

Proof. We consider the completion p x W , p ωq of pW, ωq obtained by the addition of the positive half symplectisation pr0, `8q ˆM, dpe s αqq of pM, αq to pW, ωq along M " BW . Let φ 1 be a Hamiltonian diffeomorphism of p x W , p ωq whose Hamiltonian H equals e 2s in r0, `8qˆM . The symplectic homology of pW, ωq is the Hamiltonian Floer homology of φ 1 . By Theorem 6.1, it is the wrapped Floer cohomology of the diagonal ∆ x W ˆx W in p x W ˆx W , ω ' ´ωq. Note that p x W ˆx W , ω ' ´ωq has an ideal contact boundary pV, ζq in which the Lagrangian ∆ x W ˆx W has an ideal Legendrian boundary L. The diagonal ∆ x W ˆx W is a Lagrangian filling of the Legendrian L. From Theorem 1.15, we get that L is not the basepoint of a contractible positive loop in pV, ζq. To conclude it remains to observe that the contact product pM ˆM R, α 1 ´et α 2 q is a contact submanifold of pV, ζq which contains L: it is a standard neighbourhood of BW ˆBW Ă V in pV, ζq.
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 3 Figure 3. Curves contributing to the Cthulhu differential; in and out denote the input and output of the respective component of the differential.
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 4 Figure 4. The compactly supported bump-function βptq.
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 43 If assumptions (1) and (2) of Theorem 4.1 are strengthened to

  .a), (1.b), and (3.a): The statements all follow from the above computations and considerations of the action.(2.a): This is the 'no escape lemma' from[START_REF] Ritter | Topological quantum field theory structure on symplectic cohomology[END_REF] Lemma D.6].

BAPTISTE CHANTRAINE, VINCENT COLIN, AND GEORGIOS DIMITROGLOU RIZELL

Step 4: Replace L κ 0 X pr5, `8q ˆY q with the concordance Σ tΛ s u induced by a positive loop, thereby producing the exact Lagrangian filling r L κ 0 which is Hamiltonian isotopic to L 0 for a Hamiltonian having compact support contained inside p5, T q ˆY (here we used the assumption that the isotopy is contractible together with Proposition 3.4). Here it is necessary that the constant T ě 0 chosen in the initial setup for the computation of the wrapped Floer cohomology is sufficiently large. Recall that the constant T ą 0 was taken so that all our data is cylindrical inside the subset rT, `8q ˆY .

The invariance proof for the Floer complex under compactly supported Hamiltonian isotopies produces a chain homotopy equivalence φ : pCF pL κ 0 , L 1 ; H λ q, Bq Ñ pCF p r L κ 0 , L 1 ; H λ q, B 1 q. For κ " 0 sufficiently large, Lemma 5.2 again shows that

H λ q are satisfied; for the first statement we apply Part (1.b) of this lemma to t2T ´δuˆY while for the second statement we apply Part (1.a) to the slice t2u ˆY .

Lemma 5.6. The Reeb chord γ M P pCF ˚p r L κ 0 , L 1 ; H λ q, B 1 q is a B 1 8 -cycle which can be assumed to be of negative action, while the q γ M P CF ˚p r L κ 0 , L 1 ; H λ q is of positive action, and all the generators corresponding to the intersection points r L κ 0 XL 1 Xtt ě 5u are of negative action.

Proof. This is a straight-forward action computation; c.f. the computation made in Lemma 4.5.

Lemma 5.7. If some chain of the form q γ M `c P CF rel,ď0 p r L κ 0 , L 1 ; H λ q is a B 1 rel,ď0boundary, where c is a linear combination of generators of negative action, then HW pL, Lq " 0.

Proof. By the action properties established in Lemma 5.6 together with the fact that the differential decreases action, we clearly have xB 1 rel pc 1 q, q γ M y " 0 whenever c 1 has negative action. The generators of CF rel,ď0 p r L κ 0 , L 1 ; H λ q being of non-negative action are contained inside tt ď 4u. An application of Part (2.a) of Lemma 5.2 to t4uˆY now shows that any Floer trajectory contributing to xB 1 rel paq, q γ M y " 1 in fact must live entirely inside the same subset. These Floer trajectories are thus in bijective correspondence with the Floer trajectories corresponding to xB rel,ď0 paq, q γ M y. The result is then deduced from Lemma 5.5.

Lemma 5.8. We have φpγ M q " γ M `b, b P CF rel,ď0 p r L κ 0 , L 1 ; H λ q while, for κ " 0 sufficiently large, we also have φpq γ M q " q γ M `B1 rel,ď0 pcq `d, c, d P CF rel,ď0 p r L κ 0 , L 1 ; H λ q, where d moreover is a sum of generators of negative action.

Proof. For the first claim, we argue as follows. Applying Part (3.a) of Lemma 5.2 to t2T ´δu ˆY , it follows that the continuation map must decrease the action when restricted to the Reeb chord generators in tt ě 2T ´δu. Since γ M is the