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Abstract

Using derivative expansion applied to the Wigner transform of the two - point Green function we analyse the
anomalous quantum Hall effect (AQHE), and the chiral magnetic effect (CME). The corresponding currents
are proportional to the momentum space topological invariants. We reproduce the conventional expression
for the Hall conductivity in 241 D. In 3+ 1 D our analysis allows to explain systematically the AQHE in
topological insulators and Weyl semimetals. At the same time using this method it may be proved, that
the equilibrium CME is absent in the wide class of solids, as well as in the properly regularized relativistic
quantum field theory.

1. Introduction

Momentum space topology is becoming the important tool for the study of the ground states of con-
densed matter systems (for the review see [1, 2, 3, 4, 5]). In particular, the momentum space topological
invariants protect gapless fermions on the boundaries of topological insulators [6, 7]. Topological invariants
in momentum space protect also the bulk gapless fermions in Dirac and Weyl semi - metals [9, 8]. The
large variety of topological defects and textures exist in the fermionic superfluids, and the gapless fermions
associated with these objects are described by momentum space topology [10]. Momentum space topology
was also discussed in the context of relativistic quantum field theory (QFT) [11, 12, 13, 14, 15, 9, 16, 17, 18].
In [19] the topological invariants in momentum space have been considered for the lattice regularization of
QFT with Wilson fermions. Appearance of the massless fermions at the intermediate values of bare mass
parameter was related to the jump of the introduced momentum space topological invariant. This invariant
may actually be used for the description of a certain class of topological insulators?. In [20] the model with
overlap fermions has been considered on the same grounds. In particular, the possible physical meaning of
the zeros of the Green function has been discussed. The appearance of zeros of the Green function, in turn,
has been discussed in the context of condensed matter physics (see, for example, [21]).

The momentum space topological invariants are expressed in terms of the Green functions. Therefore,
they are applicable both to the non - interacting and to the interacting systems [9]. Suppose, that we start
from the model without interactions. When the interactions are turned on, the value of the topological
invariant is not changed until the phase transition is encountered. This means, that the properties of the
system described by the given topological invariant are robust to the introduction of interactions. The more
simple non - interacting model may be investigated in order to describe such properties of the complicated
interacting system. In the present paper we apply momentum space topology to the description of the
anomalous quantum Hall effect (AQHE) in topological insulators and Weyl semimetals. In [22] we considered
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the chiral magnetic effect (CME) (mainly, in the framework of relativistic quantum field theory) using the
approach based on momentum space topology. Here we briefly repeat our proof of the absence of the
equilibrium bulk CME with the emphasis in the application to the solid state systems.

Actually, momentum space topology with the topological invariants expressed through the Green func-
tions represents the alternative to the less powerful but more popular technique of Berry curvature proposed
to describe the QHE in [23] and developed later in a number of publications (see, for example, [24] and ref-
erences therein). The technique of Berry curvature may be applied to the noninteracting condensed matter
systems with Green function of the form G=* = iw — H, where w is the imaginary frequency while H is the
Hamiltonian. Unfortunately, this formalism does not allow to deal in a similar way with the interacting sys-
tems with more complicated dependence of the Green function on the imaginary frequency. Besides, in spite
of all its advantages, the Berry curvature formalism does not allow to describe the response of the system to
the external magnetic (rather than electric) field. Finally, the bulk - boundary correspondence remains out
of this formalism. Those three points are improved in the technique that utilizes the topological invariants
composed directly of the Green functions. It was proposed first by G.E.Volovik (see [9, 6] and references
therein). Following [22] in the present paper we develop this technique and give the relation between the
electromagnetic response of electric current and the topological invariants in momentum space of both 241D
and 3 4+ 1D systems. In the present paper we emphasise, that those topological invariants are constructed of
the Wigner transform of the two - point Green functions, which allows to apply the proposed methodology
to the direct description of bulk - boundary correspondence. As for the Berry curvature formalism, we
demonstrate that it follows from our approach as a particular case.

The family of the non - dissipative transport effects related to chiral anomaly has been widely discussed
recently both in the context of the high energy physics and in the context of condensed matter theory
[25, 26, 27, 28, 29, 30, 32, 33, 34, 34, 35, 36]. In particular, the possible appearance of such effects in the
recently discovered Dirac and Weyl semimetals has been considered [37, 38, 39, 40, 41, 42, 43]. Besides,
the possibility to observe those effects in relativistic heavy - ion collisions was proposed [44, 45]. The chiral
magnetic effect (CME) is the generation of electric current in the presence of external magnetic field and
chiral chemical potential [46, 47]. The quantum Hall effect in the 2 4+ 1 D and the 3 + 1 D systems is the
appearance of electric current in the direction orthogonal to the direction of the applied electric field. The
anomalous quantum Hall effect (AQHE) is such an effect that takes place due to the internal properties of the
system rather than due to the external magnetic field. Recently its possible appearance in Weyl semimetals
has been widely discussed [42, 43]. The AQHE was also discussed in the 3 + 1D topological insulators [24].
In the present paper we consider AQHE within the lattice regularized quantum field theory and within the
tight - binding models of the solid state physics. The expression of the Hall current (through the topological
invariant in momentum space ./\73) in the quasi two dimensional condensed matter systems is well - known
[9, 48]. We reproduce this result basing on the technique of the derivative expansion applied to the Wigner
transform of the two - point Green function. Next, we apply the same technique to the AQHE in the 3+ 1
D lattice models. The obtained expression relates the AQHE current to the new topological invariant. The
technique of its calculation is developed. Our methodology allows to predict the appearance of the AQHE
both in the Weyl semi - metals and in certain topological insulators.

We represent here the consideration of the equilibrium CME, which was based on the same technique.
It appears, that the resulting current is also proportional to the topological invariant in momentum space.
Unlike the case of the naive continuum fermions for the considered lattice models with regular fermionic
Green function the value of the mentioned topological invariant does not depend on the chiral chemical
potential. We consider the case, when the lattice Dirac fermions are massive. However, the limit, when the
physical Dirac mass tends to zero, does not change our conclusion. This indicates, that the equilibrium bulk
CME current is absent for the lattice regularized quantum field theory and in the certain class of solids.

Notice, that our conclusions on AQHE and CME are in accordance with the recent consideration of the
particular lattice model of Weyl semimetals [49]. The conclusion on the absence of the equilibrium bulk CME
is in line with the recent numerical calculations made using the particular lattice models [33, 34, 34, 35, 36].
It also does not contradict to the consideration of the effective continuum field theoretic description of
Weyl/Dirac semimetals [30] and the consideration of Dirac semimetals in the framework of the semi - classical
approach [31]. Besides, this conclusion is in accordance with the Bloch theorem [50].

We incorporate the slowly varying external gauge field directly to the momentum space representation



of the lattice model[22]. In this representation it appears as a pseudo - differential operator A(idp), where
A(r) determines the functional dependence of the gauge field on coordinates, while dp is the derivative over
momentum.

Notice, that the general expression for the linear response of electric current to electromagnetic field
through the momentum space topological invariants was proposed by us in [22], where the emphasis was
in the chiral magnetic effect in the lattice regularized quantum field theory of high energy physics. In the
present paper we adopt this expression to the tight - binding models of solid state physics, concentrate
on the physics of AQHE, and propose for the first time the original approach to the calculation of these
topological invariants. This approach allows to calculate these invariants both in the 2D and the 3D systems
of rather general form. The popular example models that describe AQHE in 2D and 3D topological insulators
[9, 58, 59] and 3D Weyl semimetals [56] appear as the particular cases of the general constructions considered
in the present paper. We also propose for the first time the description of the bulk - boundary correspondence
for the 3D topological insulators that exhibit the AQHE. The similar description allows us to clarify the
mechanism of the appearance of the Fermi arcs in Weyl semimetals®. Besides, we demonstrate explicitly,
that in the particular case of the noninteracting condensed matter system our formalism allows to reproduce
the expression of [23] for the Hall conductivity as an integral over the Berry curvature (the Green function
of such system has the form ! = 4w — H , where w is the imaginary frequency while H is the Hamiltonian).

The paper is organized as follows. In Sections 2, 3, 4 we describe the formalism proposed to be used [22].
In Sect. 2 we describe the way to introduce the slowly varying external gauge field to the momentum space
formulation of lattice model. In Sect. 3 we consider the Wigner transformation of the two - point Green
function in momentum space. The linear response of electric current to external field strength is considered
in Sect. 4. In Sect. 5 we reproduce the expression for the QHE current in the 2 + 1 D systems using the
developed methodology. In Sect. 6 we demonstrate, how the formalism of Berry curvature follows from our
expressions. In Sect. 7 we consider the AQHE in the 3 + 1D systems. In Sect. 8 we discuss bulk - boundary
correspondence for the topological insulators with AQHE. The considerations of Sect. 7 are illustrated by
two particular models of insulators in Sect. 9, and by two particular models of Weyl semimetal in Sect. 10.
In Sect. 11 we analyse using this methodology the CME, and demonstrate, that it is absent in the considered
systems. In Sect. 12 we end with the conclusions.

2. External gauge field as a pseudo - differential operator in momentum space

We consider the d+ 1 = D dimensional lattice model of non - interacting fermions. In this way the tight
- binding models of solid state physics as well as the lattice regularization of the continuum quantum field
theory (QFT) may be described. In momentum space the fermionic Green function G(p) depends on the
D vector p = (p1,...,pp) of Euclidean momentum. Momentum space is supposed to have the form of the
product M = S1®Q or M = R'®), where  is the compact d - dimensional Brillouin zone. Here R! is the
line of the imaginary frequencies p”. In the lattice regularization of QFT the values of p” correspond to S*.
In condensed matter physics the representation of the theory with momentum space M = S' ® Q appears if
the evolution in time is discretized. In particular, momentum space of such form appears in the application
of the numerical lattice methods to the calculation of the functional integrals in the solid state physics. In
the conventional lattice models defined on the hypercubic lattice €2 has the form of the d - dimensional
torus?. In the solid state physics the form of the Brillouin zone is typically more complicated.

In the absence of the external electromagnetic field the partition function of the theory defined on the
infinite lattice may be written as

2= [pvpves(- [ CPuEG @) (1)

where | M| is the volume of momentum space M, while ¥ and ¥ are the Grassmann - valued fields defined
in momentum space M. For example, the model with 3+ 1 D Wilson fermions that describes qualitatively

3The Fermi arcs in Weyl systems were discussed in a number of papers (see, for example, [56] and references therein).
4Notice, that the lattice momentum p does not appear as the eigenvalue of the operator —id.



a certain class of topological insulators corresponds to G that has the form
-1
G(p) = (D 7*ox(p) — im(p)) (2)
k

where ¥ are Euclidean Dirac matrices while gx(p) and m(p) are the real - valued functions (k = 1,2, 3, 4)
given by
ge(p) =sinpr, m(p) =m®+ 3 (1-cospa) 3)
a=1,2,3,4

The fields in coordinate space are related to the fields in momentum space as follows

— de ipr
B(r) = /M e e) (4)

At the discrete values of r corresponding to the points of the lattice this expression gives the values of the
fermionic field at these points, i.e. the dynamical variables of the original lattice model. However, Eq. (4)
allows to define formally the values of fields at any other values of r. The partition function may be rewritten
in the form

7= /D\IID\II exp( =3 U(r,) {g_l(—i(')r)\ll(r)} :) (5)

Here the sum in the exponent is over the discrete coordinates r,,. However, the operator —i0, acts on the
function ¥(r) defined using Eq. (4). In order to derive Eq. (5) we use identity

e = [MI5(p) (6)

r

5

In the particular case of Wilson fermions® we may rewrite the partition function in the conventional way as

Z:/D@D\yexp(— > () (—iDr, )W () (7)

with
1 i i
Dxy = 9 Z[(l + 7" )0x+eiy T (1= 7)0x—eiy] + (m® + 4)0xy (8)

Here e; is the unity vector in the ¢ - th direction. Gauge transformation of the lattice field takes the form
U(r,) — em(r")\ll(rn) (9)

In case of Wilson fermions the U(1) gauge field is typically introduced as the following modification of
operator D:

1 ) ) ) )
Dy = =5 D (147 )bre ye' ™ te + (1= 7")0xme, ye eiv] 4 (m? 4 )y (10)

%

Here Ax y = —Ay « is the gauge field attached to the links of the lattice. In the same way the gauge field is
typically incorporated into the models of solid state physics.

Below we propose the alternative way of the introduction of gauge field into the lattice model. First of all,
Eq. (9) may be understood as the gauge transformation of the field ¥ defined for any values of r: we simply
extend the definition of the function «a(r) to the function, which is defined at any values of r and take the
original values at the discrete lattice points. This prompts the following way to introduce the external gauge
field to our lattice model. Suppose, that we need to put on the lattice the gauge field, which in continuum

5Wilson fermions are widely use in the lattice discretization of QFT and also describe qualitatively a certain class of
topological insulators.



theory has the form of the function A(r) of the continuum coordinate r. We consider the partition function
of the form

Z = /D\T/D\I/ eXp( - %Z {@(rn){g‘l(—iar

rn

fA(r))\Il(r)} + (h.c.)D (11)

r=r,
Here by (h.c.) we denote the Hermitian conjugation, which is defined as follows. First of all, it relates the
components of Grassmann variable ¥ with the corresponding components of V. Besides, it inverses the
ordering of operators and the variables ¥, ¥, and substitutes each operator by its Hermitian conjugated.
For example, a conjugation of WB(i0,., )...(i0,i, )¥ for a certain operator (in internal space) B is given by
[(—iaTil)...(—iaTin)\I] BtW. As well as in continuum theory operators p; — A;(r) and p; — A;(r) do not
commute for i # j. Therefore, we should point out the way of their ordering inside G=*(—id, — A(r)). We
choose the following way for definiteness: each product p;,...p;, in the expansion of G~! is substituted by
the symmetrized product = > permutations Pin — Aiy)-(Pi,, — Az, ). This method of introducing the gauge
field to the lattice model is manifestly gauge invariant, i.e. the exponent in Eq. (11) is invariant under the
transformation of Eq. (9) if we transform the gauge field as

A(r) = A(r) + dra(r) (12)

where « is the extension to the continuous values of r of the function of Eq. (9) defined on the discrete lattice
points r,,. Besides, the partition function of Eq. (11) is obviously reduced to the conventional continuum
partition function with the minimal connection of fermion field with the gauge field in the naive continuum
limit.

Moreover, for example, for the particular case of the lattice discretization with Wilson fermions our way
of introducing the external gauge field corresponds to that of Eq. (10), which may be shown using the
operator identity (valid for any operators B and C‘)

€B+é _ Perl dueB“CA’e*B“eB
Actually, the same refers to a certain class of the other lattice models, where the prescription for the
introduction of the external gauge field is reduced to the multiplication of the products ¥(r,,)¥(r,) by the
parallel transporters between the points r,, and r,, 6. Thus, the proposed way of the incorporation of the
external gauge field into the lattice theory satisfies all requirements to be fulfilled by the introduction of the
gauge field in lattice regularization of quantum field theory. We also feel this appropriate to apply it to the
solid state systems, where the possible deviation from the ordinary Paierls substitution may be related to
the appearance of the terms containing the gauge field strength. These terms contain the extra powers of
the lattice spacing and disappear from the consideration at low energies.
Now let us come back to momentum space. One can easily check, that Eq. (11) may be rewritten as

D
7 = /D\IID\I/exp(/M T/\/l—pl\lf(p)é(i@p,p)‘ll(p)) (13)
Here «
Q=6""(p—A(id,)) (14)

while the pseudo - differential operator A (idp) is defined as follows. First, we represent the original gauge
field A(r) as a series in powers of coordinates r. Next, variable r is substituted in this expansion by the
operator i0p.

60ur prescription, however, does not correspond to the simple substitution of the parallel transporters to any lattice
model because each product p;,...p;, in the expansion of G~1 in our approach is substituted by the symmetrized product
% > permutations Pir — Aiy)--(Bin, - A;,). For certain lattice models with next to neighbor pairing the introduction of the
parallel transporters to the terms ¥ (rp,)¥(r,) may lead to the different prescription for the ordering of such products or
equivalently to the appearance of the extra terms proportional to the powers of the field strength.



In order to prove Eq. (13) we introduce the function Q,;gn: that is constructed of G~! as follows. We
represent G~1(—id, — A(r)) as a series in powers of —id, and A(r) such that in each term A(r) stand right
to —idy. For example, we represent (—id, — A(r))? as (—idy)? — 2(—i0y)A(r) + A2%(r) — i(OA). Next, we
substitute the argument of A by 70, and —i0, by p. Correspondingly, Qs+ is defined with the inverse
ordering. With these definitions one may easily prove, that Eq. (11) is equivalent to

7 = /D\IID\II exp(f %/ d”p [\P(p)Qright(iap,p)\I’(P)

and
+0(p)Qiest(i0p, P)¥(p)] ) (15)
after the substitution of Eq. (4). Since the commutators [—idy:,r7] = i) and [p;, i0p;] = i) are equal to

each other, the actual expression for %[Qright(iap, P) + Qieft (iap,p)} is given by Eq. (14). Finally, the

Green function of our system in momentum space satisfies equation

Q(i0p,, P1)G(P1, P2) = |M[6P) (p1 — p2) (16)

3. Wigner transform in momentum space

According to the proposed above way to incorporate gauge field into the lattice model the Green function
in momentum space appears as a correlator

Glorps) = 5 [ DIDV U (p1) a7)
eXp(—/TlAA—IT@(p)Q(iap,p)‘l’(p))

It obeys equation Eq. (16). Wigner transform [51, 55, 52, 53, 54] of the Green function may be defined as

- dPP .
G(R.p) = [ e ™ Glp+P/2p P/ (18)
In terms of the Green function in coordinate space this Green function is expressed as:
GR,p)= > e P GR+r/2,R-1/2) (19)
where
1 _ _
G(I‘l,l‘g) = E /D\I/D\I/ \I](I'Q)\I](rl) (20)

exp( - % 3 [@(rn) [g—l(ﬂ'ar
+ (hc)D

—A@)¥ ()]
In Appendix A we prove, that this Green function obeys the Groenewold equation (see also Appendix B
of [53]):

r=rp

»=9» IR)G(R, p) (21)

As well as in continuum case the Weyl symbol [53, 54] of operator Qis given by function Q that depends
on the real numbers rather than on the operators. As it is explained in Appendix A, if Q has the form of a
function G~! of the combination (p — A(f)) with a gauge potential A (%), i.e.

O(r,p) =G (p— A(idp)) (22)



then we have
Q(r,p) =G (p— A(r)) + O([3:4;]%) (23)

Here O([9;A4;]?) does not contain terms independent of the derivatives of A and the terms linear in those
derivatives, i.e. it is higher order in derivatives. In certain particular cases the restrictions on the term
O(([9:4;]?) may be more strong, or it may even vanish at all [54]. In particular, from Sect. 4 (Egs. (1.23)-
(1.27)) of [54] it follows, that O([0;A;]?) vanishes for the case of Wilson fermions with the Green function G
given by Egs. (2) and (3).

Notice, that the star product entering Eq. (21) is widely used in deformation quantisation [54, 52] and
also in some other applications (see, for example, [55] and references therein).

4. Linear response of electric current to the strength of external gauge field.

Let us apply the gradient expansion to the Wigner transform of the Green function. For this we expand
exponent in powers of its arguments in Eq. (21). This gives

GR,p) = GOR,p)+GYR,p)+... (24)
~ — - —1
~(1) d ~(0)8{G(0)} ~(0)8[G(0)} ~(0)
= -3 Az R
¢ 2G api G 5173‘ G J( )

Here é(o)(R, p) is defined as the Green function with the field strength A;; = 9;A; — 0; A; neglected. It is
given by

GY(R,p) =G(p - A(R)) (25)

Next, suppose, that we modified the external gauge field as A — A + §A. The response to this extra
contribution to gauge potential gives electric current. Let us calculate this response basing on the description
of the system given by Eq. (13):

gz = — [DUDven(~ [ TRUEI00p10w) [ TPUE) 000, p)] v(p)

M

. m’ﬂ[muapl,pﬂ}a(pl,m)

P1=p2=p

- Z / i Py 5Q(iap +i0p/2,p + P/Q)} e PRG(R, p)\ (26)

In Appendix B we discuss the Weyl symbol Q(r,p) of the operator o) entering Eq. (21). Notice, that 2p
and P enter the expression inside Q in a symmetric way. This allows to use Eq. (102). The form of Eq. (26)
demonstrates, that the above expression for the electric current may also be written through the function

Q:

SlogZ = Z / WTr 5Q(idp — Zﬁp/Q,p+P/2)}
efiPRG(R,p)‘ .
_ 7R:ZRH /M Tl/j\j/l—'Tr [so(R,p+P/2)]
efiPR(;m,p)\P:O (27)

According to the notations of Appendix B the arrows above the derivatives mean, that those derivatives act

<_
only outside of Q, and do not act on the arguments of Q, i.e. 0 acts on the function equal to 1 standing

left to the function QO while 31: acts on the exponent e PR



As a result of the above mentioned manipulations we come to the following simple expression for the elec-
tric current per unit volume of coordinate space, which follows from the relation §log Z = Y _g j*(R)JAL(R)|V):

) dPp 0 T4 -1
FR) [ ST GRp) - [GO R p)| (29)

Here by |V| we denote the volume of the unit cell understood as the ratio of the total volume of the system to
the number of lattice points at which the field W is defined. For the ordinary hypercubic lattice the product
of the two volumes is obviously equal to (27r)”. One might think, that for the lattices of more complicated
symmetry the product of the momentum space volume and the defined above volume of the lattice cell may
differ from this expression. Nevertheless, this is not so, and in general case the given product is always equal
o (27)P exactly. In general case of an arbitrary crystal the direct proof is rather complicated. However,
the result for the product of the two volumes may be found from the simple field theoretical correspondence:
the limit of the microscopic model described by the effective low energy theory should correspond to the
product of the two volumes equal to (27)”. Notice, that the construction of the unit cell in the original
lattice should be performed with care. One has to count only those sites of the original crystal lattice, at
which the dynamical variables of the model described by Eq. (11) are incident.

Let us apply the gradient expansion to Eq. (28). It results in the following expression for the electric
current:

FR) = JOFR)+VER) ...
o[ r.p)]
(0)k _ dPp ) [
MR = [ TGO R (29)

Notice, that the second row of this expression represents the topological invariant as long as we deal with
the system with regular Green functions, which do not have poles or zeros, i.e. this expression is unchanged
while we are continuously deforming the Green function. We will not need this expression below since it
does not contain the linear response to the external field strength.

In the 34 1 D systems the contribution to this current originated from G() is given by

j(l)k(R) An2 z]kl/\/llAw( ) (30)
M = /Tr v d*p (31)

B 0G~' 9G 9G!
= 3' 87‘(‘2 Cijhl |:g Gpi 6—19] apk :| (32)

In the linear response theory we should substitute A = 0 into the expression for M;. Therefore, in Eq.
(32) we substitute G instead of GO, M; is the topological invariant, i.e. it is robust to any variations of
the Green function G as long as the singularities are not encountered (for the proof see Appendix B).

Although Eq. (30) was derived for the case of compact momentum space, the non - compact case may
always be obtained as a limit of the compact case, when a certain parameter of the theory tends to infinity.
Therefore, in Eq. (30) the integration may be over compact or over non - compact space depending on the
type of the given system. In particular, we will encounter in the upcoming sections the non - interacting
condensed matter systems with the Green functions of the form G~ ! — jw—H, where w € R is the imaginary
frequency while H is the Hamiltonian. Momentum space of such a system is non - compact and has the
form of R ® €2, where €2 is the compact Brillouin zone. The linear response of electric current to external
electromagnetic field is still given in such systems by Eq. (30). The derivation is analogous to the one we
gave above for the case of compact momentum space.



5. 2+ 1 D anomalous quantum Hall effect

The considerations of the previous section may easily be applied to the 2 + 1 D systems. Then instead
of Eq. (30) we arrive at

1 .
j(l)k(R) _ EezjkMAij (R), M = /Tryd3p (33)

olcor.p)] " o[aO® p)] o[ (R.p)]
opi Ip; Opk }

Vv = €ijk [G(O) (R, p) (34)

i
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In this section we give the derivation of the well - known expression for the Hall current in the gapped system
through the topological invariant in momentum space. For the references to the other derivations see, for
example, [9].

Let us consider the 2 + 1 D model with the gapped fermions and the Green function G(p) that depends
on the three - vector p = (p1, p2,p3) of Euclidean momentum. In order to obtain expression for the Hall
current let us introduce into Eq. (34) the external electric field E = (E4, Es) as As, = —iE}) (the third
component of vector corresponds to imaginary time). This results in the following expression for the Hall
current

1 -~ .
o = 5 N3 € E; 35
JHan = 5 N3 € Eis (35)
where the topological invariant (denoted by N3 according to the classification of [9]) is to be calculated for
the original system with vanishing background gauge field:

Ny = — L /g’ldg/\dg’l/\dg (36)

2472

Eq. (36) defines the topological invariant (this is proved in Appendix B). Recall, that for the given lattice
model G is the Green function in momentum space, i.e. the Fourier transformation of the two point Green
function in coordinate space (it is assumed that the original model without external gauge field is translation
invariant). Its appearance explains the quantization of Hall conductance. In Appendix C we demonstrate
how to calculate the invariant N3 entering Eq. (35) for the models with 2 x 2 Green functions, and give the
example of the model, where the corresponding value is nonzero. (For the other examples of such models see
[9].) In the considered example the Green function has the form G~! = iw — H(p), where the Hamiltonian is

H =sinp; 0? —sinpyo' — (m + Z (1 —cosp;))o® (37)
i=1,2

For m € (—2,0) we have N3 = 1 while N3 = —1 for m € (=4, —2) and N3 = 0 for m € (—o0, —4) U (0, o0).

Let us consider briefly the above mentioned system with the Hamiltonian Eq. (37) in the presence of
boundary. It gives rise to the potential step of electric potential and the step in m, which becomes the
function of R. Say, if the boundary is directed along the x axis, the potential step results in the extra
electric field directed towards the interior of the sample

By = A¢d(y), (38)
where A¢ is the jump of electric potential. We may suppose, that
m = m®e (=20, y>0
m = m{) e (0,0), y<0 (39)

Then at y > 0 we deal with the AQHE system with N3 = 1 while at y < 0 there is the ordinary insulator with
N3 = 0. The step in m(R) is important for the demonstration of the appearance of massless edge states.
Namely, at m(R) = 0 the Green function G has the pole, which corresponds to the massless excitation.
Such excitations have definite chirality, and in general case their number is proportional to the jump of the
topological invariant N3 across the boundary (if we substitute into the expression for N3 the R - dependent
function m). For the derivation of this index theorem the reader is advised to consult chapter 22 of [9]. The
similar derivation for the 3 + 1 D case will be given in Sect. 8.



6. Topological invariant N3 and Berry curvature

In this section we demonstrate how the topological invariant N3 is expressed through Berry curvature in
the 2 +1 D models. This correspondence works for the Green function of the non - interacting model that

has the form A
Gl=iw—-H (40)

with the hermitian hamiltonian H. In the presence of interactions, when the Green function receives a more

complicated form this correspondence looses its sense. (This is the advantage of the formalism, that utilizes

the Green functions.) Nevertheless, at the present moment the approach to the description of QHE based

on Berry curvature is more popular. Therefore, we feel this instructive to derive it from our expressions.
Thus, we start from

_ 1 -1 -1
Ny = 247r2Tr/gdg AdG A dG (41)

and substitute into it

gil =W — Z‘cf‘n(mln’m<naﬁl (42)

Here &,(p) is the n - th eigenvalue of the Hamiltonian depending on to the lattice momentum 7= (p1, p2).
The corresponding eigenvector of the Hamiltonian is denoted by |n,p). We have:

i€" dw d2p (n, p\0; H () |k, p) (k, §10; H (§)|n, )
872 Z / (iw — En(D))? (iw — Ek(P)) (43)

Integral over the imaginary frequency w may be taken as a residue at the negative value of &, and gives

Ep (0. 70, A G (k.70 A7),
Z/ D) — En(p)? o=

k(D)) (44)

n;ék

This expression is the starting point of [23], where the expression for the Hall conductivity through the Berry
curvature has been derived for the first time. After some algebra we arrive at

N = i;_:Z/d2p5i<k,ﬁ|5j|k,ﬁ>9(_5k(ﬁ)) (45)
k

With the following definition of the momentum space gauge field

A;j = ik, plo;lk, p) (46)
we arrive at
Z / d*p Fij (47)
k Er<0

where the sum is over the occupied states while Berry curvature is given by

Fij = &'Aj—@jAz- (48)

7. AQHE in the 3 4+ 1D systems

7.1. General case

Now let us turn to the 3+ 1D systems. Similar to the two - dimensional models the Hall current is given
by

. 1 <
jllflall = m ;ejklEja (49)

10



where Mj = iM;/2 is given by

o o [amg 805
M = 31472 M der[g Opi; Op; Opg (50)

Notice, that in the case of the non - interacting condensed matter system with the Green function
G~! = iw— H(p) expressed through the Hamiltonian H we may derive (similar to the above considered case
of the 2+ 1 D system) the representation of the components of topological invariant M; with [ # 4 through
the Berry curvature given by Eqgs. (46), (48):

il

Mp = — > [dpF; (51)

occupied

Here the sum is over the occupied branches of spectrum.

7.2. The case of 2 X 2 Green functions

Let us demonstrate how M; may be calculated. Let us consider first (as in Appendix C) the case, when
the Green function has the form

G (p) = i0* (Y o gu(p) — igu(p)) (52)
k

Now we have p = (p!, p?,p?,p?), and p? is to be identified with the imaginary frequency. We denote gy = %,

9 =1/>k_19349%, and introduce the parametrization

Js =sino, G§g = ke cosa (53)
where a = 1,2,3 while }°,_, , 4 k2 = 1, and a € [-7/2,7/2]. We suppose, that gs(p) = 0 on the boundary
of momentum space p € M. This gives

1 g
M, = ﬁeabc ¢iikn / cos’a ky O 0;ky Orke d*p
™ M

1 abc 1 .
= g€ /M ko d(c/2 + sin2a) Adky A dke A dp,

1 1
= =Y et / ka (/2 + =sin2a)dky A dke A dpy, (54)
~ Am o2u) 4

Now Q(y;) is the small vicinity of line y;(s) in momentum space, where vector k; is undefined. Along these
lines av — £7/2. We have

1 .
My = —52 /( ) sign(ga(yi)) Res (yi)dp; (55)
1 Yi(s
Here we use the notations of [19], and
L gk ~gn .
Res (y1) = o 9idg;j N dgp (56)
m ()

is the integer number, the corresponding integral is along the infinitely small surface X, which is wrapped
around the line y;(s) near to the given point of this line.

11



7.8. The case of 4 x 4 Green functions
Let us consider the more complicated systems with the Green function of the form

G(0) = (X7 0x(0) ++°05(p) +7*1b(p)) (57)
k

where v* are Euclidean Dirac matrices while gi(p), b(p) are the real - valued functions, k = 1,2,3,4. We
define 4% in chiral representation as diag(1,1,—1,—1). Let us represent G~! as follows:

— ay3~° —a~3~8
Gl (p) =7 (vlgl(p) +7°92(p) + 7' 94(P) +7*\/93(p) + g2(p) + 7375b(p))6 b (58)
where

1
a = —§arctg$ (59)

gs

Let us assume, that g3 never equals to zero, and that the Green function does not have poles. Then since
Mj is the topological invariant, we may deform continuously the Green function to the form

G(p) = (vlgl(p) +7%92(p) +7'g4(P) + 7/ g3 (P) + g5 (P) + vgvsb(p)) - (60)
Under this deformation M; remains invariant if on the boundary of momentum space
Tr ([0G711G]dG ™" A dG) =0 (61)
This follows from Appendix B. This condition is fulfilled if on oM
Tr (v*GdG~' AdG) =0, A=3.5 (62)
Now M is equal to
M; = Mj, +M;_ (63)

where M; . is to be calculated using the 2 x 2 Green functions
G '(p) =o* ( > oFgi(p) - Z'gi(p))
k

g1 =92p); 92=-01(P), 93=094(pP), 9g1= ?( 93(p) +93(p) £ b(p)) (64)

Thus the problem is reduced to the one considered above in Sect. 7.2. It is worth mentioning, that the given
way of calculation may easily be extended to the Green functions of some other forms. In particular, the

same expression for the topological invariant is valid for G(p) = (Zk Y ar(p) —igs(p) + 7375b(p)) -

8. Bulk - boundary correspondence

We are able to use the Wigner transform of the Green function in order to describe the bulk - boundary
correspondence (for the description of the method see Chapter 22 in [9] and [7]). Let us suppose, that in
the given solid (R is inside the bulk) there are no poles of GO (R, p) as functions of p. Let us also suppose,
that a surface divides space into the two parts with different values of M. For simplicity let us consider the
situation, when momentum space has the form of torus, Mj is nonzero for [ = 1 only, while this surface is
situated in the xy plane, and é(o)(R, p) depends on Rz = z only. The set z,p, with k # [ constitues four
- dimensional space. The following integrals over the two hyper - surfaces in this space with z = +e (with
small €¢) may be deformed safely to a closed hyper - surface:

1
31472

(GO~ HGO §(G)~1

Na(p1) o op, o

€ijkl /dPQdPBdm Tr[é(o) (65)

12



If the resulting integral is nonzero, then inside it there are A3 topologically protected poles of G which
correspond to massless states concentrated in a small vicinity of boundary. There is also the question about
the relation of these poles of G(©) with the gapless excitations in the effective theory that describes fermions
on the boundary. Such a relation was discussed in Chapter 22 of [9] and in [7]). The output of this study is
that the chirality of those 1+ 1 dimensional fermions is given by the sign of N3. This chirality is encoded in
the quantity
1 dp3 4 ~—
M(C,p1) = — /—/TGR, dG71(R, 66

e =5 30 [ 5F [ WO PG (R.p) (66)
Here the contour is in the plane (p4, p2), while the sum is over all possible (discrete) values of z. Again, we
use Eq. (21) and expand exponent in powers of its arguments, which gives

GR,p) = GOR,p)+GY(R,p)+.. (67)
-1 -
(1) ) 0 [G(O)} ~(0) J [G(O)} ~(0)
~ — ~ 1
i 260 aleo]
() G L)
2 0z apg

Here GO (R, p) is given by Eq. (25). Let us substitute Eq. (67) into Eq. (66). Assuming, that G is slowly
varying we substitute > by ffooo dz. This way we come to the integral of the form

1 ~ -~ =~ ~
Ns(p1) = 342 /Tr[G(O)d(G(O))*1 A dG0) /\d(G(O))fl (68)

Here the integral is over the surface C®S'®R!, where S' corresponds to the values of p3 while R! corresponds
to the values of z. Since there are no poles of G inside the bulk we are able to deform this hyper - surface
into the form of two hyper - planes (p2, p3, p4) placed at z = +e, which gives the value of N3(p1).

In turn, for the case of noninteracting system with G = iw — H we have

g =iw— Z5n(p1,p2)|n,pl,p2><n,p1,p2|

n

where the sum is over the eigenstates of the Hamiltonian enumerated by index n and the values of conserved
momenta pi,ps. Let us denote G,, = iw — £,(p1,p2). Then Eq. (66) may be represented as

1 _
NiCopr) = 5 3 /C GdGt (69)

This expression gives the sum of the chiralities of the states enumerated by n. Only those states which are
localized at the boundary may have gapless excitations because according to our supposition in the bulk of
the system there are no poles of the Green function. Thus we come to conclusion, that A3(p1) enumerates
the gapless boundary modes, and its sign corresponds to their chirality. Notice, that the similar conclusion
is given in the lattice theory of domain - wall fermions (see, for example, [14]).

Now let us describe the dependence of this pattern on p;. N3(p1) cannot depend on p; because we
assumed, that there are no poles in the bulk. Therefore, we come to the conclusion, that the topologically
protected gapless surface states exist, which form lines in momentum space (the dispersion does not depend
on p1). The number of such Fermi lines is equal to the jump of N3 accross the boundary and is related to the
jump of M} = [dp1N3(p1). The generalization of this consideration to the values of M; for arbitrary [ is
straightforward. The generalization to the case of the Brillouin zones of arbitrary form is more involved and
will be omitted here. It is worth mentioning, that in section 10 we will see, that for the Weyl semimetals,
when there are Fermi points in the bulk, the described above boundary Fermi lines become the Fermi arcs
connecting the bulk Fermi points.
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9. AQHE in the toy models of 3 + 1 D insulators

9.1. Model 11

In this section we will consider the two particular examples of the 3 + 1D insulators, for which the
topological invariant M) may be calculated using the technique developed above. Let us start from the
model with the Hamiltonian

H = sinp; 0% —sinpy ot — (m® — ~cosps + Z (1 —cosp;))o® (70)
i=1,2

For v < 1, and m(® ¢ (—2 + 7, —v) we deal with the insulator. Here we use the system of units, in which
the lattice spacing a is equal to unity. Therefore, lattice momentum pj is dimensionless. The 2 x 2 Green
function has the form G~! = iw — H(p) while the Brillouin zone has the form of torus. We will be using the
following expression for the Green function:

—i03G™  =sinp; o' +sinpy 0 +wo® —i(m Y — ycosps + Z (1 —cosp;)) (71)
i=1,2
We have
o (p) (m©® — ~ycosps + > i1.2(1 —cosp;))
g4\P) =
\/(m(o) —ycosp3 + D ;g o(1 —cosp;))? + sin’ p; + sin® py + w?
and
() = 0, PEIM (w— toc)
§4(P) = _15 gl(p) =0 (k: 15233)5 pP= (0507p350)a P3 S (_ﬂ-aﬂ-)
g4(p) = 17 g’b(p) =0 (k: 17253)7 pP= (Oaﬂ-vp?no)a D3 S (771-77()
g4(p> = 17 g’b(p) =0 (k: 17253)7 p= (W,O,pg,o), D3 S (771-77()
§4(P) - 17 gz(p) =0 (k = 17 2) 3)7 pP= (7T, ™, P3, 0)) p3 S (_7T77T) (72)
Therefore M} = M5 = M/} = 0 while
2 27 2T 2T
L= (-1 - (-1)-==2
My = o) - (1) - = (73)

One can see, that we deal with the AQHE current

1 .
-k - ]k3E‘ 74
JHall = 5 € J (74)

We restored the value of the lattice spacing a in this expression in order to keep the track of dimensionality.
Notice, that the same expression may be read off from Eq. (A.5) of [58].
Eq. (50) represents the topological invariant if on the boundary of momentum space

Tr ({[6G711G]}dG ™" AdG) =0 (75)

This follows from Appendix B. The interactions, that keep Eq. (75) cannot affect the value of the AQHE
current until the phase transition is encountered.

9.2. Model 12
Our second example corresponds to the system with the 4 x 4 Green function of the form of Eq. (57)
with

. . 0] .
g1(p) = —sinps, ga(p) =sinp1, g3(p) = g5 +sinpy

w, gs(p)=m® + Z (1 —cosps), b=const (76)

a=1,2

N
=
—
T
=
I
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This system is able to describe qualitatively a certain class of topological insulators [59]. Depending on
the identification of matrices o® entering matrices v* of Eq. (57) with the operators of spin, isospin, or
Bogolyubov spin, Eq. (76) may describe different classes of topological insulators, including those with
broken time reversal symmetry and/or broken particle - hole symmetry. We assume, that the parameters

entering the expression for the Green function satisfy gé ) > 1, m© > g(o) — 1 while

Vo + 17 + o) <

and

Vi =17+ O 22>
We will use Egs. (63) and (64). Let us denote

gi=92. 9p=—91, 5= g, g£=$( g%(p)+g§(p)ib(p)) (77)

’
and g = Z—’% where ¢' = /3>, 5 34[9%]>. Then we have

\/(géo) +sinps)? + (Mm@ + Zi:1,2(1 —cosp;))2+b

g30 +sinps)? + (Mm@ + > iz10(1 —cosp;))? + sin? p1 + sin® py + w?

The above mentioned ranges of parameters guarantee, that

) = 0, pedIM (w— +0)
ga(p) = -1, gi(p)=0 (k=1,2,3), p=(0,0,p5,0), p3€ (-mm)
gs(p) = F1, 4i(P)=0 (k=1,2,3), p=(0,7ps0), ps€(-mm)
gs(p) = F1, gi(P)=0 (k=1,2,3), p=(m0,ps5,0), ps€(-mm)
g:(p) = F1L, gi(p)=0 (k=1,23), p=(mmps0), ps€(-m7) (78)
We are able to use Eq. (63) if Eq. (62) is fulfilled at w — +oo. This can be checked directly. We find,
that again M} = M}, = M) = 0 while
My = T BT T —on (79)
As well as for the considered above system with the 2 x 2 Green function we deal with the AQHE current
Jtran = ﬁ * B, (80)

(Here a is the lattice spacing.)

As it was mentioned above, the nontrivial topology in the bulk of the topological insulators, which
possess the AQHE, manifests itself in the appearance of the surface Fermi lines. Let us suppose, that the
given insulator sample has the cubic form. Then the Fermi lines appear on the boundaries that belong to
planes (xz) and (yz). Those Fermi lines are placed at p = (0,0, p3,0), ps € (—m, 7). On the boundaries
that belong to (xy) plane there is the Fermi point at p; = ps = 0. This pattern may easily be derived using
the Wigner transform of the Green function GO (R, p), which depends on coordinate denending parameter
b(R). It is assumed, that this parameter vanishes when we approach boundary.

10. AQHE in the toy models of 3 + 1 D Weyl semimetals

10.1. Model W1
Let us extend the above consideration to the models of Weyl semimetals. First, let us start from the toy
model of Weyl semimetal with the Green function G~ = iw — H(p) and the Hamiltonian of the form

H =sinp; 02 —sinpy o' — (m® — cosps + Z (1 —cosp;))o® (81)

1=1,2
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This is the modification of the model I1 considered above. For m(®) € (0,1) the system contains the two

Fermi points
Ky = (0,0,£8,0), f=arccosm (82)

Although the Green function contains singularities, the integral in Eq. (50) is convergent as we will see
below. To be explicit, we first integrate over the momentum space with the small vicinities of the poles
subtracted, and then consider the limit, when those vicinities are infinitely small. We will be using the
following expression for the Green function:

—i03G™  =sinpy ot +sinpy 0 + wo® —i(m Y — cosps + Z (1 —cosp;)) (83)
i=1,2
We have
34(p) (m© —cosps + 3, o(1 —cosp;))
94(P) = ;
\/(m(o) —cosp3 + Y ;g o(1 —cosp;))? + sin? p; + sin? py + w?
and
gs(p) = 0, peoM
g4(p) = 715 gz(p)zo (k:15273)5 p:(0507p350)7 D3 S (7575)
g4(p) = 17 g’b(p) =0 (k:17253)7 p= (0705p350)7 b3 S (77T575)U(/65ﬂ-)
g4(p) = 1a gz(p) =0 (k = 13253)7 pP= (Ovﬂap&o)a p3 € (_ﬂ.a _7T)
g4(p) = 17 g’b(p) =0 (k = 17 25 3)7 p= (ﬂ', 05p35 0)7 D3 S (77{-5 77-(-)
g4(p) = 17 g’b(p) =0 (k - 17 25 3)7 p= (7r77TaP37 0)5 D3 S (771-7 771-) (84>
Therefore M} = M5 = M/} = 0 while
2r—28 28 27 27 27
L= -4 (1) - (-1)—-—=—=2
M, L T T ) - () - o =2 (55)
Thus we come to the expression for the AQHE current
. B
.]Ik{all = 5.2 EJkSEjv (86)

2m?

From the above expression it is obvious, that the contributions of all zeros of g, (k = 1,2,3) listed in Eq.
(84) are important. Nevertheless, our result coincides with the one of the naive low energy effective field
theory [42]. The coefficient in Eq. (90) has also been calculated using the technique of Berry curvature in
[56].

It is also worth mentioning, that in the particular case of the Weyl semimetal, when the Green function
contains poles Eq. (50) is not the topological invariant. It still gives the AQHE current, though. But we
should remember, that turning on interactions we change the value of Mj , thus leading to the continuous
renormalization of the value S that marks the position of the Fermi point. Notice, that even in the presence
of a pole Eq. (50) remains invariant under those continuous changes of the Green function, which do not
alter the positions of the Fermi points and for which

/ Tr ({[6G1]G]}dG A dG) = 0

where the integral is taken along the boundary of the small vicinity of the pole. This follows immediately
from the derivation of Appendix B.

It is worth mentioning, that the first order in the derivative expansion does not allow to calculate the
derivative of electric current. That’s why we cannot simply differentiate Eq. (90) in order to calculate such
a derivative. Both dependence of 8 on R and the second order in the derivative expansion should be applied
to calculate 95 (that should vanish in equilibrium due to the gauge invariance).
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10.2. Model W2

Let us consider the more complicated model of Weyl semimetal, which represents the deformation of the
insulator model I2 with the Green function of the form of Eq. (57). We imply, that the functions g, and
b entering Eq. (57) have the form of Eq. (76). But we assume different relations between the parameters
of the model. Now we require, that the parameters entering the expression for the Green function satisfy

g > /B2 = (m©®)2 > gl — 1> 0 while

V(0 +sin )2 + (m®)2 = b

\/(gLE)O) + Sil’lp3)2 + (m(O))Q < b) p3 € (ﬁ—aﬁ‘i‘)a

\/( ¢ )+s1np3) +(m@)2> b, p3 € (~m,L-)U(By,m)

The given model contains the two Fermi points
K:t = (Ovoaﬂiv()) (87>

Instead of Eq. (78) we have

dgip) = 0, peIM (w— +x0)

gip) = -1, Gip)=0 (k=1,2,3), p=1(0,0,p3,0), pse(B-,B:)

gp) = F1, gp)=0 (k=1,2,3), p=1(0,0,p3,0), p3e (—mB_)U(By,m)

) = F1, gp)=0 (k=1,2,3), p=(0,mp30), p3€ (-m7)

gai(p) = F1, gp)=0 (k=1,2,3), p=(m0,p3,0), p3€ (-m,7)

) = F1, gp)=0 (k=1,2,3), p=(mmp30), pse(—mmn) (88)

In Eq. (50) we represent M, as an integral over the component p; of the topological invariant of the 2+ 1
D system, which depends on p; as on parameter. In the presence of the pole the integral is ill - defined at the
positions of poles and requires regularization. We consider the integration over p; with the small vicinities
of the [ - th coordinates of the poles subtracted. For each value of p;, which does not belong to this interval
the integral over the other components of p is well - defined. Therefore, we are able to use Eq. (63) if Eq.
(62) is fulfilled at w — Foo (which may be checked easily). The values of M/, | are given by the integrals

in Eq. (55) over dp;, where as it was explained above, the small vicinities (p§ “) _ ¢ pga) + ¢€) of the j - th

coordinates of the poles p{»), a = 1,2 are subtracted. At the end of the calculations we take the limit ¢ — 0.
This way we find, that M} = M} = M) = 0 while

2m — — B — 6 2 2 2
Mfo, _ _2r (52+ B )+ (B+ 25 )_g(_l)_g(_l)_gz(ﬁJr_ﬁ_) (89)
The AQHE current reads
jIk{all = % €jk3Eja (90)

In order to illustrate how the bulk - boundary correspondence works here, let us consider what happens to
the Fermi points when we aproach the boundary of the sample. This approaching is described by the Wigner
transform of the Green function G(©) (R, p), which depends on the coordinates R through the dependence
of parameter b on R. We assume, that out of the bulk of the semimetal b(R) = 0, and this parameter is
increased inside the semimetal. In this situation the derivative expansion in the presence of external electric
field becomes more complicated near boundary than inside of the bulk. However, we do not discuss here the
corresponding expression for the electric current. As for the Fermi points, one can easily see, that the two
Fermi points K4 approach each other, and finally annihilate while we are aproaching boundary. Since this
process occurs in the small vicinity of the boundary, it results in the appearance of surface states of zero
energy that connect the two bulk Fermi points. These surface states are the Fermi arcs.
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11. The absence of bulk chiral magnetic current

The conventional expression for the CME current reads j¢&,,; = £5% €% A;;, where ps is the chiral
chemical potential. One may expect, that such an expression will follow from Eq. (30): we need to substitute
A = 0 into Eq. (32) in the linear response approximation. Then one might expect that My = us for the
system of a single massless Dirac fermion and a similar expression may take place for the other systems with
gapless fermions (or, nearly gapless fermions).

Let us consider the situation, when vector gauge field Aix(R) has the nonzero components with k =
1,2,3 that do not depend on imaginary time. There may exist many different definitions of ps. The most

straightforward way is to consider the following expression for the fermion Green function:
-1
G(p) = (Z Y gk (P) + iv*y s — im(p)) (91)
k

In the limit of vanishing chiral chemical potential it is reduced to the form of Eq. (2), where v* are Euclidean
Dirac matrices while gi(p) and m(p) are the real - valued functions, k = 1,2,3,4. We define 4° in chiral
representation as diag(1, 1, —1, —1). We may substitute G of Eq. (91) into Eq. (30) instead of G(R, p) while
dealing with the linear response to the external magnetic field.

We will apply our methodology to the investigation of the theory with compact Brillouin zone. We imply,
that momentum space can be represented as R! ® Q or S* ® €, where Q is the compact 3D Brillouin zone.
First, we assume, that the Green functions do not have zeros or poles, which means, that the fermions
are gapped (massive). However, at the end of the calculations the limit of vanishing mass may always be
considered. We need, though, that the inclusion of the chiral chemical potential does not produce poles in
the Green function. For the Green function of the form of Eq. (91) this may be proved as follows. The poles
of the Green function appear as the solutions of the following equation

G(0) + (s £ /92(0) + 63(0) + 63(0)) +m2(p) =0 (92)

One can easily see, that if functions m(p) and g4(p) never vanish simultaneously, then the chiral chemical
potential of Eq. (91) cannot lead to the appearance of the poles” of G. To illustrate this general pattern let
us consider the Green function for the toy model of topological insulator inspired by the lattice regularization
with free Wilson fermions:

gi=pi=w, gr(p)=sinpy(k=1,23), m(p)=m®+ > (1-cosp,) (93)
a=1,2,3

One can see, that for the positive values of bare mass parameter m(®) the values of m(p) do not vanish. My
is topological invariant, i.e. it is robust to any variations of the Green function as long as the singularities
are not encountered (for the proof see Appendix B). The introduction of chiral chemical potential is the
particular case of such a variation. Actually, for the Green function of the form of Eq. (2) M4 = 0, which
may be proved easily using the properties of gamma matrices. Therefore, if the nonzero value of us does not
cause the appearance of the poles of the Green function, then My = 0 for us # 0.

The mentioned above consideration is sufficient to prove, that there is no CME in the lattice regularized
relativistic quantum field theory because the Wilson fermions with m(®) > 0 represent the typical lattice
regularization. However, in the solid state systems the situation may be different from the one considered
above. This may be illustrated by the model of Eq. (93) for m(®) € (=2,0). The corresponding value of
the topological invariant N introduced in [19] is nonzero. In this case the nonzero value of s causes the
appearance of the Fermi lines. Those Fermi lines appear as the solution of the system of equations

3+ m©® = COS P1 + COS P2 + COS p3

lus| = \/Siﬂ2 p1 + sin® pa + sin® p3 (94)

7This is in contrast to the case of the ordinary chemical potential, in which the poles of the Green function may appear if
chemical potential exceeds the gap.
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This system has the nontrivial solution at the sufficiently large value of ps. This manyfold of the zeros of
the Green function is marginal because it has the dimension smaller, than that of the ordinary Fermi surface
caused by the finite values of the ordinary chemical potential.

The value of My is given by

My = f% / Ny (), (95)
- 1 o
Ni(w) = mﬁz‘jmTr /ngp(gag 1)
(gaf'gfl) (gakg*) (96)

For w # 0 the quantity N (w) is the topological invariant. We may perform the deformation, which brings
s to zero. For us = 0 we may easily prove, that N3(w) = 0. Therefore, at w # 0 the value of N3(w) vanishes
at nonzero values of us. The integral over w in Eq. (95) is to be regularized as

/=nmﬁo(/_:+/f) (97)

The limit € — 0 gives My = 0. The same conclusion may be drawn for the finite temperature T', when
instead of the integral over w the sum over the Matsubara frequencies w,, = T'7(2n + 1) # 0 appears. At
each value of w,, the expression of Eq. (96) is topological invariant, and therefore it is equal to zero.

One can easily find that the considered above pattern appears in the other noninteracting models of
topological insulators based on Eq. (91). If topology is nontrivial, then the nonzero value of chiral chemical
potential causes the appearance of the Fermi lines. The integral in Eq. (95) is to be regularized through Eq.
(97) and gives vanishing value of M. This proves the absence of the equilibrium CME in such systems.

The above consideration referred to gapped fermions. The Dirac semimetals may be considered as the
limiting case of vanishing (or, better to say, of very small) value of the gap. This limit does not change the
above conclusion about the absence of the CME. Moreover, following [22] we may consider the system of
gapless fermions from the very beginning. In the non - interacting system the poles of the Green function
appear at w = 0 only. This requires the same regularization of Eq. (97) for the expression of M, and gives
rise to the same conclusion on the absence of CME.

12. Conclusions and discussion

In the present paper we demonstrated how momentum space topology may be applied to the analysis
of the anomalous transport related to the non - dissipative electric current. We concentrate on the linear
response of electric current to external electric and magnetic fields. The response to external electric field
leads to the appearance of the quantum Hall effect while the response to external magnetic field was associated
in certain publications with the equilibrium chiral magnetic effect.

We show that the corresponding currents are proportional to the momentum space topological invariants.
Our methodology is based on the derivative expansion applied to the Wigner transform of the two - point
Green functions. We introduce the slowly varying external gauge field directly to the momentum space
formulation of the lattice models of solid state physics and of the lattice regularization of continuous QFT.
In this representation the external gauge field appears as a pseudo - differential operator A(idp). This way
of the incorporation of the external field to the theory is not useful for its numerical simulations, but is
convenient for the analytical derivations. As it was mentioned above, the response of electric current to
external field strength is expressed through the topological invariant in momentum space. This relation
allows to describe the anomalous quantum Hall effect both in the 241 D and in the 3+ 1 D systems. First
of all we reproduce the conventional expression for the 2 + 1 D Hall conductivity through the topological
invariant 3 (in the classification of [9]). It is demonstrated, how this invariant may be calculated in practise
in the systems with the 2 x 2 Green function. Besides, we reproduce the conventional expression of the 2 + 1
D Hall conductivity through the integral over Berry curvature [23, 24].

Next, we extend our consideration to the 3 + 1 D models. We describe the way to calculate the corre-
sponding topological invariants for the wide class of systems with 2 x 2 and 4 x 4 Green functions (including
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those with the broken time reversal symmetry). This method is illustrated by the consideration of the two
particular toy models of topological insulators. We demonstrate, that the resulting Hall current is pro-
portional to one of the vectors of reciprocal lattice (which was also proposed in [58]). We also show, how
the bulk boundary correspondence may be ivestigated using the Wigner transform of the Green functions.
It is pointed out, that the insulator state, which admits AQHE is accompanied by the appearance of the
topologically protected surface Fermi lines incident at the boundary of the insulator.

Further, we consider the 3 +1 D Weyl semimetals. The two toy models of Weyl semimetals with the
2 x 2 and 4 x 4 Green functions are investigated in details. The conventional expressions for AQHE currents
obtained earlier using the effective low energy field theory [39] are reproduced in both cases. Our findings
here are in line with the recent results on AQHE reported in [49, 56]. We also briefly discuss how the
surface Fermi arcs connecting the bulk Weyl points manifest themselves on the language of the Wigner
transformation of the Green functions.

Our analysis of the equilibrium chiral magnetic effect demonstrates that the corresponding topological
invariant entering the expression for the CME current does not depend on the value of chiral chemical
potential for the systems with compact Brillouin zone and without poles or zeros of the Green function.
Therefore, we conclude, that the gapped solid state systems do not possess the equilibrium bulk chiral
magnetic effect. The same conclusion refers to the semimetals, which may be considered as the insulator
with very small gap. Such a limit does not change the independence of the mentioned above topological
invariant on chiral chemical potential even when the value of s exceeds the gap. Thus, we confirm the
recent numerical results [33, 34, 34, 35, 36], which led to the same conclusion.

To conclude, in all considered cases the proposed methodology reproduces the known results on the
AQHE and CME currents. However, the class of models analysed here is more wide. Unlike the more
popular method, which utilizes Berry curvature, we use the topological invariants composed of the Green
functions [9]. This allows us to investigate the topological contribution to electric current in the interacting
systems, when the Green function does not have the simple form ™! = iw — H with the Hamiltonian H and
imaginary frequency w. We relate both AQHE and CME currents to such invariants composed of the Wigner
transform of the Green functions. This representation is unique and allows to describe both bulk AQHE and
the bulk - boundary correspondence. The main advantage of the proposed methodology is the possibility
to describe systematically the anomalous transport in the wide class of models, including those with the
interactions turned on. The proposed method of the calculation of the mentioned topological invariants
may, in principle, be extended to the more complicated systems.

The author kindly acknowledges useful discussions with G.E.Volovik and M.N.Chernodub. The part of
the work of M.A.Z. performed in Russia was supported by Russian Science Foundation Grant No 16-12-10059
(the major parts of Sections 7, 9, and Appendices B and C 8.) while the part of the work made in France
(the remaining sections) was supported by Le Studium Institute of Advanced Studies.

Appendix A. Wigner transformation of the Green function

Here we repeat the description of the Wigner transformation in momentum space proposed in [22]. Let
us consider the d + 1 = D dimensional lattice model of solid state physics (or the lattice regularization of
the continuum QFT) with the Green function G(p1, p2), which obeys equation

Q(i0p,, P1)G(P1, P2) = |M[6P) (p1 — p2) (98)

Here Q is Hermitian operator - valued function. Wigner decomposition in momentum space takes the form

D
G(R,p) = / ‘f MIT ¢PRG(p+ P/2,p — P/2) (99)

8The parts mentioned here are devoted to the two subjects: the proof that the considered topological invariants are inde-
pendent of the smooth deformations of the systems, and to the calculation of the topological invariants for the models with the
Green functions of the form of Egs. (52), (57).
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Below we will prove that the Wigner transform of the Green function obeys Groenewold equation
i = — ~
OR, p)et(InTr-TrTnG(R, p) = 1 (100)

Here Q is the Weyl symbol of operator Q, that is the function of real numbers rather than of the operators.
In [53, 54] it is defined as

O(R,p) = /dDKdDPeiPRa(p —P/2-K)Q(idk,K)d(p + P/2 — K) (101)

The derivation of Eq. (100) was given, for example, in [54].

The further consideration will be based on the different definition of Weyl symbol. Its equivalence to that
of Eq. (101) follows from the fact that it obeys the same equation Eq. (100). To be explicit, we determine
relation between the function Q(r,p) (of real - valued vectors r and p) and the function Q(f,p) (of the
operators p and © = iJp) through equation

/ d°XdPY f(X,Y) Q(—idy +idx,X/2+Y/2) h(X,Y)
_ /dDXdDY F(X, Y)Q(i&x +idy, X2+ Y/2) h(X,Y) (102)

which is valid for arbitrary functions f(X,Y) and h(X,Y) defined on momentum space X,Y € M. The
derivatives 3)( and Oy inside the arguments of Q act only outside of this function, i.e. %y acts on
F(X,Y) while 3)( acts on h(X,Y). At the same time the derivatives without arrows act as usual operators,
i.e. mnot only right to the function Q, but inside it as well. Notice, that m = Oy + 0x and

m = 0x — Oy. We may rewrite Eq. (102) as
/dDXdDY FX,Y)Q(—i 0y +idx,X/2+Y/2) h(X,Y)
— -2 [@PQiK 1(Q+ K.Q - K)O(i0a. Q) H(Q + K.Q - K) (103)

The given correspondence between operator Q and its symbol Q takes the simple form in certain particular
cases. For example, if @ = (p — A(£))2 = p2 + A2(F) + i(@kAk(f')) — 2A(f)p (recall, that ¥ is operator
equal to idp), then Q = p? + A?(r) — 2A(r)p. Besides, if Q has the form

Q(F,p) = F(p — A(F)) (104)

then
Q(r,p) = F(p — A(r)) + O([0:4;]%) (105)

Here O([0;A;]?) may contain the terms with the second power of the derivatives of A and the terms higher
order in derivatives.

In order to prove Eq. (105) let us represent the function F(p—A(%)) = >, Fi,. i, (Piy — A, (10p))...(pi,, —
A;, (i0p)) as a series in powers of its arguments (F; are Hermitian operators that do not depend on p).

Operator @ is Hermitian, therefore, the operator in the first row of Eq. (103) s(Eould al_s)o be Hermitian.
Suppose, that function Q is expanded in powers of Q = (X +Y)/2 and —i 9y + ¢ Jd x as follows

1.-vln

- = - = — -
Q(—-idy+idx,X/24Y/2) = Z Qi iy gmikr b (T10 vy, ) (=1 0y )Qjy Ry, (10 x,, )(1 0 x,, ) (106)

<_
In this expression inside the first row of Eq. (102) we may be substitute —i 0y, by idy, and igxk by
i0x,. Because the second row in Eq. (102) is symmetric under the interchange of X and Y, we have
Qivoinijrejomikrods = Qki..kyiji...jmsin...in- FOI the same reason Eq. (106) is invariant under the interchange
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X <+ Y. Then the change of ¢ by its Hermitian conjugate ¢ is equivalent to the Hermitian conjugation
of the whole expression. This demonstrates that coefficients ¢, are Hermitian.

Let us suppose, that Q is linear in the derivative of A. The linear term appears as a product of a
certain combination of F and the commutator [py, A(i0p)] = —i(9xA). Therefore, it would lead to the
appearance of imaginary unity in the expression for ¢ .. as a combination of F_, which means that ¢ . is not
Hermitian. Therefore, we come to the contradiction, which proves the non - appearance of the terms linear
in the derivatives of A in the expression for Q(r, p).

Now let us prove Eq. (100). In order to do this let us substitute Eq. (99) into Eq. (100). Argument of
the exponent in Eq. (100) acts on Q as follows:

aPp i
M QR + 3
&PRGQr+P/1p4—P/m (107)

In this expression the derivatives 31, and 311 inside the arguments of Q act only outside of this function,
i.e. on ePRG(p + P/2,p — P/2) and do not act inside the function Q, i.e. on p and R in its arguments.
This gives

P

) (108)

dPPp
1 = zPR o
/|M| Q( Zap+ ap,p+

G(p+P/2,p—-P/2)
Integrating by parts we arrive at

d°’P

P
|M| —)Gp+P/2,p—P/2)=1

ePRO(idp + ap,p+ 5

(Eq. (102 is used.) Next, we take into account Eq. (103) and apply the inverse Wigner transform, which
leads us to Eq. (98).

Appendix B. Topological invariant responsible for the linear response of electric current to
external field strength

Let us consider the following expression for the coefficient entering the linear response of electric current
to external magnetic field:

M, = ~1&n 2e”ler/ d4p(g<9ig—1) (gajg—l) (gakg—l) (109)
M
If M has the form of the product R' ® €, where € is the compact 3D Brillouin zone, while R' is the

imaginary frequency line (or if M = S ® Q, which takes place if the time evolution is discretized), then for
I = 4 we may rewrite this quantity as follows:

My = —%/dp“/%(p“), (110)
/. (4 _ 1 3 i—1 j —1 k-1
Ns') = 3 2ewkﬂr/ﬂdp(gag )(9077") (90" ) (111)

Here for the fixed value of p* we encounter the expression for the topological invariant in the 3D Brillouin
zone. Green function G should be considered here as the function of the 3 arguments p', p?, p> while p* is to
be considered as a parameter.

Notice, that for the Green function of the form of Eq. (2) the value of N3(p?) is equal to zero. One might
naively think, that the deviation of the Green function from the form of Eq. (2) - say, of the form of Eq.
(91) may change the expressions for N3 and My. Below we will demonstrate, that this does not occur as
long as we deal with the compact Brillouin zone and regular Green functions.
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Let us consider arbitrary variation of the Green function: G — G+ dG. Then expression for J\73 is changed
as follows:

ONs = *24?;2 /Tr ({[6G1dG~" + Gd[6G ]} A GG~ A GdG 1)
= *24?;2 /Tr ({-G[6G711GdG~" + Gd[6G |} AGdG ™ A GdG™)
= 243;2 /Tr ({[6G71[dG) + d[6G~11G} A dG™" A dG)
- /dTr ({561161}dG~" A dG) = 0 (112)

That’s why we proved that N3 and My are the topological invariants.

In the similar way it may be proved, that M; is the topological invariant for [ # 4 if M = R® ), and G
tends to zero sufficiently fast at w = p* — +o0o0. Also it may be easily found that for any ! the value of M;
is topological invariant if we deal with any compact momentum space.

Appendix C. Calculation of A3 for the 2 + 1 D systems

In this section we demonstrate how the value of the topological invariant N may be calculated. Below
we calculate N3 for the case, when the Green function has the form

G (p) = i0* (Y o gu(p) — iga(p)) (113)
k

k

where o* are Pauli matrices while gi(p) and g4(p) are the real - valued functions, k = 1,2, 3. Let us define

Hp) = (Yo" ak(p) — iu(p) ) (114)
k

where g, = %, and g = />, _1 55407 Then

~ 1
Ny = ———Tr [HAHT ANdHNIHT
2472

_ 1 + +
= 247T2Tr/’H dH N dHT A dH

1 5 [ ~ -
= 7487T2Tr'y /HdHAdH/\dH (115)

where
H(p) = v*gk(p) = idiag (H, —H™*)y* (116)
k=1,2,3,4

and y* are Euclidean Dirac matrices in chiral representation, 7 in chiral representation is given by diag(1,1, —1, —1).
This gives

. 1 . o . .
Ny = We”kl /gidgj A dgx N dg (117)
Let us introduce the parametrization

gs =sina, §; = k;cosa (118)
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where i = 1,2,3 while >, k% = 1, and « € [—7/2,7/2]. Let us suppose, that gs4(p) = 0 on the boundary of
momentum space p € OM. This gives

8 1
N3 = —Qe”k / coslak; da A dk; A dky,
47'(' M
1 ik 1 3
= /M ki d(/2 + 3sin2a) A di; A di

1 .. 1
= —) ¢k / ki (a/2 + —sin2a)dk; A dky, (119)
; A7 Joaqm) 4 ’

In the last row Q(y;) is the small vicinity of point y; of momentum space, where vector k; is undefined. The
absence of the singularities of gy implies, that & — +7/2 at such points.

This gives
. 1 )
N = -3 ; sign(ga(yi)) Res (y1) (120)
Following [20] we use the notation:
1 N k ~ ~ ~
Res(y) = —e” Gidg; N dgg (121)
8m Joow)

It is worth mentioning, that this symbol obeys >, Res (y;) = 0.
Let us illustrate the above calculation by the consideration of the particular example of the system with
the Green function G=! = iw — H(p), where the Hamiltonian has the form

H =sinp; 0% —sinpy ot — (m© + Z (1 —cosp;))a® (122)
i=1,2
This gives
—i03G™t =sinpy ot +sinpyo? +wo® —i(m® + Z (1 —cosp;)) (123)
i=1,2

The boundary of momentum space corresponds to w = +00. We have

N (m(o) + Zi:Lz(l —cospj))
94(p) = 3 3
\/(m(o) + > i—1.0(1 = cosp;))? +sin® py + sin” py + w?

For example, for m(®) € (—2,0) we have

galp) = 0, pe€eoM
ga(p) = 1, gi(p)=0 (k=1,2,3), p=(0,m0)
ga(p) = 1, gi(p)=0 (k=1,2,3), p=(m0,0)
g4(p) - 15 g’b(p) =0 (k = 17 25 3)7 pP= (ﬂ-vﬂ-a 0) (124)
Therefore, we get immediately
. 1 1 1 1
Ny = 5-5(D)-5(-1)-5=1 (125)

In the similar way N3 = —1 for m(©® e (=4, —2) and N3 = 0 for m(? € (—oo, —4) U (0, o0).
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