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Introduction

The purpose of the present paper is to describe the asymptotic behavior as time tends to infinity of the solutions to reaction-diffusion systems arising in the modelization of reversible chemical reaction with multi-components {A i } 1≤i≤N

α 1 A 1 + • • • + α m A m α m+1 A m+1 + • • • + α N A N (1) 
where m, N, α k , k = 1, ..., N are positive integers with 1 ≤ m < N . Let u k = u k (x, t) be the concentration of A k at position x ∈ Ω ⊂ R n and time t ∈ [0, T ), T > 0 (Ω will be assumed to be open, bounded and with 1 a regular boundary throughout the paper). According to the mass action law (with reaction rates c 1 from left to right and c 2 from right to left) and according to Fick's law for the diffusion, the evolution of u = (u 1 , ..., u N ) is described by the reaction-diffusion system

∂u k ∂t -d k ∆u k = χ k f (u) in Q T = Ω × (0, T ), ∂u k ∂ν ∂Ω = 0, u k | t=0 = u k0 (x) ≥ 0, 1 ≤ k ≤ N, (2) 
where d k > 0, 1 ≤ k ≤ N , ν is the outer unit normal vector and

f (u) = c 1 m j=1 u αj j -c 2 N j=m+1 u αj j , χ k = -α k , 1 ≤ k ≤ m α k , m + 1 ≤ k ≤ N. (3) 
We prove in this paper that "global solutions" on [0, ∞) of ( 2) converge exponentially in L 1 (Ω) as t → +∞ to a well-defined (and unique) homogeneous stationary solution of System (2) (see Theorem 3 for a precise statement). As explained below, this extends to the general situation (2) similar results obtained in case of 3 × 3 or 4 × 4 systems [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Desvillettes | Duality-Entropy Methods for Reaction-Diffusion Equations Arising in Reversible Chemistry, System Modelling and Optimization[END_REF][START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF].

In order to state precisely our asymptotic result (see Theorem 3), let us first recall what is known about the rather difficult question of global existence in time of solutions to [START_REF] Canizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]. Note for instance, that it is not yet understood in dimension n ≥ 3 and for general diffusion coefficients d k ∈ (0, ∞), whether global classical solutions exist for the model quadratic case m = 2, N = 4, α k = 1, that is

f (u) = c 1 u 1 u 2 -c 2 u 3 u 4 !
Global classical solutions do exist for this f in space dimension n = 1, 2 (see e.g. [START_REF] Goudon | Regularity analysis for systems of reactiondiffusion equations[END_REF][START_REF] Prüss | Maximal regularity for evolution equations in L p -spaces[END_REF][START_REF] Canizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]). More generally, global existence is also proved for (2) when the space-dimension n is small enough with respect to the degree of the polynomial f or when the diffusion coefficients d k are close enough to each other (see the discussion in [START_REF] Pierre | Global existence in reaction-diffusion system with control of mass: a survey[END_REF]).

But let us recall what the situation is for a general space-dimension n and general positive d k ∈ (0, ∞) (we assume c 1 = c 2 = 1 for simplicity).

1. If m = 1, N = 2 (that is f (u) = u α1 1 -u α2 1 )
, then global existence of uniformly bounded (and therefore classical) solutions easily follows from the invariance of the rectangles

{(u 1 , u 2 ); 0 ≤ u 1 ≤ M 1 , 0 ≤ u 2 ≤ M 2 } where M α1 1 = M α2 2 .

If

N = m + 1, α N = 1 (i.e. f (u) = m k=1 u α k k -u N )
, then global classical solutions do also exist (see [START_REF] Bothe | Global Wellposedness for a Class of Reaction-Advection-Anisotropic-Diffusion Systems[END_REF]). The same symmetrically holds if

m = 1, α 1 = 1 (f (u) = u 1 - N k=2 u α k k ). 3. If m = 2, N = 3 and α 3 > α 1 + α 2 (i.e. f (u) = u α1 1 u α2 2 -u α3 
3 ), then again global existence of classical solutions is proved in [START_REF] Laamri | Global existence of classical solutions for a class of reactiondiffusion systems[END_REF]. But the same result is not known if

α 3 ≤ α 1 + α 3 .
Besides those just mentioned, no more result of global classical solutions is proved to be valid for any space dimension n and any d k ∈ (0, ∞).

If again

m = 2, N = 4, (f (u) = u 1 u 2 -u 3 u 2 )
, then global so-called weak solutions are proved to exist (see [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF][START_REF] Desvillettes | Global existence for quadratic systems of reactiondiffusion[END_REF]). Weak solution means that f (u) ∈ L 1 ([0, T ] × Ω)) for all T > 0 and equations (2) are satisfied in the sense of distributions or in the sense of semigroups (see [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF][START_REF] Desvillettes | Global existence for quadratic systems of reactiondiffusion[END_REF][START_REF] Pierre | Global existence in reaction-diffusion system with control of mass: a survey[END_REF] for precise definitions).

5. More generally, if for some reason, the nonlinearity f (u) is a priori bounded in L 1 ((0, T ) × Ω) for all T > 0, then global weak solutions do exist (see [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF][START_REF] Pierre | Global existence in reaction-diffusion system with control of mass: a survey[END_REF]). Thanks to quadratic a priori estimates valid for these systems, this is for instance the case if

N = m + 1, f (u) = m k=1 u α k k -u 2 N ; N = m + 2, f (u) = m k=1 u α k k -u m+1 u m+2 6.
In the general situation of System (2), existence of global weak solutions in the above sense seems to be an open problem. No counterexample is known either. On the other hand, global existence of still weaker solutions is proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. They are called renormalized solutions and defined in the spirit of the famous renormalized solutions by Di Perna-Lions for the Boltzmann equation. A definition of such a solution for systems like (2) is introduced in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] and global such solutions are also proved to exist in this same paper [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF].

We will not need the definition of such renormalized solutions here. We will only use the fact that they are obtained as limit of solutions of a standard approximate "regularized" system. And we will directly prove that any such limits are exponentially asymptotically stable. It is actually interesting to describe precisely the asymptotic behavior of these solutions without knowing much about them.

Let us consider the approximate solution

u ε = (u ε k (x, t)) to τ k ∂u ε k ∂t -d k ∆u ε k = χ k f ε (u ε ) in Q T = Ω × (0, T ) ∂u ε k ∂ν ∂Ω = 0, u ε k | t=0 = u ε k0 (x) ≥ 0, 1 ≤ k ≤ N (4) 
where

τ k ∈ (0, ∞), 1 ≤ k ≤ N and f ε (u) = f (u) 1 + ε|f (u)| , u ε k0 = inf{u k0 , ε -1 }, u k0 ≥ 0, 1 ≤ k ≤ N. (5) 
The introduction of the τ k = 1 is for later purposes (see Section 2.3). Note that |f (u)| ≤ 1/ . Thus, given (u k0 ) ∈ L 1 (Ω) N , there exists a unique classical solution to (4)-( 5) globally in time. Thanks to the quasipositivity of the nonlinearity, that is

χ k f (u) ≥ 0, f or all u ∈ [0, ∞) N with u k = 0, 1 ≤ k ≤ N,
this solution u is nonnegative. Then, the following convergence result holds.

Proposition 1 [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] Assume u k0 log u k0 ∈ L 1 (Ω) for 1 ≤ k ≤ N . Then each {u ε } with ε ↓ 0 admits a subsequence converging in L 1 loc ([0, ∞); L 1 (Ω) N ) and a.e. to some u ∈ L ∞ ([0, ∞); L 1 (Ω)) N such that

u k log u k ∈ L ∞ loc ([0, ∞); L 1 (Ω)) f or all 1 ≤ k ≤ N.
Remark 2 This proposition is essentially proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. We will give the needed extra details at the beginning of next section. When τ k = 1 for all k, the limit u is a weak solution of System (2), in the sense defined in the point 4 above, as soon as f (u) ∈ L 1 loc ([0, ∞); L 1 (Ω)) (see [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] again). It is only a renormalized solution in the sense of [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] in general.

The conservation properties (where -Ω denotes the average

|Ω| -1 Ω ) - Ω τ i u i (t) + τ j u j (t) = - Ω τ i u i0 + τ j u j0 f or all 1 ≤ i ≤ m < j ≤ N, (6) 
hold, thanks to the homogeneous Neumann boundary conditions and they are preserved at the limit for u, at least a.e. t ∈ [0, ∞). For w : Ω → R, we will throughout denote

w := - Ω w.
Now the main result of this paper is the following theorem.

Theorem 3 Let u be as in Proposition 1. Assume moreover that

u i0 + u j0 > 0 f or all 1 ≤ i ≤ m < j ≤ N. (7) 
Then, there exists C, a > 0 depending only on u 0 L 1 (Ω) N and the data such

that u(•, t) -z L 1 (Ω) N ≤ Ce -a t , ∀t ≥ 0 ( 8 
)
where z = (z j ) 1≤j≤N ∈ (0, ∞) N is the unique nonnegative solution of

f (z) = 0, τ i z i + τ j z j = τ i u i0 + τ j u j0 f or all 1 ≤ i ≤ m < j ≤ N. (9) 
The same conclusion would actually hold for any limit u of adequate approximate solutions of System (2), and not only for the solutions of the specific system (4), ( 5): this is discussed later in Remark 9.

The positivity condition ( 7) is not restrictive as explained in Section 5.

The asymptotic result of Theorem 3 has already been proved in the two particular situations of the points 3 et 4 above for 3 × 3 or 4 × 4 specific systems (see [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Desvillettes | Duality-Entropy Methods for Reaction-Diffusion Equations Arising in Reversible Chemistry, System Modelling and Optimization[END_REF][START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF]). As in these papers, the proof is based here on the use of the entropy functional defined as follows. Let

E(w | v) = - Ω v Φ w v dx, Φ(s) = s(log s -1) + 1 ≥ 0, ∀ s > 0, (10) 
where w, v are measurable nonnegative functions (with v(x) 2 + w 2 (x) > 0 a.e. x ∈ Ω). This entropy is extended to the vector valued functions u =

(u k ) 1≤k≤N , z = (z k ) 1≤N as E(u | z) = N k=1 τ k E(u k | z k ). ( 11 
)
We will more simply write

E(w | 1) = E(w), E(u) = N k=1 τ k E(u k ), E(z) = k τ k E(z k ). ( 12 
)
The main point is to prove that Proposition 4 With the notation and assumptions of Theorem 3

d dt E(u(t) | z) ≤ -2a E(u(t) | z), (13) 
in the sense of distributions in (0, ∞).

By Proposition 1, E(u(t) | z) is bounded for t near 0 (say by C 0 ). Therefore (13) implies E(u(t) | z) ≤ C 0 e -2a t , ∀ t ≥ 0. (14) 
We then apply a Cziszár-Kullback type inequality, namely (see Lemma 10)

u(t) -z L 1 (Ω) N ≤ C E(u(t) | z),
which implies our main result [START_REF] Desvillettes | Global existence for quadratic systems of reactiondiffusion[END_REF].

Let us now recall the strategy to prove the main inequality [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF]. Assume for simplicity that, in the definition (3) of f and χ k , we have

c 1 = c 2 = 1 = α k , ∀ 1 ≤ k ≤ N. (15) 
Actually, we will see later that there is no loss of generality when considering this specific case (see Section 2.3). Then, if u is a solution of (2), we have, at least formally

d dt E(u k (t)) = - Ω log u k ∂ t u k = - Ω -d k |∇u k | 2 u k + χ k log u k f (u).
This implies that for

E(u) = N k=1 E(u k ) (since here τ k = 1 for all k) d dt E(u(t)) = -D(u(t)), (16) 
where

D(u) = 4 N k=1 d k - Ω |∇ √ u k | 2 +- Ω log m k=1 u k -log N k=m+1 u k m k=1 u k - N k=m+1 u k . ( 17 
)
Thanks to the definition of z, as proved in Lemma 7,

E(u(t) | z) = E(u(t)) -E(z) so that d dt E(u(t) | z) = d dt E(u(t)). (18) 
Now, Proposition 4 will be a consequence of the following lemma.

Lemma 5 Assume [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion sytems with nonlinear diffusions and L 1 data[END_REF]. With the notation and assumptions of Theorem 3, the following holds

D(u(t)) ≥ 2a E(u(t)|z), (19) 
in the sense of distribution on (0, ∞).

It is now clear that combining ( 16), ( 18) and (19) yields Proposition 4, at least under Assumption [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion sytems with nonlinear diffusions and L 1 data[END_REF] (and this will be general).

We prove in Section 2.3 why working with the particular case ( 15) is sufficient. The derivation in ( 16) is indeed very formal since here u is only obtained as the limit of regular solutions but may not be regular itself. In fact, we will only prove the inequality d dt E(u(t)) ≤ -D(u(t)) which, obviously, is sufficient to deduce inequality [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF] in Proposition 4. This will be done in Section 3 where a complete proof of Proposition 4 (and therefore of our main result of Theorem 3) will be given, assuming Lemma 5.

The proof of Lemma 5 is completely algebraic. It only uses from the solution u(t) that is satisfies the conservation properties

u i (t) + u j (t) = u i0 + u j0 =: U ij , ∀ 1 ≤ i ≤ m < j ≤ N. (20) 
In the particular cases already known (namely in the points 3 and 4 above [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Desvillettes | Duality-Entropy Methods for Reaction-Diffusion Equations Arising in Reversible Chemistry, System Modelling and Optimization[END_REF][START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF]), this part of the proof is rather involved and requires much technicality. A main contribution here is to simplify rather significantly this part of the proof and consequently to be able to reach the general case [START_REF] Canizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]. For instance, we compare the variation of √ u with the square root √ u of its average rather than with the average of the square root. The corresponding computation turns out to be quite simpler and sufficient for the expected estimate of Lemma 13. We also simplify the proof of the estimate from below of f ( √ u) (see Lemma 12)).

Some preliminaries

Let us first give the necessary extra details for the proof of Proposition 1.

Proof of Proposition 1.

Let us check that the results of [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] do apply here. Let us denote U k := τ k u k .

Then System (4) may be rewritten

   ∂U ε k ∂t -d k τ k ∆U ε k = χ k F (U ) 1+ |F (U )| in Q T = Ω × (0, T ) ∂U ε k ∂ν ∂Ω = 0, U ε k | t=0 = τ k u ε k0 (x) ≥ 0, 1 ≤ k ≤ N, (21) 
where, for all

U ∈ R N F (U ) = C 1 m i=1 U αi i -C 2 N j=m+1 U αj j , C 1 = c 1 m i=1 (τ i ) -αi , C 2 = c 2 N j=m+1 (τ j ) -αj .
For this new system, the entropy inequality required in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] holds, namely

N k=1 χ k F (U )[µ k + log U k ] = -F (U ) log C1 m i=1 U α i i -log C2 N j=m+1 U α j j ≤ 0, with µ k = log(C 2 /C 1 )/(N χ k ), 1 ≤ k ≤ N .
The a.e. convergence of U (up to a subsequence) is stated in Lemma 7 of [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. It implies the a.e. convergence of u . Together with the estimate of

U k log U k in L ∞ loc ([0, ∞); L 1 (Ω))
, it also implies the convergence of U k and therefore of u k in L 1 loc ([0, ∞); L 1 (Ω)). Morever, this implies that

u ∈ L ∞ ([0, ∞); L 1 (Ω)) and u k log u k ∈ L ∞ loc ([0, ∞); L 1 (Ω)), ∀ k.

Uniqueness of z.

We now prove the uniquenesse of z as defined in Theorem 3.

Proposition 6 Under the assumptions of Theorem 3, there exists a unique

z = (z k ) ∈ [0, ∞) N such that f (z) = 0, τ i z i + τ j z j = τ i u i0 + τ j u j0 , 1 ≤ i ≤ m < j ≤ N. ( 22 
)
Moreover, z k > 0, ∀ 1 ≤ k ≤ N . Proof. Let U ij := τ i u i0 + τ j u j0 . By (15), U ij > 0 for 1 ≤ i ≤ m < j ≤ N . The relations (22) are equivalent to    z j = [U 1j -τ 1 z 1 ]/τ j ≥ 0, ∀ m + 1 ≤ j ≤ N, z i = [τ 1 z 1 + U iN -U 1N ]/τ i ≥ 0, ∀ 2 ≤ i ≤ m, g(z 1 ) = 0, (23) 
where

g(z 1 ) := c 1 z 1 m i=2 [τ 1 z 1 + U iN -U 1N ] αi τ αi i -c 2 N j=m+1 [U 1j -τ 1 z 1 ] αj τ αj j
.

Let us define

M 0 := min m+1≤j≤N U 1j /τ 1 , m 0 := max 2≤i≤m [U 1N -U iN ] + /τ 1 . Note that U 1N -U iN = U 1j -U ij = τ 1 u 10 -τ i u i0 is independent of j = m + 1, ..., N. It follows that m 0 < M 0 . The function g : [m 0 , M 0 ] → R is continuous,
strictly increasing and satisfies g(m 0 ) < 0, g(M 0 ) > 0. Therefore there exists a unique z 1 ∈ (m 0 , M 0 ) such that g(z 1 ) = 0. For this z 1 , the z i , z j defined by ( 23) are nonnegative and do satisfy the expected relations (22). They are all stricly positive: indeed, if one had z i = 0 for some 1 ≤ i ≤ m, then f (z) = 0 would imply that z j = 0 also for some m + 1 ≤ j ≤ N which is a contradiction with

τ i z i + τ j z j = U ij > 0.

Reduction of System (4) to the case

c 1 = c 2 = 1, α k = 1, 1 ≤ k ≤ N .
Let us show that we may only consider these particular values without loss of generality. Let us check that System (4) is actually a particular case of the next System (24) whose solutions are exactly α k copies of u k , 1 ≤ k ≤ N . Let us define

l 0 = 0, l k = k j=1 α j , ∀ 1 ≤ k ≤ N ; λ -lm := c 1 , µ lm-l N := c 2 , D l := λd k /α k , τ l := λτ k /α k , ∀ l k-1 < l ≤ l k , ∀ 1 ≤ k ≤ m, D l := µd k /α k , τ l := µτ k /α k , ∀ l k-1 < l ≤ l k , ∀ m + 1 ≤ k ≤ N.
And we consider the extended system

         τ l ∂v l, ∂t -D l ∆v l, = χ l g(v )/[1 + |g(v )|] in Q T = Ω × (0, T ), ∂v l ∂ν ∂Ω = 0, g(v ) = lm l=1 v l, - l N l=lm+1 v l, , v = (v l, ) 1≤l≤l N , χ l = -1, v l | t=0 = u k0 /λ, ∀ 1 ≤ l ≤ l m , χ l = 1, v l | t=0 = u k0 /µ, ∀ l m < l ≤ l N . ( 24 
)
By uniqueness, we have

v l, = v l k , , ∀ l k-1 < l ≤ l k , 1 ≤ k ≤ N.

Let us set

u k := λv l k , , ∀ 1 ≤ k ≤ m, u k := µv l k , , ∀ m + 1 ≤ k ≤ N.
Then, we check that u k is the solution of System (4).

We will now always assume that

c 1 = c 2 = 1, α k = 1, ∀ 1 ≤ k ≤ N, ( 25 
)
3 Lemma 5 implies Theorem 3

Let us first note the following identity.

Lemma 7 Under the assumptions of Lemma 5

E(u(t)|z) = E(u(t)) -E(z), ∀ t ≥ 0. ( 26 
)
Proof. The function 10), ( 11), [START_REF] Laamri | Global existence of classical solutions for a class of reactiondiffusion systems[END_REF].

E(• | •), E(• | •), E(•), E(•) are defined in (
The following property is valid for any w ∈ L 1 (Ω) + and w * ∈ (0, ∞):

E(w | w * ) = E(w) -E(w * ) -(w -w * ) log w * . ( 27 
)
We apply this to w = u k (t), w * = z k for all 1 ≤ k ≤ N and we sum over k. Then ( 26) is reduced to checking

N k=1 τ k (u k (t) -z k ) log z k = 0. ( 28 
)
We have by ( 6) and for all > 0

τ i u i (t) + τ j u j (t) = τ i u i0 + τ j u j0 , ∀1 ≤ i ≤ m < j ≤ N.
This is preserved at the limit and gives

τ i u i (t) + τ j u j (t) = τ i u i0 + τ j u j0 , ∀1 ≤ i ≤ m < j ≤ N. (29) 
Since τ i z i + τ j z j = τ i u i0 + τ j u j0 , this may be rewritten as

τ k (u k (t) -z k ) = τ 1 (u 1 (t) -z 1 ) f or all 1 ≤ k ≤ m, -τ 1 (u 1 (t) -z 1 ) f or all m + 1 ≤ k ≤ N, (30) 
Then we write (28) as

N k=1 τ k (u k (t) -z k ) log z k = τ 1 (u 1 (t) -z 1 ) m k=1 log z k - N k=m+1 log z k = 0, using f (z) = 0 (recall that (25) holds so that f (z) = m i=1 z i - N j=m+1 z j ).
We now show the key lemma of this section.

Lemma 8 With the notation and assumptions of Theorem 3, together with (25), we have

d dt E(u) ≤ -D(u) (31)
in the sense of distributions on (0, ∞).

Proof. For the classical solution u = (u k (•, t)) to approximate scheme ( 4)-( 5), it holds that

d dt E(u ) + D (u ) = 0, ( 32 
)
where (together with (25 ))

D (u) = 4 N k=1 d k ∇ √ u k 2 2 + - Ω f (u) 1 + |f (u)| log m k=1 u k N k=m+1 u k ≥ 0. ( 33 
)
Inequality (32) implies after integration in time

E(u ε (•, t)) ≤ E(u ε 0 ), Q T |∇ u ε k | 2 ≤ C, 1 ≤ k ≤ N. (34) 
From the first inequality in (34), using Proposition 1 and Fatou's lemma, we deduce

E(u(•, t)) ≤ E(u 0 ) a.e. t. (35) 
Let us prove that, up to a subsequence,

lim →∞ E(u ε (•, t)) = E(u(•, t)) a.e. t ∈ (0, ∞), (36) 
We have

∂ ∂t (τ i u ε i + τ j u j ) -∆(d i u ε i + d j u ε j ) = 0 in Q T ∂ ∂ν (d i u ε i + d j u ε j ) ∂Ω = 0, u ε k | t=0 = u ε k0 for 1 ≤ i ≤ m < j ≤ N , and 1 ≤ k ≤ N . Then Lemma 4 of [15] implies u ε L 2 (Q τ,T ) ≤ C τ,T (37) 
for any τ ∈ (0, T ) with C τ,T > 0 independent of ε, where Q τ,T = Ω × (τ, T ). (See Proposition 6.1 of [START_REF] Pierre | Global existence in reaction-diffusion system with control of mass: a survey[END_REF] when (u k0 ) ∈ L 2 (Ω) N in which case we may take τ = 0). Since u l tends to u a.e. (see Proposition 1), we classically deduce (36) from Egorov's theorem and the estimate (37). Indeed, given α > 0, there exists a compact set [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF], since for some

K α ⊂ Q τ,T such that u ε → u uniformly on K α and |Q τ,T \ K α | < α. With Φ(s) = s[log s -1] + 1 as in
C ∈ (0, ∞) 0 ≤ Φ(s) 3/2 ≤ C(s 2 + 1), s > 0,
it holds by (37) that

Q τ,T \Kα |Φ(u ε ) -Φ(u)| dxdt ≤ |Q τ,T \ K α | 1/3 • Q τ,T \Kα |Φ(u ε ) -Φ(u)| 3/2 2/3 ≤ Cα 1/3 . Hence lim sup →∞ Q τ,T |Φ(u ε ) -Φ(u)| dxdt ≤ Cα 1/3 .
Letting α ↓ 0, we obtain (recall the definition of E in (11), 12 ))

lim →∞ T τ |E(u ε l (•, t)) -E(u(•, t))| dt = 0,
and therefore (36) passing to a subsequence.

Let φ ∈ C ∞ 0 [0, T ) + . It holds that φ(0)E(u ε 0 ) + ∞ 0 φ (t)E(u ε (•, t)) dt = ∞ 0 φ(t)D ε (u ε (•, t)) dt (38) by (32) 
. As ε = ε ↓ 0, the left-hand side of (38) converges to

φ(0)E(u 0 ) + ∞ 0 φ (t)E(u(•, t)) dt.
Here, we used the dominated convergence theorem, recalling (36) with ( 35) and (u k0 log u k0 ) ∈ L 1 (Ω) N .

To treat the right-hand side of (38), we recall the expression of D (u ) in (33). For its first term, we use (34) to deduce the weak convergence,

∇ u ε k ∇ √ u k in L 2 (Q T ) N for 1 ≤ k ≤ N ,
passing to a subsequence. Fatou's lemma is applicable to the second term and it follows that lim inf

→∞ ∞ 0 φ(t)D ε (u ε (•, t)) dt ≥ ∞ 0 φ(t)D(u(•, t)) dt.
We thus end up with

φ(0)E(u 0 ) + ∞ 0 φ (t)E(u(•, t)) dt ≥ ∞ 0 φ(t)D(u(•, t)) dt
which means (31) on [0, ∞) in the sense of distributions, because T > 0 and φ ∈ C ∞ 0 [0, ∞) + are arbitrary.

Remark 9 Analyzing the above proof shows that the same result would hold for quite more general approximations f of f . For instance, we could choose

f (s) = f (s)G (s), 0 ≤ G (s) ≤ M, |f (s)| ≤ 1/ , f or all s ∈ [0, ∞) N ,
with f (s) → f (s) as → 0 + . Then any pointwise limit of the corresponding approximate solution would satisfy the conclusion of Lemma 8 and of Theorem 3 as well.

The following lemma is an adaptation of the classical Cziszár-Kullback inequality to our situation in the spirit of [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Desvillettes | Duality-Entropy Methods for Reaction-Diffusion Equations Arising in Reversible Chemistry, System Modelling and Optimization[END_REF][START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF].

Lemma 10 With the notation and assumptions of Theorem 3,

u(t) -z L 1 (Ω) N ≤ C E(u(t) | z), ∀ t ≥ 0,
for some C > 0 depending on u 0 , z and the data.

Proof. For Φ(s) = s(log s -1) + s as defined by [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF], we have

∀ s ∈ [0, M ], |s -1| 2 ≤ C(M ) Φ(s).
We deduce

|u k (t) -z k | 2 = z 2 k u k (t) z k -1 2 ≤ C z k Φ u k (t) z k , 1 ≤ k ≤ N,
where C depends only on u 0 L 1 (Ω) N , z . It follows that, for some

C 1 > 0 C 1 [ u(t) -z L 1 (Ω) N ] 2 ≤ N k=1 τ k |u k (t) -z k | 2 ≤ C E(u(t) | z). (39) 
Now the classical Cziszár-Kullback-Pinsker inequality says (see e.g. Theorem 31 in [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF] or also [START_REF] Csiszár | Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis von Markoschen Ketten[END_REF])

- Ω |u k (t) -u k (t)| 2 ≤ 4u k (t)E(u k (t) | u k (t)).
This implies, for some other constant C 

u(t) -u(t) 2 L 1 (Ω) N ≤ C E(u(t) | u(t)). (40 
(t) -z 2 L 1 (Ω) N ≤ C E(u(t) | z),
which is the estimate of Lemma 10.

Lemma 12 It holds that

N k=1 ( √ u k - √ z k ) 2 ≤ C f ( √ u) 2 , √ u = ( √ u k ) 1≤k≤N . (44) 
Proof. Recall that, under the assumption (25), f (u) = m i=1 u i -N j=m+1 u j . According to (30), we have

u -z = θe, θ = u 1 -z 1 , e = (e k ) 1≤k≤N , e i = τ 1 /τ i , e j = -τ 1 /τ j , ∀ 1 ≤ i ≤ m < j ≤ N. (45) 
Therefore

f (u) = f (u) -f (z) = 1 0 ∇f ((1 -s)z + su) ds • (u -z) = L(u)(u1 -z1), (46) 
where

L(ζ) = 1 0 ∇f ((1 -s)z + sζ) • e ds, 0 ≤ ζ ∈ R N . (47) 
We 

L(z) = ∇f (z) • e = τ 1   m i=1 (τ i z i ) -1 m k=1 z k + N j=m+1 (τ j z j ] -1 N k=m+1 z k   , whence a contradiction.
Thus, for δ = min σ∈I L(z + (σ -z 1 )e) > 0, it holds that L(u) ≥ δ, which implies by ( 46) and ( 45)

f (u) 2 = (L(u)) 2 (u 1 -z 1 ) 2 ≥ δ 2 u -z 2 / e 2 ,
where • denotes here the euclidean norm in R N . We combine this with the identities

(u k -z k ) 2 = ( √ u k - √ z k ) 2 ( √ u k + √ z k ) 2 ≥ min 1≤k≤N z k • ( √ u k - √ z k ) 2 , 1 ≤ k ≤ N and with f (u) 2 =   m i=1 u i - N j=m+1 u j   2 = f ( √ u) 2 •   m i=1 √ u i + N j=m+1 u j   2 ≤ Cf ( √ u ) 2
to deduce (44).

f ( √ u) 2 ≤ C- Ω f ( √ u) 2 + k |∇ √ u k | 2 (48) for √ u = ( √ u k ) 1≤k≤N .
Proof. All constant C in this proof may again differ from each other but will depend only on the value in (42

). Define σ = σ(x) ∈ R N for x ∈ Ω by √ u = √ u + σ. First, we have f ( √ u) 2 = f ( √ u + σ) 2 = f ( √ u) + ∇f ( √ u) • σ + M 2 , where M = 1 0 (1 -s)D 2 f ( √ u + sσ)[σ, σ] ds. Using (∇f ( √ u) • σ + M ) 2 ≥ 0, this implies f ( √ u) 2 ≥ f ( √ u) 2 + 2f ( √ u)∇f ( √ u) • σ + 2f ( √ u)M.
By Young's inequality and the estimate |∇f

( √ u ) • σ| ≤ C σ , we have 2f ( √ u)∇f ( √ u) • σ ≥ - 1 2 f ( √ u) 2 -2(∇f ( √ u) • σ) 2 ≥ - 1 2 f ( √ u) 2 -C σ 2 .
It follows from the two previous inequalities and |f ( Together with (49), we deduce

√ u )| ≤ C that f ( √ u) 2 ≥ 1 2 f ( √ u) 2 -C( σ 2 + |M |). (49) 
Ω1 f ( √ u) 2 dx ≥ Ω1 1 2 f ( √ u) 2 -C σ 2 dx. (50) 
We also have

Ω2 f ( √ u) 2 dx = |Ω 2 |f ( √ u) 2 ≤ f ( √ u) 2 N k=1 {σ 2 k > 1} with {σ 2 k > 1} = {σ 2 k >1} dx ≤ {σ 2 k >1} σ 2 k dx ≤ Ω σ 2 k dx, which implies Ω2 f ( √ u) 2 dx ≤ f ( √ u) 2 Ω σ 2 dx ≤ C Ω σ 2 dx. (51) 
By ( 50)-(51), we obtain

f ( √ u) 2 = - Ω f ( √ u) 2 dx ≤ C- Ω [f ( √ u) 2 + σ 2 ] dx. (52) 
Then, using in particular Schwarz inequality :

√ u k ≥ -Ω √ u k , we have - Ω σ 2 k = - Ω u k -2 √ u k √ u k + u k ≤ 2 -u k -- Ω √ u k 2 = 2- Ω √ u k -- Ω √ u k 2 .
Using now Poincaré-Wirtinger's inequality implies that

- Ω σ 2 k = 2- Ω √ u k -- Ω √ u k 2 ≤ C- Ω |∇ √ u k | 2 .
Whence (48) by plugging this inequality for all k = 1, ..., N into (52).

Proof of Lemma 5. Combining Lemmas 11, 12, and 13, we obtain From this inequality and (53), we obtain

E(u | z) ≤ C- Ω f ( √ u) 2 + k |∇ √ u k | 2 . (53) 
E(u | z) ≤ CD(u). (54) 
Finally, we use the additivity property E(u | z) = E(u | u) + E(u, z) and the logarithmic Sobolev inequality (see e.g. Theorem 17 in [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF])

E(u k , u k ) ≤ C- Ω |∇ √ u k | 2 , 1 ≤ k ≤ N,
to deduce the statement of Lemma 5.

)

  Using the obvious relationE(u(t) | z) = E(u(t) | u(t)) + E(u(t) | z) together with (39) and (40), we obtain with another constant C u

  have u = z + (u 1 -z 1 ) e where u 1 ∈ I := [0, min m<j≤N U 1j ]. But the mapping σ ∈ I → L(z + (σ -z 1 ) e) is continuous. It does not vanish: indeed, if one had L(ζ) = 0 for some ζ = z + (σ -z 1 )e, σ ∈ I, then, by the same computation as in (46) with u replaced by ζ, we would also have f (ζ) = 0. But the uniqueness property of Proposition 6 would imply ζ = z. And this is impossible since then L(z) = 0 and by (47),

≤ 1 0( 1

 11 Next, since√ u ≥ 0 implies σ ≥ -√ u in R N , we have the partition Ω = Ω 1 ∪ Ω 2 where Ω 1 = {x ∈ Ω | -√ u k ≤ σ k (x) ≤ 1, ∀ 1 ≤ k ≤ N }, Ω 2 = ∪ 1≤k≤N {x ∈ Ω | σ k (x) > 1}. For x ∈ Ω 1 , s ∈ [0, 1], one has: 0 ≤ √ u k + sσ k ≤ 1 + √ u k , so that |M | -s) D 2 f ( √ u + sσ) ds • σ 2 ≤ C σ 2 , x ∈ Ω 1 .

Here
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Proof of Theorem 3. As proved in Section 2.3, we may assume (25). By Lemmas 8, 7 and 5, we obtain

in the sense of distributions on (0, ∞). This is the statement of Proposition 4 and it implies

Together with Lemma 10, this implies Theorem 3.

Proof of Lemma 5

This proof is inspired from those given in [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Desvillettes | Duality-Entropy Methods for Reaction-Diffusion Equations Arising in Reversible Chemistry, System Modelling and Optimization[END_REF][START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF][START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF] for the 4 × 4 systems, with some significant improvements and simplifying modifications as explained in the introduction.

Here we denote by u k , u any of the functions u k (t), u(t) without indicating the t dependence (which is actually not used in this section). Only the conservation laws (see (29 ))

will be used together with the simplified assumption (25) and the following properties

All constants C below will depend only on

Lemma 11 It holds that

is bounded above by the constants in (42). And we have

whence Lemma 11.

Concluding remarks

The main result of Theorem 3 is proved under the positivity assumption [START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF]. This is actually not a restriction. Indeed, if one has -Ω u i0 + u j0 = 0 for some 1 ≤ i ≤ m < j ≤ N , in other words if u i0 ≡ 0 ≡ u j0 , then by uniqueness, u i (t) ≡ 0 ≡ u j (t), f (u ) ≡ 0 and System (2) is reduced to the heat equation for each u k . It is well known in this case that u k (t) converges exponentially as t → ∞ to the average -Ω u k0 .

On the other hand, Theorem 3 does not handle the interesting case when the chemical species are not separated, contrary to the reversible reaction (1). This is the case for instance with the typical following reaction

The corresponding system writes

Here, the only positive solution of System (22), namely of

is given by z = (U 12 /2, U 12 /2). But the situation is quite different from Theorem 3. Indeed if U 12 > 0, the solution does not always converge to this z. If we chose for instance, u 10 ≡ 0, u 20 ≡ a > 0, then, by uniqueness, the solution is independent of the space variable x and is given by (u 1 (t), u 2 (t)) = (0, a). Actually, the solution of the spatially homogeneous part of this system is given by (u

And this equation has three stationary states, 0, m 0 /2, m 0 . The second one is stable, while the first and the third ones are unstable. Such a behavior probably holds for System (55) and more generally, for systems corresponding to general reversible chemical reactions with all A 1 , ..., A N appearing on both sides.