
HAL Id: hal-01387543
https://hal.science/hal-01387543

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global-in-time behavior of weak solutions to
reaction-diffusion systems with inhomogeneous Dirichlet

boundary condition
Michel Pierre, Takashi Suzuki, Haruki Umakoshi

To cite this version:
Michel Pierre, Takashi Suzuki, Haruki Umakoshi. Global-in-time behavior of weak solutions to
reaction-diffusion systems with inhomogeneous Dirichlet boundary condition. Nonlinear Analysis:
Theory, Methods and Applications, 2017, 159, pp.393-407. �10.1016/j.na.2017.01.013�. �hal-01387543�

https://hal.science/hal-01387543
https://hal.archives-ouvertes.fr


Global-in-time behavior of weak solutions to

reaction-diffusion systems with inhomogeneous

Dirichlet boundary condition

Michel Pierre∗, Takashi Suzuki†, Haruki Umakoshi‡

October 25, 2016

Abstract

We study reaction diffusion systems describing, in particular, the evo-
lution of concentrations in general reversible chemical reactions. We con-
centrate on inhomogeneous Dirichlet boundary conditions. We first prove
global existence of (very) weak solutions. Then, we prove that these -
although rather weak- solutions converge exponentially in L1 norm toward
the homogeneous equilibrium. These results are proven by means of L2-
duality arguments and through estimates provided by the nonincreasing
entropy.

Keywords. reaction diffusion systems, Dirichlet conditions, global existence,
asymptotic behavior, entropy, convergence to equilibrium.
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1 Introduction

The purpose of the present paper is to study global existence and asymptotic
behavior for reaction diffusion systems with inhomogeneous Dirichlet boundary
conditions which include as a particular case the classical systems modeling
reversible reaction processes for a set of chemical species Ai, 1 ≤ i ≤ n:

α1A1 + · · ·+ αnAn 
 β1A1 + · · ·+ βnAn, αi, βi ∈ N ∪ {0}. (1)

According to the Mass Action law for the reactions and to Fick’s law for the
diffusion, the concentrations at position x and time t of Ai, denoted by ui =
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ui(x, t), satisfy the following evolution system

uit − di∆ui = (βi − αi)

 n∏
j=1

u
αj
j −

n∏
j=1

u
βj
j

 , 1 ≤ i ≤ n.

We will consider more general systems, always with inhomogeneous Dirichlet
boundary conditions, that is uit − di∆ui = fi(u) in Q∞ = Ω× (0,∞), 1 ≤ i ≤ n,

ui(x, t) = gi(x, t) on Γ∞ = ∂Ω× (0,∞),
ui(x, 0) = ui0(x) in Ω,

(2)

where Ω ⊂ RN is a bounded connected open subset with smooth boundary
∂Ω and di ∈ (0,∞), 1 ≤ i ≤ n. The data u0 = (ui0)1≤i≤n, g = (gi)1≤i≤n are
assumed to be nonnegative. We will throughout assume that u0 ∈ L∞(Ω) and,
for simplicity, that g is smooth, for instance such that there exist Gi, i = 1, ..., n
with{

Gi ∈ C1
(
[0,∞);C(Ω)

)
∩ C

(
[0,∞);C2(Ω)

)
,

Gi = gi ≥ 0 on Γ∞, ∂tGi − di∆Gi = 0 in Q∞, Gi(·, 0) = gi(·, 0).
(3)

In the system modeling (1) above, the functions fi are precisely given by

fi(u) = (βi − αi)

 n∏
j=1

u
αj
j −

n∏
j=1

u
βj
j

 , ∀u = (ui) ∈ [0,∞)n. (4)

Although αi, βi are integers in the application to the chemical reaction (1), we
will more generally assume that

αi, βi ∈ [1,∞) ∪ {0}.

We will consider more general nonlinearities fi. Throughout the paper, they
will satisfy

fi : Rn → R is locally Lipschitz continuous for 1 ≤ i ≤ n. (5)

Under this assumption, System (2) has a unique classical solution u local-in-
time. We will also throughout assume that the nonlinearity f = (fi)1≤i≤n is
quasi-positive, which means

fi(u1, · · · , ui−1, 0, ui+1, · · · , un) ≥ 0, ∀ 1 ≤ i ≤ n, ∀u ∈ [0,∞)n. (6)

In this case, the solution u of System (2) is always nonnegative as far as it exists.
Obviously (6) is satisfied by the particular f in (4).

As for chemical systems of type (1), we will often assume that there exist
ci > 0, 1 ≤ i ≤ n, such that

n∑
i=1

cifi(u) = 0, for u ∈ [0,∞)n. (7)
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Existence of the ci in (1) is nothing but preservation of mass. It actually holds
for fi as in (4) as soon as there exists i1, i2 ∈ {1, ..., n} such that αi1 − βi1 > 0
and αi2−βi2 < 0. Then after summing the equations in (2), equality (7) implies

∂t(c · u)−∆(dc · u) = 0

for c = (ci)1≤i≤n > 0, dc = (cidi)1≤i≤n > 0. This guarantees several a priori es-
timates of the solution via duality arguments at least in the case of homogeneous
Neumann boundary conditions ([4, 8, 19, 20]). Some of them may be extended
to Dirichlet boundary conditions but not all. Actually some main estimates are
missing for nonhomogeneous boundary conditions.

We will consider the general system (2) with f = (fi)1≤i≤n satisfying (5),
(6), (7) or even more generally the following (8) instead of (7):

n∑
i=1

cifi(u) ≤ 0, for all u ∈ [0,∞)n. (8)

We will sometimes also assume that

|f(u)| ≤ C(1 + |u|γ), γ ∈ (1,∞). (9)

as it is the case in example (4).

The goal of this paper is to provide several global existence results for System
(2) and to prove exponential asymptotic stability of these global solutions when

f is as in (4) and gi = si with Πsαii = Πsβii .
As expected in these systems, we will deal with different definitions of solu-

tions, and in particular:
1) ”Classical solutions” when the fi(u) ∈ L∞(QT ) for all T ∈ (0,∞) in which
case the solutions have classical derivatives and the equation is to be understood
in a classical sense.
2) ”Weak solutions” as defined next.
3) ”Very weak solutions” as used in Theorem 2.

In this paper, first, we show the existence of weak global-in-time solutions
for the system (2) when the diffusion rates d1, d2, ..., dn are ”quasi-uniform” in
the sense of (13) below (see Theorem 1). These solutions may be even classical if
the diffusion rates are even closer (see Remark 1). Next we prove in Theorem 2
the convergence of approximate solutions no matter the values of the di, this for
a very general system with dissipating entropy and including (2) with fi as in
(4). The limit is some kind of ”very weak solution” for which some properties of
”renormalized solution” could be proved (see Remark 2). We prove in Theorem 3
that all these ”solutions” are asymptotically exponentially stable for the specific
system (2), (4) when the data are compatible with stationary solutions in the
sense of (19).

Definition 1 (weak solution) We say that u = (u1, ..., un) is a weak solution
to (2) if the following conditions are satisfied for all T ∈ (0,∞) where QT =
Ω× (0, T ) and ΓT = ∂Ω× (0, T ):
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(i) ui ∈ C([0,∞);L1(Ω)), fi(u) ∈ L1(QT ),

(ii) For any ϕ : Ω× [0, T ]→ R with continuous ϕ, ∂tϕ, ∇xϕ, ∇2
xϕ and ϕ = 0

on ΓT
⋃

(Ω× {T}) it holds that∫∫
QT

−uiϕt − diui∆ϕ dxdt =

∫
Ω

ui0(x)ϕ(x, 0) dx

+

∫∫
QT

fi(u)ϕ dxdt−
∫∫

ΓT

gi∂νϕ dSdt, 1 ≤ i ≤ n.

To state our result, let us introduce

a = min
i
di, b = max

i
di, where 0 < a ≤ b < +∞.

Let furthermore Cm,q ∈ (0,∞) be the best constant in the estimate

‖∆v‖Lq(QT ) ≤ Cm,q‖F‖Lq(QT ) (10)

where v : QT → R is the solution of the backward heat equation with homoge-
neous Dirichlet boundary condition:

−(vt +m∆v) = F ≥ 0 in QT , v = 0 on ΓT , v(x, T ) = 0 in Ω. (11)

For instance by Corollary 7.31 in [16] or Theorem 6.2 in [25], inequality (10) is
valid for each q ∈ (1,∞) (see also Lemma 2.1 in [4]).

As a standard approximation of Problem (2), we will consider the solution
uk = (uk1 , ..., u

k
n) of

for 1 ≤ i ≤ n,
ukit − di∆uki = fi(u

k)
1+k−1

∑n
j=1 |fj(uk)| in Q∞,

uki = gi on Γ∞, uki (·, 0) = ui0 ≥ 0 in Ω.

(12)

Since the nonlinearity is uniformly bounded (by k), there exists a global-in-time
classical and nonnegative solution uk = (uki )1≤i≤n ≥ 0, 1 ≤ i ≤ n, for each k.

Theorem 1 Assume (5), (6), (8), (9). If moreover

b− a
2

C a+b
2 ,γ′ < 1, (13)

then, a subsequence of the solutions (uk)k≥0 of (12) converges in Lγ(QT )n and
C([0, T ];L1(Ω)n) for all T > 0. Moreover, any limit of such converging subse-
quences is a weak solution of System (2). If γ = 2, then (13) is satisfied for all
0 < a ≤ b < +∞.

Remark 1 We may even obtain classical solutions in Theorem 12 if b − a is
smaller than in (13). This is the case if

(b− a)

2
C a+b

2 ,q′ < 1 where q′ <
γ

γ − 2/(N + 2)
. (14)
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Indeed, in this case we obtain (see Remark 6 after the proof of Theorem 1) that
uk is bounded in Lq(QT ) where q > (N + 2)γ/2. Going back to the equation
(2) and using (9), we deduce that uk is bounded in L∞(QT ) and the solution
at the limit is classical.

The result of Theorem 1 does not provide global existence for the system
modeling the chemical reaction (1) when the αi, βi are quite larger than 2 and
when the di are not close enough to each other. Actually, this is known as a
rather difficult and open question. It was significantly analyzed in the case of
Neumann boundary conditions in [12]: there the solutions of the approximate
System (12) are proved to converge a.e. up to a subsequence and the limit is
a renormalized solution in the spirit of [9], but with an adequate definition for
this kind of systems as introduced in [12].

Here, we are able to prove a similar convergence result in the case of nonho-
mogeneous Dirichlet boundary conditions, no matter the values of the di. The
situation is not so easy since it does not lead to a priori estimates as good as
with Neumann boundary conditions, but they nevertheless provide good enough
compactness properties for the approximate solutions, at least locaaly inside Ω.
As in [12], they strongly rely on the entropy inequality valid for System (2) with
f as in (4), namely

n∑
i=1

(log ui)fi(u) ≤ 0. (15)

Theorem 2 Assume (5), (6), (15). Then a subsequence of the solution (uk)k≥0

of (12) converges in L2(QT )m for all T > 0.

Remark 2 If the di are close enough so that (13) (resp. (14)) is satisfied, then
the limit obtained in Theorem 2 is a weak (resp. a classical) solution of (2). For
general di’s, using truncations as in (39) and the functions Tr(u

k
i +η

∑
j 6=i u

k
j ), we

could prove that the limit is a renormalized solution inside QT in the following
sense inspired from [12]. We denote

Ψ := {ψ ∈ C2(Rn; (0,∞))+ with ∂iψ compactly supported for 1 ≤ i ≤ n}

where ∂iψ(u) is a notation for the derivative of ui ∈ R→ ψ(u1, ..., ui, ..., um).
Starting formally from ∂tui − di∆ui = fi(u), we have for all ψ ∈ Ψ

∂tψ(u) =
∑
i

∂iψ(u)∂tui =
∑
i

∂iψ(u)[di∆ui + fi(u)]. (16)

And this may be rewritten

∂tψ(u) =
∑
i

{
di[∇ · (∂iψ(u)∇ui)−

∑
j

∂j∂iψ(u)∇uj∇ui] + ∂iψ(u)fi(u)

}
. (17)

This equation may be understood in the sense of distributions in QT as soon
as

χ[ui≤r]∇ui ∈ L
2
loc(QT ) for all r ∈ (0,∞), T > 0, 1 ≤ i ≤ n. (18)
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Indeed, since ∂iψ is compactly supported for 1 ≤ i ≤ n, we then have

∂iψ(u)fi(u) ∈ L∞(QT ), ∂iψ(u)∇ui ∈ L2
loc(QT ), ∂j∂iψ(u)∇uj∇ui ∈ L1

loc(QT ).

And as proved later in (34), the estimate (18) will indeed hold here. Note that
the estimate is local inside Ω and it is not clear how to extend it up to the
boundary except in some cases (see Remark 7).

Since our goal here is to mainly concentrate on the asymptotic behavior of
the solutions, and since we do not need to know (17) for doing so, we will not
prove it here. Actually, it is an interesting point to see that we can control the
asymptotic behavior of the ”very weak solutions” without knowing much about
them.

Thus a main result of this paper is the exponential stability of the limit
”solutions” of (2)-(4) in the case when

gj(x, t) ≡ sj > 0,

n∏
j=1

s
αj
j =

n∏
j=1

s
βj
j . (19)

Then ui = si > 0, 1 ≤ i ≤ n, is a spatially homogeneous stationary state of
(2)-(4).

Notation. ‖ · ‖p, 1 ≤ p ≤ ∞ will denote the standard Lp norm on Ω.

Theorem 3 Assume f is given by (4) with (19). Then, the approximate solu-
tions (uk)k≥0 of (12) lie in a compact set of L2(QT ) for all T > 0. There exist
positive constants C1, C2 such that, for any limit u of converging subsequences

‖ui(·, t)− si‖1 < C1 exp(−C2t), for all t ≥ 0, 1 ≤ i ≤ n. (20)

Several existence results of global-in-time solutions and their asymptotic
behavior have been known for the reaction diffusion system associated with (1),
particularly, when the boundary condition is of homogeneous Neumann type.
First, when n = 3 with f1 = −uα1

1 uα2
2 + uβ3

3 = f2 = −f3, existence results of
global classical solutions are proved in [14] in particular when β3 > α1 + α2

and for some other particular situations. Exponential convergence towards the
stationary solutions is proved in [10] for these fi for all α1, α2, β3 ≥ 1 (see also
[6] for other results with n = 3).

When n = 4 and fi = (−1)i(u1u3 − u2u4), weak solutions exist globally in
time for any space dimension N (see [8]). Furthermore, classical solutions exist
globally in time if N ≤ 2 (see [4], [13]) or in any dimension if the diffusion coef-
ficients are quasi-uniform in the sense of (13) (see [4]). Exponential asymptotic
stability for the L1-norm is proved in [5], [7].

For the general system (2),(4), weak (resp. classical) solutions exist globally
in time when the diffusion coefficients are quasi-uniform in the sense of (13)
(resp. (14)) (see [4]). Finally, global renormalized solutions are proved to exist
in [12] for rather general systems with general diffusions and Neumann type of
boundary conditions. And their asymptotic behavior is analyzed in [21].
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Inhomogeneous Dirichlet boundary condition are studied in [11]. They are
concerned with the case n = 3, α1 = β2 = α3 = 1, and β1 = α2 = β3 = 0:

ut − d1∆u = −u+ vw in Ω× (0, T )

vt − d2∆v = u− vw in Ω× (0, T )

wt − d3∆w = −u+ vw in Ω× (0, T )

u(x, t) = a, v(x, t) = b, w(x, t) = c on ∂Ω× (0, T )

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, w(x, 0) = w0(x) > 0 in Ω.

(21)
If a, b, c are positive constants satisfying a = bc, there exists a classical solution
(u, v, w) = (u(·, t), v(·, t), w(·, t)) global-in-time and it holds that

lim
t→∞

(u(·, t), v(·, t), w(·, t)) = (a, b, c) in Cν(Ω)

where 1 < ν < 2. However, asymptotic behavior of the global-in-time ”weak”
solution has not been studied for the general case of (2)-(4).

2 Proof of Theorem 1

We first show an estimate on the solution of a parabolic differential inequality. It
is similar to Proposition 1.1 of [4], but with nonhomogeneous Dirichlet boundary
conditions.

Given α ∈ (0, 1), we take M = M(x, t) ∈ Cα,α2 (Ω× (0, T ]) satisfying

0 < a ≤M(t, x) ≤ b <∞, (x, t) ∈ QT . (22)

We consider the parabolic differential inequality{
ut −∆(Mu) ≤ 0 in QT ,
u = g on ΓT , u(·, 0) = u0(x) ≥ 0 in Ω.

(23)

We will estimate ‖u‖Lp(QT ) for p ∈ [2,∞), under the assumption

C a+b
2 ,p′ ·

b− a
2

< 1,
1

p
+

1

p′
= 1. (24)

where Cm,q ∈ (0,∞) stands for the best constant in the parabolic regularity
(10)-(11).

Remark 3 We have C a+b
2 ,2 ≤

2
a+b so that (24) is always satisfied for p′ = 2

and for all 0 < a < b <∞. Indeed, multiplying (11) by −∆v leads to∫∫
QT

vt∆v +m(∆v)2 =

∫∫
QT

−F∆v ≤ ‖F‖L2(QT )‖∆v‖L2(QT ).

We then use
∫∫
QT

vt∆v = 1
2

∫
Ω
|∇v(x, 0)|2 ≥ 0 to deduce Cm,2 ≤ 1/m.
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Remark 4 It is interesting to notice that the condition (24) is ”open” with re-
spect to p′ in the sense that if (24) holds with p′, then it holds with (p+ ε)′ for ε
small enough. Indeed, the Cm,q has the property: C−m,q := lim infη→0+ Cm,q−η ≤
Cm,q. To see it, let qη satisfy

1

qη
=

1

2

[
1

q
+

1

q − η

]
i.e. qη = q − ηq/(2q − η).

By the Riesz-Thorin interpolation theorem (see e.g. [18], chapter 2) applied to
the mapping F 7→ ∆v in (11), we have

Cm,qη ≤ C1/2
m,qC

1/2
m,q−η ⇒ C−m,q ≤ C1/2

m,q(C
−
m,q)

1/2 ⇒ C−m,q ≤ Cm,q.

Notation. For the boundary ΓT , we will use dS, ν, ∂ν to denote respectively
the surface element, the exterior unit normal and the exterior normal derivative.

For the solution of equation (11), we can define the best constant Em,q,T ∈
(0,∞) for the inequality∫∫

ΓT

|∂νv| dSdt ≤ Em,q,T ‖F‖Lq(QT ), q > 1, (25)

using the trace embedding W 1
q (Ω) ↪→ L1(∂Ω).

Proposition 4 Let u ≥ 0 be a classical solution to (23) with M ∈ Cα,α2 (Ω ×
(0, T ]) satisfying (22) and (24). Then it holds that

‖u‖Lp(QT ) ≤ (1 + bDa,b,p′)T
1
p ‖u0‖p + Ẽ a+b

2 ,p′,T · b · ‖g‖L∞(ΓT ) (26)

for p ∈ [2,∞), where

Da,b,p′ =
C a+b

2
,p′

1− C a+b
2
,p′ ·

b−a
2

, Ẽa,b,p′,T = E a+b
2
,p′,T

(
1 +

b− a
2

Da,b,p′

)
.

Remark 5 Note that, according to Remark 3, Da,b,2 < +∞ so that any u
satisfying (23) is bounded in L2(QT ) for all T > 0 with a bound depending on
‖u0‖L2(Ω)n , ‖g‖L∞(ΓT )n .

To prove Proposition 4, we begin with a parabolic estimate for the dual
problem

ψt +M∆ψ = −Θ in QT , ψ(T, x) = 0 in Ω, ψ(x, t) = 0 on ΓT , (27)

where Θ ∈ C∞0 (QT ). This inequality will be proved similarly as in Lemma 2.2
of [4] concerning homogeneous Neumann boundary condition.

Lemma 5 For M = M(x, t) ∈ Cα,α2 (Ω × (0, T ]) satisfying (22) and (24) and
1 < p′ ≤ 2, the following holds for the solution ψ of (27){ ‖∆ψ‖Lp′ (QT ) ≤ Da,b,p′‖Θ‖Lp′ (QT )

‖ψ(·, 0)‖p′ ≤ (1 + bDa,b,p′)T
1/p‖Θ‖Lp′ (QT )

(28)
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Proof: By the standard theory (e.g. Corollary 7.31 and Theorem 7.32 in
[16]) or Theorem 6.2 in [25]), Problem (27) admits a unique classical solution
ψ = ψ(x, t). We write (27) as

ψt +
a+ b

2
∆ψ =

(
a+ b

2
−M

)
∆ψ −Θ. (29)

Then (10) implies

‖∆ψ‖Lp′ (QT ) ≤ C a+b
2 ,p′

∥∥∥∥(a+ b

2
−M

)
∆ψ −Θ

∥∥∥∥
Lp′ (QT )

≤ C a+b
2 ,p′

{(
b− a

2

)
‖∆ψ‖Lp′ (QT ) + ‖Θ‖Lp′ (QT )

}
where we used: ‖a+b

2 −M‖L∞(QT ) ≤ b−a
2 . Therefore,{

1− C a+b
2 ,p′

b− a
2

}
‖∆ψ‖Lp′ (QT ) ≤ C a+b

2 ,p′‖Θ‖Lp′ (QT ).

This is the first inequality of (28) (we use (24) here). The second inequality is

derived from −ψ(0) =
∫ T

0
ψt(·, t)dt and (27) which imply

‖ψ(0)‖p′ ≤ T 1/p‖ψt‖Lp′ (QT ) ≤ T
1/p[b ‖∆ψ‖Lp′ (QT ) + ‖Θ‖Lp′ (QT )].

�

Proof of Proposition 4: If 0 ≤ Θ ∈ C∞0 (QT ), the classical solution to (27)
satisfies ψ = ψ(x, t) ≥ 0. Then both u and ψ are nonnegative and we obtain

d

dt

∫
Ω

uψ dx =

∫
Ω

utψ + uψt dx

≤
∫

Ω

[∆(Mu)]ψ + u(−M∆ψ −Θ) dx.

Since ∫
Ω

[∆(Mu)]ψ − (Mu)∆ψ dx = −
∫
∂Ω

gM∂νψ dS,

it holds that

d

dt

∫
Ω

uψ dx ≤ −
∫

Ω

uΘ dx−
∫
∂Ω

gM∂νψ dS. (30)

Here we use (25), (29), and (28) to conclude∫∫
ΓT

|∂νψ| dSdt ≤ E a+b
2 ,p′,T

(
1 +

b− a
2

Da,b,p′

)
‖Θ‖Lp′ (ΩT ) . (31)
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Inequalities (30) and (31) imply∫∫
QT

uΘ dxdt ≤ ‖u0‖p‖ψ(·, 0)‖p′ + ‖g‖L∞(ΓT ) · b
∫∫

ΓT

|∂νψ| dSdt

≤
{

(1 + bDa,b,p′)T
1
p ‖u0‖p + Ẽa,b,p′,T b‖g‖L∞(ΓT )

}
‖Θ‖Lp′ (QT ). (32)

Inequality (32), valid to any 0 ≤ Θ ∈ C∞0 (QT ), implies (26) by duality since
u ≥ 0. �

Proof of Theorem 1: Let us consider the global regular solution uk of the ap-
proximate problem (12). Recalling (8), let

vk = c · uk, h = c · g, v0 = c · u0,

where c = (ci), u
k = (uki ), g = (gi) and u0 = (ui0). Let also dc := (dici). Then

(8) implies

vkt −∆(Mvk) ≤ 0 in QT

vk(x, t) = h(x, t) on ΓT , vk(x, 0) = v0(x) ≥ 0 in Ω

with M = M(x, t) = dc · uk/c · uk which satisfies (22) with a = mini di, b =
maxi di.

According to Remark 4, the assumption (13) implies that b−a
2 C a+b

2 ,(γ+ε)′ < 1

for some ε > 0. By Proposition 4, ‖vk‖Lγ+ε(QT ) ≤ CT for all T > 0. It follows

by (9) that fi(u
k) is bounded in L1+η(QT ) for η = ε/γ > 0. We then may use

the L1-compactness property of the heat operator saying (see e.g. [2], [1]) that
the mapping (w0, F ) ∈ L1(Ω)× L1(QT ) → w ∈ L1(QT ) is compact where w is
the solution of

wt −m∆w = F in QT , w = 0 on ΓT , w(·, 0) = w0. (33)

Applying this here to

m = di, F = fi(u
k)/(1 + k−1

∑
j

|fj(uk)|), w = uki −Gi, w0 = uki0 − gi(0),

where Gi is defined in (3), we deduce that uk lies in a compact set of L1(QT )m.
Up to a subsequence, we may assume that, for all T > 0, uk converges in
L1(QT )m and a.e. to some u which, by Fatou’s Lemma, belongs to L1(QT )m.
It implies that fi(u

k) converges a.e. to fi(u) for all i. Since fi(u
k)/(1 +

k−1
∑
j |fj(uk)|) is bounded in L1+η(QT ), we deduce by Egorov’s theorem that

the convergence holds also in L1(QT ). Now we may pass to the limit in∫∫
QT

−uki ϕt − diuki ∆ϕ dxdt =

∫
Ω

uki0ϕ dx

+

∫∫
QT

fi(u
k)

1 + k−1
∑
j |fj(uk)|

ϕ dxdt−
∫∫

ΓT

gi∂νϕ dSdt, 1 ≤ i ≤ n,
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for all ϕ as in Definition 1. To conclude that u is a weak solution, we only
need to check that u ∈ C([0,∞);L1(Ω)n). This follows from the L1-contraction
property of the heat operator, namely

‖uki (t)− upi (t)‖1 ≤ ‖u
k
i0− upi0‖1 +

∫ t

0

‖ fi(u
k)

1 + k−1
∑
j |fj(uk)| −

fi(u
p)

1 + p−1
∑
j |fj(up)|

‖1dt.

This proves that uk converges in L∞([0, T ] : L1(Ω)n) and the limit is therefore
continuous from [0,∞) into L1(Ω). �

Remark 6 If we replace (13) by the (stronger) assumption (14), then by Propo-
sition 4, and the same proof as above, uk is bounded in Lq(QT ) for q >
(N + 2)γ/2. This implies by (9) that fi(u

k) is bounded in Ls(QT ) for some
s > (N + 2)/N . And it is well-known (see e.g. [15]) that uki is then bounded in
L∞(QT ) and so is fi(u

k). The limit of uk is then a classical solution of (2).

3 Proof of Theorem 2

Let us first prove the following estimate for the solution uk of (12). For δ > 0,
we denote Ωδ = {x ∈ Ω; d(x, ∂Ω > δ}. Then∫∫

[uki≤r]∩Ωδ

|∇uki |2 ≤ Cδ r for all r ∈ [0,∞), 1 ≤ i ≤ n, k ∈ N. (34)

In the following computation, for simplicity, we drop the k in the notation. Let
us introduce wi := ui log ui + 1− ui ≥ 0. We have

∂t
∑
i

wi −∆
∑
i

diwi =
∑
i

log uifi(u)−
∑
i

4di|∇
√
ui|2 ≤ −

∑
i

4di|∇
√
ui|2, (35)

the last inequality coming from the assumption (15). Let ϕ be the first eigen-
function of the Dirichlet-Laplacian on the open connected set Ω, namely

−∆ϕ = λ1ϕ in Ω, ϕ = 0 on ∂Ω, ‖ϕ‖∞ = 1, ϕ > 0 on Ω. (36)

Multiplying the previous inequality by ϕ and integrating on QT gives{ ∫
Ω
ϕ
∑
i wi(T ) +

∫∫
QT

ϕ
∑
i di(λ1wi + 4|∇√ui|2)

≤
∫

Ω
ϕ
∑
i wi(0)−

∫∫
ΓT
∂νϕ

∑
i di(gi log gi + 1− gi).

We deduce that for some C = C(maxi{‖gi‖∞, ‖ui0 log ui0‖1}, ‖∂νϕ‖1) <∞

max
i

∫
QT

4ϕ|∇
√
ui|2 = max

i

∫
QT

ϕ
|∇ui|2

ui
≤ C, (37)

and the estimate (34) follows with Cδ = C/minx∈Ωδ ϕ(x). �

The same inequality (35) implies also the following L2-estimate:

max
i
‖uki log uki ‖L2(QT ) ≤ C = C(max

i
{‖gi‖∞, ‖ui0 log(ui0)‖2, T, a, b) < +∞. (38)
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Proof. Indeed, (35) implies

∂t(
∑
i

wi)−∆(M
∑
i

wi) ≤ 0, M :=
∑
i

diwi/
∑
i

wi.

Thanks to wi ≥ 0, we have a = mini di ≤M ≤ b = maxi di. Thus Proposition 4
applied with p = 2 (see Remark 5) implies that ‖

∑
i wi‖L2(QT ) ≤ C where C is

as in (38). Now, using again the nonnegativity of the wi and the fact that s log s
is bounded from a bove for s large by 2[s log s+ 1− s], estimate (38) follows.�

Proof of Theorem 2. Let us prove the convergence of uk in L2(QT ) for all T > 0.
We will first prove that uk converges a.e. on Q∞. Then the L2(QT ) convergence
will follow from the estimate (38).

For all r ∈ (0,∞), we introduce Tr ∈ C2([0,∞); [0,∞)) with{
0 ≤ T ′r(s) ≤ 1 and T ′′r (s) ≤ 0 for all s ∈ [0,∞),
Tr(s) = s for s ∈ [0, r], T ′r(s) = 0 for s ∈ [2r,∞).

(39)

Let now vki = uki + ηUki where Uki =
∑
j 6=i u

k
j , η > 0. We also denote

Fi = fi/(1 + k−1
∑
j |fj |). Then{

∂tTr(v
k
i )− di∆Tr(vki ) =

T ′r(v
k
i )
[
Fi(u

k) + η
∑
j 6=i[Fj(u

k) + (dj − di)∆ukj ]
]
− diT ′′r (vki )|∇vki |2.

(40)

Let us analyze each of the terms in the right-hand side of this equality. We will
repeatedly use that

[vki ≤ 2r] ⇒ [uki ≤ 2r] and [ukj ≤ 2r/η] ∀j 6= i.

In the following, r is fixed arbitrarily in (0,∞) and η > 0 is fixed small enough
(to be made precise later). By the choice of Tr and of vk

T ′r(v
k
i )[Fi(u

k) + η
∑
j 6=i

Fj(u
k)] is bounded in L∞(QT ) independently of k. (41)

We also have, with QδT := (0, T )× Ωδ, (recall that T ′′r vanishes outside [0, 2r])

‖T ′′r (vki )1/2∇vki ‖L2(QδT ) ≤ C

‖χ[uki≤2r]∇uki ‖L2(QδT ) +
∑
j 6=i

‖χ[ukj≤2r/η]∇ukj ‖L2(QδT )

 .

Thus, by (34)

T ′′r (vki )|∇vki |2is bounded in L1(QδT ) ∀ δ > 0. (42)

Now we write

T ′r(v
k
i )∆ukj = ∇ · (T ′r(vki )∇ukj )− T ′′r (vki )∇vki∇ukj ,
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‖T ′(vki )∇ukj ‖L2(QδT ) ≤ C‖χ[ukj≤2r/η]∇ukj ‖L2(QδT ),

‖T ′′r (vki )∇vki∇ukj ‖L1(QδT
≤ C‖T ′′r (vki )1/2∇vki ‖L2(QδT )‖χ[ukj≤2r/η]∇ukj ‖L2(QδT ).

We deduce, by using (34) again, that

T ′r(v
k
i )∆ukj is bounded in L2(0, T ;H−1(Ωδ)) + L1(0, T ;L1(Ωδ)) ∀ δ > 0. (43)

Let ψ ∈ C∞0 (Ω)+. We deduce from (41), (42), (43) and equation (40) that
∂t(ψTr(v

k
i )) − di∆(ψTr(v

k
i )) is bounded in L1(QT ) + L2(0, T ;H−1(Ω)). Since

moreover ψTr(v
k
i ) is bounded by r‖ψ‖∞ and vanishes on ΓT , it follows that(

ψTr(v
k
i )
)
k≥0

lies in a compact set of L1(QT ): to see this, we may use the L1-

compactness as stated for w in (33) and the fact that, if in (33), F is bounded
in L1(0, T ;H−1(Ω)) and w0 = 0 then w lies in a compact set of L2(QT ) (see
e.g. [17], Théorème 5.1).

Using a diagonal extraction process, we can deduce that there exists a sub-
sequence of vki (still denoted vki ) such that Tr(v

k
i ) converges a.e. on Q∞ for all

r ∈ (0,∞) (here we fix η small enough as indicated below).
This implies that vki converges a.e. on Q∞ itself. Indeed, let us denote

by wr the pointwise limit of Tr(v
k
i ) and let Kr = [wr < r]. For (x, t) ∈ Kr,

Tr(v
k
i (x, t)) = vki (x, t) for k large enough so that vki (x, t) converges to wr(x, t).

Therefore vki converges a.e. on Kr. On the other hand, since, thanks to (38),
vki is bounded in L1(QT ) and we have (using Fatou’s lemma for ⇒)

+∞ > C ≥
∫
QT

2vki ≥
∫
QT

Tr(v
k
i ) ⇒ C ≥

∫
QT

wr ≥ r|[wr ≥ r] ∩QT |.

Thus limr→∞ |[wr ≤ r]∩QT | = 0 and ∪r∈(0,∞)[w < r]∩QT = QT a.e.. Whence

the a.e. convergence of vki on Q∞.
Since the n×n matrix A with 1 on its diagonal and η elsewhere is invertible

for η small, and since vk = Auk, it follows that uki converges also a.e. on Q∞.
We now use the fact that uki log uki is bounded in L2(QT ) by (38). Together with
the a.e. convergence this implies the convergence of uki in L2(QT ) by Egorov’s
theorem again. �

4 Proof of Theorem 3

Here, fi is defined by (4) and gi = si so that the approximate problem (12)
becomes

ukit − di∆uki = (βi − αi)
R(uk)

1 + k−1
∑
j |fj(uk)|

in QT

uki = si on ΓT , uki (x, 0) = uki0(x) in Ω, 1 ≤ i ≤ n,

where R(u) =

n∏
j=1

u
αj
j −

n∏
j=1

u
βj
j .
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Here (9) holds with γ = max{
∑
i αi,

∑
i βi}. Moreover (15) is satisfied since

n∑
i=1

fi(u) log ui = R(u)

n∑
i=1

(βi − αi) log ui = R(u){log

n∏
i=1

uβii − log

n∏
i=1

uαii } ≤ 0. (44)

Therefore we can apply the results of Theorem 2. But, we will have more
estimates here due to the choice of the si. Let us introduce

L(uki , si) ≡ uki (log uki − log si) + si − uki ≥ 0, (45)

the nonnegativity coming from ξ ≥ log ξ+ 1 for ξ > 0 and applied to ξ = si/u
k
i .

Lemma 6

ζk(x, t) =

n∑
i=1

L(uki (x, t), si), ζ0(x) =

n∑
i=1

L(ui0(x), si) (46)

it holds that{
ζkt −

∑n
i=1 di∆L(uki , si) +

∑
i di
|∇uki |

2

uki
≤ 0 in QT

ζk = 0 = ∂νζ
k on ΓT , ζk(·, 0) = ζ0 ≥ 0 in Ω.

(47)

Proof: We have ukj = ukj (x, t) > 0 for t > 0, and then it follows that

∂tL(uki , si)− di∆L(uki , si)

=
∑
i

{
(log uki − log si)(u

k
it − di∆uki )− di

|∇uki |2

uki

}

=
∑
i

{
(log uki − log si)(βi − αi)

R(uk)

1 + k−1
∑
j |fj(uk)|

− di
|∇uki |2

uki

}
.

We already checked that
∑
i log uki (βi − αi)R(uk) ≤ 0 (see (44)). On the other

hand,
∑
i log si(βi − αi) = 0 due to the assumption (19). The first estimate of

(47) follows. The boundary conditions follow from uki = si at the boundary so
that L(uki , si) = 0, ∂νL(uki , si) = ∂νu

k
i (log uki − log si) = 0. �

Now we use the argument of [24], taking a ball Ω0 such that Ω ⊂ Ω0. Let
λ1 > 0 and ϕ = ϕ(x), ‖ϕ‖∞ = 1 be the first eigenvalue and the associated
eigenfunction, respectively:

−∆ϕ = λ1ϕ, ϕ > 0 in Ω0, ϕ = 0 on ∂Ω0.

Let δϕ = infΩ ϕ > 0.

Lemma 7 It holds that

δϕ

∫
Ω

ζk(x, t) dx ≤
∫

Ω

ζk(x, 0) dx · e−aλ1t (48)

where a = mini di.
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Proof: Thanks to the inequality and the boundary conditions in (47), we have

d

dt

∫
Ω

ζk ϕ dx+

∫
Ω

ϕ
∑
i

di
|∇uki |2

uki
≤
∑
i

∫
Ω

∆ϕdi L(uki , si)dx. (49)

In particular

d

dt

∫
Ω

ζk ϕ dx ≤ −λ1

n∑
i=1

∫
Ω

di L(uki , si)ϕ dx ≤ −λ1a

∫
Ω

ζk ϕ dx.

Whence (48). �

Here we use an elementary inequality.

Lemma 8 (Cziszar-Kullback) For any measurable functions f : Ω 7→ [0,∞), g :
Ω 7→ (0,∞), it holds that

3

(∫
Ω

|f − g| dx
)2

≤
(∫

Ω

(2f + 4g) dx

)(∫
Ω

[f log
f

g
− f + g] dx

)
. (50)

Proof: Since

3|ξ − 1|2 ≤ (2ξ + 4)(ξ log ξ − ξ + 1), for all ξ > 0

it follows by choosing ξ = f(x)/g(x) (assuming f(x) < ∞) and taking the
square root that

√
3|f(x)− g(x)| ≤

(
2f(x) + 4g(x)

)1/2(
f(x) log

f(x)

g(x)
− f(x) + g(x)

)1/2
.

If the right-hand side of (50) is infinite, then the inequality holds. Therefore,
we may assume that it is finite which implies that f and g are finite a.e. We
integrate the above pointwise inequality over Ω and apply Schwarz’ inequality
to the second integral to obtain (50). �

Proof of Theorem 3: By Lemma 7 and Lemma 8 applied with f = uki and
g = si, we obtain{

‖uki (·, t)− si‖21 ≤ 1
3 ·
∫

Ω

(
2uki (x, t) + 4si

)
dx ·

∫
Ω
L(uki , si)dx

≤ exp(−aλ1t)
3δϕ

·
∫

Ω

(
2uki (x, t) + 4si

)
dx · ‖ζ0‖1.

(51)

This inequality implies also that (after taking the square root)

‖uki ‖1 ≤ si + (‖ζ0‖1/3δϕ)−1/2
[
2‖uki ‖1 + 4si|Ω|

]1/2
.

This implies that
sup

k∈N,t≥0
‖uki (·, t)‖1 < +∞. (52)
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thus we may deduce from (51) that

‖uki (·, t)− si‖21 ≤ C exp(−aλ1t)

with C > 0 independent of k. Then, Theorem 2 and Fatou’s Lemma imply (20).
�

Remark 7 Going back to the estimate (49), we see that
√
uki is bounded in

L2(0, T ;H1(Ω)) for all i = 1, ..., n. In other words,
√
uki −

√
gi is bounded in

L2(0, T ;H1
0 (Ω)). Therefore, for any limit u of uk in Theorem 3,

(√
ui −

√
gi
)
∈

L2(0, T ;H1
0 (Ω)). In other words, the nonhomogeneous Dirichlet boundary con-

dition is kept at the limit.
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