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LOW-RANK TENSOR RECOVERY USING SEQUENTIALLY
OPTIMAL MODAL PROJECTIONS IN ITERATIVE HARD

THRESHOLDING (SEMPIHT)∗

JOSÉ HENRIQUE DE MORAIS GOULART† AND GÉRARD FAVIER‡

Abstract. Iterative hard thresholding (IHT) is a simple and effective approach to parsimonious
data recovery. Its multilinear rank (mrank)-based application to low-rank tensor recovery (LRTR) is
especially valuable given the difficulties involved in this problem. In this paper, we propose a novel
IHT algorithm for LRTR, choosing sequential per-mode SVD truncation as its thresholding operator.
This operator is less costly than those used in existing IHT algorithms for LRTR, and often leads to
superior performance. Furthermore, by exploiting the sequential optimality of the employed modal
projections, we derive recovery guarantees relying on restricted isometry constants. Though these
guarantees are suboptimal, our numerical studies indicate that a quasi-optimal number of Gaussian
measurements suffices for perfect data reconstruction. We also investigate a continuation technique
which yields a sequence of progressively more complex estimated models until attaining a target
mrank. When recovering real-world data, this strategy stabilizes the estimation error and can also
accelerate convergence. In tensor completion, in particular, it can cope with nonideal characteristics
of the sensed tensors and so is crucial for achieving a satisfactory performance. Extensive numerical
experiments are reported, including the completion of hyperspectral imaging data and comparisons
with several other existing approaches.

Key words. low-rank tensor recovery, tensor completion, multilinear rank, iterative hard thresh-
olding, sequentially optimal modal projections, hyperspectral image reconstruction
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1. Introduction. We consider the recovery of tensors lying in RN1×···×NP (with
P > 2) from undercomplete linear measurements, assuming the corresponding tensors
have low-rank properties. This problem, called low-rank tensor recovery (LRTR),
is an extension of the well-studied low-rank matrix recovery (LRMR) problem [4].
Essentially, in the tensor setting, one wishes to exploit some joint low dimension-
ality along multiple modes (i.e., geometric dimensions) of a data tensor in order to
reconstruct it from a few measurements.

We assume the reader is familiar with basic tensor algebra concepts and nota-
tion (see, e.g., [22, 29]). The following notational conventions are adopted: JP K ,
{1, . . . , P}, N̄ ,

∏P
p=1Np, and N̄p , N̄/Np. Throughout the text, we shall identify

tensors in RN1 ⊗ · · · ⊗ RNP , where ⊗ denotes the tensor product, with P -way arrays
(hypermatrices) in RN1×···×NP , assuming the coordinates are given with respect to
known (given) bases.

The LRTR problem is formulated here as follows:

(1) min
X∈Lr

‖y −A(X )‖22 ,
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where r = (R1, . . . , RP ) ∈ ZP+, A : RN1×···×NP 7→ RM is a linear measurement
operator (MO), with M < N̄ , and

(2) Lr =
{
X ∈ RN1×···×NP : rank

(
X〈p〉

)
≤ Rp, p ∈ JP K

}
,

with X〈p〉 = (X )〈p〉 ∈ RNp×N̄p denoting the mode-p matrix unfolding1 of X . The

quantity ρ ,M/N̄ is called (measurement) undersampling. In its most general form,
the vector of measurements y ∈ RM is given by y = A(X ?) + e for some error
vector e and a tensor of interest X ? satisfying either X ? ∈ Lr or X ? ≈ X ?

r ∈ Lr

(where proximity is in the Euclidean distance sense). As in most works which deal
with LRTR, our formulation (1) is based on the multilinear rank2 (mrank), defined
as [11, 22]

(3) mrank(X ) =
(
rank

(
X〈1〉

)
, . . . , rank

(
X〈P 〉

))
.

Note that the components of mrank(X ) are a generalization of the row and column
ranks of a matrix. Yet, they do not necessarily have the same value.

The reader might wonder why one would rely on the mrank rather than on the
tensor rank [25], which is often regarded as the most natural extension of matrix rank
to higher-order tensors. This is basically due to computational and analytical diffi-
culties which arise when dealing with the tensor rank [12, 24]. Nevertheless, it should
be noted that ways of circumventing these difficulties have been recently studied in
[7, 39, 50], pointing at interesting research directions. At any rate, since rank(X〈p〉)
is majorized by the tensor rank for all p ∈ JP K [11], tensors with sufficiently3 low rank
necessarily have low mrank components.

A central feature of every parsimonious data recovery problem, such as compres-
sive sensing (CS) [6] or LRMR, is its underlying model, characterized by a number of
degrees of freedom (DOFs) smaller than its algebraic (ambient) dimension. Tensors
having mrank r belong to a manifold of dimension [31]

(4) Φ(r) ,
∏
pRp +

∑
pRp(Np −Rp) = O(

∏
pRp +

∑
pRpNp),

which is much smaller than N̄ = dim(RN1×···×NP ) for low values of Rp. A tensor
X ? = (x?n1,...,nP

) is in Lr if and only if it can be written as a Tucker model [47],

(5) X ? = G×1 U(1)×2 · · · ×P U(P ) ⇔ x?n1,...,nP
=
∑
r1

· · ·
∑
rP

gr1,...,rP
∏
p

u(p)
np,rp ,

where G = (gr1,...,rP ) ∈ RR1×···×RP is the core tensor and U(p) = (u
(p)
np,rp) ∈ RNp×Rp

is the pth matrix factor. Without loss of generality, one can constrain (5) similarly
to the higher-order singular value decomposition (HOSVD) [11], requiring each U(p)

to belong to VRp(RNp), the Stiefel manifold of Np ×Rp matrices having orthonormal
columns, and each mode-p unfolding of G to have mutually orthogonal rows. Then,
counting the parameters of (5) gives (4).

1For unambiguously referring to “the mode-p unfolding,” one must establish an ordering conven-
tion for the columns of the resulting matrix. In our argument, such a choice is irrelevant but must
be used consistently.

2Also called “n-rank” or “Tucker rank” [52, 17, 35].
3Recall that the rank of a tensor can exceed its dimensions. For instance, the smallest typical

rank of an 8× 8× 8 real tensor is 24 [9]; hence a low-rank tensor might still have high modal ranks
if 8 < rank(X ?) < 24.
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Ideally, one would like to come up with a computationally efficient algorithm
provably capable of recovering any X ? ∈ Lr from M ≈ Φ(r) (sufficiently informative)
measurements. Given an instance of the LRTR problem (1) with an associated pair
(r,M), we refer to the ratio θ , Φ(r)/M as its regime. In general, as θ decreases,
successful recovery becomes more likely, and thus small values of θ correspond to
favorable regimes. Conversely, the recovery performance of an algorithm typically
degrades as θ → 1. Given M random measurements of a certain class (e.g., Gaussian
or Bernoulli), the interval ]0, θ0] of regimes for which perfect recovery is achieved
with high probability using a given algorithm is called its recovery regime for M with
respect to this class.

The practical relevance of the LRTR problem stems from the fact that many real-
world tensors can be well approximated by elements of Lr, such as three-dimensional
medical images [17, 34], seismic data [30], video sequences [34, 49], and hyperspec-
tral images [17, 42]. Of particular interest is the frequent problem of reconstructing
partially observed low-mrank tensors. This problem, called tensor completion (TC)
in analogy with matrix completion (MC) [5], is a particular case of (1) where A is a
sampling operator (SO) which reveals only some entries of X ?. Nonetheless, practical
applicability of LRTR is not restricted to TC, as other measurement schemes (such
as, e.g., subsampling in the frequency domain) can be implemented for acquiring a
few data from which a large low-mrank tensor can then be recovered.

1.1. Overview of the state of the art. Unlike the LRMR setting, no prov-
ably efficient (in terms of sampling requirements) and tractable convex approach is
currently known for LRTR. Recovery results were derived in [51] for the tensor nu-
clear norm, but this norm is intractable [16]. Nonetheless, several tractable LRTR
approaches have been developed in recent years. In the following, we briefly describe
some of them and their corresponding recovery guarantees. For simplicity of expo-
sition, we now consider the model (5) with Np = N for all p ∈ JP K and mrank
r = (R, . . . , R), implying Φ(r) = O(RP + PNR).

The first proposed LRTR algorithms [17, 33, 45] relied on minimizing or bound-
ing a weighted sum of the nuclear norms (SNN) of the modal unfoldings. This idea
was motivated by the effectiveness of nuclear norm minimization in LRMR and yields
convex formulations. For these reasons, it was later employed many times, as in
[34, 42, 46]. It was shown in [46] that SNN minimization succeeds when at least
O(RNP−1) Gaussian measurements are taken. As argued by [35], this bound is actu-
ally sharp, while a certain (intractable) nonconvex formulation permits, in principle,
perfect recovery (with X ? ∈ Lr and e = 0) by taking no more than O(RP + PNR)
Gaussian measurements. In an attempt to reduce this gap, [35] proposed minimizing
the nuclear norm of a single matrix unfolding having “more balanced” dimensions.
This leads to recovery guarantees with O(Rb

P
2 cNd

P
2 e) Gaussian measurements. De-

spite the progress, this bound still grows much faster than Φ(r) and only brings
improvement for P > 3. Still in the realm of convex SNN-based approaches, robust
principal component analysis (PCA) techniques were extended to a TC setting in [26],
relying on an underlying model which consists of a sum of a low-mrank tensor plus
a sparse one. With this approach, [26] stated the first recovery guarantees for TC,
which apply with O(µRNP−1P 2 log2(NP−1)) measurements, where µ is a measure
of coherence of the tensor. In [50], a (convex) TC formulation based on tensor rank
is tackled by means of a greedy Frank–Wolfe scheme, which updates the estimate
at each iteration by a rank-one term. This approach relies on a constrained least-
squares formulation where the nuclear norm of the sought tensor is bounded by a



LOW-RANK TENSOR RECOVERY A863

positive constant β.
Other existing methods are predominantly based on nonconvex formulations. For

instance, a joint low-rank matrix factorization of all modal unfoldings is sought in [49]
by minimizing a weighted sum of quadratic errors. For the TC problem, Riemannian
optimization techniques have been used in [28, 31] by exploiting the smooth manifold
structure of sets of low-mrank tensors. Finally, the TC problem is also addressed in
[21] by relying on the so-called tensor train (TT) model, which has its own definition
of rank, the TT rank. When the TT rank has components bounded by R, the number
of DOFs of this model grows as O(PR2N), making it attractive for large P and small
R.

In the rest of this paper, we focus on iterative hard thresholding (IHT) algo-
rithms for LRTR, which build upon ideas used in CS and LRMR [1, 2, 27, 43]. The
first proposed one was tensor IHT (TIHT) [36], whose thresholding operator is the
truncated HOSVD, a standard technique for computing a quasi-optimal low-mrank
tensor approximation. An accelerated variant called ISS-TIHT (where ISS stands
for “improved step size”) was later proposed in [19], relying on a step size selection
heuristic to increase convergence speed. However, recovery guarantees based solely
on bounding restricted isometry constants (henceforth abbreviated as RICs; see sec-
tion 2 for a definition) are still lacking for TIHT, though partial results have been
recently delivered in [38] and an RIC-based local convergence result was derived in
[37, Th. 3]. The minimum n-rank approximation (MnRA) algorithm [52], in its turn,
uses a convex combination of truncated SVDs in lieu of the hard thresholding oper-
ator. This approach enjoys recovery guarantees based on RIC conditions. However,
the RICs exploited in [52] apply to the sensing of tensors having only one low-rank
mode. Consequently, the tightest possible sampling bound implied by these results
for achieving recovery with high probability is M ≥Mmin = O(RNP−1).

1.2. Our contributions and paper organization. We propose an IHT algo-
rithm relying on the low-mrank approximation technique developed in [48], which we
call4 sequentially optimal modal projections (SeMP). This technique is significantly
less costly than the thresholding operators used by TIHT and MnRA, especially for
very low mrank, and often leads to better performance. Our algorithm is named
SeMPIHT. At the theoretical level, we derive recovery guarantees for SeMPIHT un-
der a certain RIC condition by exploiting the sequential optimality of the modal
projections which constitute SeMP. In particular, we show that SeMPIHT converges
to the true tensor in the ideal case (i.e., when X ? ∈ Lr and e = 0). In light of
[38, Th. 2], for fixed P the derived RIC condition is met with high probability when
M ≥ Mmin = O(RNP−1) Gaussian measurements are taken, similarly to the result
of [52]. Thus, our theoretical results unfortunately do not improve upon previous
sampling bounds. Nevertheless, our simulation results suggest that the bound of
SeMPIHT actually scales as Mmin = O(RP + PNR), which is order-optimal with
respect to Φ(r). The same optimality was also observed in our experiments for TIHT
and MnRA, which achieved good results when coupled with the ISS heuristic (see
subsection 3.5).

We also propose a gradual rank increase (GRI) technique akin to those of [21, 31],
consisting in estimating a sequence of increasingly more complex models (in terms of
mrank). Our systematic numerical experiments show that, when dealing with data

4Though [48] uses the name “sequentially truncated HOSVD,” we prefer to adopt “sequentially
optimal modal projections,” because the resulting projection operators are not associated with the
original dominant modal subspaces.
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having fast decaying modal singular spectra, such a GRI heuristic mitigates or avoids
degradation of the results when r is set beyond the recovery regime. Moreover, it is
decisive for satisfactorily recovering tensors of that kind in TC, where their nonideal
coherence properties bring severe difficulties even under a highly favorable regime. We
extensively compare SeMPIHT with other algorithms in the recovery of two classes
of synthetic tensors, one of which has fast decaying modal spectra, similarly to many
real-world data tensors. These simulations involve Gaussian sensing and also the
TC setting. Finally, the completion of a hyperspectral imaging data tensor is also
performed, validating the usefulness of our contributions.

This paper is organized as follows. In section 2, we review the IHT approach
and some existing algorithms based on this technique for CS, LRMR, and LRTR.
Section 3 recalls the SeMP technique and introduces our proposed algorithm, stating
its recovery guarantees and comparing it with previous IHT schemes for LRTR. A
description of our GRI continuation technique is then given in section 4. The effect of
performing GRI is studied in detail in section 5 by means of numerical experiments,
and then other simulations are presented for the purposes of evaluating our approach
and comparing it with other LRTR algorithms. Finally, concluding remarks are drawn
in section 6.

2. Iterative hard thresholding. IHT is a simple and effective technique for
the recovery of parsimonious signals from undercomplete measurements, having been
successfully applied in CS, LRMR, and LRTR [2, 27, 36, 43, 52]. Its rationale is as
follows. In an arbitrary finite-dimensional inner product space H endowed with a
scalar product 〈·, ·〉, one poses

(6) min
x∈S

J(x) = min
x∈S
‖y −A(x)‖22 ,

where A : H 7→ RM is a linear operator, ‖x‖22 , 〈x, x〉, and the set S ⊂ H contains
the parsimonious elements of interest. This set is typically nonconvex, closed, and
nonempty. The basic idea of IHT is then to generate iterates of the form

(7) xk ∈ PS
(
xk−1 −

µk
2
∇J(xk−1)

)
, with ∇J(x) = −2 A† (y −A(x)) ,

where µk > 0 is some chosen step size, A† is the adjoint of A, and PS denotes5

the (orthogonal) projector onto S. Because S is possibly nonconvex, PS(x) =
arg minz∈S ‖x − z‖22 generally yields a set (which is nonempty by the extreme value
theorem, since S is closed and nonempty). In practice, whichever xk (satisfying (7))
is chosen, convergence and recovery results usually remain the same.

The iterates in (7) resemble the projected gradient (or projected Landweber)
algorithm, which is a convex optimization method [8]. Interestingly, it turns out that
they apply to (6) even for nonconvex S, due to the form of J(x). The explanation
relies on the majorization-minimization technique [1], which consists in minimizing at
iteration k the functional

(8) Jk(x) = µkJ(x) + ‖x− xk−1‖22 − µk ‖A(x− xk−1)‖22
over S for some value of µk such that Jk(x) > µkJ(x) for all x 6= xk−1. Such a
µk always exists: as H is finite-dimensional and thus ‖A‖ is bounded,6 one can take

5This notation will be repeatedly used throughout the paper.
6‖A‖ denotes the operator norm of A.
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µk < ‖A‖−1. Clearly, if xk ∈ arg minx∈S Jk(x) and xk 6= xk−1, then µkJ(xk) <
Jk(xk) ≤ Jk(xk−1) = µkJ(xk−1), thus achieving objective function reduction. So, the
question is how to compute such an xk. Expanding J(x) in (8), we have

Jk(x) = ‖x− xk−1‖22 − 2µk〈A†(y −A(xk−1)), x〉 − µk‖A(xk−1)‖22 + µk‖y‖22.(9)

The expression in (9) is strictly convex, and hence its (unique) unconstrained mini-
mum is straightforwardly obtained by solving J ′k(x) = 0, which gives

(10) x?k , arg min
x∈H

Jk(x) = xk−1 + µkA
†(y −A(xk−1)) = xk−1 −

µk
2
∇J(xk−1).

The crucial point is that, because the quadratic term in x of J(x) is canceled out
in Jk(x), the latter has circular level curves, and thus arg minx∈S Jk(x) = PS (x?k)
for any nonempty closed set S [19, Proposition 3.1]. Such simplicity is precisely the
benefit of iteratively minimizing Jk(x) rather than J(x).

The effectiveness of IHT algorithms is typically demonstrated on the basis of
RICs, which we now introduce by generalizing the definitions given in [6, 36, 40].

Definition 1 (restricted isometry constants (RICs)). A linear operator A :
H 7→ RM is said to satisfy the restricted isometry property (RIP) over S ⊂ H if there
exists a (minimal) constant δS < 1, called restricted isometry constant (RIC) of A

with respect to S, such that

(11) ∀ x ∈ S, (1− δS)‖x‖2H ≤ ‖A(x)‖22 ≤ (1 + δS)‖x‖2H.
2.1. Application to compressive sensing and low-rank matrix recovery.

In Table 1, the main ingredients of IHT are particularized for CS, LRMR, and LRTR.
Formulation (6) applies to CS with H = RN and S = Ss, as defined in Table 1.

Note that Ss is not convex, since u,v ∈ Ss generally implies αu + (1− α)v ∈ S2s for
α ∈ (0, 1). The iterates thus read [1]

(12) xk+1 = Hs
(
xk + µkA

T (y −Axk)
)
,

where Hs : RN 7→ Ss projects a vector onto its best s-sparse approximation by
zeroing all but its components of largest magnitude. As multiple best approximations
may exist, an arbitrary Hs(x) ∈ PSs(x) is picked. Hs is called a hard thresholding
operator. RIC-based recovery guarantees for this algorithm have been given, e.g.,
in [15, Th. 6.18], and hold provided O(s log(N/s)) measurements are taken. This
exceeds the number of DOFs of the model only by a logarithmic factor.

In analogy with (12), IHT can be applied to LRMR with H = RN1×N2 and
S = LR by computing

(13) Xk+1 = HR

(
Xk + µkA

† (y −A(Xk))
)
,

where HR : RN1×N2 7→ LR delivers a best rank-R approximation of a matrix. From
the Eckart–Young theorem [13], it can be computed through HR(X) =

∑R
r=1 σrurv

T
r ,

where X =
∑min{N1,N2}
n=1 σnunvTn is the SVD of X, with σ1 ≥ σ2 ≥ · · · ≥ σmin{N1,N2}.

If σR = · · · = σR+d, with d ∈ Jmin{N1, N2} −RK, then HR delivers one of the
multiple best approximations of X. RIC-based performance bounds are derived, e.g.,
in [32]. Similarly to the CS setting, certain random MOs have small RICs with
high probability as long as O(R(N1 + N2 − R)) measurements are taken [7]. This
precisely matches the number of DOFs of a rank-R matrix. Unfortunately, though,
these recovery guarantees do not apply to matrix completion.
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Table 1
Particularization of the setting described in section 2 for some structured data recovery problems.

Probl. Ambient space H Parsimon. elem. set S Obj. funct. J(x) RIC notation

CS RN S = Ss , {x : supp(x) ≤ s} (‡) J(x) = ‖y −Ax‖22 δs: order s

LRMR RN1×N2 S = LR , {X : rank(X) ≤ R} J(X) = ‖y − A(X)‖22 δR: order R

LRTR RN1×···×NP S = Lr, r = (R1, . . . , RP ) J(X ) = ‖y − A(X )‖22 δr: order r

(‡): supp(x) denotes the support of x, i.e., its number of nonzero components.

2.2. Application to tensor recovery based on multilinear rank. Consider
now the tensor recovery setting, with H = RN1×···×NP and S = Lr, as defined by (2).
Although computing projections onto Lr is NP-hard, efficient approximate methods
exist. A widely adopted one consists in truncating the HOSVD at mrank r [11].
Denoting the corresponding operator by Hr : RN1×···×NP 7→ Lr, we have

(14) Hr(X ) = X ×1 U(1)U(1)T ×2 · · · ×P U(P )U(P )T ,

where U(p) ∈ VRp
(RNp) contains as columns the first Rp left singular vectors of the

unfolding X〈p〉. Therefore, U(p)U(p)T is an orthogonal projector onto the dominant
subspace of dimension Rp associated with the pth mode of X . The truncated HOSVD
(THOSVD) operator defined in (14) is easy to implement, as it requires only standard
numerical linear algebra routines. Moreover, it can be shown to be quasi-optimal by
a factor of

√
P , in the sense that [48]

(15) ‖X −Hr(X )‖F ≤
√
P min

Z∈Lr

‖X −Z‖F .

Due to the above properties, Hr is employed by the TIHT algorithm [36], whose
iterates read
(16)

X k+1 = Hr(Vk), whereVk , X k + µkA
† (y −A(X k)) andµk =

‖∇J(X k)‖2F
‖A(∇J(X k))‖2F

.

More recently, the same authors have proposed the normalized TIHT (NTIHT) al-
gorithm [38], which is also based on the THOSVD method but uses the step size
formula

(17) µk =
‖Gk‖2F
‖A(Gk)‖2F

, Gk = ∇J(X k)×1 U
(1)
k U

(1)
k

T
×2 · · · ×P U

(P )
k U

(P )
k

T
,

where the orthogonal matrices U
(p)
k are bases for the modal unfoldings of X k obtained

with the use of THOSVD at iteration k − 1.
Although the effectiveness of TIHT and NTIHT was experimentally shown, re-

covery results based solely on typical RIP conditions are still lacking. The best one
in this sense is as follows.

Theorem 2 (performance bound of NTIHT [38, Th. 1]). Put a ∈ (0, 1), and let
Abe an MO possessing a 3r-RIC satisfying δ3r < a/(a+8), where 3r = (3R1, . . . 3RP ).
Let X ? ∈ Lr. Then, given measurements y = A(X ?) + e, if

(18) ‖X k − Vk‖F ≤ (1 + ε(a)) ‖X ? − Vk‖F ,
where ε(a) = a2(1− δ3r)2(17(1− δ3r +

√
1 + δ2r‖A‖))−2, then for all k we have

‖X ? −X k‖F ≤ ak−1‖X ? −X 0‖F +
b(a)

1− a‖e‖2,
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where b(a) = 2
√

1+δ3r
1−δ3r +

√
4ε(a) + 2ε(a)2 1

1−δ3r ‖A‖.
Though a heuristic justification is given in [38] for condition (18), it cannot be

guaranteed in general because the THOSVD is quasi-optimal by a factor
√
P , whereas

ε(a) ≈ 0. We point out that a local convergence result based solely on RIC assump-
tions was derived in [37, Th. 3]. However, it is rather restrictive, as it applies only in
a sufficiently small neighborhood of the desired global minimum.

A similar scheme called MnRA is proposed in [52]. However, as it uses a convex
combination of truncated SVDs in lieu of the hard thresholding operator, no projection
onto Lr is performed. Given nonnegative weights wp satisfying

∑
p∈JP K wp = 1, this

operator, denoted here by Cr, is defined as

(19) Cr (X ) =

P∑
p=1

wpZp such that (Zp)〈p〉 = HRp

(
X〈p〉

)
,

in which HRp
is the same as in (13) with R = Rp. The step size of MnRA is fixed,

thus yielding iterates

X k+1 = Cr

(
X k + µ A† (y −A(X k))

)
.

Although X k /∈ Lr in general, convergence to the true estimate in the ideal case has
been shown in [52] under RIP conditions. For convenience, this result is reproduced
below.

Theorem 3 (performance bound of MnRA [52, Th. 4.2]). Let A be an MO with
RICs δr̄p < 1 for all p ∈ JP K, where r̄p , (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ). Also
let X ? ∈ Lr and y = A(X ?) + e, and assume 3/4 < µ < 5/4. If maxp δr̄p < τ , then
MnRA satisfies

∀ k, ‖X ? −X k‖F ≤ 2−k‖X ? −X 0‖F + 2C‖e‖2,

where C = 2µ
√

1 + τ and τ = 1/4−|1−µ|
µ(1+dmaxpNp/Rpe) .

Unlike Theorem 2, this result does not involve a restrictive assumption such as
(18). Yet, it is not satisfying from a sampling efficiency standpoint, because A can
only have an RIC δr̄p < 1 if M ≥Mmin = O(RpN̄p), which grows much more quickly
than Φ(r) given by (4). For instance, O(RpN̄p) = O(RNP−1) when Rp = R and
Np = N for all p.

We point out that [38] derives sampling bounds which ensure (with high prob-
ability) the RIP for subgaussian and for random partial Fourier MOs. They can be
coupled with RIC-based recovery guarantees such as Theorems 2 and 3 in order to
derive sampling requirements for the analyzed algorithms. Though random partial
Fourier MOs require slightly more measurements than subgaussian ones (by a poly-
logarithmic factor), they are much more reasonable in practice because fast transform
algorithms can be exploited to reduce both acquisition and recovery times.

3. The SeMPIHT algorithm. We propose an IHT scheme employing the
SeMP technique for approximate projection onto Lr. The iterates of our SeMPIHT
algorithm are thus computed as

(20) X k = Sr

(
X k−1 + µkA

† (y −A(X k−1))
)
,

where Sr : RN1×···×NP 7→ Lr denotes the SeMP operator. Essentially, instead of
computing the dominant subspaces of all modal unfoldings and then performing the
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Algorithm 1 sempiht(X 0,y,A,r,Kmax,ε).

Inputs: Initial solution X 0, measurement vector y, measurement operator A, target
mrank r, maximum number of iterations Kmax, tolerance ε
Output: Estimated tensor, X̂ ?

1. for k = 1, . . . ,Kmax

(i) Gk ← A∗ (y −A(X k−1))
(ii) compute step size µk using either ISS (see subsection 3.5) or formula (17)
(iii) compute X k ← Sr (X k−1 + µkGk) using Algorithm 2
(iv) if criterion (32) is satisfied, break

end
2. return X̂ ? ← X k

projection, SeMP proceeds by interleaving these operations in a sequential fashion. It
is therefore rather similar in spirit to some techniques used in the context of hierarchi-
cal tensor representations; see [20] and references therein. The SeMPIHT algorithm
is detailed in Algorithm 1.

In what follows we describe the SeMP operator and its properties.

3.1. The SeMP technique for approximate projection onto Lr. The prin-
ciple of multilinear orthogonal projection (14) which underlies the THOSVD opera-
tor Hr can be more generally applied with other choices of modal projectors. Es-
sentially, we seek an efficient way of computing P orthogonal projection matrices

Πp = V(p)V(p)T , with V(p) ∈ VRp
(RNp), which approximate the solution of

min
Z∈Lr

‖X −Z‖2F = min
Πp=V(p)V(p)T

V(p)∈VRp (RNp )

‖X −X ×1 Π1 ×2 · · · ×P ΠP ‖2F .

In (14), each mode-p projector Πp = U(p)U(p)T is associated with the Rp-dimensional
dominant subspace of X〈p〉. This choice is motivated by the inequality [48]

‖X −X ×1 Π1 ×2 · · · ×P ΠP ‖2F ≤
P∑
p=1

‖X −X ×p Πp‖2F =

P∑
p=1

∥∥X ×p Π⊥p
∥∥2

F
,

where Π⊥p = I − Πp projects onto the orthogonal complement of the range of Πp.
When each Πp is associated with the dominant subspace of X〈p〉, the above upper
bound is minimized. In practice, note that applying Hr requires computation of all
P projectors (possibly in parallel) before they are applied.

The SeMP approximate projector proposed in [48], which we define next, is based
on another choice for the modal projectors. Due to its sequential nature, an ordering
must be specified for the modal projections. Such an ordering is denoted by a permu-
tation π = (p1, p2, . . . , pP ) of (1, . . . , P ), referred to as the modal projection ordering
(MPO). For simplicity of exposition, we now assume π = (1, . . . , P ).

Definition 4. Let us denote by H
(p)
Rp

: RN1×···×NP 7→ RN1×···×NP the operator
which applies singular value hard thresholding to the pth mode of its argument, i.e.,

(H
(p)
Rp

(X ))〈p〉 = HRp(X〈p〉). Then, the SeMP operator Sr : RN1×···×NP 7→ Lr is
defined as

(21) Sr(X ) = H
(P )
RP

H
(P−1)
RP−1

. . .H
(1)
R1

(X ) .
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From the Eckart–Young theorem, (21) amounts to choosing the modal projection
matrices

Π̂p = arg min
Πp

∥∥∥X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1 ×p Π⊥p

∥∥∥2

F
,(22)

subject to

{
Πp = V(p)V(p)T ,

V(p) ∈ VRp
(RNp),

so that

H
(p−1)
Rp−1

. . .H
(1)
R1

(X ) = X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1.

This choice can be justified by invoking the inequality [48]

min
Z∈Lr

‖X −Z‖2F ≤
P∑
p=1

= min
Πp=V(p)V(p)T

V(p)∈VRp (RNp )

∥∥∥X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1 ×p Π⊥p

∥∥∥2

F

(23)

≤
P∑
p=1

= min
Πp=V(p)V(p)T

V(p)∈VRp (RNp )

∥∥X ×p Π⊥p
∥∥2

F
.(24)

SeMP picks the minimizers of the upper bound in (23), while THOSVD picks those

of (24). Another crucial difference exists in comparison with THOSVD: each Π̂p here

depends on all previously calculated Π̂q, with q < p. Hence, note that we cannot

compute all the projectors Π̂p in parallel, since their computation and application
must be interleaved.

For clarity, an algorithmic description of the computational procedure associated
with (21) is given in Algorithm 2. Step 2(ii) of this procedure is equivalent to calcu-
lating

(25) V̄p = V̄p−1 ×p Ū(p)T ∈ RR1×···×Rp×Np+1×···×NP .

Therefore, the final outcome can be written as

Sr (X ) = X ×1 Ū(1)Ū(1)T ×2 · · · ×P Ū(P )Ū(P )T = X ×1 Π̂1 ×2 · · · ×P Π̂P .

Note the similarity of the above expression to (14). The fact that the matrix Ū(p) cal-

culated in Algorithm 2 satisfies Ū(p)Ū(p)T = Π̂p, with Π̂p defined by subsection 3.1,

can be verified as follows. For brevity, let us denote Vp−1 , H
(p−1)
Rp−1

. . .H
(1)
R1

(X ),

with V0 = X . We need to show that Ū(p) contains the first left Rp singular vectors
of (Vp−1)〈p〉 as columns. For p = 1, this is clearly true, as V0 = V̄0 = X . For
p > 1, we proceed by induction. Assume the claim holds for all q ∈ Jp − 1K, which

implies Ū(q)Ū(q)T = Π̂q. Then, it is easy to verify that it holds also for p, as the left

singular vectors of (Vp−1)〈p〉 = (X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1)〈p〉 are the same as those
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Algorithm 2 Sequentially optimal projections (SeMP) for best low-mrank approxi-
mation [48].

Inputs: Tensor X whose best approximation in Lr is sought, target mrank r =
(R1, . . . , RP )
Output: An approximate projection Sr (X ) of X onto Lr

1. set V̄0 = X
2. for p = 1, . . . , P

(i) compute the SVD: (V̄p−1)〈p〉 =
[
Ū(p) Ũ(p)

]
[ Σ̄(p) 0

0 Σ̃(p) ]
[
W̄(p) W̃(p)

]T
,

where Ū(p) ∈ RNp×Rp , Σ̄(p) ∈ RRp×Rp , W̄(p) ∈ RLp×Rp ,
Lp = (

∏p−1
q=1 Rq)(

∏P
q=p+1Nq)

(ii) compute V̄p through its mode-p unfolding: (V̄p)〈p〉 ← Σ̄(p)W̄(p)T

end
3. return Sr (X )← V̄P ×1 Ū(1) ×2 · · · ×P Ū(P )

of
(
V̄p−1

)
〈p〉 = (X ×1 Ū(1)T ×2 · · · ×p−1 Ū(p−1)T )〈p〉. Indeed,

(Vp−1)〈p〉 = X〈p〉
(
Ū(1)Ū(1)T ⊗ · · · ⊗ Ū(p−1)Ū(p−1)T ⊗ INp+1

⊗ · · · ⊗ INP

)T
,(

V̄p−1

)
〈p〉 = X〈p〉

(
Ū(1)T ⊗ · · · ⊗ Ū(p−1)T ⊗ INp+1 ⊗ · · · ⊗ INP

)T
,

where IN denotes the N ×N identity matrix, which implies

(Vp−1)〈p〉 (Vp−1)T〈p〉 = X〈p〉

(
Ū(1)Ū(1)T ⊗ · · · ⊗ Ū(p−1)Ū(p−1)T ⊗ INp+1 ⊗ · · · ⊗ INP

)
XT
〈p〉

=
(
V̄p−1

)
〈p〉

(
V̄p−1

)T
〈p〉 .

Let us calculate the resulting cost. Assuming it takes O(N1N2 min{N1, N2})
operations to compute the SVD of an N1 ×N2 matrix,7 the cost of Algorithm 2 is

cSeMP = O
(

P∑
p=1

NpLp min{Np, Lp}
)

+

P∑
p=1

R1 . . . RpNp+1 . . . NP(26)

+O
(

P∑
p=1

N1 . . . NpRp . . . RP

)
,

where Lp is as defined in Algorithm 2. The first term corresponds to the computation
of the SVD of V̄0, . . . , V̄P−1, while the second and third terms comprise, respectively,
the costs of steps 2(ii) and 3 of Algorithm 2.

Now, when Np � Lp, instead of computing the SVD of (V̄p−1)〈p〉 ∈ RNp×Lp as
described by Algorithm 2, one can proceed as follows. First, the eigenvalue decom-
position of (V̄p−1)〈p〉(V̄p−1)T〈p〉 ∈ RNp×Np provides (only) the left singular vectors of

(V̄p−1)〈p〉, which are then used for the projection stage (25). The goal is decom-
posing a much smaller matrix, at a cost of O(N3

p ) in lieu of O(N2
pLp). Though

7In principle, the first R terms can be computed with O(RN1N2) operations [23]. Yet, in our
experience, optimized classical algorithms delivering the whole SVD, such as that of LAPACK, are
usually faster.
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the overall cost of the decomposition stage (i.e., the first term of (26)) remains
O(N2

pLp) because of the matrix product (V̄p−1)〈p〉(V̄p−1)T〈p〉, it is generally much

faster in practice, compensating for the increased effort of using (25), which costs

O(
∑P
p=1R1 . . . RpNp . . . NP ), instead of step 2(ii) of Algorithm 2. So, even though

this alternative implementation has an asymptotic cost of

O
(

P∑
p=1

N2
pLp

)
+O

(
P∑
p=1

R1 . . . RpNp . . . NP

)
+O

(
P∑
p=1

N1 . . . NpRp . . . RP

)
,

it is often quite advantageous, due to the reduced scale of the decomposition problem.
As a final comment, we mention that an important property of SeMP is its quasi-

optimality by a factor of
√
P , i.e., its compliance to inequality (15), just like the

THOSVD [48]. This can be easily shown from (24).

3.2. Computational cost per iteration. The computing effort involved in
the use of Sr is given by (26). Calculation of the argument of Sr can be split into
three stages: (i) computing the gradient of J , (ii) calculating the step size µk, and
(iii) calculating the sum V0 = X k−1 − µk

2 ∇J(X k−1). Stage (i) requires O(MN̄)
operations for unstructured (e.g., Gaussian) operators, which can be alleviated by
working with structured MOs. For instance, it requires O(M) in TC, while a cost of
O(N̄ log(N̄)) is achieved when random partial Fourier or noiselet measurements are
taken by means of fast transform algorithms (see, e.g., [32, 41]). The cost of stage
(ii) depends on the step size selection strategy, and thus we postpone its discussion to
subsection 3.5. Finally, (iii) generally takes O(N̄) operations. In TC, this cost drops
to O(M) because the gradient is sparse (due to the form of the SO).

3.3. Comparison with previous approaches. Clearly enough, the hard thresh-
olding operator employed in an IHT algorithm has a major impact on its convergence
speed, computing cost, and recovery effectiveness. We thus compare the operators of
SeMPIHT, TIHT, and MnRA according to the following criteria.

(1) Approximation accuracy. As seen above, both Hr and Sr are quasi-optimal
by a factor

√
P . In fact, our practical experience is consistent with the observations

reported in [48], in that ‖X − Sr(X )‖F < ‖X − Hr(X )‖F holds in most observed
cases. MnRA’s operator Cr, in its turn, satisfies

‖X − Cr(X )‖F =
∥∥∥∑P

p=1 wp (X −Zp)
∥∥∥
F
≤∑P

p=1 wp ‖X −Zp‖F
≤∑P

p=1 wp ‖X −X r‖F = ‖X −X r‖F

for all X r ∈ PLr(X ), where the second inequality comes from the fact that (Zp)〈p〉
is the best rank-Rp approximation of X〈p〉 (see (19)). This perhaps surprising result
is explained by the fact that Cr is not really a projection onto Lr, due to the sum of
terms which are low-rank only with respect to one mode.

(2) Computing cost. Applying Hr requires

O
(

P∑
p=1

NpN̄p min{Np, N̄p}
)

+O
(

P∑
p=1

R1 . . . RpNp . . . NP

)
(27)

+O
(

P∑
p=1

N1 . . . NpRp . . . RP

)
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operations, where the first sum is the cost of the P required SVDs and the others
come from the projection onto the dominant modal subspaces (see (14)). The latter is
broken down into two terms because it is faster to first compute the R1×· · ·×RP core
of the THOSVD and then reconstruct the full tensor. Overall, the cost is dominated
by the first sum of (27). Similarly, applying Cr demands

(28) O
(∑

pNpN̄p min{Np, N̄p}
)

+O(PN̄)

operations, where the first term is related to the SVDs of all modal unfoldings and the
second to the convex combination of (19). Though (27) and (28) are asymptotically
equivalent, Cr is less costly in practice due to the difference between the second terms
of these expressions.

Comparing now the first term of (26) with those of (27) and (28), it is seen that Sr

is less costly than Hr and Cr, which is due to the dimensionality reduction performed
for each p in Algorithm 2.

(3) Analytical tractability. Theorem 2 states a partial recovery result which ap-
plies to TIHT. Unfortunately, it relies upon a condition which cannot be ensured a
priori. MnRA, in its turn, enjoys the RIC-based performance bound of Theorem 3,
despite the fact that in general Cr(X ) /∈ Lr. This result, however, leads to suboptimal
sampling bounds. At this point, it is not clear whether a similar (suboptimal) result
based only on RIC assumptions can be derived for TIHT. As for SeMP, the sequen-
tial optimality of its modal projections allows establishing RIC-based performance
bounds, as we will show next.

3.4. Theoretical recovery results. This section establishes a performance
bound for SeMPIHT under the standard assumption that Ahas sufficiently low RICs.
Our main result, whose proof is inspired by (but is simpler than) that of [52], is as
follows.

Theorem 5. Let X ? ∈ T and y = A(X ?) + e. If A has an RIC δr̄p < 2−P ,
where r̄p = (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ), then the iterates computed via (20)
with fixed step size µk = 1 and MPO given by8 π = (p, p2, . . . , pP ) satisfy after k
iterations

(29) ‖X ?
r −X k‖F ≤ ξk‖X ?

r −X 0‖F +
2P
√

1 + δr̄p
1− ξ ‖A(X ? −X ?

r) + e‖2 ,

where ξ = 2P δr̄p < 1 and X ?
r ∈ PLr(X ?) = arg minZ∈Lr

‖X ? − Z‖F , with r =
(R1, . . . , RP ). If the step size formula (17) is used, then (29) holds with δr̄p <
1/(2P+1 + 1) and ξ = supk 2P (|1− µk|+ µkδr̄p) < 1.

Proof. See Appendix A.

Corollary 6. Let X ? ∈ Lr and y = A(X ?). If A has an RIC δr̄p < 2−P , then
the scheme (20) with fixed step size µk = 1 and MPO π = (p, p2, . . . , pP ) converges
to X ?. If the step size formula (17) is used, then the same result holds with δr̄p <
1/(2P+1 + 1).

Proof. The proof follows from taking k →∞ in (29) with X ? = X ?
r and e = 0.

Ideally, mrank-based recovery results should assume a small RIC of order
(dR1, . . . , dRP ) for some constant d. But, just as in Theorem 3, our results rely

8The first component of π was chosen as p1 = p to simplify the writing of the theorem and its
demonstration.
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instead on an RIC of order (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ). Consequently, they
unfortunately do not improve upon currently known sampling bounds. Indeed, ap-
plying [38, Th. 2] with δ = 2−P for fixed P , the RIC condition in Theorem 5 is met
with high probability provided that one takes9

(30) M ≥Mmin = O(RpN̄p +RpNp +
∑
q 6=pN

2
q )

subgaussian measurements, which grows much faster than the model complexity Φ(r)
(see (4)). Nevertheless, our numerical simulations of subsection 5.3 will show that
in practice Mmin = O(Φ(r)) = O(

∏
pRp +

∑
pNpRp) Gaussian measurements are

sufficient for achieving recovery with SeMPIHT. We note that the same is true also for
both TIHT and MnRA. Formally demonstrating such an observed (near-)optimality
of SeMPIHT remains an open problem.

It is also important to bear in mind that, since our recovery guarantees are RIC-
based, they do not apply to TC, because sampling operators cannot possess small
RICs (a simple counterexample for the matrix case is given in [4] which can be easily
extended to TC). When using uniformly distributed SOs, the analysis typically re-
quires imposing certain incoherence conditions (similar to, e.g., those in [5, 26]) on the
target low-mrank tensors, in order to, roughly speaking, avoid a high concentration
of the tensor energy in a small number of entries. The motivation is guaranteeing
that any set of sampled entries be sufficiently informative, which is not the case, for
instance, when a sparse tensor is uniformly sampled.

3.5. Step size selection and stopping criteria. As emphasized in [43], the
issue of step size selection is of great importance when using IHT. On the one hand,
µk should be sufficiently large to accelerate convergence and diminish the occurrence
of convergence to local minima. In particular, the requirement Jk(x) > µkJ(x) for all
x 6= xk−1 can be relaxed, since it is sufficient but not necessary for having objective
function decrease. On the other hand, too large steps may cause the algorithm to
diverge. In addition, invariance with respect to the scaling of the MO is desirable,
which is not possible with a fixed step size. To pursue these requirements, some
adaptive step size strategies have been proposed in the literature [2, 43, 19, 38].

Upon evaluation of the SeMPIHT iteration (20) with fixed step size µk = 1
through computer experiments, one observes that the algorithm is sensitive to the
scaling of the used MO, and recovery is only achieved under a highly favorable regime.
Furthermore, convergence can be impractically slow.

Our first approach to overcoming these problems consists in employing the ISS
heuristic proposed in [19]. This heuristic was motivated by the poor performance
displayed by TIHT when the formula in (16) is employed. It consists in imposing a
lower bound and an upper bound on µk, namely,

(31) αω(µk) ≤ µk < ω(µk) ,
‖X k −X k−1‖2F
‖A(X k −X k−1) ‖22

,

for α ∈ ]0, 1[. The upper bound is similar to that proposed in [2] for CS, aiming at
achieving objective function decrease. In its turn, the lower bound is meant to avoid

9Reference [38, Th. 2] states that δr ≤ δ if a bound of the form M ≥ O(δ−2(RP +PNR) log(P ))
is met, where r = (R1, . . . , RP ), R = maxpRp, and N = maxpNp. Nonetheless, an inspection of its
proof reveals that this bound can be refined as M ≥ O(δ−2(

∏
pRp +

∑
pNpRp) log(P )), which for

fixed P and r = r̄p = (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ) implies (30). The refinement of the term
PNR is mentioned in [38].
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too small values for µk. As a first candidate step size, we use here the initial guess
µk = 1 (unlike [19], which uses TIHT’s formula) and then keep it if it satisfies (31).
Otherwise, a new candidate step size given by βω(µk) is generated, where β ∈]α, 1[,
its corresponding estimate X k is computed, and the verification is repeated. This
process is interrupted if a maximum number of generated candidates (denoted as L
in [19]) is attained, and then the largest step satisfying at least the upper bound is
kept. If none of the generated candidate step sizes satisfies that upper bound, then
the smallest one is repeatedly divided by κ > 1 until it does, similarly to [2].

Based on the above description, we conclude that the extra cost depends on the
number of candidate step sizes generated until one is accepted. For each additional
candidate, stage (iii) mentioned in subsection 3.2 must be performed, followed by
application of SeMP. Assuming that at least one of the first L generated candidates
satisfies its upper bound (which was always the case in our simulations), the extra
cost is thus given in the worst case by L− 1 times the cost of these two operations.

A competitive alternative to ISS is based on the step size selection rule (17) pro-
posed in [38]. This expression is the higher-order analogue of that used in the matrix
NIHT algorithm of [43]. Here, the gradient undergoes a multilinear transformation so
that each mode is projected onto the corresponding modal subspace of X k−1. In the
case of SeMPIHT, note that each U(p) in (17) must be replaced by the matrix Ū(p)

computed by SeMP (see Algorithm 1) at iteration k− 1. As in [43], this is motivated
by the expectation that little change occurs from one iterate to another in terms of
those subspaces, in which case (17) is approximately optimal. The cost implied by its
use is of

O
(∑P

p=1R1 . . . RpNp . . . NP

)
+O

(∑P
p=1N1 . . . NpRp . . . RP

)
+ cA+O(M) +O(N̄)

operations, where the first two terms are associated with the multilinear transforma-
tion in (17), cA denotes the cost of applying the MO A(as discussed in subsection 3.2),
and the last two terms are related to the calculation of the norms.

For convenience, we give a concrete description of SeMPIHT with adaptive step
size in Algorithm 1. Two stopping criteria are used. At each iteration k we check
whether the condition

(32) ‖X k −X k−1‖F ≤ ε‖X k−1‖F ,

with ε > 0, is satisfied for two consecutive estimates. If so, convergence is declared,
and the algorithm stops. Otherwise, it keeps running until a maximum number of
iterations Kmax is met.

4. Performance improvement with gradual rank increase. More often
than not, tensors measured in applications possess modal singular spectra which decay
steadily, instead of having an exactly low mrank. In that case, gradually increasing the
mrank of the estimated model along iterations can improve recovery [31]. We pursue
this idea here, proposing a continuation technique, called gradual rank increase (GRI),
which starts off with a small mrank and conducts the algorithm through increasingly
complex estimates.

There are several ways in which one can implement a GRI scheme. A fairly
simple one starts with a chosen mrank r1 and then runs Algorithm 1 for a maximum
of K ′max < Kmax iterations or until (32) is satisfied. The outcome X̂ ?

r1 is then used
to initialize a subsequent run in which the mrank components are set as [r2]p =
min{[rmax]p, [r1 + i]p} for all p, where i ∈ NP is a prescribed increment and rmax is
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Fig. 1. Diagram of SeMPIHT algorithm with GRI heuristic.

the (final) target mrank. This process is repeated until rmax is reached, at which point
a final run is performed, as depicted in Figure 1. Note that a sequence of increasingly
complex estimates X̂ ?

rt , t = 1, 2, . . . , is produced before outputting X̂ ? = X̂ ?
rmax

.
A disadvantage of the above scheme is that one cannot separately control the

iteration at which each mrank component is incremented. If, e.g., i = 1 and [rmax]p �
[rmax]q, then the algorithm reaches [rmax]p many iterations before reaching [rmax]q.
But we would rather assign to each component a growth rate proportional to its
magnitude. To this end, we can check the convergence of each modal subspace basis
matrix U(p) separately. An even simpler strategy is to predefine modal rank profiles
specifying values for the mrank components at each iteration, until attaining the
target mrank at iteration K̄max. From that point, normal operation is resumed. For
instance, if rmax = (R, 2R, 10R), then one can increment [r]p by one unit at every
10R/[rmax]p iterations, so that rmax is attained at iteration K̄max = 10R.

5. Simulation results. In the following, we thoroughly evaluate SeMPIHT and
compare it with other LRTR/TC algorithms by means of computer simulations. For
simplicity, our simulations concern only the recovery of third-order tensors (i.e., P =
3). We note also that the ISS heuristic is always employed with parameters L = 3,
α = 0.5, β = 0.7 (see subsection 3.5). All reported experiments were performed in
MATLAB R2013a running on an Intel Xeon ES-2630v2 2.60 GHz with 32 GB of 1866
MHz RAM memory.

The main performance criterion used in our experiments is the normalized squared
error (NSE). Given a tensor of interest X ? and an estimate X̂ ? obtained by applying
a recovery algorithm to some measurement vector y = A(X ?), we define

(33) NSE(X̂ ?;X ?) ,
‖X ? − X̂ ?‖2F
‖X ?‖2F

.

When recovery is performed for Nr realizations, providing Nr pairs (X̂ ?
l ,X

?
l ), l ∈

JNrK, we often employ the normalized (sample) mean square error (NMSE)

(34) NMSE(X̂ ?;X ?) =
1

Nr

Nr∑
l=1

NSE(X̂ ?
l ;X

?
l ),

whose arguments may be omitted for simplicity whenever they are clear from the
context.

5.1. Tensor models. Two types of synthetic tensors are considered in our ex-
periments:
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2 4 6 8 10 12 14 16 18 20

10−15

10−12

10−9

10−6

10−3

100

n

σ
(p

)
n

(a) Modal spectra

p = 1

p = 2

p = 3
T1 tensor

T2 tensor

2 4 6 8 10 12 14 16 18 20

0.05

0.1

0.15

0.2

R

ν (
R
,R

,R
)

(b) Modal rowspace coherence

T1

T2 (ϕ=0.5)

T2 (ϕ=0.75)

T2 (ϕ=1)

T2 (ϕ=1.5)

T2 (ϕ=2.5)

T2 (ϕ=3.5)

Fig. 2. Typical behavior of the considered random tensor models: (a) modal singular spectra;
(b) row space coherence (see (35)).

• A type-1 (T1) tensor consists of a Tucker model having an R1×· · ·×RP core
and Np×Rp factors. Thus, by construction, it belongs to Lr. All factors and
the core have standard Gaussian entries. As a consequence, T1 tensors have
highly concentrated nonzero modal singular values.

• A type-2 (T2) tensor generally has full mrank but exhibits exponentially de-
caying modal singular spectra. To impose this property, we adopt the Tucker
model used in [49, sec. 2.3], which has an N1 × · · · × NP Gaussian core
and matrix factors Ap = QpSp ∈ RNp×Np , where Qp is orthogonal and
Sp = diag(1, 2−ϕ, . . . , N−ϕp ), with ϕ > 0.

The typical spectral characteristics of T1 and T2 tensors are illustrated in Figure 2(a).
Specifically, it shows the average modal singular spectra of 500 realizations of 20 ×
20 × 20 T1 (r = (10, 10, 10)) and T2 (ϕ = 3) tensors, which are normalized to have
unit Frobenius norm. The average nth singular value of the mode-p unfolding of the

generated tensors is denoted by σ
(p)
n . Numerically, the T2 tensors have full mrank.

Consistently with the shown behavior, the mean squared error of the best mrank-
(R,R,R) approximation as a function of R displays an abrupt variation for the T1
tensors; that of the T2 tensors decays steadily and smoothly.

Another relevant property of these tensor models is highlighted in Figure 2(b).
Namely, we generated 500 realizations of T1 tensors of varying mrank r = (R,R,R)
and T2 tensors with varying ϕ, all having dimensions 20× 20× 20, and then plotted
the average modal row space coherence (see [5, 26]) of their approximate projections
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onto Lr, i.e.,
(35)

νr(X ) = min
p

max
n∈JNK

∥∥∥PWp

(
e(N̄p)
n

)∥∥∥2

2
, where

{
Wp = rowspace

(
(X r)〈p〉

)
,

X r = Sr(X ),

where e
(N̄p)
n is the nth canonical basis vector of RN̄p . Note that X r = X for T1

tensors of mrank r, while for T2 tensors X r 6= X . The (approximate) projection is
performed because we are ultimately interested in the properties of the best mrank-r
approximation of X , since it is this approximation which is sought by SeMPIHT, the
difference X −X r being regarded as a modeling error (cf. Theorem 5). Figure 2(b)
indicates that the modal row space coherence of the (approximately) projected T2
tensors grows with ϕ. Also, the gap among the curves grows with R. As we shall see
in what follows, this has important negative implications when trying to complete T2
tensors sampled uniformly at random.

We would like to draw attention to the fact that, although the modal spectra of
T2 tensors are more akin to those of most real-world tensors, to date most published
works have exclusively considered T1 (or similar) tensors in computer experiments
with synthetic data.

5.2. Effect of gradual rank increase. In this section, we discuss the effects
of the GRI heuristic by drawing upon experimental results. This allows us to show
its motivation and better understand how it works, based on empirical grounds. To
this end, we resort to Monte Carlo simulations involving the recovery of 20× 20× 20
tensors by employing Algorithm 1 with ISS.

We first employ Gaussian MOs. For each value of ρ = M/203 ∈ {0.10, 0.25, 0.40},
Nr = 100 realizations of an MO A are generated by drawing the entries of its associ-
ated matrix A ∈ RM×203

(such that A(X ) = A vec(X )) from a zero-mean Gaussian
distribution of variance 1/M . Each MO is then used to sense T1 tensors having mrank
(R,R,R), with R ∈ J15K, and T2 tensors with spectral decay factors ϕ ∈ {3

2 ,
7
2}.

When recovering T1 tensors, the target mrank always matches mrank(X ?), and we
set Kmax = 1000 and ε = 10−10 for the stopping criterion (32). The algorithm is run
once initialized with the null tensor (initialization I) and then three more times with
random initializations (initialization II).

In the recovery of T2 tensors, we vary the target mrank (R,R,R) and run the
algorithm twice for each R: once initialized with the null tensor (initialization I) and
once using the solution obtained with mrank (R−1, R−1, R−1) to initialize the run
in which r = (R,R,R) (initialization II). Note that the latter initialization strategy is
closely related to our GRI heuristic. Again, Kmax = 1000, but a specific ε was chosen
for each combination of ϕ and ρ by a trial and error procedure.

The NMSE of the estimates provided by SeMPIHT is shown in Figure 3(a),(c),(e).
In the case of T1 tensors, only the best outcome among the runs with initialization
II is kept for computing (34). For T2 tensors, we also plot NMSE(Sr(X ?);X ?),
which gives an approximate lower bound. Figure 3(a) displays a sharp transition
from success to failure in the recovery of T1 tensors, which is a typical behavior in
parsimonious signal recovery problems. Concerning T2 tensors, Figure 3(c),(e) shows
that the NMSE gets quite close to the lower bound when inside the region of successful
recovery of T1 tensors (cf. Figure 3(a)), regardless of the initialization. Beyond that
region, a gap appears: results obtained with initialization I rapidly degrade, while
those for initialization II degrade (or even improve) only slightly before stabilizing.
The rate of deviation from the lower bound depends on ρ and ϕ, in conformity with
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Fig. 3. Effect of GRI on recovery performance of SeMPIHT with Gaussian ((a), (c), and (e))
sensing and in TC ((b), (d), and (f)). The approximate lower bound in (c)–(f) is computed as
NMSE(Sr(X ?);X ?).

(29).
The results of a similar experiment performed with (uniformly) random SOs are

shown in Figure 3(b),(d),(f). As we can see, transition into failure happens in Fig-
ure 3(b) for ρ = 0.10 as soon as R = 2, against R = 6 in the Gaussian case. Also, the
results are very poor for T2 tensors with initialization I, even in a favorable regime
(i.e., where recovery of T1 tensors succeeds). Moreover, the performance worsens as
the singular values decay rate ϕ grows, which is explained by the behavior shown
in Figure 2(b), as the recoverability of X ?

r depends on r and on some measure of
coherence. The use of initialization II does a remarkable job in avoiding such a degra-
dation. Indeed, the results for ρ = 0.25 and ρ = 0.40 are similar to those obtained
with Gaussian sensing. For ρ = 0.10, not enough measurements seem to be available
for achieving comparable results.

Let us now interpret these outcomes in light of the results of subsection 3.4. Since
X ? ∈ Lr in our experiment with T1 tensors, Corollary 6 guarantees convergence to
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the global minimizer X ? whenever A satisfies the stated RIC condition, regardless
of the initialization (and despite the nonconvexity of (6)). Hence, when using Gaus-
sian sensing, initialization plays no role in the recovery regime (with high probability),
which is corroborated by Figure 3(a). Our results suggest that, in the phase transition
region, the influence of initialization comes into play, as the insufficiency of measure-
ments vis-à-vis the number of DOFs causes convergence to local minima (or inability
to converge), with rapidly increasing probability as R grows. Similar remarks hold
for T2 tensors, in that the iterates approach a ball centered at a best approximation
X ?

r ∈ Lr of X ? regardless of the initialization for appropriate A (cf. Theorem 5),
which explains Figure 3(c),(e).

Now, when a too high mrank (with respect to ρ) is chosen to model a T2 tensor,
gradually increasing the mrank stabilizes the approximation error, or at least mitigates
its degradation. Apparently, this happens because, once the phase transition region is
reached, the lack of sufficient information causes convergence to a local minimum not
far from the initial point. In particular, when completing T2 tensors, this continuation
strategy delivers good results despite their nonideal coherence properties. It also
brings computational advantages: ξ is smaller, leading to a faster convergence, and
the cost of Sr is reduced when r has small components.

5.3. Empirical sampling bounds. In this section, we numerically estimate
how many measurements are necessary for recovering a model with a given complexity.
More precisely, the idea is to find, for several values of ρ, the maximum normalized
number of DOFs Φ̄(r) = Φ(r)/N̄ up to which recovery is highly likely. For simplicity,
we take N1 = N2 = N3 = N and sort all possible values of Φ̄(r) by considering every
mrank r = (R1, R2, R3) such that (i) R1 ≤ R2 ≤ R3 and (ii) R3 ≤ R1R2. This entails
no loss of generality, as constraint (i) avoids redundant tuples, while constraint (ii)
eliminates those which are not feasible.10 Then, for each ρ ∈ {0.05, 0.10, . . . , 1}, we
start from the simplest model, r = (1, 1, 1), and generate 15 joint realizations of an MO
A and a T1 tensor X ? ∈ Lr. Recovery of X ? from y = A(X ?) is declared successful

when NSE(X̂ ?;X ?) ≤ −90 dB. If all 15 runs are successful, then the process is
repeated with the next model of higher complexity (in terms of Φ̄(r)). When failure
occurs for some r′, then the value Φ̄(r) of the immediately less complex model is
declared to be the frontier of the recovery region. To reduce computing time, instead
of starting from r = (1, 1, 1) for every level of ρ, we start from the mrank tuple
associated with the frontier obtained for the immediately preceding undersampling
rate (i.e., for ρ − 0.05). The stopping criteria parameters are set as ε = 10−8 and
Kmax = 1500. Gaussian MOs and SOs are generated as described in subsection 5.2.

The results obtained for N ∈ {10, 15, 20} are shown in Figure 4. When using
Gaussian operators (GOs), the maximum Φ̄(r) clearly grows approximately linearly
with ρ for all N . Moreover, the improvement due to ISS is remarkable, as the slope
becomes much higher (about 0.9) than with fixed step size (about 0.17). Hence, M ≥
Mmin = O(Φ(r)) Gaussian measurements (are highly likely to) suffice for recovery,
with Mmin ≈ 1

0.9Φ(r) = 1.11 Φ(r) when using ISS and Mmin ≈ 1
0.17Φ(r) = 5.88 Φ(r)

when µk = 1. So, despite the quite loose sampling bounds implied by Theorem 5, in
practice SeMPIHT with ISS succeeds for a quasi-optimal number of Gaussian mea-
surements. On the other hand, the relation between Φ̄(r) and ρ is no longer linear in
TC.

For the sake of comparison, the same procedure is applied with N = 20 to ISS-

10Note that mrank(X ) = r is equivalent to the existence of a Tucker model constrained as dis-
cussed in section 1, whose core can only have a mode-3 unfolding with orthogonal rows if R3 ≤ R1R2.
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Fig. 4. Estimated (normalized) number of DOFs which can be recovered by SeMPIHT for each
level of ρ, using Gaussian MOs (GO) and sampling MOs (SO). Recovery was successful in all 15
realizations for values of Φ̄ below or over the curve.

TIHT [19], MnRA [52], geomCG [31], TMac [49], and an ADMM scheme based on
SNN minimization (SNNM) [44]. In the latter, the penalty parameter η is adapted
along the iterations to accelerate convergence, as discussed in [3, sec. 3.4.1], and
observations are taken as constraints (λ → 0). Having been devised specifically for
TC, the performances of geomCG and TMac are only evaluated11 with SOs. For a fair
comparison, a variant of MnRA using ISS is also included. All methods are initialized
with the null tensor and cannot exceed Kmax = 1500 iterations.

This comparison is shown in Figure 5. In the Gaussian sensing setting of Fig-
ure 5(a), the sampling requirements of SeMPIHT and ISS-TIHT are almost identical,
while those of ISS-MnRA are a little stricter. Though MnRA with fixed step size
µk = 1 displays quite a poor performance, Φ̄ still grows roughly linearly with ρ. In
its turn, the behavior of the SNNM approach is markedly different, abruptly improv-
ing in the region ρ > 0.8. Such a nonlinear relation is expected, as discussed in
subsection 1.1. In the TC scenario of Figure 5(b), SeMPIHT and ISS-TIHT have
generally the least strict sampling requirements, with geomCG competing closely for
ρ ≥ 0.7. TMac’s performance is less satisfying but slightly better than that of MnRA
for 0.7 ≤ ρ ≤ 0.95. Here, ISS does not improve MnRA’s sampling requirements.
Finally, the SNNM approach displays an overwhelmingly poor performance in com-
parison with the others.

5.4. Convergence and computational cost. In order to evaluate the studied
algorithms with respect to their convergence speed and computational cost, they are
applied to recover 60 realizations of N×N×N T1 and T2 tensors sensed by GOs and
SOs. At each iteration, we measure the NSE of the current solution with respect to
X ? and also the time spent. Results concerning T2 tensors are displayed along with
an average (approximate) lower bound calculated as in subsection 5.2. SeMPIHT is
run both with the ISS heuristic and with the NTIHT step size selection rule (17).
When (and only when) T2 tensors are recovered, SeMPIHT is also run with GRI (in
which case the ISS heuristic is used). The tolerance parameter used in geomCG’s
rank increase condition (cf. [31, eq. 4.2]) is set as δ = 0.1. TMac’s adaptive weight
heuristic is used, starting with weights α1 = α2 = α3 = 1/3 [49]. The ADMM scheme

11We employ the implementations provided by their authors, obtained from http://anchp.epfl.
ch/geomCG and http://www.math.ucla.edu/∼wotaoyin/papers/tmac.html. Yet, we have replaced
geomCG’s MEX routines by MATLAB code, which turns out to be much faster in our setting (as
suggested by [10]).

http://anchp.epfl.ch/geomCG
http://anchp.epfl.ch/geomCG
http://www.math.ucla.edu/~wotaoyin/papers/tmac.html
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Fig. 5. Estimated (normalized) number of DOFs which can be recovered by several algorithms
for each level of ρ, using Gaussian MOs (a) and sampling MOs (b). The measured tensors have
dimensions Np = 20 for all p. Recovery was successful in all 15 realizations for values of Φ̄ below
or over the curve.

for SNNM is again run with λ→ 0, and the penalty parameter is adapted as described
by [3, sec. 3.4.1].

We start by considering GOs. In this case, N = 20, ρ = 0.25, T1 tensors have
mrank r = (3, 3, 3), and T2 tensors have decay parameter ϕ = 2.5. The results for T1
tensors in terms of the NMSE achieved at each iteration are shown in Figure 6(a). The
average elapsed time until completion of each iteration is shown on the abscissa. In this
scenario, both SeMPIHT (with ISS) and ISS-TIHT outperform the other algorithms,
having practically indistinguishable performances. This happens because the cost of
applying the Gaussian MO dominates that of the projection. Figure 6(b) displays the
results obtained for T2 tensors modeled with the mrank r = (9, 9, 9). The GRI used
in SeMPIHT follows the first procedure described in section 4, with K ′max = 1, i =
(1, 1, 1), and r1 = (1, 1, 1). One can see that all algorithms reach reasonably close to
the bound except for SNNM. Among them, SeMPIHT with GRI is clearly the fastest
to converge. Now, in Figure 6(c), the model mrank is set as r = (13, 13, 13), which
yields too high a value of Φ(r) for ρ = 0.25. In this case, we have set K ′max = 2. Note
that the GRI technique prevents the degradation brought by mrank overestimation,
while the performances of the other IHT algorithms are severely deteriorated. This
robustness with respect to mrank overestimation is valuable, since in practice one
generally does not know which mrank values fall inside the recovery region for a given
M .

Figure 7 displays the results obtained for TC, with N = 300 and ρ = 0.2. The T1
tensors and T2 tensors are generated with, respectively, r = (30, 30, 30) and ϕ = 2.
Upon inspection of Figure 7(a), it is clear that the SeMPIHT variants (with ISS and
with NTIHT step size selection) are the most efficient in recovering T1 tensors. The
gap between SeMPIHT with ISS and ISS-TIHT is due to the reduced cost of the
thresholding operator. The NTIHT variant is even faster in this scenario. For the
recovery of T2 tensors, the mrank is set as r = (90, 90, 90), and we choose K ′max = 1.
Both geomCG and TMac are run with their mrank increase heuristics [31, 49], with
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Fig. 6. Convergence of several algorithms in a Gaussian sensing scenario where ρ = 0.25 and
N1 = N2 = N3 = 20: (a) T1 tensors of mrank r = (3, 3, 3); (b) T2 tensors (ϕ = 2.5) modeled with
mrank r = (9, 9, 9); (c) T2 tensors (ϕ = 2.5) modeled with mrank r = (13, 13, 13).

initial mrank r1 = (1, 1, 1) and unit increments. SeMPIHT uses the same settings.
Figure 7(b) shows that the IHT algorithms without GRI clearly fail, which is due to the
nonideal coherence properties of the T2 tensors. Among the others, SeMPIHT with
GRI provides the best performance, followed by TMac. Unlike the other methods,
geomCG’s results have large variance due to the occurrence of two realizations with
outstandingly poor results. So, we also plot in Figure 7(b) the median of its NSE per
iteration, which yields a reasonable behavior in terms of final error, but at a large
computing cost.

5.5. Completion of real-world data. Finally, aiming to assess the perfor-
mance of SeMPIHT in a scenario involving real-world data, we have performed the re-
construction of the hyperspectral image corresponding to the Gualtar scene described
in [14], which is shown in Figure 8 for two different wavelengths. (Only the image
taken at 11:44am has been used.) This data tensor has dimensions 1024× 1344× 33,
where the first two modes correspond to the spatial dimensions of the image and
the third refers to the number of acquired wavelengths (from 400 to 720 nm at 10-
nm intervals). The applied MOs again correspond to a uniformly distributed ran-
dom sampling of the tensor components, with ρ ∈ {0.15, 0.30, 0.45}. We set the
model mrank to r = (300, 350, 15), which gives an approximate lower bound of
NSE(Sr(X ?);X ?) = −40.6 dB for the methods that explicitly impose low-mrank
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Fig. 7. Convergence of several algorithms in a TC scenario where ρ = 0.2 and N1 = N2 =
N3 = 300: (a) T1 tensors of mrank r = (30, 30, 30); (b) T2 tensors (ϕ = 2) modeled with mrank
r = (90, 90, 90).
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Fig. 8. Hyperspectral image Gualtar scene [14] at two wavelengths.

constraints. Here, the only evaluated IHT method is SeMPIHT (with and without
GRI), due to its observed superiority in Figure 7. Among the other methods, ge-
omCG is not included, because it takes too much time when a model having large
mrank components is used. The second GRI technique of section 4 is employed for
SeMPIHT, so that each mrank component is increased in a quasi-linear fashion with
rate proportional to its magnitude until iteration K̄max = 150, from which 50 more
iterations are performed with the mrank set at its target. TMac is also run with its
rank increasing heuristic, for a maximum of 500 iterations, and the ADMM algorithm
for SNN again uses the adaptive penalty parameter for convergence acceleration.

The obtained results are shown in Figure 9. They are displayed in terms of
the NSE per iteration, as only a single realization is performed per value of ρ. For
ρ = 0.15, SeMPIHT with GRI clearly outperforms all other algorithms, converging
faster and attaining a smaller NSE. For ρ = 0.30 and ρ = 0.45, its performance is close
to that of TMac. The importance of GRI is very well highlighted, as it significantly
accelerates the convergence of SeMPIHT and, furthermore, allows approaching the
NSE lower bound for ρ = 0.15.
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Fig. 9. Performance of TC algorithms in the reconstruction of the 1024×1344×33 hyperspectral
image Gualtar scene [14], which is uniformly sampled at random with subsampling rate ρ.

6. Conclusions. We have proposed an iterative hard thresholding algorithm,
called SeMPIHT, to address a constrained least-squares formulation of low-rank ten-
sor recovery in which the solution must have bounded multilinear rank. The em-
ployed hard thresholding operator, SeMP, consists of a chain of sequentially optimal
modal projections. This yields an approximate projector which enjoys the same quasi-
optimality property of the truncated HOSVD while requiring less computing effort.
Moreover, the sequential optimality of the modal projections has allowed us to derive
a performance bound for SeMPIHT based solely on RIC conditions, which is still
an open problem for TIHT. However, the order of the exploited RIC only takes into
account the low rank of a single mode, thus leading to loose sampling bounds for
certain random (e.g., Gaussian) measurement ensembles. Nonetheless, our system-
atic empirical evaluation shows that perfect recovery is achieved by SeMPIHT (and
also by ISS-TIHT) with a number of Gaussian measurements which scales linearly
with the intrinsic complexity of the model, as measured by its number of degrees of
freedom. Moreover, the constant governing this linear relation is close to 1, meaning
a quasi-optimal recovery performance is observed.

Our numerical studies have validated the theoretical results and have also shown
that a gradual rank increase heuristic plays a significant role in achieving good results
when the tensor data possess fast decaying modal spectra, stabilizing the estimation
error when the model mrank is overestimated and accelerating the algorithm. It is
especially important in TC, where it can avoid degradation due to nonideal coherence
properties of measured tensors. A simulation scenario involving the completion of
a hyperspectral imaging data tensor has further substantiated these observations,
corroborating the usefulness of SeMPIHT.

Deriving recovery guarantees based on stricter RICs, in order to theoretically
establish the quasi-optimality of SeMPIHT observed for Gaussian sensing, remains an
open problem. Another important aspect which necessitates further development is
the derivation of the minimum number of measurements needed for tensor completion,
which is the most practically relevant scenario.

Appendix A. Proof of our main result. We first state two necessary lemmas
and then proceed to the demonstration of Theorem 5.
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Lemma 7. Let U(p) ∈ VRp
(RNp), p ∈ JP K, and define

U =
{
X : X = G ×1 U(1) ×2 · · · ×P U(P ) for some G ∈ RR1×···×RP

}
⊂ Lr,

with r = (R1, . . . , RP ). Denote AU = APU , where PU is the orthogonal projector

onto U , and assume A has an RIC δr < 1. Then, ‖A†UAU −I‖ ≤ δr, where I is the
identity over T .

Proof. Our proof is an extension of the argument supporting [15, eq. (6.2)] (given
in the context of CS). Consider X ∈ U , for which AU (X ) = A(X ). By the definition
of δr, we deduce ‖AU (X )‖2F − ‖X‖2F ≤ δr‖X‖2F . Rewriting the left-hand side of this
inequality, we obtain

〈AU (X ),AU (X )〉 − 〈X ,X 〉 = 〈(A†UAU −I)(X ),X 〉 ≤ δr‖X‖2F .
Assuming that ‖X‖F 6= 0, dividing by ‖X‖2F , and taking the maximum with respect
to X ∈ U \{0} yields

(36) max
X∈U\{0}

‖AU (X )‖2F
‖X‖2F

− 1 = max
X∈U\{0}

〈(A†UAU −I)(X ),X 〉
‖X‖2F

≤ δr.

Now, note that for any Z ∈ T , ‖AU (Z)‖2F = ‖AU (PU (Z))‖2F and ‖Z‖2F ≥ ‖PU (Z)‖2F .
Consequently, the maximum must be the same over the whole space, because

max
Z 6=0

‖AU (Z)‖2F
‖Z‖2F

≤ max
Z 6=0

‖AU (PU (Z))‖2F
‖PU (Z)‖2F

= max
X∈U\{0}

‖AU (X )‖2F
‖X‖2F

,

and therefore (36) implies

max
Z 6=0

〈(A†UAU −I)(Z),Z〉
‖Z‖2F

≤ δr.

Finally, since A
†
UAU −I is self-adjoint, the left-hand side of the above expression is

precisely the definition of its operator norm, and thus the proof is complete.

The next lemma is an extension of [15, Lemma 6.20] (which also applies to CS).

Lemma 8. If U ⊆ Lr and A has an RIC δr < 1, then for all e ∈ RM we have

‖PUA†(e)‖F ≤
√

1 + δr‖e‖2.
Proof. We assume ‖PUA†(e)‖F 6= 0 (otherwise the result is trivial) and start by

deriving

‖PUA†(e)‖2F = 〈PUA†(e),PUA
†(e)〉 = 〈e,APUA

†(e)〉 ≤ ‖e‖2‖APUA
†(e)‖2.(37)

Now, by definition of δr (see (11)), ‖APUA†(e)‖F ≤
√

1 + δr ‖PUA†(e)‖F . Combining
this inequality with (37) and dividing both sides by ‖PUA†(e)‖F yields the desired
result.

Proof of Theorem 5. For simplicity, we assume, without loss of generality, that π =
(p, p2, . . . , pP ) = (1, 2, . . . , P ). To describe the computation of Sr at each iteration,
we use the notation

V0 = X k−1 + µkA
† (y −A(X k−1))(38)

= X k−1 + µkA
†A(X ?

r −X k−1) + µkA
†(A(X ? −X ?

r) + e),
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(Vp)〈p〉 = HRp
((Vp−1)〈p〉), where HRp

is the same as in (13), with R = Rp, and

X k = Sr(V0) = VP . The result is then obtained by bounding the errors of the
approximations V1, . . . ,VP . First, note that

(Vp)〈p〉 ∈ arg min
rank(Z)≤Rp

∥∥Z− (Vp−1)〈p〉
∥∥
F

=⇒

∀Z ∈ Lr, ‖Vp − Vp−1‖F ≤ ‖Z − Vp−1‖F ,

which, together with X ?
r ∈ Lr, implies

‖X ?
r − Vp‖F ≤ ‖X ?

r − Vp−1‖F + ‖Vp − Vp−1‖F ≤ 2 ‖X ?
r − Vp−1‖F .

Therefore, as X k = VP , iterating over this inequality for p = 2, . . . , P , we deduce

(39) ‖X ?
r −X k‖F ≤ 2P−1 ‖X ?

r − V1‖F .

Now, to bound ‖X ?
r − V1‖F , we employ the same reasoning as in [18, Lemma 4.1].

Let

U =
{
Z : colspace

(
Z〈1〉

)
⊂ colspace

(
(X ?

r)〈1〉

)
+ colspace

(
(V1)〈1〉

)
+ colspace

(
(X k−1)〈1〉

)}
,

so that X ?
r ,V1,X k−1 ∈ U ⊂ Lr̄1 . We thus have

‖V1 − V0‖2F = ‖PU (V1 − V0)‖2F + ‖PU⊥ (V1 − V0)‖2F
= ‖PU (V1 − V0)‖2F + ‖PU⊥ (V0)‖2F(40)

and also

(41) ‖V1 − V0‖2F ≤ ‖X ?
r − V0‖2F = ‖PU (X ?

r − V0)‖2F + ‖PU⊥ (V0)‖2F ,

which follows from (V1)〈1〉 = HR1
((V0)〈1〉) and X ?

r ∈ Lr ∩ U . Combining (40) and

(41), we obtain

‖V1 −PU (V0)‖F = ‖PU (V1 − V0)‖F ≤ ‖PU (X ?
r − V0)‖F = ‖X ?

r −PU (V0)‖F .

Hence, using the above equation and (38), we have

‖X ?
r−V1‖F ≤ ‖X ?

r −PU (V0)‖F + ‖V1 −PU (V0)‖F
≤ 2 ‖X ?

r −PU (V0)‖F = 2 ‖PU (X ?
r −V0)‖F

= 2
∥∥∥PU (X ?

r −X k−1)− µkPUA
†
A(X ?

r −X k−1)− µkPUA
† (A(X ? −X ?

r) + e)
∥∥∥
F

= 2‖(1− µk)PU (X ?
r −X k−1)− µkPU

(
A
†
A−I

)
(X ?

r −X k−1)

− µkPUA
† (A(X ? −X ?

r) + e) ‖F

≤ 2|1− µk| ‖PU (X ?
r −X k−1)‖F + 2µk

∥∥∥PU (A†A−I) (X ?
r −X k−1)

∥∥∥
F

+ 2µk

∥∥∥PUA† (A(X ? −X ?
r) + e)

∥∥∥
F
.(42)

It follows from the nonexpansiveness of PU that ‖PU (X ?
r −X k−1)‖F ≤ ‖X ?

r −X k−1‖F .
By noting that X ?

r ,X k−1 ∈ U and using the notation AU = APU , we have also

PU (A†A−I) (X ?
r −X k−1) = PU (A†A−I)PU (X ?

r −X k−1)

= (A†UAU −I) (X ?
r −X k−1) .
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Thus, from Lemma 7 and the fact that U ⊂ Lr̄1 we derive the bound∥∥PU (A†A−I) (X ?
r −X k−1)

∥∥
F

=
∥∥∥(A†UAU −I) (X ?

r −X k−1)
∥∥∥
F
≤ δr̄1 ‖X ?

r −X k−1‖F .

Finally, resorting to Lemma 8, the last term of (42) can be bounded as∥∥PUA† (A(X ? −X ?
r) + e)

∥∥
F
≤
√

1 + δr̄1 ‖A(X ? −X ?
r) + e‖2 .

The above inequalities, combined with (39), yield

‖X ?
r −X k‖F ≤ ξk‖X ?

r −X k−1‖F + 2Pµk
√

1 + δr̄1‖A(X ? −X ?
r) + e‖2,

where ξk , 2P (|1− µk|+ µkδr̄1). We consider two choices of step size:
• For µk = 1, the assumption δr̄1 < 2−P implies ξk = 2P δr̄1 < 1.
• If (17) is employed, it follows from the definition of the RIC that (1+δr̄1)−1 ≤
µk ≤ (1 − δr̄1)−1. We then have two cases: (i) if µk > 1, then |1 − µk| +
µkδr̄1 = µk(1 + δr̄1) − 1 ≤ 2δr̄1(1 − δr̄1)−1; (ii) similarly, if µk ≤ 1, then
|1−µk|+µkδr̄1 = µk(δr̄1−1)+1 ≤ 2δr̄1(1+δr̄1)−1 ≤ 2δr̄1(1−δr̄1)−1. It can be
checked that the condition δr̄1 < 1/(2P+1 + 1) implies 2δr̄1(1− δr̄1)−1 < 2−P ,
thus yielding ξk < 1 in both cases.

Defining ξ , supk ξk < 1, it follows that

‖X ?
r −X k‖F ≤ ξk‖X ?

r −X 0‖F +

(
k−1∑
l=0

ξl

)
2P
√

1 + δr̄1‖A(X ? −X ?
r) + e‖2

≤ ξk‖X ?
r −X 0‖F + 2P

√
1 + δr̄1
1− ξ ‖A(X ? −X ?

r) + e‖2 ,

as claimed. To conclude, note that the same reasoning holds for any other MPO
π = (p, p2, . . . , pP ), in which case the role of δr̄1 is played more generally by δr̄p .
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