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LOW-RANK TENSOR RECOVERY USING SEQUENTIALLY OPTIMAL MODAL
PROJECTIONS IN ITERATIVE HARD THRESHOLDING (SEMPIHT)

JOSÉ HENRIQUE DE MORAIS GOULART†∗ AND GÉRARD FAVIER†

Abstract. Iterative hard thresholding (IHT) is a simple and effective approach for parsimonious data recovery. Its
multilinear rank (mrank)-based application to low-rank tensor recovery (LRTR) is especially valuable, given the difficulties
involved in this problem. In this paper, we propose a novel IHT algorithm for LRTR, choosing sequential per-mode
SVD truncation as its thresholding operator. This operator is less costly than those used in existing IHT algorithms for
LRTR, and often leads to superior performance. Furthermore, by exploiting the sequential optimality of the employed
modal projections, we derive recovery guarantees relying on restricted isometry constants. Though these guarantees are
suboptimal, our numerical studies indicate that a quasi-optimal number of Gaussian measurements suffices for perfect
data reconstruction. We also investigate a continuation technique which yields a sequence of progressively more complex
estimated models, until attaining a target mrank. When recovering real-world data, this strategy stabilizes the estimation
error and can also accelerate convergence. In tensor completion, in particular, it can cope with non-ideal characteristics of
the sensed tensors, being crucial for achieving a satisfactory performance. Extensive numerical experiments are reported,
including the completion of hyperspectral imaging data and comparisons with several other existing approaches.

Key words. Low-rank tensor recovery, Tensor completion, Multilinear rank, Iterative hard thresholding, Sequentially
optimal modal projections, Hyperspectral image reconstruction.

AMS subject classifications. 15A69, 90C59

1. Introduction. We consider the recovery of tensors lying in R
N1×···×NP (with P > 2) from

undercomplete linear measurements, assuming the corresponding tensors have low-rank properties. This
problem, called low-rank tensor recovery (LRTR), is an extension of the well-studied low-rank matrix
recovery (LRMR) problem [4]. Essentially, in the tensor setting, one wishes to exploit some joint low
dimensionality along multiple modes (i.e., geometric dimensions) of a data tensor in order to reconstruct
it from a few measurements.

We assume the reader is familiar with basic tensor algebra concepts and notation (see, e.g., [22, 29]).

The following notational conventions are adopted: JP K , {1, . . . , P}, N̄ ,
∏P

p=1 Np and N̄p , N̄/Np.

Along the text, we shall identify tensors in R
N1 ⊗ · · · ⊗ R

NP , where ⊗ denotes the tensor product, with
P -way arrays (hypermatrices) in R

N1×···×NP , assuming the coordinates are given with respect to known
(given) bases.

The LRTR problem is formulated here as follows:

(1) min
X∈Lr

‖y −A(X )‖22 ,

where r = (R1, . . . , RP ) ∈ Z
P
+, A : RN1×···×NP 7→ R

M is a linear measurement operator (MO), with
M < N̄ , and

(2) Lr =
{

X ∈ R
N1×···×NP : rank

(

X〈p〉
)

≤ Rp, p ∈ JP K
}

,

with X〈p〉 = (X )〈p〉 ∈ R
Np×N̄p denoting the mode-p matrix unfolding1 of X . The quantity ρ , M/N̄ is

called (measurement) undersampling. In its most general form, the vector of measurements y ∈ R
M is

given by y = A(X ⋆) + e for some error vector e and a tensor of interest X ⋆ satisfying either X ⋆ ∈ Lr or
X

⋆ ≈ X
⋆
r ∈ Lr (where proximity is in the Euclidian distance sense). As in most works which deal with

LRTR, our formulation (1) is based upon the multilinear rank2 (mrank), defined as [11, 22]

(3) mrank(X ) =
(

rank
(

X〈1〉
)

, . . . , rank
(

X〈P 〉
))

.

Note that the components of mrank(X ) are a generalization of the row and column ranks of a matrix.
Yet, they have not necessarily the same value.

The reader might wonder why one would rely on the mrank rather than on the tensor rank [25], which
is often regarded as the most natural extension of matrix rank to higher-order tensors. This is basically
due to computational and analytical difficulties which arise when dealing with the tensor rank [13, 24].

∗Supported by CNPq-Brazil (individual grant 245358/2012-9).
†I3S Laboratory, CNRS, University of Nice Sophia-Antipolis ({last name}@i3s.unice.fr).
1For unambiguously referring to “the mode-p unfolding,” one must establish an ordering convention for the columns of

the resulting matrix. In our argument, such a choice is irrelevant, but must be used consistently.
2 Also called “n-rank” or “Tucker rank” [52, 18, 35].
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Nevertheless, it should be noted that ways of circumventing these difficulties have been recently studied
in [7, 39, 50], pointing at interesting research directions. At any rate, since rank(X〈p〉) is majorized
by the tensor rank for all p ∈ JP K [11], tensors with sufficiently3 low rank necessarily have low mrank
components.

A central feature of every parsimonious data recovery problem, such as compressive sensing (CS) [6]
or LRMR, is its underlying model, characterized by a number of degrees of freedom (DOF) smaller than
its algebraic (ambient) dimension. Tensors having mrank r belong to a manifold of dimension [31]

(4) Φ(r) ,
∏

p Rp +
∑

p Rp(Np −Rp) = O(
∏

p Rp +
∑

p RpNp),

which is much smaller than N̄ = dim(RN1×···×NP ) for low values of Rp. A tensor X ⋆ = (x⋆
n1,...,nP

) is in
Lr if and only if it can be written as a Tucker model [47]

(5) X
⋆ = G ×1 U

(1) ×2 · · · ×P U(P ) ⇔ x⋆
n1,...,nP

=
∑

r1

· · ·
∑

rP

gr1,...,rP
∏

p

u(p)
np,rp ,

where G = (gr1,...,rP ) ∈ R
R1×···×RP is the core tensor and U(p) = (u

(p)
np,rp) ∈ R

Np×Rp is the pth matrix
factor. Without loss of generality, one can constrain (5) similarly to the higher-order singular value
decomposition (HOSVD) [11], requiring each U(p) to belong to VRp

(RNp), the Stiefel manifold of Np×Rp

matrices having orthonormal columns, and each mode-p unfolding of G to have mutually orthogonal rows.
Then, counting the parameters of (5) gives (4).

Ideally, one would like to come up with a computationally efficient algorithm provably capable of
recovering any X

⋆ ∈ Lr from M ≈ Φ(r) (sufficiently informative) measurements. Given an instance of
the LRTR problem (1) with an associated pair (r,M), we refer to the ratio θ , Φ(r)/M as its regime.
In general, as θ decreases, successful recovery becomes more likely, and thus small values of θ correspond
to favorable regimes. Conversely, the recovery performance of an algorithm typically degrades as θ → 1.
Given M random measurements of a certain class (e.g., Gaussian or Bernoulli), the interval ]0, θ0] of
regimes for which perfect recovery is achieved with high probability using a given algorithm is called its
recovery regime for M with respect to this class.

The practical relevance of the LRTR problem stems from the fact that many real-world tensors can
be well approximated by elements of Lr, such as 3D medical images [18, 34], seismic data [30], video
sequences [34, 49] and hyperspectral images [18, 42]. Of particular interest is the frequent problem of
reconstructing partially observed low-mrank tensors. This problem, called tensor completion (TC) in
analogy with matrix completion (MC) [5], is a particular case of (1) where A is a sampling operator (SO)
which reveals only some entries of X ⋆. Nonetheless, practical applicability of LRTR is not restricted
to TC, as other measurement schemes (such as, e.g., subsampling in the frequency domain) can be
implemented for acquiring a few data from which a large low-mrank tensor can then be recovered.

1.1. Overview of state of the art. Unlike the LRMR setting, no provably efficient (in terms of
sampling requirements) and tractable convex approach is currently known for LRTR. Recovery results
were derived in [51] for the tensor nuclear norm, but it is intractable [17]. Nonetheless, several tractable
LRTR approaches have been developed in recent years. In the following, we briefly describe some of them
and their corresponding recovery guarantees. For simplicity of exposition, we now consider the model (5)
with Np = N for all p ∈ JP K and mrank r = (R, . . . , R), implying Φ(r) = O(RP + PNR).

The firstly proposed LRTR algorithms [18, 33, 45] relied on minimizing or bounding a weighted sum
of the nuclear norms (SNN) of the modal unfoldings. This idea was motivated by the effectiveness of
nuclear norm minimization in LRMR and yields convex formulations. For these reasons, it was later
employed many times, as in [34, 42, 46]. It was shown in [46] that SNN minimization succeeds when
at least O(RNP−1) Gaussian measurements are taken. As argued by [35], this bound is actually sharp,
while a certain (intractable) nonconvex formulation permits, in principle, perfect recovery (with X

⋆ ∈ Lr
and e = 0) by taking no more than O(RP + PNR) Gaussian measurements. In an attempt to reduce
this gap, [35] proposed minimizing the nuclear norm of a single matrix unfolding having “more balanced”

dimensions. This leads to recovery guarantees with O(R⌊P
2 ⌋N ⌈P

2 ⌉) Gaussian measurements. Despite the
progress, this bound still grows much faster than Φ(r) and only brings improvement for P > 3. Still in
the realm of convex SNN-based approaches, robust PCA techniques were extended to a TC setting in [26],
relying on an underlying model which consists of a sum of a low-mrank tensor plus a sparse one. With this

3Recall that the rank of a tensor can exceed its dimensions. For instance, the smallest typical rank of a 8× 8× 8 real
tensor is 24 [9]; hence a low-rank tensor might still have high modal ranks if 8 < rank(X ⋆) < 24.
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approach, [26] stated the first recovery guarantees for TC, which apply with O(µRNP−1P 2 log2(NP−1))
measurements, where µ is a measure of coherence of the tensor. In [50], a (convex) TC formulation based
on tensor rank is tackled by means of a greedy Frank-Wolfe scheme, which updates the estimate at each
iteration by a rank-one term. This approach relies on a constrained least-squares formulation where the
nuclear norm of the sought tensor is bounded by a positive constant β.

Other existing methods are predominantly based on nonconvex formulations. For instance, a joint
low-rank matrix factorization of all modal unfoldings is sought in [49] by minimizing a weighted sum of
quadratic errors. For the TC problem, Riemannian optimization techniques have been used in [28, 31],
by exploiting the smooth manifold structure of sets of low-mrank tensors. Finally, the TC problem is
also addressed in [21] by relying on the so-called tensor train (TT) model, which has its own definition
of rank, the TT rank. When the TT rank has components bounded by R, the number of DOF of this
model grows as O(PR2N), making it attractive for large P and small R.

In the rest of this paper, we focus on iterative hard thresholding (IHT) algorithms for LRTR, which
build upon ideas used in CS and LRMR [1, 2, 27, 43]. The first proposed one was tensor IHT (TIHT)
[36], whose thresholding operator is the truncated HOSVD, a standard technique for computing a quasi-
optimal low-mrank tensor approximation. An accelerated variant called ISS-TIHT (where ISS stands
for “improved step size”) was later proposed in [12], relying on a step size selection heuristic to increase
convergence speed. However, recovery guarantees based solely on bounding restricted isometry constants
(henceforth abbreviated as RICs; see Section 2 for a definition) are still lacking for TIHT, though partial
results have been recently delivered in [38] and a RIC-based local convergence result was derived in
[37, Th. 3]. The minimum n-rank approximation (MnRA) algorithm [52], in its turn, uses a convex
combination of truncated SVDs in lieu of the hard thresholding operator. This approach enjoys recovery
guarantees based on RIC conditions. However, the RICs exploited in [52] apply to the sensing of tensors
having only one low-rank mode. Consequently, the tightest possible sampling bound implied by these
results for achieving recovery with high probability is M ≥Mmin = O(RNP−1).

1.2. Our contributions and paper organization. We propose an IHT algorithm relying on
the low-mrank approximation technique developed in [48], which we call4 sequentially optimal modal
projections (SeMP). This technique is significantly less costly than the thresholding operators used by
TIHT and MnRA, especially for very low mrank, and often leads to better performance. Our algorithm
is named SeMPIHT. At the theoretical level, we derive recovery guarantees for SeMPIHT under a certain
RIC condition, by exploiting the sequential optimality of the modal projections which constitute SeMP.
In particular, we show SeMPIHT converges to the true tensor in the ideal case (i.e., when X

⋆ ∈ Lr
and e = 0). In light of [38, Th. 2], for fixed P the derived RIC condition is met with high probability
when M ≥ Mmin = O(RNP−1) Gaussian measurements are taken, similarly to the result of [52]. Thus,
our theoretical results unfortunately do not improve upon previous sampling bounds. Nevertheless, our
simulation results suggest that the bound of SeMPIHT actually scales as Mmin = O(RP +PNR), which
is order-optimal with respect to Φ(r). The same optimality was also observed in our experiments for
TIHT and MnRA, which achieved good results when coupled with the ISS heuristic (see subsection 3.5).

We also propose a gradual rank increase (GRI) technique akin to those of [21, 31], consisting in esti-
mating a sequence of increasingly more complex models (in terms of mrank). Our systematic numerical
experiments show that, when dealing with data having fast decaying modal singular spectra, such a GRI
heuristic mitigates or avoids degradation of the results when r is set beyond the recovery regime. More-
over, it is decisive for satisfactorily recovering tensors of that kind in TC, where their non-ideal coherence
properties bring severe difficulties even under a highly favorable regime. We extensively compare SeM-
PIHT with other algorithms in the recovery of two classes of synthetic tensors, one of which having fast
decaying modal spectra, similarly to many real-world data tensors. These simulations involve Gaussian
sensing and also the TC setting. Finally, the completion of a hyperspectral imaging data tensor is also
performed, validating the usefulness of our contributions.

This paper is organized as follows. In Section 2, we review the IHT approach and some existing
algorithms based on this technique for CS, LRMR and LRTR. Section 3 recalls the SeMP technique and
introduces our proposed algorithm, stating its recovery guarantees and comparing it with previous IHT
schemes for LRTR. A description of our GRI continuation technique is then given in Section 4. The
effect of performing GRI is detailedly studied in Section 5 by means of numerical experiments, and then
other simulations are presented with the purposes of evaluating our approach and comparing it with other

4Though [48] uses the name “sequentially truncated HOSVD” we prefer to adopt “sequentially optimal modal projec-
tions,” because the resulting projection operators are not associated with the original dominant modal subspaces.
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LRTR algorithms. Finally, concluding remarks are drawn in Section 6.

2. Iterative hard thresholding. IHT is a simple and effective technique for the recovery of parsi-
monious signals from undercomplete measurements, having being successfully applied in CS, LRMR and
LRTR [2, 27, 36, 43, 52]. Its rationale is as follows. In an arbitrary finite-dimensional inner product space
H endowed with a scalar product 〈·, ·〉, one poses

(6) min
x∈S

J(x) = min
x∈S
‖y −A(x)‖22 ,

where A : H 7→ R
M is a linear operator, ‖x‖22 , 〈x, x〉 and the set S ⊂ H contains the parsimonious

elements of interest. This set is typically nonconvex, closed and nonempty. The basic idea of IHT is then
to generate iterates of the form

(7) xk ∈ PS
(

xk−1 −
µk

2
∇J(xk−1)

)

, with ∇J(x) = −2 A
† (y −A(x)) ,

where µk > 0 is some chosen step size, A† is the adjoint of A and PS denotes5 the (orthogonal) projector
onto S. Because S is possibly nonconvex, PS(x) = argminz∈S ‖x − z‖22 generally yields a set (which is
nonempty by the extreme value theorem, since S is closed and nonempty). In practice, whichever xk

(satisfying (7)) is chosen, convergence and recovery guarantee results usually remain the same.
The iterates in (7) resemble the projected gradient (or projected Landweber) algorithm, which is a

convex optimization method [8]. Interestingly, it turns out that they apply to (6) even for nonconvex S,
due to the form of J(x). The explanation relies on the majorization-minimization technique [1], which
consists in minimizing at iteration k the functional

(8) Jk(x) = µkJ(x) + ‖x− xk−1‖22 − µk ‖A(x− xk−1)‖22

over S for some value of µk such that Jk(x) > µkJ(x) for all x 6= xk−1. Such a µk always exists: as H is
finite-dimensional and thus ‖A‖ is bounded,6 one can take µk < ‖A‖−1. Clearly, if xk ∈ argminx∈S Jk(x)
and xk 6= xk−1, then µkJ(xk) < Jk(xk) ≤ Jk(xk−1) = µkJ(xk−1), thus achieving objective function
reduction. So, the question is how to compute such a xk. Expanding J(x) in (8), we have

Jk(x) = ‖x− xk−1‖22 − 2µk〈A†(y −A(xk−1)), x〉 − µk‖A(xk−1)‖22 + µk‖y‖22.(9)

The expression in (9) is strictly convex, and hence its (unique) unconstrained minimum is straightfor-
wardly obtained by solving J ′

k(x) = 0, which gives

(10) x⋆
k , argmin

x∈H
Jk(x) = xk−1 + µkA

†(y −A(xk−1)) = xk−1 −
µk

2
∇J(xk−1).

The crucial point is that, because the quadratic term in x of J(x) is canceled out in Jk(x), the latter has
circular level curves, and thus argminx∈S Jk(x) = PS (x⋆

k) for any nonempty closed set S [12, Proposition
3.1]. Such a simplicity is precisely the benefit of iteratively minimizing Jk(x) rather than J(x).

The effectiveness of IHT algorithms is typically demonstrated on the basis of RICs, which we now
introduce by generalizing the definitions given in [6, 36, 40].

Definition 1 (Restricted isometry constants, RICs). A linear operator A : H 7→ R
M is said to

satisfy the restricted isometry property (RIP) over S ⊂ H if there exists a (minimal) constant δS < 1,
called restricted isometry constant (RIC) of A with respect to S, such that

(11) ∀ x ∈ S, (1− δS)‖x‖2H ≤ ‖A(x)‖22 ≤ (1 + δS)‖x‖2H.

2.1. Application to compressive sensing and low-rank matrix recovery. In Table 1, the
main ingredients of IHT are particularized for CS, LRMR and LRTR.

Formulation (6) applies to CS with H = R
N and S = Ss, as defined in Table 1. Note that Ss is not

convex, since u,v ∈ Ss generally implies αu+ (1− α)v ∈ S2s for α ∈ (0, 1). The iterates thus read [1]

(12) xk+1 = Hs

(

xk + µkA
T (y −Axk)

)

,

5This notation will be repeatedly used throughout the paper.
6‖A‖ denotes the operator norm of A.
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Table 1: Particularization of the setting described in Section 2 for some structured data recovery problems.

Problem Ambient space, H Parsimonious elements set, S Obj. function, J(x) RIC notation

CS R
N S = Ss , {x : supp(x) ≤ s} (‡) J(x) = ‖y −Ax‖22 δs: RIC of order s

LRMR RN1×N2 S = LR , {X : rank(X) ≤ R} J(X) = ‖y − A(X)‖2
2

δR: RIC of order R

LRTR RN1×···×NP S = Lr, r = (R1, . . . , RP ) J(X ) = ‖y − A(X )‖2
2

δr: RIC of order r

(‡): supp(x) denotes the support of x, i.e., its number of nonzero components.

where Hs : R
N 7→ Ss projects a vector onto its best s-sparse approximation by zeroing all but its

components of largest magnitude. As multiple best approximations may exist, an arbitrary Hs(x) ∈
PSs

(x) is picked. Hs is called a hard thresholding operator. RIC-based recovery guarantees for this
algorithm have been given, e.g., in [16, Th. 6.18], and hold provided O(s log(N/s)) measurements are
taken. This exceeds the number of DOF of the model only by a logarithmic factor.

In analogy with (12), IHT can be applied to LRMR with H = R
N1×N2 and S = LR by computing

(13) Xk+1 = HR

(

Xk + µkA
† (y −A(Xk))

)

,

where HR : RN1×N2 7→ LR delivers a best rank-R approximation of a matrix. From Eckart-Young’s

theorem [14], it can be computed through HR(X) =
∑R

r=1 σrurv
T
r , where X =

∑min{N1,N2}
n=1 σnunv

T
n is

the SVD of X, with σ1 ≥ σ2 ≥ · · · ≥ σmin{N1,N2}. If σR = · · · = σR+d, with d ∈ Jmin{N1, N2} −RK, then
HR delivers one of the multiple best approximations of X. RIC-based performance bounds are derived,
e.g., in [32]. Similarly to the CS setting, certain random MOs have small RICs with high probability as
long as O(R(N1 +N2 − R)) measurements are taken [7]. This matches precisely the number of DOF of
a rank-R matrix. Unfortunately, though, these recovery guarantees do not apply to matrix completion.

2.2. Application to tensor recovery based on multilinear rank. Consider now the tensor
recovery setting, with H = R

N1×···×NP and S = Lr, as defined by (2). Although computing projections
onto Lr is NP-hard, efficient approximate methods exist. A widely adopted one consists in truncating
the HOSVD at mrank r [11]. Denoting the corresponding operator by Hr : R

N1×···×NP 7→ Lr, we have

(14) Hr(X ) = X ×1 U
(1)U(1)T ×2 · · · ×P U(P )U(P )T ,

where U(p) ∈ VRp
(RNp) contains as columns the first Rp left singular vectors of the unfolding X〈p〉.

Therefore, U(p)U(p)T is an orthogonal projector onto the dominant subspace of dimension Rp associated
with the pth mode ofX . The truncated HOSVD (THOSVD) operator defined in (14) is easy to implement,
as it requires only standard numerical linear algebra routines. Moreover, it can be shown quasi-optimal
by a factor of

√
P , in the sense that [48]

(15) ‖X −Hr(X )‖F ≤
√
P min

Z∈Lr

‖X −Z‖F .

Due to the above properties, Hr is employed by the TIHT algorithm [36], whose iterates read

(16) X k+1 = Hr(Vk), where Vk , X k + µkA
† (y −A(X k)) and µk =

‖∇J(X k)‖2F
‖A(∇J(X k))‖2F

.

More recently, the same authors have proposed the normalized TIHT (NTIHT) algorithm [38], which is
also based upon the THOSVD method but uses the step size formula

(17) µk =
‖Gk‖2F
‖A(Gk)‖2F

, Gk = ∇J(X k)×1 U
(1)
k U

(1)
k

T
×2 · · · ×P U

(P )
k U

(P )
k

T
,

where the orthogonal matrices U
(p)
k are bases for the modal unfoldings of X k obtained with the use of

THOSVD at iteration k − 1.
Although the effectiveness of TIHT and NTIHT was experimentally shown, recovery results based

solely on typical RIP conditions are still lacking. The best one in this sense is as follows.

Theorem 2 (Performance bound of NTIHT [38, Th. 1]). Put a ∈ (0, 1) and let A be an MO pos-
sessing a 3r-RIC satisfying δ3r < a/(a + 8), where 3r = (3R1, . . . 3RP ). Let X

⋆ ∈ Lr. Then, given
measurements y = A(X ⋆) + e, if

(18) ‖X k − Vk‖F ≤ (1 + ε(a)) ‖X ⋆ − Vk‖F ,
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where ε(a) = a2(1− δ3r)
2(17(1− δ3r +

√
1 + δ2r‖A‖))−2, then for all k we have

‖X ⋆ −X k‖F ≤ ak−1‖X ⋆ −X 0‖F +
b(a)

1− a
‖e‖2,

where b(a) = 2
√
1+δ3r
1−δ3r

+
√

4ε(a) + 2ε(a)2 1
1−δ3r

‖A‖.
Though a heuristic justification is given in [38] for condition (18), it cannot be guaranteed in general

because the THOSVD is quasi-optimal by a factor
√
P , whereas ε(a) ≈ 0. We point out that a local

convergence result based solely on RIC assumptions was derived in [37, Th. 3]. However, it is rather
restrictive, as it applies only in a sufficiently small neighborhood of the desired global minimum.

A similar scheme called MnRA is proposed in [52]. However, as it uses a convex combination of
truncated SVDs in lieu of the hard thresholding operator, no projection onto Lr is performed. Given
nonnegative weights wp satisfying

∑

p∈JP K wp = 1, this operator, denoted here by Cr, is defined as

(19) Cr (X ) =
P
∑

p=1

wpZp such that (Zp)〈p〉 = HRp

(

X〈p〉
)

,

in which HRp
is the same of (13). The step size of MnRA is fixed, thus yielding iterates

X k+1 = Cr

(

X k + µ A
† (y −A(X k)

)

.

Although X k /∈ Lr in general, convergence to the true estimate in the ideal case has been shown in [52]
under RIP conditions. For convenience, this result is reproduced below.

Theorem 3 (Performance bound of MnRA [52, Th. 4.2]). Let A be an MO with RICs δr̄p < 1 for

all p ∈ JP K, where r̄p , (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ). Let also X
⋆ ∈ Lr and y = A(X ⋆) + e and

assume 3/4 < µ < 5/4. If maxp δr̄p < τ , then MnRA satisfies

∀ k, ‖X ⋆ −X k‖F ≤ 2−k‖X ⋆ −X 0‖F + 2C‖e‖2,

where C = 2µ
√
1 + τ and τ = 1/4−|1−µ|

µ(1+⌈maxp Np/Rp⌉) .

Unlike Theorem 2, this result does not involve a restrictive assumption such as (18). Yet, it is not
satisfying from a sampling efficiency standpoint, because A can only have a RIC δr̄p < 1 if M ≥Mmin =
O(RpN̄p), which grows way more quickly than Φ(r) given by (4). For instance, O(RpN̄p) = O(RNP−1)
when Rp = R and Np = N for all p.

We point out that [38] derives sampling bounds which ensure (with high probability) the RIP for
subgaussian and for random partial Fourier MOs. They can be coupled with RIC-based recovery guar-
antees such as Theorems 2 and 3 in order to derive sampling requirements for the analyzed algorithms.
Though random partial Fourier MOs require slightly more measurements than subgaussian ones (by a
polylogarithmic factor), they are much more reasonable in practice because fast transform algorithms can
be exploited to reduce both acquisition and recovery times.

3. The SeMPIHT algorithm. We propose an IHT scheme employing the SeMP technique for
approximate projection onto Lr. The iterates of our SeMPIHT algorithm are thus computed as

(20) X k = Sr

(

X k−1 + µkA
† (y −A(X k−1))

)

,

where Sr : R
N1×···×NP 7→ Lr denotes the SeMP operator. Essentially, instead of computing the dominant

subspaces of all modal unfoldings and then performing the projection, SeMP proceeds by interleaving
these operations in a sequential fashion. It is therefore rather similar in spirit to some techniques used
in the context of hierarchical tensor representations; see [20] and references therein. The SeMPIHT
algorithm is laid out in Algorithm 1.

In what follows we give a detailed description of the SeMP operator and its properties.

3.1. The SeMP technique for approximate projection onto Lr. The principle of multilinear
orthogonal projection (14) which underlies the THOSVD operator Hr can be more generally applied
with other choices of modal projectors. Essentially, we seek an efficient way of computing P orthogonal

projection matrices Πp = V(p)V(p)T , with V(p) ∈ VRp
(RNp), which approximate the solution of

min
Z∈Lr

‖X −Z‖2F = min
Πp=V

(p)
V

(p)T

V
(p)∈VRp(R

Np )

‖X −X ×1 Π1 ×2 · · · ×P ΠP ‖2F .

6



Algorithm 1 sempiht(X0,y,A,r,Kmax,ǫ).

Inputs: Initial solution X 0, measurement vector y, measurement operator A, target mrank r, maximum
number of iterations Kmax, tolerance ǫ
Output: Estimated tensor, X̂ ⋆

1. for k = 1, . . . ,Kmax

(i) Gk ← A∗ (y −A(X k−1))
(ii) compute step size µk using either ISS (see Subsection 3.5) or formula (17)
(iii) compute X k ← Sr (X k−1 + µkGk) using Algorithm 2
(iv) if criterion (32) is satisfied, break

end
2. return X̂

⋆ ← X k

In (14), each mode-p projectorΠp = U(p)U(p)T is associated with the Rp-dimensional dominant subspace
of X〈p〉. This choice is motivated by the inequality [48]

‖X −X ×1 Π1 ×2 · · · ×P ΠP ‖2F ≤
P
∑

p=1

‖X −X ×p Πp‖2F =

P
∑

p=1

∥

∥X ×p Π
⊥
p

∥

∥

2

F
,

where Π⊥
p = I − Πp projects onto the orthogonal complement of the range of Πp. When each Πp is

associated with the dominant subspace of X〈p〉, the above upper bound is minimized. In practice, note
that applying Hr requires computation of all P projectors (possibly in parallel) before they are applied.

The SeMP approximate projector proposed in [48], which we define next, is based on another choice
for the modal projectors. Due to its sequential nature, an ordering must be specified for the modal
projections. Such an ordering is denoted by a permutation π = (p1, p2, . . . , pP ) of (1, . . . , P ), referred to
as the modal projection ordering (MPO). For simplicity of exposition, we now assume π = (1, . . . , P ).

Definition 3.1. Let us denote by H
(p)
Rp

: RN1×···×NP 7→ R
N1×···×NP the operator which applies sin-

gular value hard thresholding to the pth mode of its argument, i.e., (H
(p)
Rp

(X ))〈p〉 = HRp
(X〈p〉). Then, the

SeMP operator Sr : R
N1×···×NP 7→ Lr is defined as

(21) Sr(X ) = H
(P )
RP

H
(P−1)
RP−1

. . .H
(1)
R1

(X ) .

From the Eckart-Young theorem, (21) amounts to choosing the modal projection matrices

(22) Π̂p = argmin
Πp

∥

∥

∥
X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1 ×p Π

⊥
p

∥

∥

∥

2

F
, subj. to

{

Πp = V(p)V(p)T ,

V(p) ∈ VRp
(RNp),

so that

H
(p−1)
Rp−1

. . .H
(1)
R1

(X ) = X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1.

This choice can be justified by invoking the inequality [48]

min
Z∈Lr

‖X −Z‖2F ≤
P
∑

p=1

= min
Πp=V

(p)
V

(p)T

V
(p)∈VRp(R

Np )

∥

∥

∥
X ×1 Π̂1 ×2 · · · ×p−1 Π̂p−1 ×p Π

⊥
p

∥

∥

∥

2

F
(23)

≤
P
∑

p=1

= min
Πp=V

(p)
V

(p)T

V
(p)∈VRp(R

Np )

∥

∥X ×p Π
⊥
p

∥

∥

2

F
.(24)

SeMP picks the minimizers of the upper bound in (23), while THOSVD picks those of (24). Another

crucial difference exists in comparison with THOSVD: each Π̂p here depends on all previously calculated

Π̂q, with q < p. Hence, note that we cannot compute all the projectors Π̂p in parallel, since their
computation and application must be interleaved.

For clarity, an algorithmic description of the computational procedure associated with (21) is given
in Algorithm 2. Step 2(ii) of this procedure is equivalent to calculating

(25) V̄p = V̄p−1 ×p Ū
(p)T ∈ R

R1×···×Rp×Np+1×···×NP .
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Algorithm 2 Sequentially optimal projections (SeMP) for best low-mrank approximation [48].

Inputs: Tensor X whose best approximation in Lr is sought, target mrank r = (R1, . . . , RP )
Output: An approximate projection Sr (X ) of X onto Lr
1. set V̄0 = X

2. for p = 1, . . . , P

(i) compute the SVD: (V̄p−1)〈p〉 =
[

Ū(p) Ũ(p)
]

[

Σ̄(p) 0

0 Σ̃(p)

]

[

W̄(p) W̃(p)
]T

,

where Ū(p) ∈ R
Np×Rp , Σ̄(p) ∈ R

Rp×Rp , W̄(p) ∈ R
Lp×Rp , Lp =

(

∏p−1
q=1 Rq

)(

∏P
q=p+1 Nq

)

(ii) compute V̄p through its mode-p unfolding: (V̄p)〈p〉 ← Σ̄(p)W̄(p)T

end
3. return Sr (X )← V̄P ×1 Ū

(1) ×2 · · · ×P Ū(P )

Therefore, the final outcome can be written as

Sr (X ) = X ×1 Ū
(1)Ū(1)T ×2 · · · ×P Ū(P )Ū(P )T = X ×1 Π̂1 ×2 · · · ×P Π̂P .

Note the similarity of the above expression with (14). The fact that the matrix Ū(p) calculated in

Algorithm 2 satisfies Ū(p)Ū(p)T = Π̂p, with Π̂p defined by (22), can be verified as follows. For brevity,

let us denote Vp−1 , H
(p−1)
Rp−1

. . .H
(1)
R1

(X ), with V0 = X . We need to show that Ū(p) contains the first left

Rp singular vectors of (Vp−1)〈p〉 as columns. For p = 1, this is clearly true, as V0 = V̄0 = X . For p > 1,

we proceed by induction. Assume the claim holds for all q ∈ Jp − 1K, which implies Ū(q)Ū(q)T = Π̂q.

Then, it is easy to verify that it holds also for p, as the left singular vectors of (Vp−1)〈p〉 = (X ×1 Π̂1 ×2

· · · ×p−1 Π̂p−1)〈p〉 are the same as those of
(

V̄p−1

)

〈p〉 = (X ×1 Ū
(1)T ×2 · · · ×p−1 Ū

(p−1)T )〈p〉. Indeed,

(Vp−1)〈p〉 = X〈p〉
(

Ū(1)Ū(1)T ⊗ . . .⊗ Ū(p−1)Ū(p−1)T ⊗ INp+1 ⊗ . . .⊗ INP

)T

,

(

V̄p−1

)

〈p〉 = X〈p〉
(

Ū(1)T ⊗ . . .⊗ Ū(p−1)T ⊗ INp+1 ⊗ . . .⊗ INP

)T

,

where IN denotes the N ×N identity matrix, which implies

(Vp−1)〈p〉 (Vp−1)
T
〈p〉 = X〈p〉

(

Ū(1)Ū(1)T ⊗ . . .⊗ Ū(p−1)Ū(p−1)T ⊗ INp+1 ⊗ . . .⊗ INP

)

XT
〈p〉

=
(

V̄p−1

)

〈p〉
(

V̄p−1

)T

〈p〉 .

Let us calculate the resulting cost. Assuming it takes O(N1N2min{N1, N2}) operations to compute
the SVD of a N1 ×N2 matrix,7, the cost of Algorithm 2 is

(26) cSeMP = O
(

P
∑

p=1

NpLp min{Np, Lp}
)

+
P
∑

p=1

R1 . . . RpNp+1 . . . NP +O
(

P
∑

p=1

N1 . . . NpRp . . . RP

)

,

where Lp is defined in Algorithm 2. The first term corresponds to the computation of the SVD of
V̄0, . . . , V̄P−1, while the second and third terms comprise, respectively, the costs of step 2(ii) and step 3
of Algorithm 2.

Now, when Np ≪ Lp, instead of computing the SVD of (V̄p−1)〈p〉 ∈ R
Np×Lp as described by Algo-

rithm 2, one can proceed as follows. First, the eigenvalue decomposition of (V̄p−1)〈p〉(V̄p−1)
T
〈p〉 ∈ R

Np×Np

provides (only) the left singular vectors of (V̄p−1)〈p〉, which are then used for the projection stage (25).
The goal is decomposing a much smaller matrix, at a cost of O(N3

p ) in lieu of O(N2
pLp). Though the

overall cost of the decomposition stage (i.e., the first term of (26)) remains O(N2
pLp) because of the ma-

trix product (V̄p−1)〈p〉(V̄p−1)
T
〈p〉, it is generally much faster in practice, compensating for the increased

effort of using (25), which costs O(∑P
p=1 R1 . . . RpNp . . . NP ), instead of step 2(ii) of Algorithm 2. So,

7In principle, the first R terms can be computed with O(RN1N2) operations [23]. Yet, in our experience, optimized
classical algorithms delivering the whole SVD, such as that of LAPACK, are usually faster.
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even though this alternative implementation has an asymptotic cost of

O
(

P
∑

p=1

N2
pLp

)

+O
(

P
∑

p=1

R1 . . . RpNp . . . NP

)

+O
(

P
∑

p=1

N1 . . .NpRp . . . RP

)

,

it is often quite advantageous, due to reduced scale of the decomposition problem.
As a final comment, we mention that an important property of SeMP is its quasi-optimality by a

factor of
√
P , i.e., its compliance to inequality (15), just like the THOSVD [48]. This can be easily shown

from (24).

3.2. Computational cost per iteration. The computing effort involved in the use of Sr is given
by (26). Calculation of the argument of Sr can be split into three stages: (i) computing the gradient
of J , (ii) calculating the step size µk and (iii) calculating the sum V0 = X k−1 − µk

2 ∇J(X k−1). Stage
(i) requires O(MN̄) operations for unstructured (e.g., Gaussian) operators, which can be alleviated by
working with structured MOs. For instance, it requires O(M) in TC, while a cost of O(N̄ log(N̄)) is
achieved when random partial Fourier or noiselet measurements are taken by means of fast transform
algorithms (see, e.g., [32, 41]). The cost of stage (ii) depends on the step size selection strategy, and thus
we postpone its discussion to Subsection 3.5. Finally, (iii) generally takes O(N̄) operations. In TC, this
cost drops to O(M) because the gradient is sparse (due to the form of the SO).

3.3. Comparison with previous approaches. Clearly enough, the hard thresholding operator
employed in an IHT algorithm has a major impact on its convergence speed, computing cost and recovery
effectiveness. We thus compare the operators of SeMPIHT, TIHT and MnRA according to the following
criteria.

1) Approximation accuracy. As seen above, both Hr and Sr are quasi-optimal by a factor
√
P . In

fact, our practical experience is consistent with the observations reported in [48], in that ‖X−Sr(X )‖F <
‖X −Hr(X )‖F holds in most observed cases. MnRA’s operator Cr, in its turn, satisfies

‖X − Cr(X )‖F =
∥

∥

∥

∑P
p=1 wp (X −Zp)

∥

∥

∥

F
≤∑P

p=1 wp ‖X −Zp‖F
≤∑P

p=1 wp ‖X −X r‖F = ‖X −X r‖F
for all X r ∈ PLr

(X ), where the second inequality comes from the fact that (Zp)〈p〉 is the best rank-Rp

approximation of X〈p〉 (see (19)). This perhaps surprising result is explained by the fact that Cr is not
really a projection onto Lr, due to the sum of terms which are low-rank only with respect to one mode.

2) Computing cost. Applying Hr requires

(27) O
(

P
∑

p=1

NpN̄p min{Np, N̄p}
)

+O
(

P
∑

p=1

R1 . . . RpNp . . .NP

)

+O
(

P
∑

p=1

N1 . . . NpRp . . . RP

)

operations, where the first sum is the cost of the P required SVDs and the other ones come from the
projection onto the dominant modal subspaces (see (14)). The latter is broken down into two terms
because it is faster to first compute the R1 × · · · × RP core of the THOSVD, and then reconstruct the
full tensor. Overall, the cost is dominated by the first sum of (27). Similarly, applying Cr demands

(28) O
(

∑

p NpN̄p min{Np, N̄p}
)

+O(PN̄)

operations, where the first term is related to the SVDs of all modal unfoldings, and the second one to
the convex combination of (19). Though (27) and (28) are asymptotically equivalent, Cr is less costly in
practice due to the difference between the second terms of these expressions.

Comparing now the first term of (26) with those of (27) and (28), it is seen that Sr is less costly than
Hr and Cr, which is due to the dimensionality reduction performed for each p in Algorithm 2.

3) Analytical tractability. Theorem 2 states a partial recovery result which applies to TIHT. Unfor-
tunately, it relies upon a condition which cannot be assured a priori. MnRA, in its turn, enjoys the
RIC-based performance bound of Theorem 3, despite the fact that in general Cr(X ) /∈ Lr. This result,
however, leads to suboptimal sampling bounds. At this point, it is not clear whether a similar (sub-
optimal) result based only on RIC assumptions can be derived for TIHT. As for SeMP, the sequential
optimality of its modal projections allows establishing RIC-based performance bounds, as we will show
next.
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3.4. Theoretical recovery results. This section establishes a performance bound for SeMPIHT,
under the standard assumption that Ahas sufficiently low RICs. Our main result, whose proof is inspired
by (but simpler than) that of [52], is as follows.

Theorem 4. Let X ⋆ ∈ T and y = A(X ⋆)+e. If Ahas a RIC δr̄p < 2−P , where r̄p = (N1, . . . , Np−1,
3Rp, Np+1, . . . , NP ), then the iterates computed via (20) with fixed step size µk = 1 and MPO given by8

π = (p, p2, . . . , pP ) satisfy after k iterations:

(29) ‖X ⋆
r
−X k‖F ≤ ξk‖X ⋆

r
−X 0‖F +

2P
√

1 + δr̄p
1− ξ

‖A(X ⋆ −X
⋆
r
) + e‖2 ,

where ξ = 2P δr̄p < 1 and X
⋆
r
∈ PLr

(X ⋆) = argmin
Z∈Lr

‖X ⋆ −Z‖F , with r = (R1, . . . , RP ). If the step
size formula (17) is used, then (29) holds with δr̄p < 1/(2P+1+1) and ξ = supk 2

P (|1−µk|+µkδr̄p) < 1.

Proof. See Appendix A.

Corollary 5. Let X ⋆ ∈ Lr and y = A(X ⋆). If A has a RIC δr̄p < 2−P , then the scheme (20)
with fixed step size µk = 1 and MPO π = (p, p2, . . . , pP ) converges to X

⋆. If the step size formula (17)
is used, then the same result holds with δr̄p < 1/(2P+1 + 1).

Proof. Follows from taking k →∞ in (29) with X
⋆ = X

⋆
r
and e = 0.

Ideally, mrank-based recovery results should assume a small RIC of order (dR1, . . . , dRP ) for some
constant d. But, just as in Theorem 3, our results rely instead on a RIC of order (N1, . . . , Np−1, 3Rp,
Np+1, . . . , NP ). Consequently, they unfortunately do not improve upon currently known sampling bounds.
Indeed, applying [38, Th. 2] with δ = 2−P for fixed P , the RIC condition in Theorem 4 is met with high
probability provided that one takes9

(30) M ≥Mmin = O(RpN̄p +RpNp +
∑

q 6=p N
2
q )

subgaussian measurements, which grows much faster than the model complexity Φ(r) (see (4)). Nev-
ertheless, our numerical simulations of Subsection 5.3 will show that in practice Mmin = O(Φ(r)) =
O(
∏

p Rp +
∑

p NpRp) Gaussian measurements are sufficient for achieving recovery with SeMPIHT. We
note that the same is true also for both TIHT and MnRA. Formally demonstrating such an observed
(near-)optimality of SeMPIHT remains an open problem.

It is also important to bear in mind that, since our recovery guarantees are RIC-based, they do not
apply to TC, because sampling operators cannot possess small RICs (a simple counterexample for the
matrix case is given in [4], which can be easily extended to TC). When using uniformly distributed SOs,
the analysis typically requires imposing certain incoherence conditions (similarly to, e.g., those in [5, 26])
on the target low-mrank tensors, in order to, roughly speaking, avoid a high concentration of the tensor
energy in a small number of entries. The motivation is guaranteeing that any set of sampled entries be
sufficiently informative, which is not the case, for instance, when a sparse tensor is uniformly sampled.

3.5. Step size selection and stopping criteria. As emphasized in [43], the issue of step size
selection is of great importance when using IHT. On the one hand, µk should be sufficiently large to
accelerate convergence and diminish occurrence of convergence to local minima. In particular, the re-
quirement Jk(x) > µkJ(x) for all x 6= xk−1 can be relaxed, since it is sufficient but not necessary for
having objective function decrease. On the other hand, too large steps may cause the algorithm to di-
verge. In addition, invariance with respect to the scaling of the MO is desirable, which is not possible with
a fixed step size. To pursue these requirements, some adaptive step size strategies have been proposed in
the literature [2, 43, 12, 38].

Upon evaluation of the SeMPIHT iteration (20) with fixed step size µk = 1 through computer
experiments, one observes that the algorithm is sensitive to the scaling of the used MO and recovery is
only achieved under a highly favorable regime. Furthermore, convergence can be impractically slow.

Our first approach to overcome these problems consists in employing the ISS heuristic proposed in
[12]. This heuristic was motivated by the poor performance displayed by TIHT when the formula in (16)

8The first component of π was chosen as p1 = p to simplify the writing of the theorem and its demonstration.
9[38, Th. 2] states that δr ≤ δ if a bound of the form M ≥ O(δ−2(RP +PNR) log(P )) is met, where r = (R1, . . . , RP ),

R = maxp Rp and N = maxp Np. Nonetheless, an inspection of its proof reveals that this bound can be refined as
M ≥ O(δ−2(

∏
p Rp +

∑
p NpRp) log(P )), which for fixed P and r = r̄p = (N1, . . . , Np−1, 3Rp, Np+1, . . . , NP ) implies (30).

The refinement of the term PNR is mentioned in [38].
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is employed. It consists in imposing a lower and an upper bound on µk, namely:

(31) αω(µk) ≤ µk < ω(µk) ,
‖X k −X k−1‖2F
‖A(X k −X k−1) ‖22

,

for α ∈ ]0, 1[. The upper bound is similar to that proposed in [2] for CS, aiming at achieving objective
function decrease. In its turn, the lower bound is meant to avoid too small values for µk. As a first
candidate step size, we use here the initial guess µk = 1 (unlike [12], which uses TIHT’s formula), and
then keep it if it satisfies (31). Otherwise, a new candidate step size given by βω(µk) is generated, where
β ∈]α, 1[, its corresponding estimate X k is computed, and the verification is repeated. This process is
interrupted if a maximum number of generated candidates (denoted as L in [12]) is attained, and then the
largest step satisfying at least the upper bound is kept. If none of them does, then the smallest generated
candidate is repeatedly divided by κ > 1 until it does, similarly to [2].

Based on the above description, we conclude that the extra cost depends on the number of candidate
step sizes generated until one is accepted. For each additional candidate, stage (iii) mentioned in Subsec-
tion 3.2 must be performed, followed by application of SeMP. Assuming that at least one of the first L
generated candidates satisfies its upper bound (which was always the case in our simulations), the extra
cost is thus given in the worst case by L− 1 times the cost of these two operations.

A competitive alternative to ISS is based on the step size selection rule (17) proposed in [38]. This
expression is the higher-order analogous of that used in the matrix NIHT algorithm of [43]. Here, the
gradient undergoes a multilinear transformation so that each mode is projected onto the corresponding
modal subspace of X k−1. In the case of SeMPIHT, note that each U(p) in (17) must be replaced by the
matrix Ū(p) computed by SeMP (see Algorithm 1) at iteration k− 1. As in [43], this is motivated by the
expectation that little change occurs from one iterate to another in terms of those subspaces, in which
case (17) is approximately optimal. The cost implied by its use is of

O
(

∑P
p=1 R1 . . . RpNp . . . NP

)

+O
(

∑P
p=1 N1 . . .NpRp . . . RP

)

+ cA+O(M) +O(N̄)

operations, where the first two terms are associated with the multilinear transformation in (17), cA
denotes the cost of applying the MO A (as discussed in Subsection 3.2) and the last two terms are related
with the calculation of the norms.

For convenience, we give a concrete description of SeMPIHT with adaptive step size in Algorithm 1.
Two stopping criteria are used. At each iteration k we check whether the condition

(32) ‖X k −X k−1‖F ≤ ǫ‖X k−1‖F ,

with ǫ > 0, is satisfied for two consecutive estimates. If so, convergence is declared and the algorithm
stops. Otherwise, it keeps running until a maximum number of iterations Kmax is met.

4. Performance improvement with gradual rank increase. More often than not, tensors
measured in applications possess modal singular spectra which decay steadily, instead of having an exactly
low mrank. In that case, gradually increasing the mrank of the estimated model along iterations can
improve recovery [31]. We pursue this idea here, proposing a continuation technique, called gradual rank
increase (GRI), which starts off with a small mrank and conducts the algorithm through increasingly
complex estimates.

There are several ways in which one can implement a GRI scheme. A fairly simple one starts with a
chosen mrank r1 and then runs Algorithm 1 for a maximum of K ′

max < Kmax iterations or until (32) is

satisfied. The outcome X̂ ⋆
r1

is then used to initialize a subsequent run in which the mrank components are
set as [r2]p = min{[rmax]p, [r1+i]p} for all p, where i ∈ N

P is a prescribed increment and rmax is the (final)
target mrank. This process is repeated until reaching rmax, at which point normal operation is resumed,
as depicted in Figure 1. Note that a sequence of increasingly complex estimates X̂

⋆
rt
, t = 1, 2, . . ., is

produced before outputting X̂
⋆ = X̂

⋆
rmax

.
A disadvantage of the above scheme is that one cannot separately control the iteration at which each

mrank component is incremented. If, e.g., i = 1 and [rmax]p ≪ [rmax]q, then the algorithm reaches [rmax]p
many iterations before reaching [rmax]q. But, we would rather assign to each component a growth rate
proportional to its magnitude. To this end, we can check the convergence of each modal subspace basis
matrix U(p) separately. An even simpler strategy is to predefine modal rank profiles specifying values for
the mrank components at each iteration, until attaining the target mrank at iteration K̄max. From that
point, normal operation is resumed. For instance, if rmax = (R, 2R, 10R), then one can increment [r]p by
one unit at every 10R/[rmax]p iterations, so that rmax is attained at iteration K̄max = 10R.
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Figure 1: Diagram of SeMPIHT algorithm with GRI heuristic.

5. Simulation results. In the following, we thoroughly evaluate SeMPIHT and compare it with
other LRTR/TC algorithms by means of computer simulations. For simplicity, our simulations concern
only the recovery of third-order tensors (i.e., P = 3). We note also that the ISS heuristic is always
employed with parameters L = 3, α = 0.5, β = 0.7 (see Subsection 3.5). All reported experiments were
performed in Matlab R2013a running on a Intel Xeon ES-2630v2 2.60 GHz with 32 GB of 1866 MHz
RAM memory.

The main used performance criterion is the normalized squared error (NSE). Given a tensor of

interest X ⋆ and an estimate X̂
⋆ obtained by applying a recovery algorithm to some measurement vector

y = A(X ⋆), we define

(33) NSE(X̂ ⋆;X ⋆) ,
‖X ⋆ − X̂

⋆‖2F
‖X ⋆‖2F

.

When recovery is performed for Nr realizations, providing Nr pairs (X̂ ⋆
l ,X

⋆
l ), l ∈ JNrK, we often employ

the normalized (sample) mean square error (NMSE)

(34) NMSE(X̂ ⋆;X ⋆) =
1

Nr

Nr
∑

l=1

NSE(X̂ ⋆
l ;X

⋆
l ),

whose arguments may be omitted for simplicity whenever they are clear from the context.

5.1. Tensor models. Two types of synthetic tensors are considered in our experiments:
• A type-1 (T1) tensor consists of a Tucker model having a R1×· · ·×RP core and Np×Rp factors.
Thus, by construction, it belongs to Lr. All factors and the core have standard Gaussian entries.
As a consequence, T1 tensors have highly concentrated nonzero modal singular values.
• A type-2 (T2) tensor generally has full mrank but exhibits exponentially decaying modal singular
spectra. To impose this property, we adopt the Tucker model used in [49, Sec. 2.3], which has a
N1 × · · · ×NP Gaussian core and matrix factors Ap = QpSp ∈ R

Np×Np , where Qp is orthogonal
and Sp = diag(1, 2−ϕ, . . . , N−ϕ

p ), with ϕ > 0.
The typical spectral characteristics of T1 and T2 tensors are illustrated in Figure 2(a). Specifically, it
shows the average modal singular spectra of 500 realizations of 20 × 20 × 20 T1 (r = (10, 10, 10)) and
T2 (ϕ = 3) tensors, which are normalized to have unit Frobenius norm. The average nth singular value

of the mode-p unfolding of the generated tensors is denoted by σ
(p)
n . Numerically, the T2 tensors have

full mrank. Consistently with the shown behavior, the mean squared error of the best mrank-(R,R,R)
approximation as a function of R displays an abrupt variation for the T1 tensors; that of the T2 tensors
decays steadily and smoothly.

Another relevant property of these tensor models is highlighted in Figure 2(b). Namely, we generated
500 realizations of T1 tensors of varying mrank r = (R,R,R) and T2 tensors with varying ϕ, all having
dimensions 20 × 20 × 20, and then plotted the average modal row space coherence (see [5, 26]) of their
approximate projections onto Lr, i.e.,

(35) νr(X ) = min
p

max
n∈JNK

∥

∥

∥
PWp

(

e(N̄p)
n

)∥

∥

∥

2

2
, where

{

Wp = rowspace
(

(X r)〈p〉
)

,

X r = Sr(X ),
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Figure 2: Typical behavior of the considered random tensor models: (a) modal singular spectra; (b) row
space coherence (see (35)).

where e
(N̄p)
n is the nth canonical basis vector of RN̄p . Note that X r = X for T1 tensors of mrank r, while

for T2 tensors X r 6= X . The (approximate) projection is performed because we are ultimately interested
in the properties of the best mrank-r approximation of X , since it is this approximation which is sought
by SeMPIHT, the difference X − X r being regarded as modeling error (cf. Theorem 4). Figure 2(b)
indicates that the modal row space coherence of the (approximately) projected T2 tensors grows with
ϕ. Also, the gap among the curves grows with R. As we shall see ahead, this has important negative
implications when trying to complete T2 tensors sampled uniformly at random.

We would like to draw attention to the fact that, although the modal spectra of T2 tensors are more
akin to those of most real-world tensors, to date most published works have exclusively considered T1
(or similar) tensors in computer experiments with synthetic data.

5.2. Effect of gradual rank increase. In this section, we discuss the effects of the GRI heuristic
by drawing upon experimental results. This allows to show its motivation and better understand how
it works, based on empirical grounds. To this end, we resort to Monte Carlo simulations involving the
recovery of 20× 20× 20 tensors by employing Algorithm 1 with ISS.

We first employ Gaussian MOs. For each value of ρ = M/203 ∈ {0.10, 0.25, 0.40}, Nr = 100

realizations of an MO A are generated by drawing the entries of its associated matrix A ∈ R
M×203 (such

that A(X ) = A vec(X )) from a zero-mean Gaussian distribution of variance 1/M . Each MO is then
used to sense T1 tensors having mrank (R,R,R), with R ∈ J15K, and T2 tensors with spectral decay
factors ϕ ∈ { 32 , 7

2}. When recovering T1 tensors, the target mrank always matches mrank(X ⋆) and we
set Kmax = 1000 and ǫ = 10−10 for the stopping criterion (32). The algorithm is run once initialized with
the null tensor (initialization I) and then three more times with random initializations (initialization II).

In the recovery of T2 tensors, we vary the target mrank (R,R,R) and run the algorithm twice for
each R: once initialized with the null tensor (initialization I) and once using the solution obtained with
mrank (R − 1, R− 1, R− 1) to initialize the run in which r = (R,R,R) (initialization II). Note that the
latter initialization strategy is closely related to our GRI heuristic. Again, Kmax = 1000, but a specific ǫ
was chosen for each combination of ϕ and ρ by a trial and error procedure.

The NMSE of the estimates provided by SeMPIHT is shown in Figure 3(a,c,e). In the case of T1
tensors, only the best outcome among the runs with initialization II is kept for computing (34). For T2
tensors, we also plot NMSE(Sr(X

⋆);X ⋆), which gives an approximate lower bound. Figure 3(a) displays
a sharp transition from success to failure in the recovery of T1 tensors, which is a typical behavior in
parsimonious signal recovery problems. Concerning T2 tensors, Figure 3(c,e) show that the NMSE gets
quite close to the lower bound when inside the region of successful recovery of T1 tensors (cf. Figure 3(a)),
regardless of the initialization. Beyond that region, a gap appears: results obtained with initialization I
rapidly degrade, while those for initialization II degrade (or even improve) only slightly before stabilizing.
The rate of deviation from the lower bound depends on ρ and ϕ, in conformity with (29).

The results of a similar experiment performed with (uniformly) random SOs are shown in Fig-
ure 3(b,d,f). As we can see, transition into failure happens in Figure 3(b) for ρ = 0.10 as soon as R = 2,
against R = 6 in the Gaussian case. Also, the results are very poor for T2 tensors with initialization I,
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Figure 3: Effect of GRI on recovery performance of SeMPIHT with Gaussian ((a), (c) and (e)) sensing and
in TC ((b), (d) and (f)). The approximate lower bound in (c)–(f) is computed as NMSE(Sr(X

⋆);X ⋆).

even in a favorable regime (i.e., where recovery of T1 tensors succeeds). Moreover, the performance wors-
ens as the singular values decay rate ϕ grows, which is explained by the behavior shown in Figure 2(b),
as the recoverability of X ⋆

r depends on r and on some measure of coherence. The use of initialization
II does a remarkable job in avoiding such a degradation. Indeed, the results for ρ = 0.25 and ρ = 0.40
are similar to those obtained with Gaussian sensing. For ρ = 0.10, not enough measurements seem to be
available for achieving comparable results.

Let us now interpret these outcomes in light of the results of Subsection 3.4. Since X
⋆ ∈ Lr in our

experiment with T1 tensors, Corollary 5 guarantees convergence to the global minimizer X
⋆ whenever

A satisfies the stated RIC condition, regardless of the initialization (and despite the nonconvexity of
(6)). Hence, when using Gaussian sensing, initialization plays no role in the recovery regime (with high
probability), which is corroborated by Figure 3(a). Our results suggest that, in the phase transition
region, the influence of initialization comes into play, as the insufficiency of measurements vis-à-vis the
number of DOF causes convergence to local minima (or inability to converge), with rapidly increasing
probability as R grows. Similar remarks hold for T2 tensors, in that the iterates approach a ball centered
at a best approximation X

⋆
r
∈ Lr of X ⋆ regardless of the initialization for appropriate A (cf. Theorem 4),
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Figure 4: Estimated (normalized) number of DOF which can be recovered by SeMPIHT for each level of
ρ, using Gaussian MOs (GO) and sampling MOs (SO). Recovery was successful in all 15 realizations for
values of Φ̄ below or over the curve.

which explains Figure 3(c,e).
Now, when a too high mrank (with respect to ρ) is chosen to model a T2 tensor, gradually increasing

the mrank stabilizes the approximation error, or at least mitigates its degradation. Apparently, this
happens because, once the phase transition region is reached, the lack of sufficient information causes
convergence to a local minimum not far from the initial point. In particular, when completing T2 tensors
this continuation strategy delivers good results despite their non-ideal coherence properties. It also brings
computational advantages: ξ is smaller, leading to a faster convergence, and the cost of Sr is reduced
when r has small components.

5.3. Empirical sampling bounds. In this section, we numerically estimate how many measure-
ments are necessary for recovering a model with a given complexity. More precisely, the idea is to find,
for several values of ρ, the maximum normalized number of DOF Φ̄(r) = Φ(r)/N̄ up to which recovery is
highly likely. For simplicity, we take N1 = N2 = N3 = N , and sort all possible values of Φ̄(r) by consid-
ering every mrank r = (R1, R2, R3) such that (i) R1 ≤ R2 ≤ R3 and (ii) R3 ≤ R1R2. This entails no loss
of generality, as constraint (i) avoids redundant tuples, while constraint (ii) eliminates those which are
not feasible.10 Then, for each ρ ∈ {0.05, 0.10, . . . , 1}, we start from the simplest model, r = (1, 1, 1), and
generate 15 joint realizations of an MO A and a T1 tensor X ⋆ ∈ Lr. Recovery of X ⋆ from y = A(X ⋆)

is declared successful when NSE(X̂ ⋆;X ⋆) ≤ −90 dB. If all 15 runs are successful, then the process is
repeated with the next model of higher complexity (in terms of Φ̄(r)). When failure occurs for some
r′, then the value Φ̄(r) of the immediately less complex model is declared to be frontier of the recovery
region. To reduce computing time, instead of starting from r = (1, 1, 1) for every level of ρ, we start from
the mrank tuple associated with the frontier obtained for the immediately preceding undersampling rate
(i.e., for ρ − 0.05). The stopping criteria parameters are set as ǫ = 10−8 and Kmax = 1500. Gaussian
MOs and SOs are generated as described in Subsection 5.2.

The results obtained for N ∈ {10, 15, 20} are shown in Figure 4. When using Gaussian operators
(GO), the maximum Φ̄(r) clearly grows approximately linearly with ρ for all N . Moreover, the improve-
ment due to ISS is remarkable, as the slope becomes much higher (about 0.9) than with fixed step size
(about 0.17). Hence, M ≥ Mmin = O(Φ(r)) Gaussian measurements (are highly likely to) suffice for
recovery, with Mmin ≈ 1

0.9Φ(r) = 1.11Φ(r) when using ISS and Mmin ≈ 1
0.17Φ(r) = 5.88Φ(r) when

µk = 1. So, despite the quite loose sampling bounds implied by Theorem 4, in practice SeMPIHT with
ISS succeeds for a quasi-optimal number of Gaussian measurements. On the other hand, the relation
between Φ̄(r) and ρ is no longer linear in TC.

For the sake of comparison, the same procedure is applied with N = 20 to ISS-TIHT [12], MnRA
[52], geomCG [31], TMac [49] and an ADMM scheme based on SNN minimization (SNNM) [44]. In the
latter, the penalty parameter η is adapted along the iterations to accelerate convergence, as discussed in
[3, Sec. 3.4.1], and observations are taken as constraints (λ → 0). Having been devised specifically for

10Note that mrank(X ) = r is equivalent to the existence of a Tucker model constrained as discussed in Section 1, whose
core can only have a mode-3 unfolding with orthogonal rows if R3 ≤ R1R2.
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Figure 5: Estimated (normalized) number of DOF which can be recovered by several algorithms for
each level of ρ, using Gaussian MOs (a) and sampling MOs (b). The measured tensors have dimensions
Np = 20 for all p. Recovery was successful in all 15 realizations for values of Φ̄ below or over the curve.

TC, the performances of geomCG and TMac are only evaluated11 with SOs. For a fair comparison, a
variant of MnRA using ISS is also included. All methods are initialized with the null tensor and cannot
exceed Kmax = 1500 iterations.

This comparison is shown on Figure 5. In the Gaussian sensing setting of Figure 5(a), the sampling
requirements of SeMPIHT and ISS-TIHT are almost identical, while those of ISS-MnRA are a little
stricter. Though MnRA with fixed step size µk = 1 displays quite a poor performance, Φ̄ still grows
roughly linearly with ρ. In its turn, the behavior of the SNNM approach is markedly different, abruptly
improving in the region ρ > 0.8. Such a nonlinear relation is expected, as discussed in Subsection 1.1.
In the TC scenario of Figure 5(b), SeMPIHT and ISS-TIHT have generally the least strict sampling
requirements, with geomCG competing closely for ρ ≥ 0.7. TMac’s performance is less satisfying, but
slightly better than that of MnRA for 0.7 ≤ ρ ≤ 0.95. Here, ISS does not improve MnRA’s sampling
requirements. Finally, the SNNM approach displays an outstandingly poor performance in comparison
with the others.

5.4. Convergence and computational cost. In order to evaluate the studied algorithms with
respect to their convergence speed and computational cost, they are applied to recover 60 realizations of
N × N × N T1 and T2 tensors sensed by Gaussian and SOs. At each iteration, we measure the NSE
of the current solution with respect to X

⋆ and also the time spent. Results concerning T2 tensors are
displayed along with an average (approximate) lower bound calculated as in Subsection 5.2. SeMPIHT
is run both with the ISS heuristic and with the NTIHT step size selection rule (17). When (and only
when) T2 tensors are recovered, SeMPIHT is also run with GRI (in which case the ISS heuristic is used).
The tolerance parameter used in geomCG’s rank increase condition (cf. [31, Eq. 4.2]) is set as δ = 0.1.
TMac’s adaptive weight heuristic is used, starting with weights α1 = α2 = α3 = 1/3 [49]. The ADMM
scheme for SNNM is again run with λ→ 0 and penalty parameter adapted as described by [3, Sec. 3.4.1].

We start by considering Gaussian operators. In this case, N = 20, ρ = 0.25, T1 tensors have
mrank r = (3, 3, 3), and T2 tensors have decay parameter ϕ = 2.5. The results for T1 tensors in
terms of the NMSE achieved at each iteration are shown in Figure 6(a). The average elapsed time until
completion of each iteration is shown on the abscissa. In this scenario, both SeMPIHT (with ISS) and ISS-
TIHT outperform the other algorithms, having practically indistinguishable performances. This happens
because the cost of applying the Gaussian MO dominates that of the projection. Figure 6(b) displays the
results obtained for T2 tensors modeled with the mrank r = (9, 9, 9). The GRI used in SeMPIHT follows
the first procedure described in Section 4, with K ′

max = 1, i = (1, 1, 1) and r1 = (1, 1, 1). One can see

11We employ the implementations provided by their authors, obtained from http://anchp.epfl.ch/geomCG and
http://www.math.ucla.edu/∼wotaoyin/papers/tmac.html. Yet, we have replaced geomCG’s MEX routines by Matlab
code, which turns out to be much faster in our setting (as sugested by [10]).
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Figure 6: Convergence of several algorithms in a Gaussian sensing scenario where ρ = 0.25 and N1 =
N2 = N3 = 20: (a) T1 tensors of mrank r = (3, 3, 3); (b) T2 tensors (ϕ = 2.5) modeled with mrank
r = (9, 9, 9); (c) T2 tensors (ϕ = 2.5) modeled with mrank r = (13, 13, 13).

that all algorithms reach reasonably close to the bound, except for SNNM. Among them, SeMPIHT with
GRI is clearly the fastest to converge. Now, in Figure 6(c), the model mrank is set as r = (13, 13, 13),
which yields too high a value of Φ(r) for ρ = 0.25. In this case, we have set K ′

max = 2. Note that the
GRI technique prevents the degradation brought by mrank overestimation, while the performances of the
other IHT algorithms are severely deteriorated. This robustness with respect to mrank overestimation is
valuable, since in practice one generally does not know which mrank values fall inside the recovery region
for a given M .

Figure 7 displays the results obtained for TC, with N = 300 and ρ = 0.2. The T1 tensors and T2
tensors are generated with, respectively, r = (30, 30, 30) and ϕ = 2. Upon inspection of Figure 7(a), it is
clear that the SeMPIHT variants (with ISS and with NTIHT step size selection) are the most efficient
in recovering T1 tensors. The gap between SeMPIHT with ISS and ISS-TIHT is due to the reduced cost
of the thresholding operator. The NTIHT variant is even faster in this scenario. For the recovery of T2
tensors, the mrank is set as r = (90, 90, 90), and we choose K ′

max = 1. Both geomCG and TMac are
run with their mrank increase heuristics [31, 49], with initial mrank r1 = (1, 1, 1) and unit increments.
SeMPIHT uses the same settings. Figure 7(b) shows that the IHT algorithms without GRI clearly fail,
which is due to the non-ideal coherence properties of the T2 tensors. Among the others, SeMPIHT with
GRI provides the best performance, followed by TMac. Unlike the other methods, geomCG’s results have
large variance due to the occurrence of two realizations with outstandingly poor results. So, we also plot
in Figure 7(b) the median of its NSE per iteration, which yields a reasonable behavior in terms of final
error, but at a large computing cost.

5.5. Completion of real-world data. Finally, aiming to assess the performance of SeMPIHT
in a scenario involving real-world data, we have performed the reconstruction of the hyperspectral im-
age corresponding to the Gualtar scene described in [15], which is shown in Figure 8 for two different
wavelengths. (Only the image taken at 11:44 am has been used). This data tensor has dimensions
1024× 1344× 33, where the two first modes correspond to the spatial dimensions of the image and the
third one refers to the number of acquired wavelengths (from 400 to 720 nm at 10-nm intervals). The
applied MOs again correspond to a uniformly distributed random sampling of the tensor components,
with ρ ∈ {0.15, 0.30, 0.45}. We set the model mrank to r = (300, 350, 15), which gives an approximate
lower bound of NSE(Sr(X

⋆);X ⋆) = −40.6 dB for the methods that explicitly impose low-mrank con-
straints. Here, the only evaluated IHT method is SeMPIHT (with and without GRI), due to its observed
superiority in Figure 7. Among the other methods, geomCG is not included, because it takes too much
time when a model having large mrank components is used. The second GRI technique of Section 4 is
employed for SeMPIHT, so that each mrank component is increased in a quasi-linear fashion with rate
proportional to its magnitude until iteration K̄max = 150, from which 50 more iterations are performed
with the mrank set at its target. TMac is also run with its rank increasing heuristic, for a maximum of
500 iterations, and the ADMM algorithm for SNN again uses adaptive penalty parameter for convergence
acceleration.
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Figure 7: Convergence of several algorithms in a TC scenario where ρ = 0.2 and N1 = N2 = N3 = 300:
(a) T1 tensors of mrank r = (30, 30, 30); (b) T2 tensors (ϕ = 2) modeled with mrank r = (90, 90, 90).
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Figure 8: Hyperspectral image Gualtar scene [15] at two wavelengths.

The obtained results are shown in Figure 9. They are displayed in terms of the NSE per iteration,
as only a single realization is performed per value of ρ. For ρ = 0.15, SeMPIHT with GRI clearly
outperforms all other algorithms, converging faster and attaining a smaller NSE. For ρ = 0.30 and
ρ = 0.45, its performance is close to that of TMac. The importance of GRI is very well highlighted, as
it significantly accelerates the convergence of SeMPIHT and, furthermore, allows approaching the NSE
lower bound for ρ = 0.15.

6. Conclusions. We have proposed an iterative hard thresholding algorithm, called SeMPIHT, to
address a constrained least-squares formulation of low-rank tensor recovery in which the solution must
have bounded multilinear rank. The employed hard thresholding operator, SeMP, consists of a chain
of sequentially optimal modal projections. This yields an approximate projector which enjoys the same
quasi-optimality property of the truncated HOSVD while requiring less computing effort. Moreover, the
sequential optimality of the modal projections has allowed us to derive a performance bound for SeM-
PIHT based solely on RIC conditions, which is still an open problem for TIHT. However, the order of
the exploited RIC only takes into account the low rank of a single mode, thus leading to loose sampling
bounds for certain random (e.g., Gaussian) measurement ensembles. Nonetheless, our systematic em-
pirical evaluation shows that perfect recovery is achieved by SeMPIHT (and also by ISS-TIHT) with a
number of Gaussian measurements which scales linearly with the intrinsic complexity of the model, as
measured by its number of degrees of freedom. Moreover, the constant governing this linear relation is
close to 1, meaning a quasi-optimal recovery performance is observed.

Our numerical studies have validated the theoretical results and have also shown that a gradual
rank increase heuristic plays a significant role in achieving good results when the tensor data possess
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Figure 9: Performance of TC algorithms in the reconstruction of the 1024 × 1344 × 33 hyperspectral
image Gualtar scene [15], which is uniformly sampled at random with subsampling rate ρ.

fast decaying modal spectra, stabilizing the estimation error when the model mrank is overestimated
and accelerating the algorithm. It is especially important in TC, where it can avoid degradation due
to non-ideal coherence properties of measured tensors. A simulation scenario involving the completion
of a hyperspectral imaging data tensor has further substantiated these observations, corroborating the
usefulness of SeMPIHT.

Deriving recovery guarantees based on stricter RICs, in order to theoretically establish the quasi-
optimality of SeMPIHT observed for Gaussian sensing, remains an open problem. Another important
aspect which necessitates further development is the derivation of the minimum number of measurements
needed for tensor completion, which is the most practically relevant scenario.

Appendix A. Proof of our main result.
We first state two necessary lemmata, and then proceed to the demonstration of Theorem 4.

Lemma 6. Let U(p) ∈ VRp
(RNp), p ∈ JP K, and define

U =
{

X : X = G ×1 U
(1) ×2 · · · ×P U(P ) for some G ∈ R

R1×···×RP

}

⊂ Lr,

with r = (R1, . . . , RP ). Denote AU = APU , where PU is the orthogonal projector onto U , and assume A

has a RIC δr < 1. Then, ‖A†
UAU −I‖ ≤ δr, where I is the identity over T .

Proof. Our proof is an extension of the argument supporting [16, Eq. (6.2)] (given in the context of
CS). Consider X ∈ U , for which AU(X ) = A(X ). By definition of δr, we deduce ‖AU(X )‖2F − ‖X‖2F ≤
δr‖X‖2F . Rewriting the left-hand side of this inequality, we obtain

〈AU(X ),AU(X )〉 − 〈X ,X 〉 = 〈(A†
UAU −I)(X ),X 〉 ≤ δr‖X‖2F .

Assuming that ‖X‖F 6= 0, dividing by ‖X‖2F and taking the maximum with respect to X ∈ U \{0} yields

(36) max
X∈U\{0}

‖AU(X )‖2F
‖X‖2F

− 1 = max
X∈U\{0}

〈(A†
UAU −I)(X ),X 〉
‖X‖2F

≤ δr.

Now, note that for any Z ∈ T , ‖AU(Z)‖2F = ‖AU(PU (Z))‖2F and ‖Z‖2F ≥ ‖PU (Z)‖2F . Consequently,
the maximum must be the same over the whole space, because

max
Z 6=0

‖AU(Z)‖2F
‖Z‖2F

≤ max
Z 6=0

‖AU(PU (Z))‖2F
‖PU(Z)‖2F

= max
X∈U\{0}

‖AU(X )‖2F
‖X‖2F

,

and therefore (36) implies

max
Z 6=0

〈(A†
UAU −I)(Z),Z〉
‖Z‖2F

≤ δr.

Finally, since A†
UAU−I is self adjoint, the left-hand side of the above expression is precisely the definition

of its operator norm, and thus the proof is complete.
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The next lemma is an extension of [16, Lemma 6.20] (which also applies to CS).

Lemma 7. If U ⊆ Lr and A has a RIC δr < 1, then for all e ∈ R
M we have

‖PUA
†(e)‖F ≤

√

1 + δr‖e‖2.

Proof. We assume ‖PUA†(e)‖F 6= 0 (otherwise the result is trivial) and start by deriving

‖PUA
†(e)‖2F = 〈PUA

†(e),PUA
†(e)〉 = 〈e,APUA

†(e)〉 ≤ ‖e‖2‖APUA
†(e)‖2.(37)

Now, by definition of δr (see (11)), ‖APUA†(e)‖F ≤
√
1 + δr ‖PUA†(e)‖F . Combining this inequality

with (37) and dividing both sides by ‖PUA†(e)‖F yields the desired result.

Proof of Theorem 4. For simplicity, we assume, without loss of generality, π = (p, p2, . . . , pP ) =
(1, 2, . . . , P ). To describe the computation of Sr at each iteration, we use the notation:

V0 = X k−1 + µkA
† (y −A(X k−1))(38)

= X k−1 + µkA
†
A(X ⋆

r −X k−1) + µkA
†(A(X ⋆ −X

⋆
r) + e),

(Vp)〈p〉 = HRp

(

(Vp−1)〈p〉

)

, where HRp
is the same of (13), and X k = Sr(V0) = VP . The result is then

obtained by bounding the errors of the approximations V1, . . . ,VP . First, note that

(Vp)〈p〉 ∈ argmin
rank(Z)≤Rp

∥

∥Z− (Vp−1)〈p〉
∥

∥

F
=⇒ ∀Z ∈ Lr, ‖Vp − Vp−1‖F ≤ ‖Z − Vp−1‖F ,

which, together with X
⋆
r ∈ Lr, implies

‖X ⋆
r
− Vp‖F ≤ ‖X ⋆

r
− Vp−1‖F + ‖Vp − Vp−1‖F ≤ 2 ‖X ⋆

r
− Vp−1‖F .

Therefore, as X k = VP , iterating over this inequality for p = 2, . . . , P , we deduce

(39) ‖X ⋆
r −X k‖F ≤ 2P−1 ‖X ⋆

r − V1‖F .

Now, to bound ‖X ⋆
r − V1‖F , we employ the same reasoning as in [19, Lemma 4.1]. Let

U =
{

Z : colspace
(

Z〈1〉
)

⊂ colspace
(

(X ⋆
r
)〈1〉

)

+ colspace
(

(V1)〈1〉

)

+ colspace
(

(X k−1)〈1〉

)}

,

so that X ⋆
r
,V1,X k−1 ∈ U ⊂ Lr̄1 . We thus have

(40) ‖V1 − V0‖2F = ‖PU (V1 − V0)‖2F + ‖PU⊥ (V1 − V0)‖2F = ‖PU (V1 − V0)‖2F + ‖PU⊥ (V0)‖2F

and also

(41) ‖V1 − V0‖2F ≤ ‖X ⋆
r
− V0‖2F = ‖PU (X ⋆

r
− V0)‖2F + ‖PU⊥ (V0)‖2F ,

which follows from (V1)〈1〉 = HR1

(

(V0)〈1〉

)

and X
⋆
r
∈ Lr ∩ U . Combining (40) and (41), we obtain

‖V1 −PU (V0)‖F = ‖PU (V1 − V0)‖F ≤ ‖PU (X ⋆
r
− V0)‖F = ‖X ⋆

r
−PU (V0)‖F .

Hence, using the above equation and (38), we have

‖X ⋆
r
− V1‖F ≤ ‖X ⋆

r
−PU (V0)‖F + ‖V1 −PU (V0)‖F

≤ 2 ‖X ⋆
r −PU (V0)‖F = 2 ‖PU (X ⋆

r − V0)‖F
= 2

∥

∥PU (X ⋆
r −X k−1)− µkPUA

†
A(X ⋆

r −X k−1)− µkPUA
† (A(X ⋆ −X

⋆
r) + e)

∥

∥

F

= 2‖(1− µk)PU (X ⋆
r −X k−1)− µkPU

(

A
†
A−I

)

(X ⋆
r −X k−1)

− µkPUA
† (A(X ⋆ −X

⋆
r
) + e) ‖F

≤ 2|1− µk| ‖PU (X ⋆
r
−X k−1)‖F + 2µk

∥

∥PU (A
†
A−I) (X ⋆

r
−X k−1)

∥

∥

F

+ 2µk

∥

∥PUA
† (A(X ⋆ −X

⋆
r
) + e)

∥

∥

F
.(42)
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It follows from the nonexpansiveness of PU that ‖PU (X ⋆
r
−X k−1)‖F ≤ ‖X ⋆

r
−X k−1‖F . By noting that

X
⋆
r
,X k−1 ∈ U and using the notation AU = APU , we have also

PU (A
†
A−I) (X ⋆

r
−X k−1) = PU (A

†
A−I)PU (X ⋆

r
−X k−1) = (A†

UAU −I) (X ⋆
r
−X k−1) .

Thus, from Lemma 6 and the fact that U ⊂ Lr̄1 we derive the bound

∥

∥PU (A
†
A−I) (X ⋆

r
−X k−1)

∥

∥

F
=
∥

∥

∥
(A†

UAU −I) (X ⋆
r
−X k−1)

∥

∥

∥

F
≤ δr̄1 ‖X ⋆

r
−X k−1‖F .

Finally, resorting to Lemma 7, the last term of (42) can be bounded as

∥

∥PUA
† (A(X ⋆ −X

⋆
r
) + e)

∥

∥

F
≤
√

1 + δr̄1 ‖A(X ⋆ −X
⋆
r
) + e‖2 .

The above inequalities, combined with (39), yield

‖X ⋆
r
−X k‖F ≤ ξk‖X ⋆

r
−X k−1‖F + 2Pµk

√

1 + δr̄1‖A(X ⋆ −X
⋆
r
) + e‖2,

where ξk , 2P (|1 − µk|+ µkδr̄1). We consider two choices of step size:
• For µk = 1, the assumption δr̄1 < 2−P implies ξk = 2P δr̄1 < 1.
• If (17) is employed, it follows from the definition of the RIC that (1+ δr̄1)

−1 ≤ µk ≤ (1− δr̄1)
−1.

We then have two cases: (i) if µk > 1, then |1− µk|+ µkδr̄1 = µk(1 + δr̄1)− 1 ≤ 2δr̄1(1− δr̄1)
−1;

(ii) similarly, if µk ≤ 1 then |1−µk|+µkδr̄1 = µk(δr̄1−1)+1 ≤ 2δr̄1(1+δr̄1)
−1 ≤ 2δr̄1(1−δr̄1)

−1.
It can be checked that the condition δr̄1 < 1/(2P+1 + 1) implies 2δr̄1(1 − δr̄1)

−1 < 2−P , thus
yielding ξk < 1 in both cases.

Defining ξ , supk ξk < 1, it follows that

‖X ⋆
r
−X k‖F ≤ ξk‖X ⋆

r
−X 0‖F +

(

k−1
∑

l=0

ξl

)

2P
√

1 + δr̄1‖A(X ⋆ −X
⋆
r
) + e‖2

≤ ξk‖X ⋆
r −X 0‖F + 2P

√

1 + δr̄1
1− ξ

‖A(X ⋆ −X
⋆
r) + e‖2 ,

as claimed. To conclude, note that the same reasoning holds for any other MPO π = (p, p2, . . . , pP ), in
which case the role of δr̄1 is played more generally by δr̄p .
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