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ABSTRACT
Polarimetric incoherent target decomposition aims in access-
ing physical parameters of illuminated scatters through the
analysis of target coherence or covariance matrix. In this
framework, Independent Component Analysis (ICA) was
recently proposed as an alternative method to Eigenvector de-
composition to better interpret non-Gaussian heterogeneous
clutter (inherent to high resolution SAR systems). Until
now, the two main drawbacks reported of the aforementioned
method are the greater number of samples required for an
unbiased estimation, when compared to classical Eigenvector
decomposition and the inability to be employed in scenar-
ios under Gaussian clutter assumption. First, a Monte Carlo
approach is performed in order to investigate the bias in es-
timating the Touzi Target Scattering Vector Model (TSVM)
parameters when ICA is employed. A RAMSES X-band im-
age acquired over Brétigny, France is taken into consideration
to investigate the bias estimation under different scenarios.
Finally, some results in terms of POLinSAR coherence opti-
mization [1] in the context of ICA are proposed.

Index Terms— Polarimetry, SAR, Interferometry, ICA

1. INTRODUCTION

Polarimetric target decomposition is one of the most power-
ful and widespread tools for POLSAR image interpretation.
The analysis of the interaction between the illuminated area
and the transmitted waveform, to each polarimetric state of
the latter, allows for a better prediction of the basic scatter-
ing mechanisms present on the scene, and to more efficiently
propose classification, detection and geophysical parameter
inversion algorithms.

Many methods have been proposed in the literature to
both decompose an image pixel into basic target vectors as
well as to correctly retrieve quantitative information from
them (parametrization). Concerning the latter, Cloude and
Pottiers parameters (entropy, alpha and anisotropy) [2] and
Touzi Target Scattering Vector Model [3] are the most em-
ployed ones, whose usefulness have already been demon-
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strated by several authors. Regarding the decomposition, the
algorithms are mainly classified in either coherent, if they
are based on the scattering matrix analysis, or incoherent,
if their interest lies in the Hermitian, semidefinite positive
coherence or covariance matrix. Incoherent target decom-
position (ICTD) theory assumes that the scattering process
in most natural media is a combination of coherent speckle
noise and random vector scattering effects. Therefore, not
only a statistical analysis is often required, but also it is a
common practice to associate to the imaging cell the con-
cept of average or dominant scattering mechanisms [4]. The
Eigenvector based ICTD manages to decompose an image
pixel into the three most dominant scatters from the averaged
coherence matrix. Furthermore, it has an intrinsic property
that the derived scatters are orthogonal and uncorrelated,
which for Gaussian clutters also means independence. The
drawback of this kind of method emerge when the clutter is
not Gaussian [5, 6] or not composed by orthogonal mech-
anisms, situations where the performance of the algorithm
could be compromised.

2. BLIND SOURCE SEPARATION STRATEGY IN
POLSAR

In [7], a new Blind Source Separation strategy to polarimetric
target decomposition was presented by incorporating the In-
dependent Component Analysis (ICA). The ICA is a blind
source separation technique based on higher order statisti-
cal moments and cumulants whose utility has already been
explored in many different research areas, such as wireless
communications, feature extraction and brain imaging appli-
cations [8]. The results presented in [7] proved it to be a very
promising area in polarimetry, mainly when non-Gaussian
heterogeneous clutters (inherent to high resolution SAR sys-
tems) are under study. The theoretical potential in estimating
similar entropy and first component, when compared to tra-
ditional eigenvector decomposition, but rather a second most
dominant component independent with respect to the first one
and unconstrained by the orthogonality introduces an alterna-
tive way of physically interpreting a polarimetric SAR image.

The referred method is briefly summarized in three main
steps: data selection, based on the statistical classification of



the POLSAR image; estimation of independent components
and parametrization of the derived target vectors.

As stated in [7], the major drawback of the proposed
method is the size of the observation dataset, which has to be
somewhat larger than the size of the sliding window used in
the well established methods. This constraint led the authors
in [7] to use an unsupervised classification algorithm rather
than relying on a very large sliding window, jeopardizing the
effectiveness of the method.

The use of a classification algorithm limits the perfor-
mance of the method in the sense that the image is segmented
in a priori defined number of classes with variable sizes, what
can compromise the estimation of the target vectors param-
eters and, as a consequence, the correct interpretation of the
scatters present in the area under study. One of the implica-
tions of the employment of a classification algorithm is that a
class can contain more samples than it needs for a correct esti-
mation of targets parameters, meaning that spatial resolution,
highly degraded with the use of this approach, is worse than it
could be. On the other hand, if a class do not contain samples
enough, the parameters estimated can be biased, meaning that
the values derived do not comply with ground truth.

Within this context, this paper considers a Monte Carlo
simulation approach to evaluate the optimal size of a sliding
window for various medias, simple ones composed by ba-
sic scatters such as helix, dipole, dihedral and trihedral and
more complex ones like Surface, Double Bounce and Vol-
ume returns. The simulation procedure is similar to the one
presented in [9] to evaluate the bias of multilook effect on
Cloude and Pottier [2] parameters in Eigenvector based po-
larimetric SAR decomposition. An unsupervised classifica-
tion algorithm is employed to identify within a RAMSES X-
band image, sets of samples characterizing Surface, Double
Bounce and Volume type of average scattering mechanisms.
The mixing matrix and the covariance matrix for each of the
aforementioned complex type of scatters are estimated us-
ing proper algorithms (Non-Circular Complex Fast-ICA al-
gorithm and Fixed-point algorithm, respectively) and used to
bootstrap random samples for the Monte Carlo simulation ap-
proach. It is important to highlight that, as reported in [7], the
mixing matrix and the covariance matrix are potentially dif-
ferent, thus the set of random samples used in the ICA and
Eigenvector decomposition analysis are not the same.

3. BLIND SOURCE SEPARATION STRATEGY IN
POLINSAR

In case of POLinSAR data, the same ICA algorithm as pro-
posed in [7] is emplyed, except that the dimension of the BSS
problem is increased by two. The ICA techniques use a set of
observation vectors (x) to retrieve the sources vector (s) and
the mixing matrix (A), which gives the share of the sources in
the observed process:
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If we introduce the spatially averaged coherency matrix of
the POLinSAR observation vector as T6, the mixing matrix
A can be represented as the factorization of the covariance
matrix:

T6 = AA† =

[
T11 Ω12

Ω∗T12 T22

]
, (2)

with T11 being the master POLSAR coherency matrix, T22

the slave POLSAR coherency matrix and Ω12 the interfero-
metric coherency matrix.

After computing these three matrices from the previously
derived mixing matrix, it is now possible to directly apply the
POLinSAR coherence optimization proposed in [1].

4. POLSAR EXPERIMENTAL RESULTS

An unsupervised classification algorithm developed for highly
textured POLSAR data [10] is employed to identify within a
RAMSES X-band image acquired over Brétigny, France, sets
of samples characterizing Surface, Double Bounce and Vol-
ume type of average scattering mechanisms. Fig. 1 presents
the referred area in Red (HH+VV), Green (HV) and Blue
(HH-VV) and the classification algorithm output.

Analyzing the H/α feature space, it is possible to con-
cluded that Class 1 is mainly composed by Volume scatters,
Class 5 is mainly composed by Surface and Class 6 is mainly
composed by Double-Bounce scatters. Therefore samples,
corresponding to each class were extracted from the referred
set and the mixing matrix and covariance matrix were esti-
mated for each of the described classes (c = 1, 2, 3) of mech-
anisms.

The parameters of the distribution are then extracted
and they are used to generate simulated texture vectors to
bootstrap random samples for the Monte Carlo simulation
approach. The remaining steps of the simulated data genera-
tion are the same as previously described. It is important to
highlight that, as reported in [7], the mixing matrix and the
covariance matrix are potentially different, thus the set of ran-
dom samples used in the ICA and Eigenvector decomposition
analysis are not the same.

Fig. 2 presents the results of the polarimetric decompo-
sition using both ICA and Eigenvector decomposition (PCA)
as a function of the number of looks.
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Fig. 1. Brétigny area under study: (a) RGB image, Red
(HH+VV), Green (HV), Blue (HH-VV); (b) Statistical classi-
fication algorithm output.

5. POLINSAR EXPERIMENTAL RESULTS

Figs. 3 and 4 illustrate the coherence optimization results
obtained using the proposed BSS technique - local sliding
neighborhood approach, both in terms of optimized coher-
ence and the associated interferometric phases. On can no-
tice the unwrapped phase is converted to DEM using the am-
biguity height (around 200 m for this POLinSAR data set).
The obtained results are in good agreement with the available
ground truth (top of the building at about 10 m).

For example, the hight difference between the 2nd and
the 1st component shows that the two scattering mechanisms
(building edge and ground) are well separated in Fig. 4-(b).
Similar behavior has been reported in [11].

For quantitative performance assessment, the normalized
log-ratio [12] between the ICA and PCA derived optimized

Fig. 2. Entropy and Touzi TSVM parameters derived
with ICA and Eigenvector polarimetric target decomposition
(PCA) for a complex clutter types: Surface, Double-Bounce
and Volume.

coherences is computed as:
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∑
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20 log
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∑
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)
. (3)

The ICA revels an improvement in R of exactly 27.05 dB
computed over the entire test POLinSAR image (500 × 500
pixels).

6. CONCLUSION

This paper presented a new framework for applying BSS tech-
niques with POLinSAR data for polarimetric coherence opti-
mization and associated interferometric phases estimation.

After analyzing the POLSAR estimation bias function of
the number of looks, the POLinSAR mixing matrix is de-
rived using the Non-Circular Complex Fast-ICA algorithm
and Fixed-point algorithm.

The obtained results show improvements in terms of the
derived optimized coherences and, in the same time, they re-
main consistent with the actual ground truth.
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Fig. 3. Brétigny area under study: ICA optimized coherence
- 1st component.
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Fig. 4. Brétigny area under study: Digital Elevation Model
(DEM) after ICA coherence optimization - (a) 1st component,
(b) height difference between the 2nd and the 1st component.
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