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Abstract 

The recent Zika virus (ZIKV) epidemic has highlighted the poor knowledge on its 

physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible of this 

international outbreak, cause neuropathology in vitro and in vivo. However, two African 

lineages exist and the virus is currently found circulating in Africa. The original African strain 

was also suggested to be neurovirulent but its laboratory usage has been criticized due to its 

multiple passages. In this study, we compared the French Polynesian (Asian) ZIKV strain to 

an African strain isolated in Central African Republic and show a difference in infectivity and 

cellular response between both strains in human neural stem cells and astrocytes. 

Consistently, this African strain led to a higher infection rate and viral production, as well as 

stronger cell death and anti-viral response. Our results highlight the need to better characterize 

the physiopathology and predict neurological impairment associated with African ZIKV.  

 

Keywords: 

Zika virus, lineages, neural stem cells, astrocytes  
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Introduction 

The current (2015-2016) Zika virus (ZIKV) epidemic in South America and in the 

Caribbean islands revealed the lack of knowledge on the pathophysiological mechanism of a 

virus discovered almost 70 years ago in Uganda (Dick et al. 1952). This arbovirus is 

transmitted by vectors from the Aedes family, in particular Aedes aegypti and Aedes 

albopictus. Phylogenetic analyses revealed recently that three lineages (one Asian and two 

Africans) exist and explain the evolution of ZIKV over the last 70 years (Shen et al. 2016; 

Gong et al. 2016). The current epidemic is due to ZIKV from the Asian lineage, even though 

some further genetic evolution seems to have occurred (Wang et al. 2016). 

While a large proportion of infected persons are asymptomatic (70-80%), others 

develop rather classical clinical signs of an arboviral infection namely, skin rash, headache, 

myalgia, joint pain, conjunctivitis, but also moderate fever. In some cases, neurological 

disorders have been linked to ZIKV infections, in particular Guillain-Barré syndrome (GBS), 

myelitis, encephalitis, neuralgia and microcephaly in newborns and infants born to women 

with ZIKV infection during pregnancy (Musso et al. 2016). Microcephaly is now well 

documented as a direct disorder triggered by ZIKV infection, as the virus can cross the 

placenta (Miner et al. 2016), is found in the amniotic fluid (Calvet et al. 2016) and can be 

detected in post-mortem newborn brains (Brasil Martines et al. 2016). In particular, infection 

during the first trimester of pregnancy has been proposed to lead to microcephaly in 1% of 

cases (Cauchemez et al. 2016). Studies on animal models (rodent) show that ZIKV can cause 

a similar pathology as in humans, such as trans-placental fetal transmission and neurological 

impairment in fetal and adult brain (Rossi et al. 2016; Dowall et al. 2016; Aliota et al. 2016; 

Cugola et al. 2016; Lazear et al. 2016; Miner et al. 2016). However, most of these models are 

based on an immunodeficient background. Recent reports clearly demonstrate that ZIKV can 

infect human and murine neural precursors. Ex vivo work using induced pluripotent cells 
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(IPSc)-derived neural precursors cells (NPCs) and neural stem cells (NSCs) show that ZIKV 

has a preferential tropism for cells of the neuronal lineage during development (Tang et al. 

2016; Qian et al. 2016; Garcez et al. 2016). Notably, some reports suggest that impairment of 

proliferation and cell death is associated with ZIKV infection (Tang et al. 2016; Li et al. 

2016), whereas another report suggests that ZIKV poorly stimulates immune response and 

cytopathic effect in human neuroprecursors obtained from fetal tissue (Hanners et al. 2016). 

This lack of strong immune response would allow ZIKV to persist during development and is 

consistent with the replication seen over few weeks in this tissue. These observations are 

strengthening the hypothesis that infection early during brain development can have drastic 

effects. 

While most of the focus has been directed to Asian ZIKV strains or to African MR-

766, much less effort has been undertaken to monitor potential circulating ZIKV of the 

African lineage (Grard et al. 2014; Baraka & Kweka 2016; Meda et al. 2016). In this context, 

there is an urgent need to have clear understanding of the pathophysiological mechanisms 

involved in infection by African ZIKV, in particular in terms of neurovirulence. In other 

words, to know whether the neurological effects observed with the Asian lineage are 

specifically associated with the Asian strain, in terms of severity and specificity, or if we can 

expect African strains to lead to similar disorders. So far, most of the studies that investigated 

African ZIKV strain used the original strain of ZIKV (MR-766, isolated in 1947). Lately, 

criticisms emerged concerning the pertinence of this strain, isolated from primates and 

extensively amplified in suckling mouse brains and ex vivo on cells (Haddow et al. 2012; 

Musso et al. 2016).  

Here, we used IPSc-derived human NSCs to better compare the neural infectivity of an 

Asian strain (ZIKV AS) and an African strain (ZIKV AF) that underwent low passages. We 

demonstrate that this ZIKV AF strain is more infectious than the French Polynesian ZIKV AS 
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PF-13 strain (H/PF/2013): indeed, this strain showed a higher rate of infection, viral 

production and cellular response (cell death and anti-viral response) than ZIKV AS. Finally, 

we show that ZIKV AF and AS strains also display difference in infection of human 

astrocytes.   
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Material and Methods 

Material  

Antibodies used in this study are: anti-pan-flavivirus (MAB10216, clone D1-4G2) and 

anti-nestin, (Millipore), anti-GFAP (Abcam), anti-PDI and anti-activated caspase 3 (Cell 

Signalling Technology), anti-TRA1-60 (Becton Dickinson) and anti-PAX6 (BioLegend). 

Carboxyfluorescein succinimidyl ester (CFSE) dye was purchased from Thermoscientific. 

ZIKV strains, production and cellular infection 

H/PF/2013 ZIKV of Asian lineage (French Polynesia, 2013) and ArB41644 ZIKV of 

African lineage (Bangui, Central African Republic, 1989, isolated from mosquitoes by 

Pasteur Institute of Dakkar) were produced and provided by the National Reference Center for 

arboviruses (NRC) and have both no more than 5 passages on Vero cells. Viral stocks were 

prepared by infecting sub confluent Vero cells at the multiplicity of infection (MOI) of 0.01 in 

D-MEM medium (Thermoscientific) supplemented by 2% heat-inactivated fetal bovine serum 

(Sigma). Cell supernatant was collected 6 days later and viral stock harvested after 

centrifugation at 300 g to remove cellular debris. Viral titers were determined by the 50% 

tissue culture infective dose (TCID50), which was calculated using the Spearman-Kärber 

method (Kärber 1931) and were expressed as TCID50 per mL. Titers were calculated twice, 

once at the NRC and once in our laboratory. Another stock from each ZIKV strain was also 

produced in C6/36 cells and had similar results (data not shown). 

IPSc-derived NSCs and human astrocytes (see below) at 60-70% confluence were 

rinsed once with phosphate-buffered saline (PBS), and ZIKV diluted to the required MOI 

(0.01, 0.1 or 1) was added to the cells in a low medium volume. Cells were incubated for 2 h 

at 37°C with permanent gentle agitation and then the inoculum was removed and cells washed 

with PBS. Culture medium was added to each well, and cells were incubated at 37°C and 5% 
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CO2. As control, cells were incubated with the culture supernatant from Vero cells (mock 

condition). 

NSC generation and maintenance 

NSCs were obtained from the SAFE-IPSc platform at IRMB. Briefly, iPSCs generated 

from healthy patient using Lentivirus-derived vectors were individualized with Gentle Cell 

Dissociation Reagent (Stemcell, 07174). They were rinsed out with Dulbecco’s modified 

Eagle’s medium/Ham’s F12 (DMEM/F-12, Gibco, 31330038) and centrifuged at 300 g for 5 

min. Dissociated cells were plated on matrigel at a density of 20,000- 40,000 cells/cm2 and 

cultured in neural induction medium (Stemcell, 05835) supplemented with 10 µM ROCK-

inhibitor (Y-27632). Cells were allowed to reach 80-90 % confluence over 6 days. Medium 

was changed daily with neural induction medium without Y-27632. iPSC-derived NSCs were 

passaged by incubation with Trypsin at 0.005% to allow dissociation, and then seeded on 

poly-D-ornithine/laminin coated plates at 20,000 cells/cm2 in 50 % DMEM/F-12 and 50 % 

Neurobasal medium (Thermoscientific) supplemented with 1X N2 ((Thermoscientific), 1X 

B27 ((Thermoscientific), Glutamax (Thermoscientific) and β-FGF plus EGF (Peprotech, 20 

ng/mL each). The medium was changed every two days. Cells were used between passage 5 

and 8. 

Astrocyte cultures 

Astrocytes were purchased from ScienCell
TM

 and cultured according to the 

manufacturer’s instruction. Cells were cultured on Poly-lysine coated plates and were used 

between passage 4 and 8. 

Immunofluorescence assays 

NSCs plated on poly-D-ornithine/laminin coverslips and astrocytes plated on poly-D-

lysin coverslips were imaged using Zeiss SP85 confocal microscope, with 40x or 63x 1.4 NA 
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Plan Apochromat oil-immersion objectives. For indirect immunofluorescence, cells were 

fixed with 4% PFA and permeabilized with 0.1% Triton X-100/PBS for 5 min at room 

temperature (RT), followed by a blocking step with 2% bovine serum albumin (BSA) and 10 

% horse serum for 30 min to 1 h at RT. Primary and secondary antibodies were diluted in 

blocking solution and incubated sequentially for 1h at RT. Samples were then mounted with 

fluorescent mounting medium (Prolongold, Thermofischer) with DAPI (Sigma) and imaged 

by confocal microscopy using the Zeiss SP85 confocal microscope, with 40x or 63x 1.4 NA 

Plan Apochromat oil-immersion objectives. Nuclei and ZIKV infected cells were counted 

using a plugin of the Image J software. 

Flow Cytometry and CFSE assays 

NSCs were incubated with CFSE according to the manufacturer (Thermoscientific) for 

3 min at RT after enzymatic dissociation and replated after the dye was quenched and cells 

were washed with PBS. NSCs infected with ZIKV strains were collected in PBS at various 

days, washed with PBS, fixed with 2% PFA and analyzed with FACSCalibur (BD 

Biosciences). Data analysis was performed using the FlowJo software. Decrease in 

fluorescence intensity is consistent with cell division. 

RT-qPCR 

RT-PCR on ZIKV-infected NSCs supernatants was performed after mRNA extraction 

with the Altona Diagnostics
 
kit RealStar® Zika Virus RT-PCR Kit 1.0, according to the 

manufacturer’s instructions. Experiments done with similar MOI for ZIKV AF and AS 

showed equal amplification for both strains (data not shown). For PCR arrays, NSCs infected 

with ZIKV AF or AS or mock-treated cells were harvested in RLT buffer (Qiagen). Total 

RNA was extracted using RNeasy® mini-kit (Qiagen). Complementary DNA was synthesized 

using Omniscript® reverse transcriptase (Life Technologies). RT2 Profiler PCR arrays for 
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Human Antiviral Response (96 well format, Qiagen) were used for real-time quantitative PCR 

analysis, with the use of the LC480 real time PCR instrument (Roche) and the Light Cycler 

480 SYBR Green I master Mix (Roche). Volumes of mix, cDNA, RNAse-free water, and 

cycling conditions were determined according to manufacturer’s instructions. Data on gene 

expression were normalized according to data from the HPRT housekeeping gene. Genes with 

uninterpretable amplifying curves were excluded from the analysis. 

Phylogenetic Analysis 

The phylogenetic analysis was performed through a consensus flavivirus RT-PCR 

fragment that targeted a conserved NS5 gene region as previously described by Scaramozzino 

et al. (Scaramozzino et al. 2001). Briefly, The NS5 PCR product was purified with the 

QIAquick PCR purification kit (Qiagen) and sequenced on an ABI 310 sequencer with a 

fluorescent dye terminator kit (Applied Biosystem). Sequencing primers were: 

GTGTCCCAGCCGGCGGTGTCATCAGC and AACATGATGGGRAARAGRGARAA and 

the PCR cycles were with an initial amplification of 25 cycles of incubation at 94°C, 53°C, 

and 72°C for 1 min each. The resulting sequences (ZIKV AF and ZIKV AS) and a set of 

sequences from both Asian and African ZIKV isolates (Accession numbers: KF268950, 

HQ234500, KF383116, LC002520, KF383119, KF383115, KF383118, KF383117, 

KF993678, HQ234499, JN860885, KF258813, EU545988, KJ776791, KU955595) were 

submitted to the French phylogeny website (http://www.phylogeny.fr) using the “one click 

version” for analysis. The nucleotide sequences are aligned using the MUSCLE software, 

cured with Gblocks and subsequent phylogeny performed with the PhyML software. One 

hundred bootstrap data sets with random sequence addition were computed to generate a 

consensus tree, rooted with a West Nile isolate sequence (AY532665), through TreeDyn. 

Statistical Analyses: 
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For all quantitative analyses, a minimum of three independent experiments were 

performed. Student’s t-test or Mann-Withney test were performed to analyze unpaired data. A 

p ≤ 0.05 is reported as significant.  

Ethic Statement: 

 All experiments for IPSc generation were performed with the approval of local 

biomedical ethic committee. 
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Results 

Two African and Asian ZIKV strains show different infectivity in IPS-derived NSCs 

There is no consistency regarding ZIKV strain usage and relevance, which make 

difficult any true comparison of the neurovirulence between African and Asian strains. To 

have a better understanding on how ZIKV infect the central nervous system (CNS) and 

potential differences between lineages, we decided to use two low-passage ZIKV strains as it 

is known that RNA viruses can easily derive upon culture. These two strains were provided 

by the French National Reference Center and were isolated from the Asian lineage (PF-13, 

isolated in French Polynesia in 2013, hereafter named ZIKV AS) and an African strain 

(ArB41644, isolated in Central African Republic in 1989, hereafter named ZIKV AF), which 

partial sequencing showed that it has strong homology to other strains of the African lineage I 

(Figure 1A) (Shen et al. 2016). IPS-derived NSCs were obtained according to standard 

methods (See Material and Methods and Supplemental Figure 1A). Consistent with previous 

report, in NSCs infected with ZIKV AS at multiplicity of infection (MOI) of 1, we detected 

efficient ZIKV replication after 4 days by an immunofluorescence (IF) assay using a pan-

flavivirus antibody (Figure 1B). This staining was in close proximity to the endoplasmic 

reticulum, labeled with anti-PDI, a common replication site for Flaviviruses (Figure 1B). 

When we performed comparative analyses of ZIKV AF and AS infection at different MOIs 

(1, 0.1 and 0.01), we reproducibly detected a higher infection rate for ZIKV AF than for 

ZIKV AS (Figures 1C and D). Interestingly, even with a log difference in MOI, ZIKV AF led 

to more infected NSCs than ZIKV AS (Figure 1D). Notably, percentage of infected cells at 

stronger MOI for ZIKV AS was not significantly higher (data not shown). Importantly, we 

used other NSCs clones and other ZIKV AF and AS stocks from C6/36 cells (Aedes 

albopictus cells) and showed similar differences between the strains (data not shown). CPE 

(cytopathic effect) analyses in supernatants from NSCs at day 4 post-infection showed again a 
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significant difference in viral titers quantified by TCID (tissue culture infective dose) 50 

between ZIKV AF and ZIKV AS (Figure 1E). Kinetics of viral production showed early 

dichotomy in viral titers as differences were already seen from day 1 post-infection (Figure 

1F). Finally, real-time RT-PCR from supernatants harvested at day 4 post-infection (MOI 1) 

showed also a higher relative viral charge for ZIKV AF (Figure 1 G). 

Together, these data suggest that both lineages are efficiently targeting NSCs and that 

neurovirulence and neuropathologies are likely to be associated with this ZIKV AF strain as it 

infects and replicates more efficiently than ZIKV AS in NSCs.  

Cellular and anti-viral responses in ZIKV-infected NSCs 

In a recent study, minimum cell death and cell cycle impairment in neuronal 

precursors upon infection with ZIKV from the Asian lineage was reported, suggesting that the 

virus could establish persistence in this cell type (Hanners et al. 2016). We therefore next 

sought to characterize the cellular response in ZIKV AF- and ZIKV AS-infected NSCs by 

undertaking comparative analyses. Few multi-nucleated cells could be observed at day 4 post-

infection with both lineages, possibly resulting from endoreplication (Figure 2A), which is not 

observed in non-infected cells and suggests defect in the cell cycle. We therefore monitored 

cell division in ZIKV-infected NSCs by flow cytometry analyzes. Using the CFSE dye, which 

is cell-permeable incorporated to cellular proteins and which fluorescence is serially lost upon 

cell division, we analyzed cell cycle progression in non-infected, ZIKV AF- and ZIKV AS-

infected (MOI 1) SCs. Figure 2B shows representative graphs after 2, 4, and 6 days post-

infection. No significant differences were seen in cell cycle progression 2 and 4 days after 

infection, whereas NSCs infected with ZIKV AF showed an important impairment in cell 

division after 6 days post-infection (Figure 2B). ZIKV AS-infected cells also displayed 

delayed division, albeit much less than ZIKV AF-infected NSCs (Figure 2B). Similar that 

what was reported by Hanners et al (2016) with another Asian strain (PRVABC59), we found 
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low cell death associated with infection at day 4 as seen by the presence of few fragmented 

nuclei and activated caspase 3, a marker of apoptosis, for both lineages, even though ZIKV 

AF infection led to more apoptotic nuclei than ZIKV AS (Figures 2C and D). Surprisingly, in 

ZIKV-infected conditions, we also observed non-infected cells positive for activated-caspase 

3 that could suggest of bystander cell death, possibly related to cytokine production following 

infection. Using bright light, we also scarcely detected “rounded” cells, which suggest a poor 

CPE at early time post-infection (day 4) (Supplemental Figure 1B). 

To better characterize and compare the cellular response to ZIKV AF and AS-NSC 

infection, we performed a PCR array consisting of 79 genes involved in anti-viral responses 

(see Material and Methods and Supplemental Table 1). NSCs were infected with ZIKV AF or 

ZIKV AS at a MOI of 1 and mRNA collected at day 4 post-infection. Twenty genes were 

significantly modulated in NSCs upon ZIKV AF infection (Figures 3 A and C). In particular, 

19 genes were upregulated, among them the cellular pattern recognition receptor (PRR) genes 

DDX58 (RIG-I), IFH1 (MDA5) and TLR3, and accompanied by an increase >400 times in 

IFNB1 expression, whereas no IFNA variation was found, as recently described (Hanners et 

al. 2016). Only one gene was found to be significantly downregulated, namely the chemokine 

CXCL8, an important mediator of the inflammatory responses to many viruses and bacteria 

(Figure 3D). The antiviral response to ZIKV AS in NSCs was quite different as no genes were 

significantly upregulated (Figure 3B). Interestingly, four genes were down regulated: CXCL8, 

similar to ZIKV AF, CXCL10, CASP1 and CTSS (Figure 3D). As mentioned previously, the 

percentage of infected cells by the Asiatic strain at stronger MOI is not significantly higher, 

suggesting that the cytokine response remains weak in NSCs ZIKV AS-infected cells. 

This set of data suggest that these two ZIKV AF and ZIKV AS strains differentially 

affect cellular responses, whether during the cell cycle or for the anti-viral response, and 
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could potentially lead to pathophysiological differences in vivo depending of the strain 

involved. 

Human astrocytes are permissive for ZIKV infection  

The putative ZIKV attachment factor AXL is highly expressed in astrocytes 

(Nowakowski et al. 2016). Moreover, astrocyte hypertrophy has been seen in animal models 

of ZIKV infection (Bell et al. 1971) and astrocytic activation is often described during in 

Flavivirus infections (King et al. 2007). In this context, we characterized ZIKV AF and ZIKV 

AS susceptibility in this cell type. Using primary human astrocytes, we could detect efficient 

ZIKV infection (Figure 4A). When we performed quantitative comparative analyses of the 

infection rate, we could show that (i) here also ZIKV AF led to a higher cellular infection rate 

than ZIKV AS and (ii) ZIKV AF and AS were potentially more efficient in terms of 

percentage of infection in astrocytes that in NSCs (75% vs 25 % for ZIKV AF at MOI 0.1 and 

43% vs 9.7% for ZIKV AS at MOI 0.1) (Figures 4 B and C). Consistently, viral titers 

determined by TCID50 showed a significant difference between lineages, albeit less marked 

than in NSCs, suggesting that this feature could be found in several cell types (Figure 4D). 

However, the difference between ZIKV AF and ZIKV AS production were less important 

than in NSCs. 

These data open new questions regarding the cellular response in the brain after ZIKV 

infection as astrocytes play crucial roles in immune response, synaptogenesis and blood brain 

barrier (BBB) integrity among other processes. 
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Discussion 

In this study, we show significant differences in the infectivity and cellular response 

between two Asian and African ZIKV strains. Using a combination of cell and molecular 

biology approaches, we observed in two human neural cell types (NSCs and astrocytes) a 

higher infectivity for the African strain. Similarly, to the accumulating evidences reporting 

infection of neural stem or precursor cells by ZIKV, we report that both ZIKV AF and AS can 

infect IPSc-derived NSCs. However, ZIKV AF led to a stronger modulation of cellular 

homeostasis, in term of effects on cell cycle progression and anti-viral response. We also 

report that both strains of ZIKV can infect human astrocytes, opening new questions on the 

pathogenesis of this Flavivirus in the developing and adult brain as this most abundant cell 

type in the brain is responsible for multiple functions such as BBB maintenance, 

synaptogenesis and immune regulation among others (Molofsky & Deneen 2015).  

The reports of the first suspected cases of microcephaly in Brazil in 2015 (Schuler-

Faccini et al. 2016; ECDC 2015; COES 2016) led to an unprecedented effort of the scientific 

community to understand the pathophysiological mechanisms of a virus barely characterized, 

despite its discovery almost 70 years ago. Numerous studies were subsequently published 

describing the placental transcytosis of ZIKV (Bayer et al. 2016; Miner et al. 2016) and 

highlighting the strong tropism for neural precursor cells (Tang et al. 2016; Qian et al. 2016; 

Lazear et al. 2016; Dang et al. 2016; Cugola et al. 2016). These observations, together with 

cohort studies and the demonstration of viral shedding in the amniotic fluid and in fetal tissue 

(brain included), provide strong conclusions regarding the link between ZIKV infection and 

microcephaly. Retrospective studies in French Polynesia also reported neurodevelopmental 

disorders associated with ZIKV infection (Besnard et al. 2016), suggesting that this feature of 

ZIKV was not specific to the Brazilian epidemic. Regarding Africa, due to the poor 

surveillance and traceability in the human health system, it is difficult to apprehend and 
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predict the circulation of this virus (Meda et al. 2016). However, Cape Verde has reported an 

outbreak and several cases were recently found in Guinea-Bissau (both due to ZIKV of the 

Asian lineage) in 2015-2016. Occasional studies or reports show that ZIKV AF strains are 

currently circulating and support the need to closely monitor ZIKV AF (Baraka & Kweka 

2016; Grard et al. 2014; Van Esbroeck et al. 2016). 

Surprisingly, we repeatedly detected a stronger infectivity, viral production and 

cellular response of the ZIKV AF strain ArB41644 vs ZIKV AS strain H/PF/2013 ex vivo in 

neural cells. Because there is strong probability that these strains have not derived due to 

extensive passages (no more than 5 passages for both strains), our observations could suggest 

a potential difference in the physiopathology between the two strains. A rather common trait 

among Flaviviruses is their ability to access the CNS and cause neuronal impairment (Neal 

2014). However, some Flaviviruses can display strain-dependent neurovirulence. For 

instance, the neuroinvasive potential of West Nile virus (WNV) is strain-dependent but 

mostly because of difference in their ability to reach the CNS (Beasley et al. 2002). However, 

in some case this difference could also be due to different replication abilities in cells of the 

BBB or directly in neural cells, as was shown for WNV (Hussmann et al. 2013) and the 

Alphavirus Semliki Forest virus (Fazakerley et al. 2002). One mechanism responsible for 

difference in neurovirulence is the glycosylation status of the envelope protein (Kawano et al. 

1993; Shirato et al. 2004). Crystal structure of ZIKV demonstrated that its envelop protein 

contains a glycosylation site at Asn154 (Dai et al. 2016; Kostyuchenko et al. 2016), similarly 

to the site responsible for neuroinvasiveness of WNV (Beasley et al. 2005). Moreover, 

passage history likely influenced glycosylation sites in the (original) MR-766 strain (Haddow 

et al. 2012). This observation, among other critics such as number and way of passages, are 

suggesting that MR-766 may not be the ideal African reference strain. In this context, a study 

described a stronger replication in a Brazilian ZIKV strain in NPCs as compared to the MR-
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766 strain, which therefore appears to have less capacity of replication than the low passage 

African strain used in our study (Cugola et al. 2016).   

Regarding the anti-viral response occurring during ZIKV infections, few reports using 

different cell types led to different observations. ZIKV AS (H/PF/2013) has been shown to 

induce an innate antiviral response in primary human skin fibroblasts characterized by the 

upregulation of TLR3, DDX58 (RIG-I) and IFIH1 (MDA5) mRNA expression, three PRRs 

known to be activated by viral dsRNA (Hamel et al. 2015). This upregulation is associated 

with an increase of Type-1 IFN and several interferon-stimulated genes (ISGs) including 

OAS2, ISG15, and MX1. Several chemokines as CXCL10, or the inflammatory antiviral 

chemokine CCL5, were also induced by ZIKV AS in this cellular context. H/PF/2013 also 

stimulated the production of Type-I IFNs, ISGs, and pro-inflammatory cytokines in the 

human lung epithelial cell line A549 (Frumence et al. 2016). Human choriocarcinoma JEG-3 

cells can be infected both by ZIKV AS (FSS13025  of Cambodian origin) and ZIKV AF 

(MR-766) leading to release of antiviral type III IFN as well as the ISG 2’-5’-oligoadenylate 

synthetase 1 (OAS1), whereas placental trophoblasts (PHT) appear to be refractory to ZIKV 

infection probably due to the fact that PHT cells constitutively release the anti-viral type III 

interferon IFN(Bayer et al. 2016). In the neuronal context, and similarly to what we 

detected for the ZIKV AF strain in NSCs, TLR3 was shown to be upregulated in cerebral 

organoids and human neurospheres after ZIKV MR-766 strain infection by RT-qPCR analysis 

(Dang et al. 2016). However, more recently, Hanners et al demonstrated that ZIKV AS 

(PRVABC59, Puerto Rico, 2015) did not stimulate cytokine secretion in human 

neuroprecursors (hNPs) and in the THP-1 human monocytic cells (Hanners et al. 2016). 

Although a viral RNA mimic (pIC) can induce cytokine responses in hNPs, these neural 

progenitors appears therefore refractory to the induction of neuroinflammatory or 

neuroprotective cytokines in response to this ZIKV AS strain (Hanners et al. 2016). This is 
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consistent with our observation in NSCs where H/PF/2013, contrary to ZIKV AF, did not lead 

to any upregulation of genes involved in anti-viral response and triggered the down-regulation 

of CXCL8, CXCL10, CASP1 and CTSS. Similarly to what was proposed by Hanners et al, our 

data strongly suggest that ZIKV AS could persist and replicate in a proportion of infected 

NSCs, albeit we cannot nevertheless exclude that ZIKV AS could infect more cells at longer 

time and lead to a stronger cellular impairment. This could however explain why ZIKV AS is 

found in newborns who were infected during the first trimester of pregnancy (Johansson et al. 

2016). It is tempting to speculate that ZIKV AS being poorly cytopathic and immunogenic 

could establish cellular reservoir(s). This could lead to impairment of neuronal development 

through subtle mechanisms such as cell cycle modification and low noise apoptosis.  

Finally, in the mature and developing brain, astrocytes are one of the first cell type to 

respond to viral infection (Furr & Marriott 2012). Astrocyte hypertrophy has been detected in 

a mouse model of ZIKV infection (Bell et al. 1971) and is occurring for other Flavivirus CNS 

infection such as WNV (Hussmann et al. 2013), DENV (Lee et al. 2016) and the Alphavirus 

CHIKV (Inglis et al. 2016). Interestingly, AXL, a molecule suggested as a putative 

attachment receptor for ZIKV (Hamel et al. 2015) is highly expressed in NSCs but also in 

astrocytes (Nowakowski et al. 2016). Indeed, using single-cell RNA-seq approaches and 

confirming with immunohistochemistry, the authors showed that NSCs, radial glial cells, 

astrocytes and also microglia are expressing AXL and could therefore represent a target of 

choice for ZIKV (Nowakowski et al. 2016). Moreover recent studies described 

permissiveness of astrocytes to AS strains of ZIKV and that AXL receptor decreased ZIKV 

infection in human astrocytes ex vivo (Xu et al. 2016; Retallack et al. 2016). Recent 

histopathological studies in ZIKV-infected newborns showed the presence of viral antigens in 

glial cells (Martines et al. 2016). These sets of observations prompted us to monitor the 

permissibility of astrocytes to ZIKV AS and AF infection. Surprisingly, we found a higher 
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infection rate in astrocytes than in NSCs for both lineages. One possible explanation would be 

a differential use of receptors between NSCs and astrocytes or a difference in AXL expression 

between these cell types. Interestingly, there was also a difference in infectivity between 

ZIKV AF and AS, albeit less pronounced than in NSCs. In this context, the effect of ZIKV 

infection on astrocyte homeostasis, in particular immune and anti-viral response will be 

particularly pertinent to study. Finally, astrocytes are constantly involved in cell-to-cell 

contact and could potentially favor viral spread to other cell types. 

The ZIKV field is still developing, and critics regarding the use of the original ZIKV 

strain are starting to emerge. There is currently no appropriate African and Asian reference 

strains to allow proper comparison of results between laboratories. At this stage, we cannot 

disregard that the differences observed in our study are due to intrinsic abilities or differences 

in infectivity of these two ZIKV strains. Whether this difference could be explained by 

envelope variants and/or receptor usage or later in the replication cycle will be the aim of 

future studies. One caveat of our study is the few number of African and Asian strains used 

that did not allow us to address a general conclusion regarding differences between ZIKV 

lineages. However, our work address the important concern that circulating African ZIKV 

strains must be closely followed and that ZIKV strains could have different molecular 

patterns. Studies need to investigate the neurotropism and neurovirulence of more circulating 

ZIKV AF strains versus AS strains in order to establish their replication and cellular response 

abilities. It is not unlikely that ZIKV outbreaks occurred recently in Africa and remained 

undiscovered due to the very low capacities for detection of emerging or re-emerging 

pathogens in most of the continent (Meda et al. 2016). Understanding the basic mechanisms 

of ZIKV AF infection is therefore of crucial importance. 
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Figure Legends 

Figure 1: Differential infectivity of ZIKV AF and AS in human IPSc-derived NSCs. 

(A) Phylogenetic analyses of ZIKV strains used in this study was performed through a 

consensus flavivirus RT-PCR fragment that targeted a conserved NS5 gene region. 

Bootstrap values are indicated at main nodes. 

(B) Indirect immunofluorescence (IF) of ZIKV AS-infected NSCs (MOI 1, day 4 post-

infection) where the nucleus is stained using DAPI (cyan), the endoplasmic reticulum is 

stained using an anti-PDI (green) and the virus is labeled using a pan-flavivirus antibody 

(magenta). Scale bar = 10 m. 

(C) IF of non-infected (NI), ZIKV AF and ZIKV AS-infected NSCs (MOI 1, day 4 post-

infection). The virus is labeled using a pan-flavivirus antibody (magenta) and nuclei by 

DAPI (false colored in green). Scale bar = 10 m. 

(D) Quantitative analyses show differences in rate of infection between ZIKV AF and ZIKV 

AS that is consistently seen using different MOIs. 4 independent experiments were 

quantified with 200-600 cells per conditions. Results are expressed as means ± SEM and 

analyzed using an unpaired t-test **p <0.01. 

(E) Viral titers were determined by TCID50 on Vero cells. Supernatants from NSCs infected 

at different MOIs and collected day 4 post-infection show differential titers between 

ZIKV AF and AS, even when % of infected cells were taken in account (green curve, 

ZIKV AS corrected, titer normalized assuming same infection rate than ZIKV AF (i.e. 41 

%). Results are expressed as means ± SEM, for three independent experiments and 

analyzed using Mann-Withney test *p <0.05. 

(F) Kinetics of viral production show early dichotomy in viral replication between ZIKV AF 

and ZIKV AS. Day 0 corresponds to the input inoculum. Results are expressed as means 
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± SEM, for three independent experiments and analyzed using Mann-Withney test *p 

<0.05.  

(G) Quantitative RT-PCR done on extracts of supernatants from NSCs infected at MOI 1 by 

the different ZIKV strains and collected at day 4 post-infection shows also a difference in 

the relative physical viral load between ZIKV AF and AS. CTs from amplifying curves 

were arbitrarily converted using internal control (see Material and Methods). Results of 

three independent experiments are expressed as means of relative charges ± SEM and 

analyzed using Mann-Withney test. *p <0.05 

Figure 2: Effect of ZIKV AF and AS on NSC cell cycle and survival. 

(A) Nuclear fragmentation or endoreplication in ZIKV-infected cells. IF of ZIKV-infected 

NSCs (ZIKV AF or AS MOI 1 day 4 post-infection). The nucleus is labeled with DAPI 

(false colored in green) and viruses with a pan-flavivirus antibody (magenta). Scale bar = 

5 m. 

(B) Flow cytometry analyses of NSCs incubated with CFSE at day 0 and infected with ZIKV 

AF and AS for 2 to 6 days. The shift in fluorescence is consistent with cell division. 

(C) IF of non-infected (NI), ZIKV AF and ZIKV AS-infected NSCs (MOI 1, day 4 post-

infection) show the presence of apoptotic cells in infected cells (white arrows show 

condensed nuclei and anti-activated caspase 3 is in green). Scale bar = 10 m. 

(D) Apoptotic nuclei were quantified in ZIKV AF and AS-infected NSCs at day 4 post-

infection. Three independent experiments were quantified with 200-400 nuclei per 

condition. Results are expressed as means ± SEM and analyzed using an unpaired t-test 

*p <0.05, n=3. 

Figure 3: Anti-viral response in NSCs infected by ZIKV AF or AS. 
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(A) and (B) Volcano plots of genes modulated upon ZIKV infection in NSCs. mRNA from 

supernatants of NSCs infected with ZIKV AF (A) or ZIKV AS (B) at MOI 1 for 4 days 

were subjected to qRT-PCR analyses. The experiment was performed in triplicates and 

each point represents the mean. Statistically significant changes in fold regulation appear 

in the top-right cadran (genes upregulated) and top-left cadran (genes downregulated). 

(C) and (D) Fold regulation of statistically significant genes modulated (upregulated (C) or 

downregulated (D)) upon ZIKV AF and AS- infection shown in (A) and (B). Results are 

expressed as means ± SD and analyzed using an unpaired t-test *p <0.05. 

Figure 4: Human astrocytes are permissive to ZIKV infection. 

(A) IF of ZIKV AS-infected astrocytes (MOI 1, day 4 post-infection). The astrocytic marker 

GFAP is detected using a specific antibody (green) and the virus is labeled with a pan-

flavivirus antibody (magenta) and nuclei by DAPI (cyan). Scale bar = 10 m. 

(B) IF of ZIKV AF and ZIKV AS-infected astrocytes (MOI 0.1, day 4 post-infection). The 

virus is labeled using a pan-flavivirus antibody (magenta) and nuclei by DAPI (false 

colored in green). Scale bar = 20 m. 

(C) Quantitative analyses show differences in rate of infection between ZIKV AF and ZIKV 

AS (MOI 0.1, day 4 post-infection). Three independent experiments were quantified with 

150-200 cells per condition. Results are expressed as means ± SEM and analyzed using 

an unpaired t-test **p <0.01, n=3. 

(D) Viral titers from supernatant of ZIKV AF and AS-infected astrocytes (MOI 0.1, day 4 

post-infection) were determined by TCID50 on Vero cells. Results are expressed as 

means ± SEM and analyzed using an unpaired t-test *p <0.05. n=3. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Highlights  

 ZIKV from two Asian and African strains infect differentially IPSc-derived 

NSCs 

 African ZIKV strain displays more infectivity and anti-viral response 

Research in context 

Zika virus (ZIKV) is involved in a major epidemic in Latin America. Some neurological 

complications are reported following infection, in particular microcephaly and Guillain-

Barré syndromes. Analyses show that one Asian and two Africans lineages exist. 

Although originally discovered in Africa in 1947, the actual epidemic is due to Asian 

ZIKV. Here, we compared the virulence of two African and Asian ZIKV strains in 

neural cells. We showed that in human neural stem cells, African ZIKV strain had a 

higher infectivity and triggered stronger cellular response. Altogether, our results 

highlight the need to better characterize ZIKV lineages to anticipate further 

epidemics. 


