
HAL Id: hal-01387475
https://hal.science/hal-01387475v1

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A learning based approach for green software
measurements

Sarah Dahab, Stephane Maag, Alessandra Bagnato, Marcos Aurelio Almeida
da Silva

To cite this version:
Sarah Dahab, Stephane Maag, Alessandra Bagnato, Marcos Aurelio Almeida da Silva. A learning
based approach for green software measurements. MEGSUS 2016 : 3rd International Workshop on
Measurement and Metrics for Green and Sustainable Software Systems, Sep 2016, Ciudad Real, Spain.
pp.13 - 22. �hal-01387475�

https://hal.science/hal-01387475v1
https://hal.archives-ouvertes.fr

A Learning based approach for Green Software

Measurements

Sarah Dahab, Stephane Maag

Telecom SudParis, CNRS UMR 5157, Univ. Paris-Saclay

9, rue Charles Fourier

91011 Evry, France

{Sarah.Dahab, Stephane.Maag}@telecom-sudparis.eu

Alessandra Bagnato and Marcos Aurélio Almeida da

Silva

Softeam Research & Development Division

8, Parc Ariane, 78284 Guyancourt, France

{Alessandra.Bagnato, Marcos.Almeida}@softeam.fr

Abstract—Measuring specific software quality requirements

in a continuous way and at runtime all along the development

processes is crucial. Moreover, considering principles of

measurement theory, it is still very complex to integrate green

metrics in a common standardized and autonomous

framework. In our approach, we propose an automated

solution based on continuous analysis of SW green

measurements, using at runtime a machine learning algorithm.

The method allows to suggest and aid in the decision of the use

of new or updated green metrics during the software

measurement processes. Experiments are performed on the

greentrace datasets.

Keywords—Software measurement, green computing,

metrics, machine learning

I. INTRODUCTION

Quality of software engineering is related to technical

and management factoid that has to provide useful metrics

for quality requirements. Currently the assessment of these

quality requirements is not automated, not empirically

validated in real contexts, and the assessment is often defined

without considering principles of measurement theory.

Further, it is still very complex to integrate green metrics in a

common standardized framework. Besides, it is difficult to

understand where and how to improve the software (SW)

following obtained measurements and green requirements.

The main challenges are to define adequate and useful green

metrics for quality requirements, software design documents

and other SW artefacts (e.g., testing). Most of the time, the

obtained measures are manually analyzed to target the

specific requirements that have to be improved. Further, the

ways of designing/integrating green concepts in a system, or

to measure them on a SW, are often based on know-how and

best practices transmitted between specifiers or developers.

The main scientific problematics that are tackled in our

work are: (i) formally defining metrics and its supporting

tools for measuring modern SW engineering activities with

respect to green concepts, (ii) automatically analyzing the

measurement results for identifying unexpected or undesired

SW data, and (iii) the measurement process automation in

order to reduce the development time. The herein approach

proposes a highly automated and easy-to-deploy solution

based on continuous analysis of SW green measurements,

using at runtime, a machine learning algorithm. It aims at

defining, in an autonomous manner, updated green SW

metrics or new ones that can be applied to the measured

software in a recursive process. The metrics are chosen from

the analysis of the measurements and the use of a runtime

machine learning approach. Our methodology allows to

improve the SW quality, to reduce the time to process, the

software greenability and to decrease the development costs.

We summarize our main contributions as it follows : (i) a

formal description of a green SW metric using the standard

SMM, (ii) an autonomous SW green measurement

framework based on a machine learning methodology to

analyze the measures at runtime, and (iii) experiments based

on the greentrace dataset illustrated our approach.

The paper is built as followed: Section II provides the

state of art on green SW measurements. Section III presents

the ITEA3 project MEASURE, Section IV defines our

methodology, Section V describes the OMG standard and

experiments in Section VI before concluding in Section VII.

II. RELATED WORKS

Software measurement researchers provide a rich

literature for many years now. A measurement can be

defined as “single-point-in-time data on a specific factor to

be measured" produced as “results of data collection,

analysis, and reporting”. A metric is seen as a "descriptions

of data derived from measurements” [4, 5]. However, though

SW measurements and metrics have been standardized for a

while (e.g., ISO/IEC9126 software quality [3]), green SW

metrics have been recently studied. In the following, we may

cite the ones we get inspired in this position paper. In [6], the

authors present a method to measure energy consumption of

Java source codes. In a recent Journal paper [7], a conceptual

framework is proposed. It focuses on existing techniques and

provides a useful unit of measurement for estimating the

energy consumption of software. Another interesting work

[8] proposes an extension of the quality model standardized

in the ISO/IEC25010 standard [9] with a new characteristic,

the greenability, composed of three aspects: efficiency

optimization, user’s environmental perception, and

minimization of environmental effects. We also get inspired

by [10] that propose an interesting survey of green SW

metrics from which we modeled ours.

Besides, while there is a current need for providing valid

metrics, the literature still contains a highly diverse set of

opinions on what constitutes a valid and efficient metric [12]

and in particular from an industrial perspective [11,13]. For

that purpose, learning techniques are currently arising to

effectively refine, detail and improve the used metrics and to

target more relevant measurements data. Current works such

as [14-17] raise that issue by proposing diverse kinds of

machine learning approaches for SW defect prediction

through SW metrics. However, none of them tackle the green

SW metrics suggestion at runtime by using semi-supervised

machine learning methods. This is the objective of the

approach we herein propose.

III. THE ITEA3 MEASURE PROJECT

The MEASURE (Measuring Software Engineering)

ITEA3 project has started in December 2015 [1]. Its goal is

to increase the quality and efficiency as well as reduce the

costs and time-to-market of software engineering in Europe.

By implementing a comprehensive set of tools for automated

and continuous measurement, this project provides a toolset

for future projects to properly measure their impact. More

importantly, it opens a new field for innovation. The

innovation is in the advanced analytics of the measurement

data presented in that paper. Within the MEASURE project,

the OMG's Structured Metrics Meta-Model (SMM) has been

selected as a standard to model that.

IV. OUR LEARNING BASED MEASUREMENT APPROACH

As above mentioned, we aim at improving the software

measurement processes by focusing on an autonomous SW

green metric framework. This approach is based on a

learning methodology allowing to analyze the results at

runtime and during all along the software development

process. Indeed, the main objective is to guide the

measurements in a smart way by automatically refining it.

Based on the measurements analysis and its interpretation,

the next metric to be executed will be determined. It can be a

novel metric which is the intersection of several metrics or

one metric of the set initially defined. Then, they are

provided as inputs to a new SW measurement cycle

(containing notably the analysis and metric generation). By

that way, a continuous measurement process on the SW

architecture is defined, allowing, for each cycle, to execute

the refined metrics or other metric, and to target suspicious

failing aspects that could eventually cause green deficiencies.

The Fig. 1 illustrates our approach. To perform the

measurement cycle, our approach uses a machine learning

process. From well-defined measurements classifications,

based on expert decisions or known datasets, and obtained

experimented results, we intend to detect suspicious or faulty

values. We target specific quality aspects of the measured

SW by applying, at runtime, new updated sets of metrics.

The S3VM (Semi-Supervised Support Vector Machines)

learning method [23] is herein used. Semi-Supervised

techniques allow a smart analyze in real time and during all

the development process. The learning process occurs on the

results of measures (measurements) applied on the software

architecture. For that purpose, two datasets are needed: one

for training, one for working. Training data are labeled and

working data working are unlabeled. Based on training data,

a Semi-Supervised algorithm is learning on working data, to

provide a separating hyperplane that classifies data into

different categories. The S3VM features aim at adding two

constraints to each working data in order to minimize the

classification errors. In our approach, we aim at using a set

of green software metrics values, the “greentrace” dataset

from the PROMISE public repository [19]. Greentrace

contains the mean power consumption and the corresponding

invocation count of system calls [18].

V. THE SOFTWARE METRICS META-MODEL

In our framework, our metrics will be specified in SMM

using the tool Modelio [24]. One of our aims is to allow that

tool to refine the running metrics into a continuous

measurement process. We plan to obtain the green SW

measurements using specific SW tools such as MMT

provided by Montimage, a MEASURE partner.

A. The OMG SMM standard

The version 1.1.1 of the SMM specification [2] defines a

meta-model for representing measurement information

related to any model structured information with an initial

focus on software, its operation, and its design. This

specification is an extensible meta-model for exchanging

both measures and measurement information concerning

artefacts contained or expressed by structured models, such

as MOF. SMM includes elements representing the concepts

needed to express a wide range of diversified measures. With

SMM, we can specify measures and their respective

measurement results. The measure definitions make up the

library of measures that serves to establish the specification

upon which all of the measurements will be based.

As illustrated in the Fig. 2, the SMM meta-model allows

to represent abstract Measures and concrete Measurements.

For example, it would allow to represent a measure like

Lines of Code and a measurement like File X has 537 lines

of code. A SmmModel contains therefore MeasureLibraries

and Observations. Measures are grouped into

MeasureLibraries so that they can be shared among different

Figure 1 - Our learning based software measurement framework

projects and tools. Each Observation represents an

observation performed by an observer, with a tool on a given

moment (whenObserved). An observation produces a set of

ObservedMeasures, each of them related to one specific

Measure, and for this measure, a set of Measurements.

B. The Modelio Tool

Modelio [24] is a modeling environment based on UML

(Unified Modeling Language). It defines all UML concepts

as mainly Interface, Class, Package, Attribute, Property,

etc., and relationships between those entities as inheritance,

implementation, association etc. Modelio allows to model

software and business architectures and to generate XMI

files from a model. From a model, it supports the code

generation to C or Java. Modelio supports several OMG’s

standards like SysML, MARTE, SoaML, UTP and SMM.

This environment offers the possibility to extend its

functionalities with the module addition which allows to

create a new concept by specifying existing concepts.

VI. EXPERIMENTS AND RESULTS

Our approach is applied on a real case study as defined in

[18], by using the Computational Energy Cost metric [20].

The experiments are performed on a Java-based SW. The

computational cost is determined by CPU processing,

memory access, and I/O operations costs.

As defined in [20], to compute the Computational Energy

Cost of a Java-based software at component-level (public

interface), it is necessary to compute the energy costs of the

architecture JVM’s bytecodes, its native methods and its

monitor mechanism execution while the interface method is

invoked. The monitor mechanism, provided by the JVM, is

used to manage threads synchronization.

To specify the Computational Energy Cost metric

(CECm) in SMM, we define three measures which refer to

those three cost types. One for the bytecodes execution cost

called BytecodesMeasure (BM), one for the cost of native

methods invoked called NativeMethodMeasure (NMM) and

one for the monitor mechanism cost called MonitorMeasure

(MM). We modeled the Computational Energy Cost metric

in SMM using Modelio. The model is illustrated in the Fig.

3. This model is made of two SMM packages: Measure

Library contains all aspects about measures and Observation

contains the measure results. For each measure, a

measurement is modeled by a UML class in the Observation

package. Each of them is linked to its associated measure by

an association UML link called ObservedMeasure.

Concerning the Measure Library package, the three measures

are modeling by a UML class and are associated to their unit

of measure class called Joule, by an association link called

UnitLink. Those are associated to a Scope element named

JVM that defines the domain of measurement. The three

measures compute different values of the same domain and

return the same unit of measure. That is the reason why they

are associated to the same Scope with a ScopeLink and Unit

element. We reason in a similar way for the Characteristic

element called EnergyConsumption. It computes the energy

consumption of elements of the same domain. The measure

elements are matched to their characteristic by the TraitLink.

In our experiments, we aim at measuring the

computational energy cost of a Java-based application as a

mailbox call, which offers services such as sending,

removing and saving data. During its real use by a user and

as above-mentioned, our approach is learning on the

greentrace dataset and obtains the three values corresponding

to CECm measurements applied on that Java-based

application. Each value is classified by the S3VM algorithm

within two categories: suspicious value and not suspicious

value. This classification is based on expert decisions

concerning the threshold for this type of measurement.

Herein the threshold is set to 20. Results strictly higher than

20 may reveal an issue. When the classification is done, the

detected suspicious values are analyzed to determine the best

next metric to run: one already defined or a correlation of

several already existing metrics which is more specific to the

measure of the corresponding suspicious value.

For instance, in our experiments, we obtained the

following CECm measurements as illustrated in the Table 1.

Based on [18, 20], we note that NMM and MM results are

higher than the threshold determined by the SV3M algorithm

applied on the greentrace dataset. They are then classified as

suspicious values. These two costs are closely related to

other green metrics. Indeed, NMM assesses the I/O

utilization energy consumption and MM the data memory

access energy consumption of the measured application.

TABLE I. CECM MEASUREMENTS RESULTS

Cost types Obtained measurements

BM 19.95698053846

NMM 22.09574430401

MM 21.90768412435

Thereby, the analyzing step of our prototype will generate

two metrics whose their measurements focus on the concepts

that highlight the obtained suspicious values:

- The I/O Usage Metric [21] measures the percentage of

occupation of the I/O device and the number of messages

transferred by an application over a system component set.

Figure 2 - Overview of the SMM meta-model

- The Memory Access Count Measure [22] that measures the

number of memory accesses to the data memory.

They are used to execute, recursively, a novel green software

measure process cycle to determine an application anomaly.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we presented a novel autonomous software

green measurement framework based on a machine learning

methodology. It allows to improve the actual sequential and

trace measurement process by analyzing the measures results

in real time. We aim at improving the next measurement

cycle to have information of possible failure during the

development process. This smart measurement is then

applied to the measured application (or system, service,

embedded component, etc.) in an autonomous and recursive

manner. Experiments based on the greentrace dataset are also

performed to illustrate the feasibility of our approach.

Currently, our approach is based on the greentrace

dataset while the common knowledge, good practices and

know-how of the practitioners are not available online

through a database or dataset. We plan to use such concepts

to allow a better and refined learning classification (>2

classes) to improve the “metric management”. Further,

through the MEASURE project, we expect to integrate our

approach in a whole tool chain from the SMM modeling to

the metric execution and measurements analysis.

ACKNOWLEDGMENT

The research leading to these results was partially funded

by the ITEA3 project 14009, MEASURE.

REFERENCES

[1] ITEA3 MEASURE project, http://measure.softeam-rd.eu/, 2015

[2] OMG, Structured Metrics Meta-model (SMM), version 1.1.1,
http://www.omg.org/spec/SMM/1.1.1/, April 2016

[3] ISO/IEC 9126-1: Software engineering - Product quality - Part 1:
Quality model, June, 2001

[4] R. M. Savola : A security metrics taxonomization model for
software-intensive systems. Inf. Processing Systems 5(4), 2009

[5] R. B. Vaughn et al., Information assurance measures and metrics

- state of practice and proposed taxonomy. In the Proc. of the
36th IEEE Hawaii International Conf. on System Sciences, 2003

[6] J. Rocheteau et al., How Green Are Java Best Coding Practices,
In Proc. 3rd Int. Conf. SMARTGREENS, Barcelona, Spain 2014

[7] L. Ardito, G. Procaccianti, et al., Understanding green software

development: A conceptual framework. IT Prof., 17(1), 2015

[8] C.Calero, M.A.Moraga, M.F.Bertoa and L.Duboc, Quality in Use

and Software Greenability, In Proc. RE4SuSy@RE, 2014.

[9] ISO/IEC25010: Systems and software engineering -- Systems
and software Quality Requirements and Evaluation (SQuaRE) --

System and software quality models, March, 2011

[10] P.Bozzelli,Q.Gu and P.Lago, A systematic literature review on

green software metrics. VU University, Amsterdam, 2013

[11] E.Bouwers et al., Evaluating usefulness of software metrics: an
industrial experience report. In Proc. of the IEEE Int. Conf. on

Software Engineering (ICSE). Piscataway, NJ, USA, 2013.

[12] A.Meneely et al., Validating software metrics: A spectrum of

philosophies. ACM Trans. Softw. Eng. Methodol. 21, 4, 2013.

[13] Barbara Kitchenham, What’s up with software metrics ? - A

preliminary mapping study, J. Syst. Softw. 83, 1, 37-51, 2010

[14] I.H. Laradji et al., Software defect prediction using ensemble
learning on selected features. Inf. and Soft. Technology, 58, 2015

[15] Wei, Xiong, et al. An Embedded Software Power Consumption
Model based on Software Architecture and Support Vector

Machine Regression, International Journal of Smart Home Vol.

10, No. 3, pp.191-200, 2016

[16] Manjula.C.M. Prasad, et al., A Study on Software Metrics based

Software Defect Prediction using Data Mining and Machine

Learning Techniques, Int. J. of Datab. Th. and App., 8(3), 2015

[17] M. Monperrus, et al., Model-driven generative development of

measurement software, Softw & Systems Modeling, 10(4), 2011

[18] C. Zhang and A. Hindle, A green miner's dataset: mining the

impact of software change on energy consumption. In :

Proceedings of the 11th ACM Working Conf. on Mining
Software Repositories, 2014

[19] PROMISE, greentrace dataset, http://openscience.us/repo/green-
mining/greentrace.html

[20] C. Seo, S. Malek, and N.Medvidovic. Estimating the Energy the

Energy Consumption in Pervasive Java-based Systems. In Proc.
of the IEEE International Conference on Pervasive Computing

and Communications, PERCOM’08, USA, 2008

[21] A. Kipp, T. Jiang, and M.Fugini, Green metrics for energy-aware

IT systems. In Proc. IEEE International Conference on Complex,

Intelligent and Software Intensive Systems (CISIS), 2011

[22] A. Chatzigeorgiou and G. Stephanides, Energy Metric for

Software Systems. In Software Quality Journal, 10(4), 2002

[23] K. Bennett, A. Demiriz et al., Semi-supervised support vector

machines. Advances in Neural Inf. processing systems, 1999

[24] SOFTEAM, ModelioSoft, https://www.modeliosoft.com/, 2016

Figure 3 - The Computational Energy Cost metric model in SMM

http://measure.softeam-rd.eu/
http://www.omg.org/spec/SMM/1.1.1/
http://openscience.us/repo/green-mining/greentrace.html
http://openscience.us/repo/green-mining/greentrace.html
https://www.modeliosoft.com/

