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Abstract—On the subject of discrete time delay estimation
(TDE), especially in the domain of sonar signal processing, in
order to determine the time delays between signals received by
two separate sensors, TDE techniques involve in locating the
peak of cross-correlation function (CCF) between these signals.
In many widely used applications of TDE, bias errors of delay
estimate can occur when we try to fit the correlation function
with a curve that may have an irrelevant shape, for example a
parabola or a cosine. This paper thus addresses an analysis of
correlation bias in estimating the time delay between a reference
signal and a delayed signal by their CCF. Furthermore, we will
also introduce a novel bias reduced approach for discrete TDE
based on a sinus cardinal model fitting on the CCF of these two
sampled signals. The experimental results have shown that the
proposed method can provide relevant detection on simulated
signals.

Keywords—cross-correlation function, correlation bias, discrete
time delay estimation, parabolic interpolation, sinus cardinal model.

I. INTRODUCTION

Time delay estimation (TDE) is an important research topic in
many signal processing areas, such as radar, sonar, seismology,
ultrasonic, etc. It has become an interesting research issue in
these fields for years with plenty of applications, especially
in direction of arrival (DOA) and range estimation of array
processing used in radar and sonar systems. In many cases,
the time delay is estimated by comparing the signals received
at two (or more) spatially separated sensors, one of them can
be considered as the reference signal and the another one as the
delayed signal. Classical TDE techniques consist in identifying
the peak of the cross-correlation function (CCF) between these
two signals.

Moreover, in case of discrete time delay estimation, it
is important to take into account the effects of sampled
signals but still maintain the performance of continuous signal
processing on the time delay estimation. On this subject, there
is an approximate analysis of the accuracy of the discrete-time
cross-correlation TDE using a parabolic interpolation which
has been performed in [1] [2]. However, as this conventional
interpolation method may cause an undesired bias of corre-
lation peak location estimate, furthermore in this paper, let
us review the analysis of correlation bias. Besides, instead of
using that quadratic interpolation approach, we also propose
a sinus cardinal model which tries to fit the discrete cross

correlation function by applying the non-linear least squares
estimation.

The paper is organized as follows. Section II will present
the TDE problem in both continuous and discrete time do-
mains. Then, the methodology of locating the peak of cross-
correlation function will be carried out in Section III as well as
the theoretical correlation bias analysis. In order to evaluate the
accuracy and quality of proposed method, some experimental
results will be given in Section IV. Finally, Section V will
bring us the overall conclusion and perspective.

II. THE TDE PROBLEM

A signal emitting from a remote source and captured in the
presence of noise at two spatially separated sensors can be
mathematically modeled as:

x1 (t) = s (t) + n1 (t)
x2 (t) = As (t− τ0) + n2 (t)

(1)

This model of received signals refers to two differently delayed
and scaled observations of the same signal s(t) and two
measurement noises n1(t) and n2(t) that are uncorrelated
with each other and with signal s(t). Let us assume that
both the signal and the noises are realizations of zero-mean
stationary processes characterized by their auto-correlation
functions Rs(τ), Rn1(τ) and Rn2(τ). The signal x1(t) will be
referred to as reference signal, and the signal x2(t) as delayed
signal. The problem is to precisely provide an estimate τ̂0 of
the true time delay τ0 using a finite set of samples of signals
x1(t) and x2(t).

As aforementioned, in most cases, time delay estimation
techniques involve the locating of the absolute extrema of
the cross-correlation function or of some other statistics of
the observed signals. Therefore, we assume that the delayed
signal x2(t) is shifted and compared with a fixed portion of
the reference signal x1(t) into the estimation window, in other
words, i.e. the TDE problem is based on a constant delay
assumption. The cross-correlation function between these two
signals is defined as,

Rx1x2(τ) = E [x1(t)x∗2(t− τ)] (2)

where E [.] is the mathematical expectation and (.)∗ denotes
the complex conjugate operator. An estimate of time delay will
be provided by the argument τ that maximizes (2). However, in
consequence of the finite observation time, only an estimate



of the cross-correlation function Rx1x2
(τ) can be obtained.

Certainly, for example, assuming x1(t) and x2(t) are ergodic
processes, an estimate of Rx1x2(τ) is given by,

R̂x1x2
(τ)

.
=


1

T − τ
∫ T−τ
0

x1(t)x∗2(t− τ)dt 0 ≤ τ < T

1

T − |τ |
∫ T
|τ | x1(t)x∗2(t− τ)dt −T < τ ≤ 0

(3)
where T represents the observation interval.

On the other hand, in discrete time domain, the discrete
CCF can be computed as,

R̂x1x2
(τ)

.
=

1

N

N−1∑
k=0

x1 (kTs)x
∗
2 (kTs − τ) (4)

where Ts is the sampling interval, N is the number of samples
and (N − 1)Ts is equal to the estimation window width.
Nevertheless, according to this estimate of cross-correlation
function, we also have a direct correlator estimator,

τ̂0 = arg max
τ

R̂x1x2(τ) (5)

The next section will give us an overview of the methods used
in the correlation-based time delay estimation.

III. METHODOLOGY

Since Ts is the sampling period and the time delay τ0 between
two sampled signals is generally not an integer multiple of Ts,
we express it into two components as,

τ0 = ∆ + δ = kTs + δ (6)

The first part of (6) is an integer multiple of the sampling
interval Ts. On the other hand, δ is the fractional part of the
time delay (0 ≤ |δ|< Ts). Thus, the time delay estimation can
be effectuated in two steps.

• Firstly, the estimate ∆̂ of coarse delay is found by
locating the maximum sample of (4).

• Secondly, the estimate δ̂ of fine delay (or subsample
delay) can be computed by using a subsample in-
terpolation technique, such as curve-fitting (parabola,
cosine, spline fitting) or reconstruction-based method.

In regard to the subsample interpolation techniques which
are described in [3] and [4], there are many widely used
techniques that introduce significant bias errors of time delay
estimate. For example, some of these techniques use the fact
that the phase of analytic CCF between discrete-time signals
in the vicinity of the propagation delay (group delay) will have
a slope equivalent to the center frequency and will meet a zero
crossing at the precise subsample shift, e.g., in [5]. Besides,
the authors of [6] proposed to use a direct and computationally
intensive approach to determine a precise signal shift, it
consists in resampling the signals through interpolation (e.g. by
a spline) before locating the cross-correlation peak. In addition,
as proposed and studied in [7], performing a matched filtering
(e.g. an optimum linear filter) on CCF may also improve the
results in the case of low signal-to-noise ratio (SNR). Instead
of resampling and recomputing the cross-correlation, we can

also fit the CCF around its peak with a curve in order to reduce
computational expenses. For example, a parabola (see Fig. 1)
or cosine fit can be applied on a number (three or more) of
samples in order to estimate the location of cross-correlation
peak. The advantage of this curve-fitting method is that it is
simple and easy to implement and is also computationally
efficient, however, it suffers from bias errors because the
underlying signal may mismatch the chosen curve.

Fortunately, according to [1] and [3], the curve-fitting bias
errors can be avoided by applying a sinus cardinal inter-
polating function on discrete cross-correlation, which is the
maximum likelihood estimation of the time delay. The authors
of [3] examined the use of sinus cardinal reconstruction to
locate the cross-correlation peak and found that it significantly
outperforms parabolic or cosinusoidal interpolation. However,
this reconstruction is highly computationally expensive in
comparison with curve-fitting methods. Therefore, a numerical
optimization needs to be implemented to decrease computation
times in the peak locating, e.g. a binary search method.

A. Conventional curve-fitting interpolation method

As aforementioned, in discrete TDE, time delay between two
sampled received signals usually is not an integer multiple
of the sampling period. Thus, in order to perform an analog
processing of the time delay parameter, an approximation
which is simple and widely used consists in fitting a curve,
for example a convex upward parabola (or other polynomials)
or a cosine in the vicinity of the correlation peak.

R̂x1x2
(τ) = aτ2 + bτ + c (7)

where a, b and c (with a < 0) are the parabolic parameters
fitting the measured cross-correlation function, and the values
τ are in the neighborhood of the correlation peak. This
parabolic fit can be guaranteed perfectly due to three samples,
which are the peak of the discrete correlation function and its
two neighboring samples.

Furthermore, an explicit expression exists for locating the peak
value as the vertex of parabola,

δ̂ = − b

2a

However, this parabolic interpolation approach, as other curve-
fitting interpolations (e.g. cosine fitting, spline fitting) always
yield biased estimates of the time delay [1][2][3][6], affecting
the use of these methods in some applications.

Indeed, given the largest sample y1 of cross-correlation
function R̂x1x2

, which occurs at instant ∆, and its two nearest
neighbors y0, y2 at instants ∆−Ts and ∆ +Ts. As a parabola
is a quadratic function that only needs three parameters as
a, b and c to be identically determined, it is hence possible
to determine the parabola peak location via its three largest
samples (y0, y1, y2). Continuing the second step of the discrete
time delay estimation, as aforestated from (6), the estimate δ̂
of sub-sample shift can be found by fitting a parabola to these
three samples of R̂x1x2(τ) function about ∆.

δ̂ = − b

2a
= − y2 − y0

2(y2 − 2y1 + y0)
(8)
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Fig. 1. An illustration of the parabolic fitting on three largest samples
(y0, y1, y2) of CCF, as well as the bias error bδ of estimate of the correlation
peak location in comparing the peak from fitted parabola (blue dashed curve)
and the peak of the true CCF (red solid curve)

The estimate δ̂ can be expressed in terms of finite differences.
The numerator is the average of two first differences,

d(δ) =
1

2
[d1(δ) + d−1(δ)]

with d1(δ) = y2 − y1 and d−1(δ) = y1 − y0

and the denominator is equal to the second difference,

d2(δ) = − [d1(δ)− d−1(δ)]

Therefore, (8) can be expressed as,

δ̂ =
d(δ)

d2(δ)
(9)

In addition, according to [1], the statistics of d(δ) and d2(δ)
can be measured via the frequency domain based on Wiener-
Khintchine theorem. Moreover, under several assumptions
declared in [1], the mean of the estimate δ̂ is obtainable from,

E[δ̂] ' E[d]

E[d2]
=

1

N

N/2−1∑
k=−N/2+1

AGs(k) sin( 2πkδ
N ) sin(2πk

N )

1

N

N/2−1∑
k=−N/2+1

AGs(k) cos( 2πkδ
N )

[
2− 2 cos( 2πk

N )
]

(10)
where Gs(k) is the power spectral density of the zero-mean
stationary Gaussian process s(k), and A is the scale factor of
the replica x2 versus signal s which appeared in (1).

Hence, the bias error of estimate is defined as,

bδ = E[δ̂]− δ (11)
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Fig. 2. Theoretical bias error and standard deviation of delay estimate
(parabolic interpolation method)

Besides, the standard deviation of estimate δ̂ is given by,

σ2
δ̂
'

σ2
d(δ)

E2[d2(δ)]

=

1

N2

N/2−1∑
k=−N/2+1

Gx1
(k)Gx2

(k) sin2( 2πk
N )

[
1− C12(k) cos( 4πkδ

N )
]

[
1

N

N/2−1∑
k=−N/2+1

AGs(k) cos( 2πkδ
N )

[
2− 2 cos( 2πk

N )
]]2
(12)

where C12 =
|Gx1x2

(k)|2

Gx1(k)Gx2(k)
, and Gx1(k) (resp., Gx2(k)) is

the power spectral density of signal x1 (resp., signal x2).

Equations (10) and (12) predict the performance of parabolic
interpolation to locate the correlation peak in time delay esti-
mation. Moreover, Fig. 2a and 2b illustrate the theoretical bias
and standard deviation of time delay estimate in a noiseless
case.



B. Proposed method

Since the curve-fitting methods might cause undesired bias of
delay estimate, it is necessary to perform an unbiased delay
estimate method. Studies in [3] and [4] state that a method of
reconstructive interpolation can yield an unbiased estimation
of discrete time delay by using a sinus cardinal function
based on analog signal reconstruction theory. The interpolated
samples are obtained when we perform an ideal low-pass filter
by windowing a sinc-shaped impulse response with a finite
window function (e.g. a Blackman window).

x(t) =

N/2∑
k=−N/2

xd(k) sinc

[
π(t− kTs)

Ts

]
wh

[
π(t− kTs)

Ts

]
(13)

where xd(k) is the discrete signal, sinc(t) = sin(t)/t and wh
is the Blackman window.

This reconstructive interpolation method was studied and it
is demonstrated in [3] that it yields an unbiased estimator of
time delay.

On the other hand, assuming that the auto-correlation
function of a signal s(t) is expressed as the autocorrelation
of a band-limited white noise,

Rs(τ) = Rs(0)
sin(2πBτ)

2πBτ
(14)

where B is the noise bandwidth.

Based on this property of band-limited white noise [8, Sec.
8.4], we propose to use a sinus cardinal model to minimize
errors between real data from cross-correlation function and
the fitting model. A sinus cardinal function is defined with its
parameters as,

f(t) = A0
sin (α (t− τ0))

α (t− τ0)
(15)

with A0>0 is the maximum amplitude of the cross-correlation,
and τ0 is its centroid, and α is the coefficient corresponding to
the width of its principal lobe. Given a data set of M points
of the CCF in the vicinity of its principal and secondary lobes,
{(ti, y (ti)) , i = 0, ..,M − 1}, where y (ti) is the observation
of cross-correlation function at instant ti, this estimator aims
at solving the least squares problem,(
Â0, α̂, τ̂0

)
= arg min

A0,α,τ0

M−1∑
i=0

[
y (ti)−A0

sin (α (ti − τ0))

α (ti − τ0)

]2
(16)

The objective of this novel method is to symmetrize the cross-
correlation function in order to reduce or remove the bias
of estimate. Given optimal set of parameters (Â0, α̂, τ̂0), the
cross-correlation function is then estimated as,

ŷ(ti) = Â0
sin (α̂ (t− τ̂0))

α̂ (t− τ̂0)
(17)

For implementation, one could consider employing Levenberg-
Marquardt algorithm [9] to solve the non-linear least squares
problem (16). Moreover, the estimate τ̂0 of the centroid of
sinus cardinal function, in other words, the estimated location
of correlation peak is the time delay between the reference

Fig. 3. Fitness of the model function — An example of the cross-correlation
function around its principal and secondary lobes with the fitted sinus cardinal
using the model function in (15).

and delayed signals. Fig. 3 depicts an example of the cross-
correlation function at its principal and secondary lobes and
the fitted sinus cardinal curve from the aforementioned non-
linear least squares method. The correlation function has been
shown to be well-fitted by the model function (15), especially
in the considered region around the principal lobe.

IV. EXPERIMENTAL RESULTS

A. Sonar signal simulator

TABLE I. SONAR SIGNAL SIMULATOR PARAMETERS

Bandwidth Carrier frequency Sampling period
B f0 Ts

20 kHz 100 kHz 12.5µs

The sonar signals are computed by the complex summation of
elementary backscatterers contained within the resolution cell.
Thus, the backscattered signal received by each sensor can be
modeled by:

s1(kTs) =
∑

m∈[ak]
Rme

jφmej2πf0(kTs−mλ)1[0 Ts](kTs −mλ)

s2(kTs) =
∑

n∈[bk]
Rne

jφnej2πf0(kTs−nλ−τ0)1[0 Ts](kTs − nλ− τ0)

(18)
where

• [ak] and [bk] stand for the resolutions cell of each
sensor a and b at an instant k, which contain many
elementary backscatterers inside;

• λ denotes the time shift between one brillant point to
the next one;

• 1X(x) is the indicator function, which results 1 if x ∈
X and results 0 if x /∈ X .

Moreover, the reflectivity of elementary backscatterers is dis-
tributed as a circular Gaussian process.

Rne
jφn ∼ CN (0, σ2) (19)



0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Sub−sample shift (samples)

B
ia

s 
(s

am
pl

es
)

 

 

Usual peak locating
Parabolic interpolation
Sinus cardinal model

(a) Bias error of delay estimation

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sub−sample shift (samples)

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
am

pl
es

)

 

 

Usual peak locating
Parabolic interpolation
Sinus cardinal model

(b) Standard deviation of delay estimation

Fig. 4. Bias error and standard deviation of delay estimation among methods
in the noiseless case (5000 independent Monte-Carlo realizations)

where Rn has a Rayleigh distribution of parameter σ2, and
φn is a uniform random variable distributed on a 2π-length
interval.

B. Application of TDE methods on sonar simulated signals

Based on the sampled signals simulated from a sonar signal
simulator, we are able to experiment and evaluate the bias
and standard deviation of the proposed method as well as the
conventional method. Besides, the bias and standard deviation
curves of the ordinary cross-correlation peak locating using
oversampling (by a factor of 10) on CCF are also illustrated
alongside with two mentioned methods in order that one may
compare them.

Fig. 4a and 4b depict the bias and the standard deviation
of discrete time delay estimation for different methods as a
function of the sub-sample shift between the reference and
delayed signals. For each shift value, 5000 independent Monte
Carlo tests were realized. As the bias and standard deviation
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Fig. 5. Bias error and standard deviation of delay estimation among methods
in the noisy case SNR = −15dB (5000 independent Monte-Carlo realizations)

of the proposed model have been significantly reduced in
comparison with other methods, the results for simulated sonar
signals satisfy our first goal and make this method become
very promising in many TDE applications. Moreover, in the
presence of additive Gaussian white noise (SNR = −15dB),
the Monte Carlo realizations have also been launched in order
to evaluate the quality of these methods in a noisy case (see
Fig. 5).

V. CONCLUSION AND PERSPECTIVES

This paper has demonstrated again that the bias error of the
curve-fitting interpolation methods is a function of the spectral
characteristics of the signals received. Different methods of
time delay estimation have been analysed and tested on sim-
ulated sonar signals, including curve-fitting interpolation and
sinus cardinal kernel method. The bias and standard deviation
of time delay estimate have been given as a function of sub-
sample shift, showing that the proposed method using sinus



cardinal model achieves a significant bias reduction.

On the one hand, the main advantage of curve-fitting
interpolation is its computational simplicity, this makes it the
method of choice in TDE applications where the bias error
that results from interpolations is suboptimal and acceptable.
On the other hand, bias error reduction is an advantage of sinus
cardinal kernel method. This proposed method will be relevant
and useful in many further TDE applications in the future.
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