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Abstract

In this article, we address the problem of tensor factorization subject to certain constraints. We focus on the

Canonical Polyadic Decomposition (CPD) also known as Parafac. The interest of this multi-linear decomposition

coupled with 3D fluorescence spectroscopy is now well established in the fields of environmental data analysis,

biochemistry and chemistry. When real experimental data (possibly corrupted by noise) are processed,the actual

rank of the “observed” tensor is generally unknown. Moreover, when the amount of data is very large, this

inverse problem may become numerically ill-posed and consequently hard to solve. The use of proper constraints

reflecting some a priori knowledge about the latent (or hidden) trackedvariables and/or additional information

through the addition of penalty functions can prove very helpful in estimating more relevant components rather

than totally arbitrary ones. The counterpart is that the cost functions thathave to be considered can be non

convex and sometimes even non differentiable making their optimization more difficult, leading to a higher
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computing time and a slower convergence speed. Block alternating proximal approaches offer a rigorous and

flexible framework to properly address that problem since they are applicable to a large class of cost functions

while remaining quite easy to implement. Here, we suggest a new block coordinate variable metric forward-

backward method which can be seen as a special case of Majorize-Minimize (MM) approaches to derive a new

penalized nonnegative third order CPD algorithm. Its interest, efficiency, robustness and flexibility are illustrated

thanks to computer simulations carried out on both simulated and real experimental 3D fluorescence spectroscopy

data.

Index Terms

Constrained optimization - Proximal approaches - Block alternating minimization - Nonnegative tensor factor-

ization (NTF) - 3D fluorescence spectroscopy

I. I NTRODUCTION

Acquired data sets in numerous modern applicationsare now often organized into multi-way arrays of numerical

values because they are obtained thanks to ever more performant acquisition, data transmission and massive

data storage systems. This is typically the case for the spectrofluorimetry [1] which is targeted in this article.

This analysis technique is generally used to study the composition of solutions in order to detect the fluorescent

chemical species (also called fluorophores) that are present. Once a coordinate basis is fixed, a tensor of order

N can always be represented as an organizedN -way array of numerical values. Since tensors and multi-linear

algebra constitute a rigorous and natural mathematical framework for the formulation of many models and for

the resolution of the problems that come along, they have been the subject of a growing interest in recent years.

The order of a tensor corresponds to the dimensionality of the array needed to represent it (i.e. the number of

indices required to reference the elements of the array). Inthis article, we will focus on third order tensors,

yet, the approach suggested here can be generalized to higher tensor orders. Then, the tensors can be processed

which means either directly compressed or analyzed using a great variety of tensor decompositions.

The most popular one certainly remains the low tensor rank decomposition also known by a number of other

names among which are Canonical Polyadic Decomposition (CPD1), Candecomp [2], CanD or Parafac (for

PARAllel FACtor analysis) [3].

This factorization method constitutes an informative and compact model which has proven to be relevant in many

application fields, including those in which we are most interested here, namely chemistry and chemometry

[4][5], process analysis/monitoring [6] and environmental data mining [7][8][9]. The Polyadic Decomposition

consists of decomposing a tensor into a sum ofR rank-1 tensors (withR suitably large). When this numberR

of rank-1 terms is minimal, the decomposition is referred toas the Canonical Polyadic Decomposition andR is

1It is the acronym that we will use in the rest of this article
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called therank of the tensor. However one of the main difficulties faced by practical fluorescence spectroscopy

applications, is that the number of fluorophores is generally unknown and thus the actual rank of the “observed”

tensor (i.e. the tensor of the acquired Fluorescence Emission Excitation Matrices, FEEM) is mostly unknown

making the estimation of reliable fluorescent chemical compounds more difficult. Several works have been

dedicated to the tensor rank estimation problem (see COre CONsistency DIAgnostic or CORCONDIA [10] and

Threshold-CORCONDIA [11] to cite a few), however this problem is still hard and open. Consequently, we

are interested here in new penalized methods ensuring the sparsity of the estimated loading matrices and thus

insensitive to overestimation problems.

The CPD can also be regarded as a generalization of the matrixSingular Value Decomposition (SVD) to tensors

or as a special case of another tensor decomposition known asthe Tucker decomposition [12] by restricting

the core tensor to be “diagonal”. Another interesting advantage of this decomposition is its uniqueness under

mild conditions [13][14][15], involving that on perfectlymultilinear, noiseless models of known rank, the use

of constraints is not necessary.

When real experimental data are processed, there might be noises, the constituent vectors of theloading matrices

(also known as theloading factorsor vectors) can be close and the observed system can be dynamic (appearance

or disappearance of compounds). The actual rank of the observed tensor is unknown and may be difficult to

estimate. Moreover, when the amount of data becomes very large, this inverse problem may become numerically

ill-posed [16] and very difficult to solve [17][18]. The use of proper constraints reflecting somea priori

knowledge about the latent or hidden variables that are tracked can be very helpful for the “unsupervised”

estimation of reliable components. The whole processing chain can be rendered more robust and easier to use

which is interesting when real-time monitoring or automated control systems are considered. Problems such as

the automatic detection of water pollution could be tackledby this kind of approach.

Therefore, in the context of the 3D fluorescence spectroscopy analysis [19][20][7] (assuming the absence of

errors coming either from the pre-processing used to removeRaman and Rayleigh scattering or possible bad

settings of the devices) nonnegativity constraints shouldbe considered given the physical nature of the hidden

variables. In fact, in this particular application (see [21] for a reminder of the links that exist between 3D

fluorescence spectroscopy and CPD), the loading vectors stand for physical quantities intrinsically nonnegative

since they are related to emission and excitation spectra and concentrations through the samples acquired at

different times in monitoring applications (or locations or pH for other kind of applications). The rank of the

CP model that will approximate the “observed” tensor is closely linked to the number of fluorescent chemical

compounds that are present in the studied samples.

The nonnegativity of the considered datasets as well as the one of the quantities that have to be estimated

is also crucial for numerous other leading applications of CPD, especially those encountered in the area of
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image processing (for example hyperspectral imaging [22][23], computer vision [24][25], biomedical image

processing [26][27] or functional magnetic resonance imaging (fMRI) for brain mapping [28][29], etc.). It is

the reason why it has given rise to numerous nonnegative CPD algorithms (see [30] or [21] for example for an

overview of those NTF algorithms).

If nonnegativity constraints are sufficient on known simulated models, sometimes they may not be for the

correct estimation of latent variables in case of noise, model errors or real experimental data (i.e. unknown

mixtures of an unknown number of compounds possibly corrupted by noise). When dealing with complicated

scenarios, most algorithms are unable to identify the relevant components, leaving the end-user to decide which

components have a chemical meaning. To automate decisions,algorithms can be helped to recover more reliable

components. This is achieved by the use of additional information or constraints. These are the reasons why we

are concerned with possibly sparse loading matrices and/ormuch more continuous than discontinuous loading

factors. We will address these issues with the help of the addition of penalty/regularization functions. The

counterpart is that the cost functions that have to be considered are not necessarily convex and sometimes

are even non differentiable making their optimization moredifficult. The introduction of constraints may also

involve a higher computing time and a reduced convergence speed.

To properly address the problem of tensor factorizations subject to certain constraints, we suggest, here, to

consider a Block Coordinate Variable Metric Forward-Backward (BC-VMFB) approach [31] where the forward

stage consists of a gradient step and the backward stage consists of a proximal step. This algorithm could

thus also be called a Block Coordinate Proximal Gradient algorithm. The term “variable metric” means that

a preconditioning is used. The aim of preconditioning is to increase the convergence rate. Such an approach

has already been successfully used in the case of sparse non Negative Matrix Factorization (NMF) problems i)

without preconditioning and the resulting algorithm is denoted by PALM (for Proximal Alternating Linearized

Minimization) [32] and ii) with preconditioning [33] (but we notice that in this case the authors were using an

alphabet of known spectra for the endmembers). An unpreconditioned version has been proposed for third order

tensor decompositions in [34], where both CPD and Tucker decomposition have been studied. NTF problem has

also been solved recently in [35] using an accelerated projection gradient based algorithm. Finally, we recall

that BC-VMFB approaches can be seen as a special case of blockalternating Majorize-Minimize approaches.

MM approaches [36] offer a rigorous and flexible framework toproperly address the problem of penalized

non-negative third order CPD since they are applicable to a large class of cost functions while remaining quite

easy to implement.

This article is organized as follows: after a brief introduction, the notations are given and some recalls about

constrained optimization are performed in Section II. We focus more specifically on proximity operators and

block-coordinate forward-backward methods. This generalframework is then used to tackle the problem of the
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penalized nonnegative canonical polyadic decomposition of third order tensors in Section III. To that aim, the

model and the objective functions that are considered in this case are first introduced. Then, it is shown how the

CPD problem can be integrated into the variational approaches framework. The gradient matrices are recalled

and the preconditioning matrices that will be used are provided. Finally, algorithms devoted to the problem

of CPD under different constraints can be derived. In Section IV, computer simulations are performed in the

specific context of 3D fluorescence spectroscopy. Both simulated and real experimental data are considered. The

obtained results illustrate the interest and the good behavior of the proposed algorithm for such applications.

The suggested algorithm is also compared to other existing approaches. Finally, a conclusion is drawn and

perspectives are delineated.

Notations: in this article, scalars, vectors, matrices andtensors are denoted by lower case (e.g.x), bold lower

case (e.g. a), bold upper case (e.g.A) and calligraphic (e.g. T ) letters, respectively.R stands for the set of

real numbers,R+ stands for the set of real nonnegative numbers andN for the set of natural numbers. The

domain ofR is denoted bydomR: it is the set of values for which the functionR is defined.‖ · ‖, ‖ · ‖F and

‖ · ‖1 are respectively the norm, the Frobenius norm and theℓ1-norm.ΠC is the projector onto a closed subset

C, whereas〈·, ·〉 is the inner product. The inverse of a matrix is denoted by(·)−1, its transpose by(.)⊤. The

outer product of vectors is denoted by◦, ⊙ stands for the Khatri-Rao product,⊘ for the Hadamard division

between two matrices and� for the Hadamard product between two matrices. The matrix trace is denoted by

trace(.) andDiag(., . . . , .) is a diagonal matrix whose diagonal elements are those givenin arguments.

II. T HEORETICAL BACKGROUND

A. Context

A way to address inverse problems is to formulate them under avariational approach. This means that we seek

a solution to an optimization problem and more precisely to aminimization problem in which the involved

functional to be minimized often consists of two terms: one linked to the noise properties, named “data fidelity

term” and another one linked toa priori information on the target solution, named “regularization” [37]. The

minimization problem can thus be expressed as

minimize
x∈RL

F(x)︸ ︷︷ ︸
Fidelity

+ R(x)︸ ︷︷ ︸
Regularization

. (1)

Concerning the data fidelity term (here denoted byF), one may choosee.g., in relation to the noise statistics that

may corrupt the data, a quadratic term (linked to a Gaussian noise) or a Kullback-Leibler divergence (linked to a

Poisson noise). The regularizationR can aim at enforcing the solution sparsity possibly in a transformed domain

(e.g.wavelet transform, Fourier Transform, time-frequency domain, etc.) [38] or at favoring a piecewise smooth

behavior (Total-Variation). It can also model some hard constraints such as, for example, a range constraint or

October 25, 2016 DRAFT



6

more precisely, a nonnegativity constraint. In this article,F andR are assumed to satisfy assumptionsH1 and

H2 stated as follows.

H1: F andR are proper2 lower semi-continuous functions3.

H2: F is differentiable with aβ-Lipschitz gradient4 on the domaindomR and its gradient is denoted by

∇F(x). In other words it means thatF is sufficiently regular.

These technical assumptions play a prominent role in the algorithm’s convergence proof.

In Problem (1), the regularization termR(x) may be split in a sum ofJ terms, leading to

R(x) =

J∑

j=1

Rj(x) (2)

where for allj = 1, . . . , J , Rj : R
L → ]−∞,+∞] satisfiesH1 andH3.

H3: Rj is assumed to be bounded from below by an affine function, and its restriction to its domain is

continuous.

This allows to consider simultaneously variousa priori on the solution (e.g.sparsity, nonnegativity, regularity,

and so on).

Instead of performing the optimization on the whole set of unknowns at once, it is sometimes fruitful (either

because of the intrinsic structure of the data, or performance issues or high size of the dataset) to compute updates

and consider regularization on smaller sets of unknowns (called blocks in which the unknowns are stored5).

The optimization is then performed on one block at a time. Thedifferent blocks are inspected according to

a certain scanning rule, but after a given number of iterations all the blocs must have been swept. Such an

idea is also used in randomization or stochastic optimization [39][40] to be able to tackle the computational

problems that occur when large scale datasets are processed. It can also be interesting if local instead of global

constraints have to be enforced. If data blocks are denoted by x
(j), we thus havex = (x(j))1≤j≤J and each

block belongs toRLj where
∑J

j=1 Lj = L. The regularization term thus becomes

R(x) =
J∑

j=1

Rj(x
(j)) (3)

where for allj = 1, . . . , J , Rj : R
Lj → ]−∞,+∞] satisfiesH1 andH3.

2which means thatdomF anddomR are non empty.

3F (resp.R) is lower-semicontinuous atx ∈ R
L if, for every sequence(xi)i∈N ∈ R

L, limi→+∞ ‖xi − x‖ = 0 ⇒ F(x) ≤

lim inf F(xi) (resp.R(x) ≤ lim inf R(xi)).

4which means that∀(x,y) ∈ (domF)2, ‖∇F(x)−∇F(y)‖ ≤ β ‖F(x)−F(y)‖ whereβ ∈ ]0,+∞[ (β is called the Lipschitz

constant)

5In the case of the CPD problem, we will see in the next section, that one “natural” partitioning of the unknowns is the one provided

by the factor matrices themselves (such a partitioning is usedin all popular alternate algorithms (ALS, HALS, fast HALS, etc.)), but other

subsets of unknowns could be used
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At this stage, it should be mentioned that:

1) the resulting functional to be minimized (Eqs. (1)-(3)) is often non differentiable and is sometimes not

convex which makes the minimization problem difficult to solve,

2) regarding the blocks, a strategy to scan them has to be adopted. Indeed, they can be checked either i)

randomly, ii) cyclically or iii) quasi-cyclically, makingsure to check each block at least once regularly.

These different scanning strategies play a role in the algorithm convergence proof but also in the algorithm

convergence rate.

In this work, we will use a block alternating minimization method based on proximal gradient steps as described

here after. Indeed, the Block Coordinate Variable Metric Forward-Backward algorithm (BC-VMFB) [31], [41]

allows to tackle the general minimization problem described by Eqs. (1)-(3) and additionally the convergence

to a critical point is guaranteed. Furthermore, the introduction of preconditioners can help to accelerate the

convergence. Before describing the algorithm, we now briefly review the notion of proximity operators.

B. An introduction to proximity operators

We mainly work, here, with functionsϕ satisfyingH1 (also denoted byϕ ∈ Γ0(R)). Their proximity operator

[42] is defined as

proxϕ : R→ R : v 7→ argmin
u∈R

1

2
‖u− v‖

2
+ ϕ(u), (4)

whereargmin means the position at which the function is minimum. The proximity operator can be viewed as

a generalization of the projection operator. Indeed, whenϕ is the indicator functionιC of a nonempty closed

convex subsetC of R, i.e. it takes on the value0 in C and+∞ in R \ C, proxιC reduces to the projector

ΠC onto C. Explicit forms of this operator are known for numerous functions ϕ ∈ Γ0(R) [43][37][44]. Of

particular interest in this work is the proximity operator of the ℓ1-norm function. More precisely, letα > 0,

and setϕ : R→ R : ξ 7→ α|ξ| (where| · | means the absolute value). Then, for everyξ ∈ R,

proxϕ ξ = sign(ξ)max{|ξ| − α, 0} with sign(ξ) =





+1 if ξ > 0

−1 if ξ < 0

0 if ξ = 0

(5)

wheremax{·, ·} means the maximum of the two values given in argument. The proximity operator of theℓ1-

norm function reduces to a soft thresholding operation. Another example of interest is the proximity operator

of the (squared)ℓ2-norm function. More precisely, letα > 0, and setϕ : R→ R : ξ 7→ α|ξ|2. Then, for every

ξ ∈ R,

proxϕ ξ =
ξ

2α+ 1
. (6)
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More recently, some authors [45] introduced the notion of proximity operators associated with a Symmetric

Positive Definite (SPD) matrixP that is considering the metric induced byP in the definition of the proximity

operator. First, we recall that∀x ∈ R
L, ‖x‖2

P
= 〈x,Px〉, where 〈·, ·〉 is the inner product. The proximity

operator of a functionϕ ∈ Γ0(R
L) associated with a SPD matrixP is defined as [45]

proxP,ϕ : R
L → R

L : v 7→ arg min
u∈RL

1

2
‖u− v‖

2
P
+ ϕ(u). (7)

Note that ifP reduces to the identity matrix, then the definition (7) of theproximity operator associated with

a SPD matrix reduces to the classical definition of the proximity operator given in (4).

C. Block-Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm

A proximal algorithm based on proximity operators associated with a SPD matrixP [31] is presented here.

The considered minimization problem reads

minimize
x∈RL

F(x) +

J∑

j=1

Rj(x
(j)). (8)

where, as aforementioned,F is smooth, satisfiesH1, as well as each functionRj : R
Lj → ]−∞,+∞] for all

j = 1, . . . , J which additionally satisfyH3.

The optimization problem defined in (8) can be solved using a Block-Coordinate Variable Metric Forward-

Backward (BC-VMFB) algorithm whose principle is summarized below in Algorithm 1.

Algorithm 1 Block-Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm.

1: Let x0 ∈ domR, k ∈ N andγk ∈]0,+∞[ // Initialization step

2: for k = 0, 1, ... do // k-th iteration of the algorithm

3: Let jk ∈ {1, ..., J} // Processing of block numberjk (chosen, here, according to a quasi cyclic rule)

4: Let Pjk(xk) be a SPD matrix // Construction of the preconditionerPjk(xk)

5: Let ∇jkF(xk) be the Gradient // Calculation of Gradient

6: x̃
(jk)
k = x

(jk)
k − γkPjk(xk)

−1∇jkF(xk) // Updating of blockjk according to a Gradient step

7: x
(jk)
k+1 ∈ proxγ−1

k
Pjk

(xk),Rjk

(
x̃
(jk)
k

)
// Updating of blockjk according to a Proximal step

8: x
j̄k
k+1 = x

j̄k
k where j̄ = {1, ..., J} \ {j} // Other blocks are kept unchanged

9: end for

We can see that it consists mainly of two steps:

➊ the computation of the gradient ofF (more precisely a partial gradient w.r.t. the chosen blockj (or jk

if it is considered at thek − th iteration of the algorithm (see Algorithm 1)),

➋ the computation of the proximity operator of eachRj (j ∈ {1, . . . , J}) associated to the metricP.
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It is important to notice that if the proximal stage➋ (ensuring regularization and/or hard constraints) is removed,

the algorithm goes back to an alternating preconditioned gradient method. The preconditioning matrix enables

to accelerate the algorithm.

Finally, it has been proven that the convergence of this algorithm is guaranteed under assumptions [31] that are

recalled in Appendix.

III. A PPLICATION TO THEPENALIZED NONNEGATIVE TENSORFACTORIZATION PROBLEM

Due to our application in 3D fluorescence spectroscopy, we now focus on the problem of the penalized

nonnegative CP decomposition. We explain how this problem can be naturally expressed in the form of (8),

justifying the use of the BC-VMFB approach to tackle the CPD problem.

A. Nonnegative Canonical Polyadic Decomposition of third order tensors

The (Canonical) polyadic decomposition consists of decomposing an original tensor into a (minimal) sum of

rank-16 terms. In the case of third order tensor, it reads:

T =

R∑

r=1

ā
(1)
r ◦ ā

(2)
r ◦ ā

(3)
r = [[Ā(1), Ā(2), Ā(3)]], (9)

whereT ∈ R
I1×I2×I3
+ is a nonnegative third order tensor,◦ is the outer product of vectors̄a(n)r (n = 1, . . . , 3)

which are called the loading factors, andā(n)r = (a
(n)
in,r

)in ∈ R
In with in = 1, . . . , In for all n ∈ {1, 2, 3}

and for all r ∈ {1, . . . , R}. The matrixĀ(n) = [ā
(n)
1 , ā

(n)
2 , . . . , ā

(n)

R
] ∈ R

In×R
+ is calledn-th loading matrix.

Denote byT
(n)

In,I−n
∈ R

In×I−n

+ the matrix obtained by unfolding the tensorT in then-th mode where the size

I−n is equal toI1I2I3/In. The previous model can be written in the matrix form as follows

T
(n)

In,I−n
= Ā

(n)(Z
(−n)

)⊤, n ∈ {1, 2, 3} (10)

where

Z
(−1)

= Ā
(3) ⊙ Ā

(2) ∈ R
I−1×R
+ ,

Z
(−2)

= Ā
(3) ⊙ Ā

(1) ∈ R
I−2×R
+ ,

Z
(−3)

= Ā
(2) ⊙ Ā

(1) ∈ R
I−3×R
+ ,

with ⊙ standing for the Khatri-Rao product [46] and(.)⊤ denoting the transpose of a matrix. Solely from an

observationT of T (e.g.T can be a noisy version ofT ), our aim is to estimate the hidden variablesi.e. the

loading matricesĀ(n) for all n = 1, . . . 3. To reach that goal, we are going to express this problem under a

variational approach. It will lead us to a minimization problem of the form given by (8), whose solution will

constitute an estimatêT of T .

6A rank-1 tensor of orderN (resp. 3) is defined as the outer product ofN (resp. 3) vectors.
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B. Proposed approach

The tensor structure naturally leads, in the case of third order (resp.N -th order) tensor, to consider3 (resp.N )

blocks corresponding to the loading matricesA
(1), A(2) andA(3) (resp.A(1), . . ., A(N)). Thus, we propose

to solve the following optimization problem with regularization forA(1), A(2) andA(3)

minimize
A(n)∈RIn×R,n∈{1,2,3}

F(A(1),A(2),A(3))+R1(A
(1)) +R2(A

(2)) +R3(A
(3)). (11)

We opt for a quadratic data fidelity term

F(A(1),A(2),A(3)) =
1

2
‖T − [[A(1),A(2),A(3)]]‖2F =

1

2
‖T

(n)
In,I−n

−A
(n)

Z
(−n)⊤‖2F (12)

and the penalization terms
(
Rn(A

(n))
)
n∈{1,2,3}

are defined by

Rn(A
(n)) =

In∑

in=1

R∑

r=1

ρn(a
(n)
inr

) ∀n ∈ {1, 2, 3} (13)

where the loading matrices are defined element wise asA
(n) = (a

(n)
inr

)(in,r)∈{1,...,In}×{1,...,R} and where

ρn(ω) =




α(n)|ω|π

(n)

if η
(n)
min ≤ ω ≤ η

(n)
max

+∞ otherwise
(14)

andα(n) ∈]0,+∞[, π(n) ∈ N
∗, η(n)min ∈ [−∞,+∞[ and η

(n)
max ∈ [η

(n)
min,+∞]. This shows that, in the example

developed in this article, the regularization parameters are chosen block dependent but are constant within a

block (in our case a block will correspond to a loading matrixbut other splittings could have been chosen).

Then, the minimization can be performed using Algorithm 1 with J = 3 (i.e. considering3 blocks namely

A
(1),A(2) andA

(3)). At the convergence (i.e. afterkmax iterations), the algorithm will provide estimations

Â
(n) of loading matrices̄A(n) for all n ∈ {1, 2, 3}.

As mentioned in the previous Section, algorithm 1 requires to compute the partial gradient matrices ofF

with respect toA(n) for all n = 1, . . . , 3 but also the proximity operators of each regularization term
(
Rn(A

(n))
)
n∈{1,2,3}

associated to the metricP(n).

We recall that the gradient matrices ofF with respect toA(n) for all n = 1, . . . , 3, are defined as

∇nF(A
(1),A(2),A(3)) = −(T

(n)
In,I−n

−A
(n)

Z
(−n)⊤)Z(−n). (15)

In Algorithm 1, the gradient matrix∇nF(A
(1)[k],A(2)[k],A(3)[k]) is replaced by a more compact notation

∇n[k] wherek stands for the iteration step.

Another key point is to derive good preconditioners. Inspired by [47] and [33], we generalized the precondi-

tioners proposed in [33] (dedicated to NMF) to the case of NTFproblems. To this end, we adopted a similar
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approach using then-th mode unfolding of the tensor given in (10) (i.e. a matrix form of the NTF problem).

The majorant functionQ involved in the algorithm’s convergence proof (see (23) of Appendix) writes

Qn(A
(n)|A(1)[k],A(2)[k],A(3)[k]) = F(A(1)[k],A(2)[k],A(3)[k]) + trace((A(n) −A

(n)[k])⊤∇n[k]) (16)

+
1

2
trace((A(n) −A

(n)[k])⊤(P(n)[k] � (A(n) −A
(n)[k]))), ∀n ∈ {1, 2, 3},

where� denotes the Hadamard product between two matrices andP
(n)[k] is a compact notation standing for

P
(n)(A(1)[k], A(2)[k],A(3)[k]).

The matrixP for the n-th block arising in (16) can be defined as follows

P
(n)(A(1),A(2),A(3)) = A

(n)(Z(−n)⊤
Z

(−n))⊘A
(n), ∀n ∈ {1, 2, 3}, (17)

where⊘ denotes the Hadamard division between two matrices.

Finally, the proximity operator associated with each(Rn)n∈{1,2,3} and corresponding to the computation of

proxγ[k]−1P(n)[k],Rn
(Ã(n)[k]) still has to be delineated. To rigorously define it, we need tovectorize the data7,

that is

• Let define each element of the preconditioner matrixP
(n)[k] in (17) as(p(n)i [k])i∈{1,...,RIn} and let define

the diagonal matrix̃P(n)[k] as P̃(n)[k] = Diag(p
(n)
1 [k], ..., p

(n)
RIn

[k]),

• Let Ã(n)[k] be stored in a vector̃a(n)[k] ∈ R
RIn .

Then, the computation ofproxγ[k]−1P(n)[k],Rn
(Ã(n)[k]) consists in computingprox

γ[k]−1P̃(n)[k],Rn
(ã(n)[k])

whose definition is given in (7).

The regularization being separable and given the shape of the preconditioning matrices̃P(n)[k], proximity

operator can be expressed as

(∀y = (y(i))i∈{1,...,RIn} ∈ R
RIn) proxγ[k]−1P(n)[k],Rn

(y) =
(
prox

γ[k]−1p
(n)
i

[k],ρn
(y(i))

)
i∈{1,...,RIn}

.

(18)

For all i ∈ {1, ..., RIn}, we have [48](∀υ ∈ R)

prox
γ[k]−1p

(n)
i

,ρn
(υ) = min

{
η(n)max,max

{
η
(n)
min, proxγ[k]α(n)(p

(n)
i

[k])−1| . |π
(n) (υ)

}}
(19)

[Fig. 1 about here.]

The proximity operator ofρn is illustrated in Fig. 1 for fixed parameter valuesα(n) = 2 and[η(n)min, η
(n)
max] = [0, 4].

We see that the positivity constraint is applied (negative values are projected to 0) but also that the maximum

valueη(n)max is respected. Furthermore, when theℓ1-norm is considered, we recognize the thresholding rule (up

7Note that this data vectorization is not applied in practice: for the implementation elementwise operations are performed thus avoiding

memory issues.
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to 2 which is the value of the regularization parameterα(n) chosen here) which enforces data sparsity. Note

that when theℓ2-norm is considered, this is no longer the case.

For all the simulations that will be performed in the next section, we have consideredπ(n) ∈ {1, 2} (the

proximity operator whenπ(n) = 1 (resp. whenπ(n) = 2) is recalled in Eq. (5) (resp. Eq. (6)). Regularization

parameterα(n) and range constraint parameters being simulation dependent, they will be defined in the numerical

simulation section.

C. Derived algorithm

At this stage, all the elements involved in the BC-VMFB algorithm suggested, here, to solve the penalized

nonnegative CPD problem have been defined. The general scheme of the resulting penalized nonnegative CPD

algorithm is depicted in Fig. 2.

[Fig. 2 about here.]

Finally, we notice that we have chosen to update the blocks according to a quasi cyclic rule. It means that

the block that is updated is chosen randomly according to a uniform law (see [17] for the importance of

randomization in the choice of blocks). Moreover, we make sure that each block is chosen at least once every

K iterations (withK = 100).

IV. N UMERICAL SIMULATIONS

In this section dedicated to computer simulations, we are going to show the interest of the BC-VMFB algorithm

in the context of environmental data analysis. The method isapplied to both synthetic (i.e.numerically simulated)

3D fluorescence spectroscopy data and raw data coming from anexperiment of water quality monitoring. In

order to better assess the performance of the suggested algorithm and to be able to compare it with other

algorithms of the literature, two error indices are first introduced.

A. Error measures

When simulated data are used, the true tensor rankR is known, while the tensor rank that will be used for

the model and thus for the decomposition is denoted byR̂. In the case of simulated data, we can consider the

two error indices that have already been used in [49] insteadof the reconstruction error8 ‖T − T̂ ‖2F which

is classically used with real experimental data. The first error index, denoted byE1, measures the error of

estimation but discarding the over-factoring part. The second one, denoted byE2 measures the error induced

by the over-factoring part only. The purpose is to evaluate more accurately the quality of the results. In this case,

8or the normalized reconstruction error
‖T −T̂ ‖2F
‖T ‖2

F

, whereT̂ stands for the reconstructed(estimated)tensor.
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the inherent indetermination of the CPD problem (i.e. permutation and scaling ambiguities) also have to be taken

into account: if we apply to a given solution a permutation oftheir loading factors or an appropriate scaling of

their loading matrices, the result is also a solution and defines the same decomposition. Therefore, permutation

and scaling-independent measurements of the errors are necessary. For3-way tensors, the loading matrices

A
(n), for all n ∈ {1, . . . , 3}, are first normalized in such a way that each column ofA

(n) for n ∈ {1, ..., 2} is

normalized inl1 and each column ofA(3) carries the weight.

The estimated normalized solutions of the CPD algorithm aredenoted byÂ(n). Then, theR̂ column vectors of

Â
(n) are permuted such that its Euclidean distance toA

(n) is minimized. The permuted normalized estimates

are denoted bŷA(n)
σ while Â

(n)
σ (1 : R) means that only itsR first columns are considered andσ is the

considered permutation. Thus, the estimation errorE1 is defined by

E1(σ) =

∑3
n=1 ‖Â

(n)
σ (1 : R)−A

(n)‖1∑3
n=1 ‖A

(n)‖1
(20)

⇒




E1 = minσ E1(σ) or E1dB = 10 log10(E1)

σopt = argminσ E1(σ)

(21)

The over-factoring errorE2 concerns the remaining componentsR+1, . . . , R̂ in (9). It is computed as follows

E2 = ‖

R̂∑

r=R+1

a
(1)
σopt,r

◦ a(2)σopt,r
◦ a(3)σopt,r

‖1 or E2dB = 10 log10(E2). (22)

B. Synthetic case

In this section, we illustrate the behavior of the BC-VMFB algorithm on two synthetic data sets: the first

one, is noiseless whereas the second one, is corrupted by a Gaussian noise (with aSNR = 17.6 dB). Here,

the Signal to Noise Ratio (SNR) is defined asSNR = 20 log10
‖T ‖F

‖T −T ‖F
and the noisy data are truncated: all

negative values are set to0. In both cases, the tensor rank,R, is equal to 5, yet, it will be overestimated and

the tensor decomposition will be performed considering that it is equal to 6 (i.e. R̂ = 6). The purpose is to

evaluate the robustness versus noise of the penalized nonnegative CPD algorithm suggested here but also its

ability to overcome model errors. The performance of the proposed algorithm will also be compared with other

algorithms of the literature namely the Bro’sN -way algorithm [50] and the fast HALS algorithm described in

[51].

The studied data sets are built as follows. The tensorsT andT are100×100×100. The excitation and emission

spectra are created using sums of (shifted) density function drawn from a generalized normal distribution and

can be either monomodal or bimodal. They are truncated to ensure the non-negativity of the spectra. The

concentrations are generated according to a uniform law between0 and10.
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For our simulations, regarding the BC-VMFB algorithm, we have used the following parameters:η
(n)
min ≡ ηmin =

2e−16 andη(n)max ≡ ηmax = 1000. The value of the exponentπ(n) is chosen based on the maximum-likelihood

method [52, p. 225] for each block and is equal to1 for n = 1, 2 and to2 for n = 3 in these tests. The step-

sizeγ[k] ≡ γ has been fixed to0.99. Each time, we consider the two following cases: (i) with regularization

parameterα(n) ≡ α = 0.05 for all blocks (constant within blocks) and (ii) without regularization i.e. with

α = 0 for all blocks.

The estimated Fluorescence Emission Excitation Matrices (FEEM) are displayed in Fig. 3 (resp. Fig. 5) in the

noiseless case (resp. in the noisy case for aSNR = 17.6 dB). The estimated emission and excitation spectra

as well as the estimated concentrations are provided in Fig.4 (resp. Fig. 6) in the noise-free case (resp. noisy

case for aSNR = 17.6 dB).

[Fig. 3 about here.]

[Fig. 4 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

The estimation errorE1 is found to be equal to−15dB (resp.−12.4dB, −11.2dB, −12.5dB) and the over-

factoring errorE2 is found to be equal to−409dB (resp.25.6dB, −409dB, 30.6dB) in the penalized noiseless

case (resp. non penalized noiseless case, penalized noisy case and non penalized noisy case). In the noisy case,

the final SNR is 32.3dB (resp.31.3dB) in the penalized case (resp. non penalized case). We clearly observe

that the penalized version of the BC-VMFB algorithm accurately estimates the loading matrices (even in the

presence of noise) but is also able to overcome the problem ofoverfactoring by detecting the absence of a sixth

component. In both noise-free and noisy cases, the regularized version of the BC-VMFB algorithm outperforms

its non regularized version.

Finally, in the noisy, overestimated case, we compare the BC-VMFB algorithm ((i) with regularizationα = 0.05

and (ii) without regularization) with two other classical NTF algorithms of the literature ((iii) the Bro’sN -way

algorithm under non-negative constraints and (iv) the fastHALS algorithm under non-negative constraints) both

in terms of performance and computational cost per iteration. To that aim, we draw100 initial values randomly

from a uniform distributionU(0, 1). The following stopping conditions were used: (a) the number of iterations

is either equal tokmax = 105 or (b) the relative diminishing rate of the quadratic criterion ‖F [·+l]−F [·]‖
F [·] is

smaller than a given tolerancetol = 10−8. Here l is equal to1 for (iii) the N -way algorithm and (iv) the

fast HALS algorithm, while for versions (i) and (ii) of the BC-VMFB algorithm, l corresponds to a block of

500 iterations. The obtained performance versus the differentinitializations are given in Fig. 7 (they are sorted
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in ascending order). The error indexE1 is displayed at the top of this figure while the (over-factoring) error

indexE2 is displayed at bottom of this figure. The computation time per iteration for each algorithm is given

in Table I.

[Fig. 7 about here.]

[TABLE 1 about here.]

We observe that in most cases (98% of the initializations that were tested here), the penalized version of the

BC-VMFB algorithm outperforms all the other algorithms (nofake compound is estimated as it is clearly

emphasized by the over-factoring error indexE2), yet the counterpart is that, in the noisy case, the performance

measured thanks to the error indexE1 is slightly below to that obtained with the other algorithmsamong which

is the non penalized version of the BC-VMFB algorithm (the observed small difference is due to the fact that

the noise is only distributed on existing compounds since non existing compounds are enforced to be equal to

0). In the remaining cases (2% of the tested initializations), the algorithm exhibits thesame behavior as the

other algorithms: the chosen initializations seem to be toobad to be able to recover the true solution. We also

notice in Table I that the BC-VMFB algorithm remains competitive regarding the computation time (since the

fast-HALS and this implementation of the Bro’sN -way algorithm can be regarded as the fastest algorithms of

the literature).

C. Experimental case: a water monitoring campaign

In this section, we now test our penalized BC-VMFB method on areal experimental data set [53]. In this

experiment, the data were acquired automatically every 3 minutes, during a 10 days monitoring campaign

performed on water extracted from an urban river. The size ofthe baseline data set is:36× 111× 2594. The

excitation wavelengths range from 225nm to 400nm with a 5nm bandwidth, whereas the emission wavelengths

range from 280nm to 500nm with a 2nm bandwidth. The FEEM have been pre-processed using the Zepp’s

method [54] implying that all remaining negative values were set to0 (but it should have negligible impact on

the overall analysis, since on random chosen FEEMs, less than 10 negative points out of 3996 were found (i.e.

≃ 0.25%). One example of the FEEM before and after pre-processing isshown in Fig. 8.

[Fig. 8 about here.]

Additional pre-processing were applied: the data corresponding to the first 6 emission slits were removed. The

first 1200 FEEMs (data acquired during the first six days) werediscarded too and 2 other FEEMs (corresponding

to the 1737th and 1738th acquisition time) were suppressed due to noticeable acquisition problems. Finally,

the size of data that are processed in this example is36 × 105 × 1392. Different tensor ranks (i.e. different
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estimates of the number of chemical compounds) were tested:R̂ = 4/5/6 but the obtained results are presented

in two cases only (̂R = 4 and 6). Concerning the penalized BC-VMFB method, a regularization π(n) ≡ π = 1

was applied on all loading matrices. When searching forR̂ = 4 components (resp.̂R = 6 components), the

following valueα(n) ≡ α = 2 × 104 (resp.α = 8 × 103) were chosen for the regularization parameters for

each loading factors. The reconstructed Fluorescence Excitation-Emission Matrices are displayed on the top of

Fig. 9 for R̂ = 4 compounds and at its bottom for̂R = 6 compounds. Results obtained with our method are

given on the left part of this figure whereas there are given onits right part for the Bro’sN -way algorithm.

The (scaled) reconstructed concentrations are given on Fig. 10 (on its left with our method and on its right

with the Bro’sN -way algorithm). The (scaled) reconstructed concentrations for R̂ = 4 compounds are given

on the top of Fig. 10 and on its bottom for̂R = 6 compounds.

[Fig. 9 about here.]

[Fig. 10 about here.]

Finally on Fig. 11, we compare the (scaled) estimated excitation and emission spectra obtained when we

assume that̂R = 4 compounds are present, using either our BC-VMFB algorithm with different values of the

regularization parameters ((b)α = 3× 104, (c) α = 2× 104 and (d)α = 104) or the Bro’sN -way algorithm

with nonnegativity constraints ((a)). Whereas, on Fig. 12, the same study is performed considering thatR̂ = 6,

(for the BC-VMFB algorithm: (b)α = 8× 103, (c) α = 7× 103 and (d)α = 6× 103).

[Fig. 11 about here.]

[Fig. 12 about here.]

Thanks to the obtained results, we are now able to conclude that only four fluorescent chemical compounds

were present in the studied data set (the FEEM of the first and fourth estimated compounds in the caseR̂ = 6

are nearly null as well as their concentrations, see the leftbottom part of the Fig. 9 and the left bottom part of

the Fig. 10). During this experiment, a contamination with diesel oil [55] appeared 7 days after the beginning

of the monitoring campaign: it can be clearly observed on theFig. 9. In fact, before the1480th sample,

one single fluorescent chemical compound was mainly present(compound labeled (1) in the casêR = 4, or

compound labeled (6) in the casêR = 6) whereas two others occur in trace amounts (compounds labeled (3)

and (4) in the casêR = 4, or compounds labeled (2) and (3) in the caseR̂ = 6). After this time, a fourth

compound occurs (compound labeled (2) in the caseR̂ = 4, or compound labeled (5) in the casêR = 6) and

we also observe an important increase of the concentrationsof the two aforementioned compounds. Moreover,

the concentration curves of those three compounds seem to exhibit a similar behavior. Even if our estimated
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spectra, concentrations and FEEM are sometimes close to those estimated with the Bro’sN -way algorithm, they

remain indeed different (it is particularly true for the concentrations and the FEEM). The main advantage of

the BC-VMFB algorithm is that thanks to penalization the estimated spectra and concentrations are stable with

respect to the tested ranks. It is not the case with theN -way algorithm. With our method, we were also able to

decide that only four components were effectively present.We also observe the influence of the regularization

parameters on the obtained results: the smallest regularization does not seem to lead to satisfying results in the

case of 6 sought compounds, whereas the highest one is not adapted in the case of 4 sought compounds.

V. CONCLUSION

In this article, we addressed the problem of tensor factorizations subject to certain constraints (nonnegativity,

sparsity, regularity, etc.). We tackled this problem within the broader framework of Block Coordinate Variable

Metric Forward-Backward (BC-VMFB) approaches. The main interest of BC-VMFB approaches is to offer a

clear theoretical and mathematical framework, since the conditions under which the sequence generated by this

family of algorithms converges to a critical point of the objective function have been established in previous

works of other authors. Through this general framework, we were able to derive a new penalized nonnegative

third order CPD algorithm. In our case, the forward stage consists of a gradient step and the backward stage

consists of a proximal step. Moreover, a preconditioning isalso introduced in order to increase the convergence

rate. Attention must still be drawn to the fact that some regularization parameters have to be set and that they may

have an impact on the obtained results: that is why differentstrategies regarding the choice of the regularization

terms that are added have been investigated. Computer simulations have been provided in order to enlighten

the effectiveness and the robustness of the proposed approach in the applicative context of 3D fluorescence

spectroscopy. Both simulated and real experimental data have been considered. Even if we only took advantage

of a very small part of the enormous potential of the BC-VMFB approaches on those examples, we were able

to illustrate some of their very interesting properties: reliability, robustness versus noise, good performance

despite model errors and relative quickness. On real experimental data, identifying relevant components with

traditional CPD algorithms is not always so straightforward, leaving the end-user to decide which components

have a chemical meaning. The family of algorithms presentedhere can help to automate decisions. We focused

on third order tensors but we have already extended these approaches to tensors of higher orders. The problem

of possible missing data under the BC-VMFB framework will beaddressed in future works.

APPENDIX

The BC-VMFB algorithm’s convergence theorem reads
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Theorem A.1. [31, Theorem 3.1] Assume that Assumptions A.1 hold and thatF +R satisfies the Kurdyka-

Łojasiewicz inequality9 [57], [58]. Then the sequence(xk)k∈N converges to a critical point̂x of F + R.

Moreover,(F(xk) +R(xk))k∈N is a non increasing sequence converging toF(x̂) +R(x̂).

It is guaranteed under the following assumptions [31]

Assumption A.1. 1) Let k ∈ N and let jk ∈ {1, ..., J}. The quadratic function defined as:

For everyx(jk) ∈ R
jk ,

Qjk(x
(jk)|xk) = F(xk) +

〈
x
(jk) − x

(jk)
k ,∇jkF(xk)

〉
+

1

2
‖x(jk) − x

(jk)
k ‖2Pjk

(xk)
(23)

is a majorant function of the restriction ofF to its jk-th block ondomRjk , i.e., for everyx(jk) ∈ domRjk ,

F(x
(1)
k , . . . ,x

(jk−1)
k ,x

(jk)
k ,x

(jk+1)
k , . . . ,x

(J)
k ) ≤ Qjk(x

(jk)|xk) (24)

Moreover, the eigenvalues ofPjk(xk) are lower and upper bounded by positive values.

2) Blocks(jk)k∈N are updated according to an essentially cyclic rule, i.e., there existsK ≥ J such that,

for everyk ∈ N, {1, . . . , J} ⊂ {jk, . . . , jk +K − 1}.

3) One of the following statements holds:

a) There exists(γ̃1, γ̃2) ∈]0,+∞[2 such that, for everyk ∈ N, γ̃1 ≤ γk ≤ 1− γ̃2.

b) For everyj ∈ {1, . . . , J}, Rj is a convex function and there exists(γ̃1, γ̃2) ∈]0,+∞[2 such that,

for everyk ∈ N, γ̃1 ≤ γk ≤ 2− γ̃2.
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(Ã(n)[k])

Other blocks

unchanged

at kmatricesÂ(n)
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Fig. 3. The FEEM of reference (left column) and the FEEM reconstructed by the BC-VMFB algorithm in two cases: without regularization
(middle column) and with regularizationα = 0.05 (right column) in the case of noiseless data

October 25, 2016 DRAFT



FIGURES 26

0

0.05

0.1
Excitation spectra

0

0.02

0.04
Emission spectra

0

50

100
Concentrations

0

0.02

0.04

0

0.02

0.04

0

100

200

0

0.05

0

0.01

0.02

0

50

100

0

0.02

0.04

0

0.01

0.02

0

100

200

0

0.02

0.04

0

0.05

0

100

200

300 350 400 450 500
0

0.05

λ
em

300 350 400 450 500
0

0.02

0.04

λ
ex

0 50 100
0

5

10

Experiments
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Fig. 9. Estimated FEEM using the penalized BC-VMFB algorithm(left), and Bro’sN -way algorithm (right). CasêR = 4 (top), case
R̂ = 6 (below)
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Fig. 10. Estimated concentrations, using the penalized BC-VMFB algorithm (left), using Bro’sN -way algorithm (right). CasêR = 4
(top), caseR̂ = 6 (bottom)
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Fig. 11. Estimated emission and excitation spectra using Bro’s N -way with nonnegativity constraints (a) and BC-VMFB with different
regularization parameters (b, c, d), caseR̂ = 4
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Fig. 12. Estimated emission and excitation spectra using Bro’s N -way with nonnegativity constraints ((a) solid red line) and BC-VMFB
with different regularization parameters ((b) dashed blue line, (c) dash-dot green line, (d) dotted magenta line), caseR̂ = 6
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TABLES 36

Elapsed time (s) BC-VMFB without penalty BC-VMFB with penalty N-way fast HALS

For 50 iterations 0.2 0.2 11 0.5
Noisy case To reach stopping conditions 102 75 8 8

(actual number of iterations) (48500) (36500) (43) (1856)
(SNR,E1, E2) dB (31.3, -12.5, 30.6) (32.7, -11.2, -409) (31.3, -12.5, 30.6) (31.3, -12.5, 30.6)

Noiseless case To reach stopping conditions 202 74 80 3.7
(actual number of iterations) (100000) (36500) (838) (308)

(RRE,E1, E2) dB (-75.1,-12.4,25.6) (-44.7, -15, -409) (-127.9,-8.7, 31.7) (-63.9, -6.1, 31.7)

TABLE I
COMPUTATION TIME COMPARISON OFBC-VMFB IN TWO CASES: WITH OR WITHOUT PENALTY, WITH N-WAY AND FAST HALS USING

THE SAME INITIAL VALUE IN NOISY DATA AND IN NOISELESS DATA .
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