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Abstract

In this article, we address the problem of tensor factorization subjectrtaiteonstraints. We focus on the
Canonical Polyadic Decomposition (CPD) also known as Parafac. Téedt of this multi-linear decomposition
coupled with 3D fluorescence spectroscopy is now well established inellde Hf environmental data analysis,
biochemistry and chemistry. When real experimental data (possibtypted by noise) are processeie actual

rank of the “observed” tensor is generally unknown. Moreover, rwtiee amount of data is very large, this
inverse problem may become numerically ill-posed and consequenthtdanlve. The use of proper constraints
reflecting some a priori knowledge about the latent (or hidden) travkedbles and/or additional information
through the addition of penalty functions can prove very helpful in estirpatiore relevant components rather
than totally arbitrary ones. The counterpart is that the cost functionsheénat to be considered can be non
convex and sometimes even non differentiable making their optimizatior mhifficult, leading to a higher
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computing time and a slower convergence speed. Block alternating @bripproaches offer a rigorous and
flexible framework to properly address that problem since they arbcapfe to a large class of cost functions
while remaining quite easy to implement. Here, we suggest a new blocklinate variable metric forward-
backward method which can be seen as a special case of Majorize4lgBn{MM) approaches to derive a new
penalized nonnegative third order CPD algorithm. Its interest, efficianbystness and flexibility are illustrated
thanks to computer simulations carried out on both simulated and reairepeal 3D fluorescence spectroscopy
data.

Index Terms

Constrained optimization - Proximal approaches - Block alternating minfimiza Nonnegative tensor factor-
ization (NTF) - 3D fluorescence spectroscopy

|. INTRODUCTION

Acquired data sets in numerous modern applicatamesnow often organized into multi-way arrays of numerical
values because they are obtained thanks to ever more pearib@equisition, data transmission and massive
data storage systems. This is typically the case for thetsglkorimetry [1] which is targeted in this article.
This analysis technique is generally used to study the csitipp of solutions in order to detect the fluorescent
chemical species (also called fluorophores) that are pre®ece a coordinate basis is fixed, a tensor of order
N can always be represented as an organi¥eday array of numerical values. Since tensors and muléain
algebra constitute a rigorous and natural mathematiceddveork for the formulation of many models and for
the resolution of the problems that come along, they hava tieesubject of a growing interest in recent years.
The order of a tensor corresponds to the dimensionality @fatinay needed to representiie(the number of
indices required to reference the elements of the array)higarticle, we will focus on third order tensors,
yet, the approach suggested here can be generalized ta kdgiser orders. Then, the tensors can be processed
which means either directly compressed or analyzed usingat gariety of tensor decompositions.

The most popular one certainly remains the low tensor ramom@osition also known by a number of other
names among which are Canonical Polyadic DecompositiorD{;F-Candecomp [2], CanD or Parafac (for
PARAllel FACtor analysis) [3].

This factorization method constitutes an informative aochpact model which has proven to be relevant in many
application fields, including those in which we are most ries¢ed here, namely chemistry and chemometry
[4][5], process analysis/monitoring [6] and environmémtata mining [7][8][9]. The Polyadic Decomposition
consists of decomposing a tensor into a sunkaink-1 tensors (withR suitably large). When this numbét

of rank-1 terms is minimal, the decomposition is referreédahe Canonical Polyadic Decomposition dhds

1t is the acronym that we will use in the rest of this article
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called therank of the tensor. However one of the main difficulties faced bgcfical fluorescence spectroscopy
applications, is that the number of fluorophores is genetalknown and thus the actual rank of the “observed”
tensor (.e. the tensor of the acquired Fluorescence Emission Exaitd¥latrices, FEEM) is mostly unknown
making the estimation of reliable fluorescent chemical commpls more difficult. Several works have been
dedicated to the tensor rank estimation problem (see CONs@@tncy DIAgnostic or CORCONDIA [10] and
Threshold-CORCONDIA [11] to cite a few), however this pratl is still hard and open. Consequently, we
are interested here in new penalized methods ensuring #isitypof the estimated loading matrices and thus
insensitive to overestimation problems.

The CPD can also be regarded as a generalization of the nSimgxilar Value Decomposition (SVD) to tensors
or as a special case of another tensor decomposition knovineaSucker decomposition [12] by restricting
the core tensor to be “diagonal”’. Another interesting atlvge of this decomposition is its uniqueness under
mild conditions [13][14][15], involving that on perfectigultilinear, noiseless models of known rank, the use
of constraints is not necessary.

When real experimental data are processed, there might bespdhe constituent vectors of tlbading matrices
(also known as thiwading factorsor vectorg can be close and the observed system can be dynamic (appeara
or disappearance of compounds). The actual rank of the \wxseensor is unknown and may be difficult to
estimate. Moreover, when the amount of data becomes veyg, Ithis inverse problem may become numerically
ill-posed [16] and very difficult to solve [17][18]. The usd proper constraints reflecting sonse priori
knowledge about the latent or hidden variables that arekdéchcan be very helpful for the “unsupervised”
estimation of reliable components. The whole processiragncban be rendered more robust and easier to use
which is interesting when real-time monitoring or autondatentrol systems are considered. Problems such as
the automatic detection of water pollution could be tackigdhis kind of approach.

Therefore, in the context of the 3D fluorescence spectrgsemplysis [19][20][7] (assuming the absence of
errors coming either from the pre-processing used to renRaman and Rayleigh scattering or possible bad
settings of the devices) nonnegativity constraints shbald¢onsidered given the physical nature of the hidden
variables. In fact, in this particular application (see][2dr a reminder of the links that exist between 3D
fluorescence spectroscopy and CPD), the loading vectard §ba physical quantities intrinsically nonnegative
since they are related to emission and excitation speclacancentrations through the samples acquired at
different times in monitoring applications (or locationsH for other kind of applications). The rank of the
CP model that will approximate the “observed” tensor is elpdinked to the number of fluorescent chemical
compounds that are present in the studied samples.

The nonnegativity of the considered datasets as well as rteeod the quantities that have to be estimated

is also crucial for numerous other leading applications 8DC especially those encountered in the area of
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image processing (for example hyperspectral imaging §&][computer vision [24][25], biomedical image
processing [26][27] or functional magnetic resonance Imgag@fMRI) for brain mapping [28][29], etc.). It is
the reason why it has given rise to numerous nonnegative gridithms (see [30] or [21] for example for an
overview of those NTF algorithms).

If nonnegativity constraints are sufficient on known sinedamodels, sometimes they may not be for the
correct estimation of latent variables in case of noise, eh@drors or real experimental datae( unknown
mixtures of an unknown number of compounds possibly coedifty noise). When dealing with complicated
scenarios, most algorithms are unable to identify the eglegomponents, leaving the end-user to decide which
components have a chemical meaning. To automate decisilgosithms can be helped to recover more reliable
components. This is achieved by the use of additional infdion or constraints. These are the reasons why we
are concerned with possibly sparse loading matrices amadmh more continuous than discontinuous loading
factors. We will address these issues with the help of thetiaddof penalty/regularization functions. The
counterpart is that the cost functions that have to be censitlare not necessarily convex and sometimes
are even non differentiable making their optimization mdifficult. The introduction of constraints may also
involve a higher computing time and a reduced convergeneedsp

To properly address the problem of tensor factorizationgest to certain constraints, we suggest, here, to
consider a Block Coordinate Variable Metric Forward-Baakuv(BC-VMFB) approach [31] where the forward
stage consists of a gradient step and the backward stageéstsoof a proximal step. This algorithm could
thus also be called a Block Coordinate Proximal Gradienorittyn. The term “variable metric” means that
a preconditioning is used. The aim of preconditioning isrtoréase the convergence rate. Such an approach
has already been successfully used in the case of sparseeyatiw Matrix Factorization (NMF) problems i)
without preconditioning and the resulting algorithm is died by PALM (for Proximal Alternating Linearized
Minimization) [32] and ii) with preconditioning [33] (but @/ natice that in this case the authors were using an
alphabet of known spectra for the endmembers). An unprétoned version has been proposed for third order
tensor decompositions in [34], where both CPD and Tuckeomposition have been studied. NTF problem has
also been solved recently in [35] using an accelerated giiofe gradient based algorithm. Finally, we recall
that BC-VMFB approaches can be seen as a special case of dlteckating Majorize-Minimize approaches.
MM approaches [36] offer a rigorous and flexible frameworkptoperly address the problem of penalized
non-negative third order CPD since they are applicable trgelclass of cost functions while remaining quite
easy to implement.

This article is organized as follows: after a brief introtiom, the notations are given and some recalls about
constrained optimization are performed in Section Il. Weuk more specifically on proximity operators and

block-coordinate forward-backward methods. This genkeaahework is then used to tackle the problem of the
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penalized nonnegative canonical polyadic decompositfathiod order tensors in Section Ill. To that aim, the
model and the objective functions that are considered sdase are first introduced. Then, it is shown how the
CPD problem can be integrated into the variational appresdramework. The gradient matrices are recalled
and the preconditioning matrices that will be used are pledi Finally, algorithms devoted to the problem
of CPD under different constraints can be derived. In Sacti§ computer simulations are performed in the
specific context of 3D fluorescence spectroscopy. Both sitedland real experimental data are considered. The
obtained results illustrate the interest and the good hieha¥ the proposed algorithm for such applications.
The suggested algorithm is also compared to other exisgipgoaches. Finally, a conclusion is drawn and
perspectives are delineated.

Notations: in this article, scalars, vectors, matrices @mdors are denoted by lower caseg(x), bold lower
case €.g.a), bold upper casee(g. A) and calligraphic €.9. 7) letters, respectivelyR stands for the set of
real numbersR, stands for the set of real nonnegative numbers Hridr the set of natural numbers. The
domain of R is denoted bylomR: it is the set of values for which the functidR is defined.,| - ||, || - || and

|- ||, are respectively the norm, the Frobenius norm and/theorm. Il is the projector onto a closed subset
C, whereas(-, -) is the inner product. The inverse of a matrix is denoted hy*, its transpose by.)". The
outer product of vectors is denoted by ® stands for the Khatri-Rao product; for the Hadamard division
between two matrices ard for the Hadamard product between two matrices. The matisetis denoted by

trace(.) andDiag(.,...,.) is a diagonal matrix whose diagonal elements are those givanguments.

Il. THEORETICAL BACKGROUND
A. Context

A way to address inverse problems is to formulate them undariational approach. This means that we seek
a solution to an optimization problem and more precisely tmiaimization problem in which the involved
functional to be minimized often consists of two terms: dn&dd to the noise properties, named “data fidelity
term” and another one linked @ priori information on the target solution, named “regularizati{8v]. The

minimization problem can thus be expressed as

minimize F(x) + R(x) . 1)
x€ERL ~—— ——
Fidelity Regularization

Concerning the data fidelity term (here denotedA)y one may choose.g, in relation to the noise statistics that
may corrupt the data, a quadratic term (linked to a Gaussi&gehor a Kullback-Leibler divergence (linked to a
Poisson noise). The regularizati®hcan aim at enforcing the solution sparsity possibly in agfamed domain

(e.g.wavelet transform, Fourier Transform, time-frequency dometc.) [38] or at favoring a piecewise smooth

behavior (Total-Variation). It can also model some hardstints such as, for example, a range constraint or
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more precisely, a nonnegativity constraint. In this agtict andR are assumed to satisfy assumptidhsand
H. stated as follows.

H,: F andR are propet lower semi-continuous functiofs

H,: F is differentiable with as-Lipschitz gradient* on the domaindomR and its gradient is denoted by
VF(x). In other words it means thak is sufficiently regular.

These technical assumptions play a prominent role in therigihgn’s convergence proof.

In Problem (1), the regularization terfd(x) may be split in a sum of terms, leading to

J
R(x) =) R;(x) 2)
j=1
where for allj = 1,...,J, R, : Rl — ]—o0, +-00] satisfiesH; andHj.

Hs: R; is assumed to be bounded from below by an affine function, &destriction to its domain is
continuous.

This allows to consider simultaneously varicagpriori on the solution €.g. sparsity, nonnegativity, regularity,
and so on).

Instead of performing the optimization on the whole set dinowns at once, it is sometimes fruitful (either
because of the intrinsic structure of the data, or perfooaassues or high size of the dataset) to compute updates
and consider regularization on smaller sets of unknownlettélocksin which the unknowns are stordd
The optimization is then performed on one block at a time. dliferent blocks are inspected according to
a certain scanning rule, but after a given number of itenatiall the blocs must have been swept. Such an
idea is also used in randomization or stochastic optinomaf89][40] to be able to tackle the computational
problems that occur when large scale datasets are procdssad also be interesting if local instead of global
constraints have to be enforced. If data blocks are denagted®, we thus havex = (x());<;<; and each

block belongs tdR’ Wherez;.]:1 L; = L. The regularization term thus becomes

J
R(x) =D R;(x") 3)
i=1
where for allj = 1,...,J, R; : Rl — |00, +oc] satisfiesH; andHs.
2which means thatlomF anddomR are non empty.
3F (resp.R) is lower-semicontinuous at € R if, for every sequencéx;);ey € RE, lim; 400 [|x; — x| = 0 = F(x) <

lim inf F(x;) (resp.R(x) < liminf R(x;)).
4which means thaV¥(x,y) € (domF)2, |[VF(x) — VF(y)| < B|IF(x) — F(y)| wheres € ]0,+oo[ (8 is called the Lipschitz
constant)

5In the case of the CPD problem, we will see in the next sectioat, one “natural” partitioning of the unknowns is the onevided
by the factor matrices themselves (such a partitioning is usedl popular alternate algorithms (ALS, HALS, fast HALSc¢#8J, but other
subsets of unknowns could be used
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At this stage, it should be mentioned that:

1) the resulting functional to be minimized (Egs. (1)-(3)dften non differentiable and is sometimes not
convex which makes the minimization problem difficult to\an|
2) regarding the blocks, a strategy to scan them has to betetiojmdeed, they can be checked either i)
randomly, ii) cyclically or iii) quasi-cyclically, makingure to check each block at least once regularly.
These different scanning strategies play a role in the #@kgorconvergence proof but also in the algorithm
convergence rate.
In this work, we will use a block alternating minimization thed based on proximal gradient steps as described
here after. Indeed, the Block Coordinate Variable Metriewsod-Backward algorithm (BC-VMFB) [31], [41]
allows to tackle the general minimization problem desatibg Egs. (1)-(3) and additionally the convergence
to a critical point is guaranteed. Furthermore, the intotign of preconditioners can help to accelerate the

convergence. Before describing the algorithm, we now lyriefView the notion of proximity operators.

B. An introduction to proximity operators

We mainly work, here, with functiong satisfyingH; (also denoted by € T'4(R)). Their proximity operator
[42] is defined as
.1 2
prox,: R — R: vHargglel]giﬂu—vH + o(u), 4)

wherearg min means the position at which the function is minimum. The pnity operator can be viewed as
a generalization of the projection operator. Indeed, whedn the indicator function of a nonempty closed
convex subseC' of R, i.e. it takes on the valu® in C' and+oo in R\ C, prox, , reduces to the projector
Il onto C. Explicit forms of this operator are known for numerous fiilmgs ¢ € T'g(R) [43][37][44]. Of
particular interest in this work is the proximity operatdrtbe ¢;-norm function. More precisely, lei > 0,

and setp: R — R: £ — «|¢| (where| - | means the absolute value). Then, for every R,

41 if€>0
prox,, § = sign(§) max{[{| — «,0} with sign(§) =4¢ -1 if£<0 (5)
0 ife=0

wheremax{-, -} means the maximum of the two values given in argument. Theimpity operator of the/;-
norm function reduces to a soft thresholding operation.tA@oexample of interest is the proximity operator
of the (squaredy,-norm function. More precisely, let > 0, and setp: R — R: £ — «a|¢|?. Then, for every

£ eR,
¢
200+ 1°

(6)

prox, § =
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More recently, some authors [45] introduced the notion @ixjmity operators associated with a Symmetric
Positive Definite (SPD) matri® that is considering the metric induced Byin the definition of the proximity
operator. First, we recall thatx € RE, ||x||fg = (x,Px), where(-,-) is the inner product. The proximity

operator of a functionp € I'y(R¥) associated with a SPD matrR is defined as [45]
.1 2
Proxp , RE — RE: v»—)arg‘frel]%nL§Hu—VHP+<p(u). @

Note that if P reduces to the identity matrix, then the definition (7) of greximity operator associated with

a SPD matrix reduces to the classical definition of the prayimperator given in (4).

C. Block-Coordinate Variable Metric Forward-Backward (B@1FB) algorithm

A proximal algorithm based on proximity operators assedavith a SPD matrixP [31] is presented here.

The considered minimization problem reads

J
minimize F(x) + Y R;(xY)). (8)

RL
x€E =1

where, as aforementioned; is smooth, satisfiebl;, as well as each functioR,; : R — ]—o0, +oc] for all
j=1,...,J which additionally satisfyH;.
The optimization problem defined in (8) can be solved usinglaiBCoordinate Variable Metric Forward-

Backward (BC-VMFB) algorithm whose principle is summadzgelow in Algorithm 1.

Algorithm 1 Block-Coordinate Variable Metric Forward-Backward (BGA¥B) algorithm.
1: Let xg € domR, k € N and~;, €]0,+occo[ /I Initialization step

2: for k=0,1,... do /I k-th iteration of the algorithm

3 Letjre{1,..,J} [/l Processing of block numbey, (chosen, here, according to a quasi cyclic rule)
4:  LetPj, (xx) be a SPD matrix // Construction of the preconditiond?;, (x)

5. Let V;, F(xx) be the Gradient // Calculation of Gradient

6: 5(,(3’“) = x,(fk) — Py, (xx) "'V, F(xx) I/ Updating of blockj, according to a Gradient step

7 x,(jji € PIOX,1p . (x,) R, (ig’“)) /' Updating of blockj; according to a Proximal step

8 x5, =x;" wherej ={1,..,J}\{j}  // Other blocks are kept unchanged

9: end for

We can see that it consists mainly of two steps:

O the computation of the gradient of (more precisely a partial gradient w.r.t. the chosen blpdkr jj,
if it is considered at thé& — th iteration of the algorithm (see Algorithm 1)),

O the computation of the proximity operator of ea®) (j € {1,...,J}) associated to the metrie.
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It is important to notice that if the proximal stage(ensuring regularization and/or hard constraints) is nedo
the algorithm goes back to an alternating preconditionedlignt method. The preconditioning matrix enables
to accelerate the algorithm.

Finally, it has been proven that the convergence of thisrdhgu is guaranteed under assumptions [31] that are

recalled in Appendix.

I11. APPLICATION TO THEPENALIZED NONNEGATIVE TENSORFACTORIZATION PROBLEM

Due to our application in 3D fluorescence spectroscopy, we faxus on the problem of the penalized
nonnegative CP decomposition. We explain how this problam lee naturally expressed in the form of (8),
justifying the use of the BC-VMFB approach to tackle the CRbbtem.

A. Nonnegative Canonical Polyadic Decomposition of thirdeo tensors

The (Canonical) polyadic decomposition consists of deamsimg an original tensor into a (minimal) sum of

rank-1 terms. In the case of third order tensor, it reads:

T=> alloa®oal® =AM A® AG), 9)
r=1
whereT e R11*%2*1s is a nonnegative third order tenserjs the outer product of vectos™ (n = 1,...,3)
which are called the loading factors, aafl”) = (ai:?,,.)in € R» with 4, = 1,...,1I, for all n € {1,2,3}
and for allr € {1,...,R}. The matrixA™ = [a{” a{", ... ,5%’)] € Rf:*ﬁ is calledn-th loading matrix.
Denote by’T(In)L € R{:XL" the matrix obtained by unfolding the tensprin the n-th mode where the size

I_, is equal tol,I;13/1,. The previous model can be written in the matrix form as feflo

T =AWE ). ne(2.3) o
where
77V = A® o A® e RI7F,
Z7Y = A® o AW e RI2E
Z7Y = A® o AW e R-07F

with ® standing for the Khatri-Rao product [46] afig T denoting the transpose of a matrix. Solely from an
observation7 of 7 (e.g.7 can be a noisy version 6f), our aim is to estimate the hidden variables the
loading matricesA (™) for all n = 1,...3. To reach that goal, we are going to express this problemruade
variational approach. It will lead us to a minimization piei of the form given by (8), whose solution will

constitute an estimatg of 7.

6A rank-1 tensor of ordelV (resp. 3) is defined as the outer product™f(resp. 3) vectors.
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B. Proposed approach

The tensor structure naturally leads, in the case of thidéio¢resp.V-th order) tensor, to considér(resp.NV)
blocks corresponding to the loading matric&$s"), A and A® (resp.A™), ..., A(Y)). Thus, we propose

to solve the following optimization problem with regulaation for A, A and A®)

minimize FAY AP A LR (AD) 4+ Ry(AP) + R3(A®)). (11)
A eRInXR ne{1,2,3}

We opt for a quadratic data fidelity term

1 1 n W (—m) T
FAW AL AO) = 2T - [AD, A AP = J T, - AZE G (12)
and the penalization tern(gzn(A(")))ne{1 ,.3) are defined by
I, R
Ra(A™)=3"N"p.(a"))  Vne{1,2,3} (13)
in=1r=1

where the loading matrices are defined element wisA @3 = (al(.:ﬂ)(imr)e{lﬁ__”]n}X{L__”R} and where

a(n)‘w‘ﬂ(n) if 77(") <w S ngla)x

puw) = e (14)

400 otherwise

and a(™ €0, +oof, 7™ € N*, n" € [—o0, +oo[ and iy € [n")., +-00]. This shows that, in the example
developed in this article, the regularization parameteeschosen block dependent but are constant within a
block (in our case a block will correspond to a loading mabis other splittings could have been chosen).
Then, the minimization can be performed using Algorithm thwi = 3 (i.e. considering3 blocks namely
AW AR and A®). At the convergence (i.e. aftdr,,., iterations), the algorithm will provide estimations
A™ of loading matricesA (™ for all n € {1,2,3}.

As mentioned in the previous Section, algorithm 1 requiesdmpute the partial gradient matrices &f

with respect toA(™) for all n = 1,...,3 but also the proximity operators of each regularizatiormter
(R”(A(n)))ne{l,2,3} associated to the metrie(").
We recall that the gradient matrices &f with respect toA(™ for all n = 1,...,3, are defined as

V. F(AM AR AB)) = —(Tgn) _ A(ﬂ)z(-ﬂf)z(-ﬂ)_ (15)

nyd—n

In Algorithm 1, the gradient matris7,, F (AW [k], A [k], A®)[k]) is replaced by a more compact notation
V.|k] wherek stands for the iteration step.
Another key point is to derive good preconditioners. Inspiby [47] and [33], we generalized the precondi-

tioners proposed in [33] (dedicated to NMF) to the case of Nféblems. To this end, we adopted a similar
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approach using the-th mode unfolding of the tensor given in (10)e{ a matrix form of the NTF problem).

The majorant functior@ involved in the algorithm’s convergence proof (see (23) @pAndix) writes
Q. (A™AM K], AP K], AP [k]) = F(AW[K], AP [k], AP [K]) + trace((A™ — AM[k]) TV, [k]) (16)
+ %trace((A(”) —ADEDTPWE @A™ — AM[K), Vn e {1,2,3},

where@ denotes the Hadamard product between two matricesPdfk] is a compact notation standing for
PO (AW K], AP K], A [K]).

The matrixP for the n-th block arising in (16) can be defined as follows
P(n)(A(l),A(Q),A(fﬁ)) - A(n)(z(*n)Tz(*n)) o AM, Vn e {1,2,3}, (17)

where® denotes the Hadamard division between two matrices.
Finally, the proximity operator associated with eg@®,,),c(1,2,33 and corresponding to the computation of
PIOX. (4]~ 1p(m) [k], R, (A(™[k]) still has to be delineated. To rigorously define it, we neeueictorize the data
that is

« Let define each element of the preconditioner maRi®) [k] in (17) as(pz(.") [k])iequ,....r1,y and let define

the diagonal matriP ") [k] as P [k] = Diag(p\"™ [k], ..., ps,. [K]),

« Let A k] be stored in a vectod(™[k] € RFIn,
Then, the computation 0frox. -1 pwm .=, (A™[k]) consists in compUtiNGrox_ i1 15 iy 2, (A" [K])
whose definition is given in (7).
The regularization being separable and given the shapeeopteconditioning matrice® ™ [k], proximity

operator can be expressed as

(Vy = (y(i))ie{l,u.}Rln} € RRI”) PTOX, (k] - 1P (M) [k], R, (y) = (proxv[k]*lpgn)[k],pn (y(i))>i€{1,...,Rln} :
(18)

For alli € {1,..., RI,,}, we have [48](Vv € R)

prOX’y[k]*lpgn),pn (’U) = min {771{[?21))(7 max {771(:1117 proxry[k]a(")(pgn) [k])=1]. ‘7\'(”") (U) }} (19)

[Fig. 1 about here.]

The proximity operator op,, is illustrated in Fig. 1 for fixed parameter value$) = 2 and[nfﬁl, nﬁ?gx] = [0, 4].
We see that the positivity constraint is applied (negatiakies are projected to 0) but also that the maximum

n)

valuenﬁnax is respected. Furthermore, when thenorm is considered, we recognize the thresholding rule (up

"Note that this data vectorization is not applied in practioe the implementation elementwise operations are perforrnes avoiding
memory issues.
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to 2 which is the value of the regularization paramet&t) chosen here) which enforces data sparsity. Note
that when thels-norm is considered, this is no longer the case.

For all the simulations that will be performed in the nexttieg we have considered™ < {1,2} (the
proximity operator whenr(™) = 1 (resp. whenr(™) = 2) is recalled in Eq. (5) (resp. Eq. (6)). Regularization
parametery(™ and range constraint parameters being simulation deperitiep will be defined in the numerical

simulation section.

C. Derived algorithm

At this stage, all the elements involved in the BC-VMFB altjon suggested, here, to solve the penalized
nonnegative CPD problem have been defined. The general schiethe resulting penalized nonnegative CPD

algorithm is depicted in Fig. 2.
[Fig. 2 about here.]

Finally, we notice that we have chosen to update the blocksrding to a quasi cyclic rule. It means that
the block that is updated is chosen randomly according to itoram law (see [17] for the importance of
randomization in the choice of blocks). Moreover, we make= ghat each block is chosen at least once every
K iterations (with /X' = 100).

IV. NUMERICAL SIMULATIONS

In this section dedicated to computer simulations, we anmeggim show the interest of the BC-VMFB algorithm
in the context of environmental data analysis. The methagjied to both synthetig.€. numerically simulated)

3D fluorescence spectroscopy data and raw data coming froex@eriment of water quality monitoring. In
order to better assess the performance of the suggestedttaly@and to be able to compare it with other

algorithms of the literature, two error indices are firstaaiuced.

A. Error measures

When simulated data are used, the true tensor rik known, while the tensor rank that will be used for
the model and thus for the decomposition is denoted%byn the case of simulated data, we can consider the
two error indices that have already been used in [49] instefattie reconstruction errdr{|7 — 7|2, which

is classically used with real experimental data. The firsbreindex, denoted byE;, measures the error of
estimation but discarding the over-factoring part. Theosdcone, denoted b, measures the error induced

by the over-factoring part only. The purpose is to evaluabeenaccurately the quality of the results. In this case,

7)\ 2 ~
8or the normalized reconstruction err%, where7 stands for the reconstructgestimated)ensor.
F
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the inherent indetermination of the CPD problara.(permutation and scaling ambiguities) also have to be taken
into account: if we apply to a given solution a permutatiorttafir loading factors or an appropriate scaling of
their loading matrices, the result is also a solution andchdsfthe same decomposition. Therefore, permutation
and scaling-independent measurements of the errors aesssy. For3-way tensors, the loading matrices
A™ foralln e {1,...,3}, are first normalized in such a way that each colummét) for n € {1,...,2} is
normalized inl; and each column oA carries the weight.

The estimated normalized solutions of the CPD algorithmdareoted by@m). Then, theR column vectors of
A(™ are permuted such that its Euclidean distance {® is minimized. The permuted normalized estimates
are denoted by&(,") while Kf,”)(l : R) means that only itsR first columns are considered andis the
considered permutation. Thus, the estimation eEoris defined by

3 IAYY (1 R) — A,

Ei(0) = 3 (20)
> on—1 1Ay
E; = min, El(O') or Eigg = 101Og10(E1)
N (21)
Oopt = arg min, E; (o)
The over-factoring erroE, concerns the remaining componeiiis-1, . . . ,IA% in (9). It is computed as follows
R
Ex=[ > al) cal?) oal) | or Eyp=10log(E2). (22)

r=R+1

B. Synthetic case

In this section, we illustrate the behavior of the BC-VMFRy@iithm on two synthetic data sets: the first

one, is noiseless whereas the second one, is corrupted byissi@a noise (with &NR = 17.6 dB). Here,

the Signal to Noise RatioSNR) is defined asSNR = 201log;, \%T%F and the noisy data are truncated: all
negative values are set € In both cases, the tensor rank, is equal to 5, yet, it will be overestimated and
the tensor decomposition will be performed considering thé& equal to 6 ie. R = 6). The purpose is to
evaluate the robustness versus noise of the penalized gathree CPD algorithm suggested here but also its
ability to overcome model errors. The performance of theopsed algorithm will also be compared with other
algorithms of the literature namely the Brag-way algorithm [50] and the fast HALS algorithm described in
[51].

The studied data sets are built as follows. The tengoand7 are100 x 100 x 100. The excitation and emission
spectra are created using sums of (shifted) density fumatfawn from a generalized normal distribution and
can be either monomodal or bimodal. They are truncated tarenthe non-negativity of the spectra. The

concentrations are generated according to a uniform lawdsst0 and 10.
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For our simulations, regarding the BC-VMFB algorithm, wedased the following pr:xrameterr#rﬁz1 = Nmin =
2¢~16 and nr(&)x = nmax = 1000. The value of the exponent(™) is chosen based on the maximum-likelihood
method [52, p. 225] for each block and is equalltfor n = 1,2 and to2 for n = 3 in these tests. The step-
sizey[k] = v has been fixed t0.99. Each time, we consider the two following cases: (i) withulegization
parametera™ = o = 0.05 for all blocks (constant within blocks) and (ii) without ragrizationi.e. with

a = 0 for all blocks.

The estimated Fluorescence Emission Excitation MatriE€EM) are displayed in Fig. 3 (resp. Fig. 5) in the
noiseless case (resp. in the noisy case fGN& = 17.6 dB). The estimated emission and excitation spectra
as well as the estimated concentrations are provided ind={gesp. Fig. 6) in the noise-free case (resp. noisy
case for 8SNR = 17.6 dB).

[Fig. 3 about here.]
[Fig. 4 about here.]
[Fig. 5 about here.]
[Fig. 6 about here.]

The estimation erroE; is found to be equal te-15dB (resp.—12.4dB, —11.2dB, —12.5dB) and the over-
factoring errorE, is found to be equal te-409dB (resp.25.6dB, —409dB, 30.6dB) in the penalized noiseless
case (resp. non penalized noiseless case, penalized r@sisyand non penalized noisy case). In the noisy case,
the final SNR is 32.3dB (resp.31.3dB) in the penalized case (resp. non penalized case). Weycldaserve
that the penalized version of the BC-VMFB algorithm accelsaestimates the loading matrices (even in the
presence of noise) but is also able to overcome the problemwesfactoring by detecting the absence of a sixth
component. In both noise-free and noisy cases, the regethviersion of the BC-VMFB algorithm outperforms
its non regularized version.

Finally, in the noisy, overestimated case, we compare the/BIEB algorithm ((i) with regularizationy = 0.05

and (ii) without regularization) with two other classical' N algorithms of the literature ((iii) the Bro’a/-way
algorithm under non-negative constraints and (iv) the #88LS algorithm under non-negative constraints) both
in terms of performance and computational cost per itemafio that aim, we draw00 initial values randomly
from a uniform distributiort/(0, 1). The following stopping conditions were used: (a) the nurrdfaterations

is either equal tdk,,.x = 10° or (b) the relative diminishing rate of the quadratic cmerw is
smaller than a given tolerancel = 10~%. Here! is equal tol for (iii) the N-way algorithm and (iv) the
fast HALS algorithm, while for versions (i) and (ii) of the B@€MFB algorithm, [ corresponds to a block of

500 iterations. The obtained performance versus the diffarétializations are given in Fig. 7 (they are sorted
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in ascending order). The error ind@; is displayed at the top of this figure while the (over-faatgji error
index E, is displayed at bottom of this figure. The computation time iggration for each algorithm is given
in Table 1.

[Fig. 7 about here.]
[TABLE 1 about here.]

We observe that in most case¥s of the initializations that were tested here), the pendlizersion of the
BC-VMFB algorithm outperforms all the other algorithms (fake compound is estimated as it is clearly
emphasized by the over-factoring error index), yet the counterpart is that, in the noisy case, the perdoca
measured thanks to the error indBx is slightly below to that obtained with the other algorithemaong which

is the non penalized version of the BC-VMFB algorithm (thesedved small difference is due to the fact that
the noise is only distributed on existing compounds sinae eéxdsting compounds are enforced to be equal to
0). In the remaining caseg% of the tested initializations), the algorithm exhibits the@me behavior as the
other algorithms: the chosen initializations seem to beb@ad to be able to recover the true solution. We also
notice in Table | that the BC-VMFB algorithm remains comtei regarding the computation time (since the
fast-HALS and this implementation of the Bra’-way algorithm can be regarded as the fastest algorithms of

the literature).

C. Experimental case: a water monitoring campaign

In this section, we now test our penalized BC-VMFB method orea experimental data set [53]. In this
experiment, the data were acquired automatically every Butes, during a 10 days monitoring campaign
performed on water extracted from an urban river. The sizéhefbaseline data set i86 x 111 x 2594. The
excitation wavelengths range from 225nm to 400nm with a 5amdiwvidth, whereas the emission wavelengths
range from 280nm to 500nm with a 2nm bandwidth. The FEEM haenipre-processed using the Zepp'’s
method [54] implying that all remaining negative values &vset to0 (but it should have negligible impact on
the overall analysis, since on random chosen FEEMSs, lesslifBanegative points out of 3996 were found (i.e.

~ 0.25%). One example of the FEEM before and after pre-processisdsvn in Fig. 8.
[Fig. 8 about here.]

Additional pre-processing were applied: the data corredjmy to the first 6 emission slits were removed. The
first 1200 FEEMSs (data acquired during the first six days) wisearded too and 2 other FEEMs (corresponding
to the 1737th and 1738th acquisition time) were suppressedta noticeable acquisition problems. Finally,

the size of data that are processed in this examph®is 105 x 1392. Different tensor ranksi.e. different
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estimates of the number of chemical compounds) were teﬁedA/B/G but the obtained results are presented
in two cases only g = 4 and 6). Concerning the penalized BC-VMFB method, a regaition 7™ = 7 = 1
was applied on all loading matrices. When searchingHot= 4 components (resp? = 6 components), the
following value o™ = o = 2 x 10* (resp.«w = 8 x 103) were chosen for the regularization parameters for
each loading factors. The reconstructed Fluorescencddiirci-Emission Matrices are displayed on the top of
Fig. 9 for R = 4 compounds and at its bottom fdt = 6 compounds. Results obtained with our method are
given on the left part of this figure whereas there are givert®might part for the Bro'sN-way algorithm.
The (scaled) reconstructed concentrations are given onlBigon its left with our method and on its right
with the Bro’s N-way algorithm). The (scaled) reconstructed concentnatior B = 4 compounds are given

on the top of Fig. 10 and on its bottom fét = 6 compounds.

[Fig. 9 about here.]

[Fig. 10 about here.]

Finally on Fig. 11, we compare the (scaled) estimated eimitaand emission spectra obtained when we
assume tha? = 4 compounds are present, using either our BC-VMFB algorithith different values of the
regularization parameters ((b) = 3 x 104, (¢) a = 2 x 10* and (d)a = 10%) or the Bro's N-way algorithm
with nonnegativity constraints ((a)). Whereas, on Fig. b2, dame study is performed considering tRat 6,
(for the BC-VMFB algorithm: (b)o = 8 x 103, (¢) o = 7 x 10% and (d)a = 6 x 10?).

[Fig. 11 about here.]
[Fig. 12 about here.]

Thanks to the obtained results, we are now able to concluateathly four fluorescent chemical compounds
were present in the studied data set (the FEEM of the first andH estimated compounds in the cdse- 6
are nearly null as well as their concentrations, see thebtefom part of the Fig. 9 and the left bottom part of
the Fig. 10). During this experiment, a contamination witbsel oil [55] appeared 7 days after the beginning
of the monitoring campaign: it can be clearly observed on Fige 9. In fact, before thel480th sample,
one single fluorescent chemical compound was mainly prgsempound labeled (1) in the cage= 4, or
compound labeled (6) in the cage= 6) whereas two others occur in trace amounts (compoundselat{a)
and (4) in the cas&k® = 4, or compounds labeled (2) and (3) in the cdse= 6). After this time, a fourth
compound occurs (compound labeled (2) in the cse 4, or compound labeled (5) in the cafe= 6) and
we also observe an important increase of the concentratibtisee two aforementioned compounds. Moreover,

the concentration curves of those three compounds seemhtbiteat similar behavior. Even if our estimated
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spectra, concentrations and FEEM are sometimes close e tstimated with the Bro¥ -way algorithm, they
remain indeed different (it is particularly true for the centrations and the FEEM). The main advantage of
the BC-VMFB algorithm is that thanks to penalization thereated spectra and concentrations are stable with
respect to the tested ranks. It is not the case with\heay algorithm. With our method, we were also able to
decide that only four components were effectively preséfe.also observe the influence of the regularization
parameters on the obtained results: the smallest regatfimizdoes not seem to lead to satisfying results in the

case of 6 sought compounds, whereas the highest one is nutedda the case of 4 sought compounds.

V. CONCLUSION

In this article, we addressed the problem of tensor factions subject to certain constraints (nonnegativity,
sparsity, regularity, etc.). We tackled this problem wittlhe broader framework of Block Coordinate Variable
Metric Forward-Backward (BC-VMFB) approaches. The maitetiast of BC-VMFB approaches is to offer a
clear theoretical and mathematical framework, since tmalitions under which the sequence generated by this
family of algorithms converges to a critical point of the etfjive function have been established in previous
works of other authors. Through this general framework, veeenable to derive a new penalized nonnegative
third order CPD algorithm. In our case, the forward stagesisis of a gradient step and the backward stage
consists of a proximal step. Moreover, a preconditioningl$® introduced in order to increase the convergence
rate. Attention must still be drawn to the fact that some lagzation parameters have to be set and that they may
have an impact on the obtained results: that is why diffes&nategies regarding the choice of the regularization
terms that are added have been investigated. Computeratiomd have been provided in order to enlighten
the effectiveness and the robustness of the proposed apphoahe applicative context of 3D fluorescence
spectroscopy. Both simulated and real experimental data been considered. Even if we only took advantage
of a very small part of the enormous potential of the BC-VMHRip@aches on those examples, we were able
to illustrate some of their very interesting propertiediatality, robustness versus noise, good performance
despite model errors and relative quickness. On real axpeital data, identifying relevant components with
traditional CPD algorithms is not always so straightfordydeaving the end-user to decide which components
have a chemical meaning. The family of algorithms preseh&d can help to automate decisions. We focused
on third order tensors but we have already extended theseaghes to tensors of higher orders. The problem

of possible missing data under the BC-VMFB framework will dsidressed in future works.

APPENDIX

The BC-VMFB algorithm’s convergence theorem reads
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Theorem A.l. [31, Theorem 3.1] Assume that Assumptions A.1 hold and #hatR satisfies the Kurdyka-
tojasiewicz inequaliy [57], [58]. Then the sequencéx;).en converges to a critical poink of F + R.

Moreover, (F(xx) + R(xx))ren IS @ non increasing sequence convergingA(x) + R(x).
It is guaranteed under the following assumptions [31]

Assumption A.1. 1) Letk € N and letj, € {1, ..., J}. The quadratic function defined as:
For everyxUx) € Rk,

ij (X(]k)|xk) = ]:(Xk) + <X(]k) B xl(ejk)v ij]:(xk)> + §HX(‘M) - ng)”%ik( (23)

x1)

is a majorant function of the restriction df to its j,-th block ondomR;, , i.e., for everyk(7x) € domR;,,
.7-"(x,(€1)7 .. 7x,(qj’rl)7 x,(cjk), x,(cj’“Jrl)7 .. ,x,(;])) < Qj, (x(j’“)|xk) (24)

Moreover, the eigenvalues &f;, (x;) are lower and upper bounded by positive values.
2) Blocks (jx)ren are updated according to an essentially cyclic rule, i.bgre existsK > J such that,
for everyk € N, {1,...,J} C {ju,...,jx + K —1}.
3) One of the following statements holds:
a) There existg¥1,72) €]0, +o00[? such that, for everys € N, 43 < 4 <1 — Ao.
b) For everyj € {1,...,J}, R; is a convex function and there exigtg, ) €]0,+oo[? such that,
for everyk e N, 4 < v, <2 —s.
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Fig. 2. BC-VMFB algorithm to minimize (11).
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Reference BC-VMFB without penalty BC-VMFB with penalty
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Fig. 3. The FEEM of reference (left column) and the FEEM retmieted by the BC-VMFB algorithm in two cases: without regyigation
(middle column) and with regularizatiom = 0.05 (right column) in the case of noiseless data
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Fig. 4. TheR = 6 emission spectra, excitation spectra and concentratidimated with the BC-VMFB algorithm in two cases: without
regularization and with regularizatiom = 0.05 in the case of noiseless data. In solid red line: the referapectra, in dashed blue line:
BC-VMFB without penalty and in dash-dot green line: BC-VMmBth penalty.
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Reference BC-VMFB without penalty BC-VMFB with penalty
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Fig. 5. The FEEM of reference (left column) and the estimateBNMEising the BC-VMFB algorithm, in two cases: without regi#ation
(middle column) and with regularizatiom = 0.05 (right column) in the noisy case (for 8\NR = 17.6 dB)
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Fig. 6. TheR = 6 estimated spectra by BC-VMFB in two cases: without reguddign and with regularizatioax = 0.05 in the noisy
case (for 8SNR = 17.6 dB). In solid red line: the reference spectra, in dashed hhee the BC-VMFB without penalty and in dash-dot
green line: BC-VMFB with penalty.
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Zepp's method
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Fig. 8. One of the 2594 original FEEM acquired during the namig campaign and the same FEEM after pre-processing thantke t
Zepp's method
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Fig. 9. Estimated FEEM using the penalized BC-VMFB algorit(ieft), and Bro’s N-way algorithm (right). Casdi = 4 (top), case
R = 6 (below)
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Fig. 10. Estimated concentrations, using the penalized BG-8 algorithm (left), using Bro'sN-way algorithm (right). Casd? = 4
(top), caseR = 6 (bottom)

October 25, 2016

DRAFT



FIGURES
Excitation spectra
25
>
20
15
10 Qi
250 300 350 400
15 14
Iy >4
10 £ TN
oo/ )
Ay N
5 \ , - Lo P
1 \ \ \.,.;.o
O s M- L e a0l
250 300 350 400

300

350 400
60 ]
N (a)

40 = ==(b)|
R e © ]

=~ ~ - _ ° (d)
0 N —
250 300 350 400
}\em

10

33

Emission spectra

350 400 450

300 450 500
300 350 400 450 500
7
/;
. |
300 350 400 450 500
A

ex

Fig. 11. Estimated emission and excitation spectra usingsB¥eWway with nonnegativity constraints (a) and BC-VMFB witHfeient

regularization parameters (b, c, d), cdse= 4
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Fig. 12. Estimated emission and excitation spectra usingsB¥oay with nonnegativity constraints ((a) solid red line)daBC-VMFB
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I Computation time comparison of BC-VMFB in two cases: withvathout penalty, with N-way

and fast HALS using the same initial value in noisy data anddiseless data.
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TABLES

36
[ [ Elapsed time (s) | BC-VMFB without penalty | BC-VMFB with penalty | N-way [ fast HALS
For 50 iterations 0.2 0.2 11 0.5
Noisy case To reach stopping condition$ 102 75 8 8
(actual number of iterations (48500) (36500) (43) (1856)
(SNREq, E) dB (31.3, -12.5, 30.6) (32.7, -11.2, -409) (31.3, -12.5, 30.6)| (31.3, -12.5, 30.6)
Noiseless casg To reach stopping conditions 202 74 80 3.7
(actual number of iterations (100000) (36500) (838) (308)

(RRE[E1, E») dB

(-75.1,-12.4,25.6)

(-44.7, -15, -409)

(-127.9,-8.7, 31.7)

(-63.9, -6.1, 31.7)

TABLE |

COMPUTATION TIME COMPARISON OFBC-VMFB IN TWO CASES WITH OR WITHOUT PENALTY, WITH N-WAY AND FAST HALS USING
THE SAME INITIAL VALUE IN NOISY DATA AND IN NOISELESS DATA .
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