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FLOER THEORY FOR LAGRANGIAN COBORDISMS

BAPTISTE CHANTRAINE, GEORGIOS DIMITROGLOU RIZELL, PAOLO GHIGGINI,
AND ROMAN GOLOVKO

Abstract. In this article we define intersection Floer homology for exact
Lagrangian cobordisms between Legendrian submanifolds in the contactisation
of a Liouville manifold, provided that the Chekanov-Eliashberg algebras of
the negative ends of the cobordisms admit augmentations. From this theory
we derive several long exact sequences relating the Morse homology of an
exact Lagrangian cobordism with the bilinearised contact homologies of its
ends. These are then used to investigate the topological properties of exact
Lagrangian cobordisms.
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1. Introduction

Lagrangian cobordism is a natural relation between Legendrian submanifolds,
and it is a crucial ingredient in the definition of the functorial properties of invariants
of Legendrian submanifolds in the spirit of symplectic field theory as introduced by
Eliashberg, Givental and Hofer in [38]. This relation is at the heart of many recent
developments in the study of Legendrian submanifolds and its properties have been
investigated by the authors and many others over the past years.

In the present paper we study rigidity phenomena in the topology of exact La-
grangian cobordisms in the symplectisation of the contactisation of a Liouville man-
ifold. In [40], Eliashberg and Murphy showed that exact Lagrangian cobordisms
are flexible when their negative ends are loose (in the sense of Murphy [57]). On
the contrary, we will show that they become rigid if we restrict our attention to
cobordisms whose negative ends admit augmentations (or more generally finite-
dimensional representations) of their Chekanov-Eliashberg algebras.

In order to study the topology of such cobordisms, we introduce a version of
Lagrangian Floer homology (originally defined for closed Lagrangian submanifolds
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by Floer in [46]) for pairs of exact Lagrangian cobordisms. This construction finds
its inspiration in the work of Ekholm in [31], which gives a symplectic field theory
point of view on wrapped Floer homology of Abouzaid and Seidel from [3].

The definition of this new Floer theory requires the use of augmentations of the
Chekanov-Eliashberg algebras of the negative ends as bounding cochains in order to
algebraically cancel certain “bad” degenerations of the holomorphic curves at the
negative ends of the cobordisms. Bounding cochains have been introduced, in the
closed case, by Fukaya, Oh, Ohta and Ono in [48], while augmentations, which play
a similar role in the context of Legendrian contact homology, have been introduced
by Chekanov in [20].

For a pair of exact Lagrangian cobordisms obtained by a suitable small Hamil-
tonian push-off, our invariant gives rise to various long exact sequences relating the
singular homology of the cobordism with the Legendrian contact homology of its
ends. We then use these long exact sequences to give restrictions on the topology
of exact Lagrangian cobordisms under various hypotheses on the topology of the
Legendrian ends. In the context of generating family homology for Legendrian sub-
manifolds in jet spaces, Sabloff and Traynor in [63] describe exact sequences similar
to ours for cobordisms which admit compatible generating families.

The notion of Lagrangian cobordism between Legendrian submanifolds studied
in this article is (in general) different from the notion of Lagrangian cobordisms
between Lagrangian submanifolds introduced by Arnol’d in [7] and [6] and recently
popularised by Biran and Cornea in [10] and [11]. Lagrangian cobordisms in the
sense of Arnol’d between Lagrangian submanifolds of a symplectic manifold M
are Lagrangian submanifolds of M × C which project to horizontal half-lines of
C outside of a compact set. The main difference between the two theories is that
Arnol’d-type cobordisms do not distinguish between positive and negative ends and
therefore are closer in spirit to the notion of cobordism in classical topology. Despite
the differences, for Lagrangian cobordisms between Legendrian submanifolds with
no Reeb chords, some of the results we obtain resemble some of the results obtained
by Biran and Cornea [10, 11] and Suárez [66].

Remark 1.1. In fact, under the strong assumption that the Legendrian subman-
ifolds Λ± ⊂ (P × R, dz + θ) have no Reeb chords, an exact Lagrangian cobordism
from Λ− to Λ+ inside the symplectisation

(R× P × R, d(et(dz + θ))) ∼= (P × C, dθ ⊕ d(xdy))

can be deformed to yield an exact Lagrangian cobordism between the exact La-
grangian embeddings ΠLag(Λ−),ΠLag(Λ+) ⊂ (P, dθ) in the sense of Arnol’d, and
vice versa. In some sense, these two notions of cobordisms thus coincide in this case.
For readers familiar with the language of [36], this can be explained as follows: one
can go between Lagrangian cobordism in the sense studied here and so-called Morse
cobordisms. The latter are embedded in the case when the Legendrian ends have no
Reeb chords, and they are thus Lagrangian cobordisms in the sense of Arnol’d.

1.1. Main results. Let (P, θ) be a Liouville manifold and (Y, α) := (P ×R, dz+θ)
its contactisation. We consider a pair of exact Lagrangian embeddings Σ0,Σ1 →֒
X , where (X,ω) = (R × Y, d(etα)) is the symplectisation of (Y, α). We assume
that the positive and negative ends of Σi i = 0, 1 are cylindrical over Legendrian
submanifolds Λ−

i and Λ+
i respectively, and thus Σi is a Lagrangian cobordisms

from Λ−
i to Λ+

i ; see Figure 1 for a schematic representation and Section 2 for the
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precise formulation of our geometrical setup. We assume that Σ0 and Σ1 intersect
transversely and that their Legendrian ends are chord-generic in the sense of Section
2.1. The first rigidity phenomena for Lagrangian submanifolds in this setting were
proven by Gromov [51], who showed that there are no closed exact Lagrangian
submanifolds in a symplectisation as above (note that they automatically would
be displaceable). Differently put, this means that an exact Lagrangian cobordism
must have at least one non-empty end.

t Λ+
1 Λ+

0

Σ0

Σ1

Λ−
1 Λ−

0

Figure 1. Two Lagrangian cobordisms inside a symplectisation
R× Y , where the vertical axis corresponds to the R-coordinate.

We denote by R(Λ±
i ) the set of Reeb chords of Λ±

i for i = 0, 1, and byR(Λ±
1 ,Λ

±
0 )

the set of Reeb chords from Λ±
1 to Λ±

0 . Let R be a field of characteristic 2 or, if all
Σi’s and Λ±

i ’s are (relatively) spin, any commutative ring. (See Section 1.1.1.) We
denote by C(Λ±

0 ,Λ
±
1 ) the free R-module spanned by R(Λ±

1 ,Λ
±
0 ).

Remark 1.2. In fact the commutativity of R can be dropped – Chekanov’s lineari-
sation can be generalised to arbitrary rings, and our long exact sequences exist in
this setting as well. See Section 11.2 for more details as well as [18]. However,
we point out that in order to use arguments involving ranks, one must impose ad-
ditional requirements on R, for example commutativity, or finite dimensionality as
an algebra over a field.

We assume that the Chekanov-Eliashberg algebra A(Λ−
i ;R) of Λ−

i admits an
augmentation ε−i over R for i = 0, 1 (see Section 5 for the definitions). It follows
from the results of Ekholm, Honda and Kálmán in [36] that A(Λ+

i ;R) also admits
an augmentation ε+i = ε−i ◦ ΦΣi

, where ΦΣi
: A(Λ+

i ;R) → A(Λ−
i ;R) is the unital

DGA morphism induced by the cobordism Σi. Thus the bilinearised contact co-
homologies LCHε±0 ,ε±1

(Λ±
0 ,Λ

±
1 ) are defined. See Chekanov [20] and Bourgeois and

Chantraine [12] for the notions of linearisation and bilinearisation of a differential
graded algebra.

We denote by CF (Σ0,Σ1) the free R-module spanned by the intersection points
Σ0 ∩ Σ1. In Section 3.3.2 we define the notion of the action of an intersection
point and use it to filter CF (Σ0,Σ1): we denote by CF±(Σ0,Σ1) the submodule
of CF (Σ0,Σ1) generated by intersection points of positive (respectively, negative)
action.
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The main construction in this article provides a differential on the modules
CF±(Σ0,Σ1), leading to homology groups HF±(Σ0,Σ1) of Floer type. The dif-
ferentials and the resulting homology groups depend on the choice of the augmen-
tations ε−i . In order to define a graded theory, we need that 2c1(X) = 0 and
that all Lagrangian cobordisms have vanishing Maslov classes. This implies that
all Lagrangian cobordisms admit Maslov potentials (as defined in Section 4.2); a
particular choice of such a potential leads to the notion of a graded Lagrangian
cobordisms, for which HF (Σ0,Σ1) has a well-defined grading in Z. In general the
grading must be taken in a (possibly trivial) cyclic group.

Our main result is the following relation between the Floer homology of a pair
(Σ0,Σ1) of exact Lagrangian cobordisms and the bilinearised Legendrian contact
homologies of their ends; see Section 9.

Theorem 1.3. Let Σi, i = 0, 1, be a graded exact Lagrangian cobordisms from the
Legendrian submanifold Λ−

i to Λ+
i inside the symplectisation of the contactisation

of a Liouville manifold, and assume that there are augmentations ε−i of A(Λ−
i ) for

i = 0, 1. Then there exists a spectral sequence whose first page is

E3,•
1 ⊕ E2,•

1 ⊕ E1,•
1 ⊕ E0,•

1

‖(1)

LCH•−2

ε+0 ,ε+1
(Λ+

0 ,Λ
+
1 )⊕HF •

+(Σ0,Σ1)⊕ LCH•−1

ε−0 ,ε−1
(Λ−

0 ,Λ
−
1 )⊕HF •

−(Σ0,Σ1)

and which collapses to 0 at the fourth page.

This theorem follows from the acyclicity of a complex (Cth(Σ0,Σ1), dε−0 ,ε−1
) as-

sociated to a pair of Lagrangian cobordisms which we call the Cthulhu complex (see
Section 6). Its underlying R-module is

Cth(Σ0,Σ1) = C(Λ+
0 ,Λ

+
1 )⊕ CF+(Σ0,Σ1)⊕ C(Λ−

0 ,Λ
−
1 )⊕ CF−(Σ0,Σ1).

The spectral sequence is induced by the filtration of length four given by

C(Λ+
0 ,Λ

+
1 ) > CF+(Σ0,Σ1) > C(Λ−

0 ,Λ
−
1 ) > CF−(Σ0,Σ1),

and the acyclicity of the complex (Cth(Σ0,Σ1), dε−0 ,ε−1
) follows from its invariance

properties with respect to a large class of Hamiltonian deformations which, in the
contactisation of a Liouville manifold, allow us to displace any pair of Lagrangian
cobordisms.

When the negative ends are empty, this complex recovers the wrapped Floer
cohomology complex as described by Ekholm in [31]. When the positive ends are
empty and there are no homotopically trivial Reeb chords of both Λ−

i ’s, this complex
is similar to the Floer complex sketched in the work of Akaho in [5, Section 8].

Remark 1.4. The latter situation cannot occur in the symplectisation of a con-
tactisation of a Liouville manifold: an exact Lagrangian cobordism with no positive
end cannot have a negative end admitting an augmentation by Corollary 1.9 be-
low. This also follows from an even stronger result due to the second author in
[23], where it is shown that such a Legendrian submanifold must have an acyclic
Chekanov-Eliashberg algebra.

We will introduce two classes of pairs (Σ0,Σ1) of exact Lagrangian cobordisms
for which this filtration is of length three: directed and V -shaped pairs (see Section
9). A pair is directed when there are no intersection points of positive action, and
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V -shaped when there are no intersection points of negative action (see Section 9
for more details). In these situations, the spectral sequence collapses to 0 at the
third page, giving rise to the following long exact sequences.

Corollary 1.5. Let (Σ0,Σ1) be a pair of exact Lagrangian cobordisms satisfying
the assumptions of Theorem 1.3.

• If (Σ0,Σ1) is directed, then there exists a long exact sequence
(2)

· · · // LCHk−1

ε+0 ,ε+1
(Λ+

0 ,Λ
+
1 )

��

HF k
−(Σ0,Σ1) // LCHk

ε−0 ,ε−1
(Λ−

0 ,Λ
−
1 )

// LCHk
ε+0 ,ε+1

(Λ+
0 ,Λ

+
1 )

// · · ·

• If (Σ0,Σ1) is V -shaped, then there exists a long exact sequence
(3)

· · · // LCHk
ε+0 ,ε+1

(Λ+
0 ,Λ

+
1 )

// LCHk
ε−0 ,ε−1

(Λ−
0 ,Λ

−
1 )

// HF k+2
+ (Σ0,Σ1)

��

LCHk+1

ε+0 ,ε+1
(Λ+

0 ,Λ
+
1 )

// · · ·

1.1.1. Remarks about grading and orientation. Most of the result here are stated
for graded Lagrangian cobordisms. However, our methods apply in the ungraded
cases as well. The only difference is that the long exact sequences in Corollary 1.5
and in Section 1.2 become exact triangles (the maps are ungraded or, alternatively,
graded modulo the Maslov number).

For the results to holds using coefficients in a ring R different from a field of
characteristic two, as well for the results in Section 1.3, we need to be able to define
the theory using integer coefficients. In order to perform counts with signs, one has
to define coherent orientations for the relevant moduli spaces of pseudoholomor-
phic curves. This can be done in the case when the Legendrian submanifolds and
Lagrangian cobordisms are relatively pin (following Ekholm, Etnyre and Sullivan
in [33] and Seidel in [64, Section 11]).

1.2. Long exact sequences for LCH induced by a Lagrangian cobordism.
If Σ1 is a Hamiltonian deformation of Σ0 for some suitable and sufficiently small
Hamiltonian, the Floer homology groupsHF±(Σ0,Σ1) can be identified with Morse
homology groups of Σ0. Similarly, the bilinearised Legendrian contact homology
groups LCHε±0 ,ε±1

(Λ±
0 ,Λ

±
1 ) can be identified with the bilinearised contact homology

groups LCHε±0 ,ε±1
(Λ±

0 ) (as defined in Subsection 5.3) following [35]. Thus the long

exact sequences in Corollary 1.5 can be reinterpreted as long exact sequences relat-
ing the singular homology of a Lagrangian cobordism and the Legendrian contact
homology of its ends. These results are proved in Section 10.1.

Analogous long exact sequences have previously been found by Sabloff and
Traynor in [63] in the setting of generating family homology under the additional
assumption that the cobordism admits a compatible generating family, and by the
fourth author in [49] in the case when the negative end of the cobordism admits an
exact Lagrangian filling. The latter results have been put in a much more general
framework in recent work by Cieliebak-Oancea [21].
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In the rest of this introduction, Λ+ and Λ− will always denote closed Legendrian
submanifolds of dimension n in the contactisation of a Liouville manifold, and every
Lagrangian cobordism between them, as well as any Lagrangian filling of them, will
always live in the corresponding symplectisation. We will denote by Σ the natural
compactification of Σ obtained by adjoining its Legendrian ends Λ±. Note that Σ
is diffeomorphic to Σ ∩ [−T,+T ] × Y for some T ≫ 0 sufficiently large. We will
also use the notation ∂±Σ := Λ± ⊂ Σ, which implies that ∂Σ = ∂+Σ ⊔ ∂−Σ.

1.2.1. A generalisation of the long exact sequence of a pair. The first exact se-
quence we produce from a Lagrangian cobordism (see Section 10.1.1) is given by
the following:

Theorem 1.6. Let Σ be a graded exact Lagrangian cobordism from Λ− to Λ+ and
let ε−0 and ε−1 be two augmentations of A(Λ−) inducing augmentations ε+0 , ε

+
1 of

A(Λ+). There is a long exact sequence

(4) · · · // LCHk−1

ε+0 ,ε+1
(Λ+)

��

Hn+1−k(Σ, ∂−Σ;R) // LCHk
ε−0 ,ε−1

(Λ−) // LCHk
ε+0 ,ε+1

(Λ+) // · · · ,

.

where the map Φ
ε−0 ,ε−1
Σ : LCHk

ε−0 ,ε−1
(Λ−) → LCHk

ε+0 ,ε+1
(Λ+) is the adjoint of the bi-

linearised DGA morphism ΦΣ induced by Σ (see Section 5.3).

When the negative end Λ− = ∅ is empty, i.e. when Σ is an exact Lagrangian
filling of Λ+, and ε

+
i , i = 0, 1 both are augmentations induced by this filling, the

resulting long exact sequence simply becomes the isomorphism

LCHk−1

ε+0 ,ε+1
(Λ+)

≃
−→ Hn+1−k(Σ;R)

appearing in the work of Ekholm in [31]. This isomorphism was first observed

by Seidel, and is sometimes called Seidel’s isomorphism. (See the map G
ε−0 ,ε−1
Σ in

Section 10.2 for another incarnation.) Its proof was completed by the second author
in [25], also see [17] by the authors for an analogous isomorphism induced by a pair
of fillings.

1.2.2. A generalisation of the duality long exact sequence and fundamental class. A
Legendrian submanifold Λ is horizontally displaceable if there exists a Hamiltonian
isotopy φt of (P, dθ) which displaces the Lagrangian projection ΠLag(Λ) ⊂ P from
itself. In Section 10.1.1 we obtain the following:

Theorem 1.7. Let Σ be an exact graded Lagrangian cobordism from Λ− to Λ+

and let ε−0 and ε−1 be two augmentations of A(Λ−) inducing augmentations ε+0 , ε
+
1

of A(Λ+). Assume that Λ− is horizontally displaceable; then there is a long exact
sequence

(5) · · · // LCHk
ε+0 ,ε+1

(Λ+) // LCH
ε−0 ,ε−1
n−k−1(Λ

−) // Hn−k−1(Σ;R)

��

LCHk+1

ε+0 ,ε+1
(Λ+) // · · · ,

where the map G
ε−0 ,ε−1
Σ : Hn−k−1(Σ;R) → LCHk+1

ε+0 ,ε+1
(Λ+) is defined in Section 10.3.
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When Σ = R × Λ then H•(Σ) = H•(Λ), and hence the above long exact se-
quence recovers the duality long exact sequence for Legendrian contact homology,
which was proved by Sabloff in [62] for Legendrian knots and later generalised to
arbitrary Legendrian submanifolds in [35] by Ekholm, Etnyre and Sabloff. In the
bilinearised setting, the duality long exact sequence was introduced by Bourgeois
and the first author in [12]. In Section 11.3 we use Exact Sequence (5) to prove that
the fundamental class in LCH defined by Sabloff in [62] and Ekholm, Etnyre and
Sabloff in [35] is functorial with respect to the maps induced by exact Lagrangian
cobordisms.

1.2.3. A generalisation of the Mayer-Vietoris long exact sequence. The last exact
sequence that we will extract from Corollary 1.5 generalises the Mayer-Vietoris
exact sequence (see Section 10.1.3).

Theorem 1.8. Let Σ be an exact graded Lagrangian cobordism from Λ− to Λ+ and
let ε−0 and ε−1 be two augmentations of A(Λ−) inducing augmentations ε+0 , ε

+
1 of

A(Λ+). Then there is a long exact sequence
(6)

· · · // LCHk−1

ε+0 ,ε+1
(Λ+)

��

Hn−k(∂−Σ;R) // LCHk
ε−0 ,ε−1

(Λ−)⊕Hn−k(Σ;R) // LCHk
ε+0 ,ε+1

(Λ+) // · · · ,

where the component

Hn−k(∂−Σ;R) → Hn−k(Σ;R)

of the left map is induced by the topological inclusion of the negative end.
If ε−0 = ε−1 = ε, it moreover follows that the image of the fundamental class

under the component Hn(∂−Σ;R) → LCH0
ε,ε(Λ

−) of the above morphism vanishes.

Under the additional assumption that Λ− is horizontally displaceable, it is moreover
the case that the image of a generator under H0(∂−Σ;R) → LCHn

ε,ε(Λ
−) is equal

to the fundamental class in Legendrian contact homology.

In particular we get that the fundamental class in Hn(∂−Σ;R) either is non-zero
in Hn(Σ), or is the image of a class in LCH−1

ε+0 ,ε+1
(Λ+). In both cases, Λ+ 6= ∅. Thus

we obtain a new proof of the following result.

Corollary 1.9 ([23]). If Λ ⊂ P×R admits an augmentation, then there is no exact
Lagrangian cobordism from Λ to ∅, i.e. there is no exact Lagrangian “cap” of Λ.

Remark 1.10. Assume that Λ− admits an exact Lagrangian filling L inside the
symplectisation, and that ε− is the augmentation induced by this filling. It follows
that ε+ is the augmentation induced by the filling L ⊙ Σ of Λ+ obtained as the
concatenation of L and Σ. Using Seidel’s isomorphisms

LCHk
ε−,ε−(Λ

−) ≃ Hn−k(L;R),

LCHk
ε+,ε+(Λ

+) ≃ Hn−k(L ⊙ Σ;R)

to replace the relevant terms in the long exact sequences (4) and (6), we obtain
the long exact sequence for the pair (L ⊙ Σ, L) and the Mayer-Vietoris long exact
sequence for the decomposition L ⊙ Σ = L ∪ Σ, respectively. This fact was already
observed and used by the fourth author in [49].
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1.3. Topological restrictions on Lagrangian cobordisms. Using the long ex-
act sequences from the previous subsection and their refinements to coefficients
twisted by the fundamental group, as defined in Section 11, we find strong topo-
logical restrictions on exact Lagrangian cobordisms between certain classes of Leg-
endrian submanifolds.

1.3.1. The homology of an exact Lagrangian cobordism from a Legendrian subman-
ifold to itself. We recall that Λ always will denote a Lagrangian submanifold of the
contactisation of a Liouville manifold. In the following results we study the ho-
mology of any exact Lagrangian cobordism from Λ to itself in the symplectisation.
One of the consequences of Theorem 1.8 is the following theorem, proved in Section
12.1. A similar statement has been proven by the second and the fourth author in
[26, Theorem 1.6] under the more restrictive assumption that Λ bounds an exact
Lagrangian filling.

Theorem 1.11. Let Σ be an exact Lagrangian cobordism from Λ to Λ and F a field
(of characteristic two if Λ is not spin). If the Chekanov-Eliashberg algebra A(Λ;F)
admits an augmentation, then:

(i) There is an equality dimFH•(Σ;F) = dimFH•(Λ;F);
(ii) The map

(i−∗ , i
+
∗ ) : H•(Λ;F) → H•(Σ;F)⊕H•(Σ;F)

is injective; and
(iii) The map

i+∗ ⊕ i−∗ : H•(Λ ⊔ Λ) → H•(Σ)

is surjective.

Here i+ is the inclusion of Λ as the positive end of Σ, while i− is the inclusion of
Λ as the negative end of Σ.

Remark 1.12. The above equalities hold for the Z-graded singular homology groups
without assuming that the cobordism Σ is graded.

An immediate corollary of Theorem 1.6 is the following result, which had already
appeared in [26, Theorem 1.7] under the stronger assumption that the negative end
is fillable.

Theorem 1.13. If Λ is a homology sphere which admits an augmentation over Z,
then any exact Lagrangian cobordism Σ from Λ to itself is a homology cylinder (i.e.
H•(Σ,Λ) = 0).

Inspired by the work of Capovilla-Searle and Traynor [14], in Section 12.2 we
prove the following restriction on the characteristic classes of an exact Lagrangian
cobordism from a Legendrian submanifold to itself. Given a manifoldM , we denote
by wi(M) the i-th Stiefel-Whitney class of TM .

Theorem 1.14. Let Σ be an exact Lagrangian cobordism from Λ to itself, and
F = Z/2Z. Assume that A(Λ;F) admits an augmentation. If, for some i ∈ N,
wi(Λ) = 0, then wi(Σ) = 0.

If Λ is spin, the same holds for the Pontryagin classes.

By specialising to w1 we obtain the following corollary, which extends the main
result in [14]; in particular we partially answer Question 6.1 of the same article.
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Corollary 1.15. If Λ is an orientable Legendrian submanifold admitting an aug-
mentation, then any exact Lagrangian cobordism from Λ to itself is orientable.

1.3.2. Restrictions on the fundamental group of certain exact Lagrangian fillings
and cobordisms. Since Theorem 1.13 shows that an exact Lagrangian cobordism
from a Legendrian homology sphere to itself is a homology cylinder, it is natural to
ask under what conditions this cobordism in fact is an h-cobordism. We therefore
need to incorporate the fundamental group in our constructions. To that end,
following ideas of Sullivan in [67] and Damian in [22], we define a “twisted” version
of the Floer homology groups HF±(Σ0,Σ1) with coefficient ring R[π1(Σ, ∗)] in
Section 11.1. We also establish a result analogous to Theorem 1.5, as well as
the long exact sequences in Section 1.2, with twisted coefficients in R[π1(Σ, ∗)]. In
the setting of Legendrian contact homology, these techniques were introduced by
Eriksson-Östman in [42].

Using generalisations of the long exact sequence from Theorem 1.6 and the func-
toriality of the fundamental class from Proposition 11.7 (see Section 12.3.1) we
prove the following theorem:

Theorem 1.16. Let Σ be a graded exact Lagrangian cobordism from Λ− to Λ+.
Assume that A(Λ−;R) admits an augmentation and that Λ+ has no Reeb chords in
degree zero. If Λ− and Λ+ both are simply connected, then Σ is simply connected
as well.

Remark 1.17. The seemingly unnatural condition that Λ+ has no Reeb chords in
degree zero is used to ensure that the Chekanov-Eliashberg algebra A(Λ+;A) has at
most one augmentation in A for every unital R-algebra A. (This algebraic condi-
tion does not ensure the existence of an augmentation, but rather it states that Λ+

admits exactly one augmentation in the case when Λ− admits an augmentation.)
This condition is clearly not invariant under Legendrian isotopy, but the conclusion
of Theorem 1.16 can be extended to every Legendrian submanifold which is Legen-
drian isotopic to Λ+ because Legendrian isotopies induce Lagrangian cylinders by
[39, 4.2.5] (also, see [15]). Ideally, one should replace the algebraic condition with
one that only depends on the DGA homotopy type.

We now present another result which imposes constraints on the fundamental
group of an exact Lagrangian cobordism from a Legendrian submanifold to itself
(see Section 12.3.2). Its proof uses an L2-completion of the Floer homology groups
with twisted coefficients and the L2-Betti numbers of the universal cover (using
results of Cheeger and Gromov in [19]).

Theorem 1.18. Let Λ be a simply connected Legendrian submanifold which is spin,
and let Σ be an exact Lagrangian cobordism from Λ to itself. If A(Λ;C) admits an
augmentation, then Σ is simply connected as well.

Combining Theorem 1.13 with Theorem 1.18, we get the following result.

Corollary 1.19. Let Σ be an n-dimensional Legendrian homotopy sphere and as-
sume that A(Λ;Z) admits an augmentation. Then any exact Lagrangian cobordism
Σ from Λ to itself is an h-cobordism. In particular:

(1) If n 6= 3, 4, then Σ is diffeomorphic to a cylinder;
(2) If n = 3, then Σ is homeomorphic to a cylinder; and
(3) If n = 4 and Λ is diffeomorphic to S4, then Σ is diffeomorphic to a cylinder.
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When n = 1, a stronger result is known. Namely, in [17, Section 4] we proved
that any exact Lagrangian cobordism Σ from the standard Legendrian unknot Λ0

to itself is compactly supported Hamiltonian isotopic to the trace of a Legendrian
isotopy of Λ0 which is induced by the complexification of a rotation by kπ, k ∈ Z.
This classification makes use of the uniqueness of the exact Lagrangian filling of
Λ0 up to compactly supported Hamiltonian isotopy, which was proved in [41] by
Eliashberg and Polterovich. In contrast, the methods we develop in this article give
restrictions only on the smooth type of the cobordisms and little information is
known about their symplectic knottedness in higher dimension.

1.3.3. Obstructions to the existence of a Lagrangian concordance. A Lagrangian
concordance from Λ− to Λ+ is a symplectic cobordism from Λ− to Λ+ which is
diffeomorphic to a product. In particular this implies that Λ− and Λ+ are diffeo-
morphic as smooth manifolds. Note that a Lagrangian concordance automatically
is exact.

If Σ is a Lagrangian concordance, then H•(Σ, ∂−Σ;R) = 0, and thus Theorem
1.6 implies the following corollary.

Corollary 1.20. Let Σ be an exact Lagrangian concordance from Λ− to Λ+. If,
for i = 0, 1, ε−i is an augmentation of A(Λ−;R) and ε+i is the pull-back of ε−i under
the DGA morphism induced by Σ, then the map

Φ
ε−0 ,ε−1
Σ : LCH•

ε−0 ,ε−1
(Λ−) → LCH•

ε+0 ,ε+1
(Λ+)

is an isomorphism. Consequently, there is an inclusion

{LCH•
ε−0 ,ε−1

(Λ−)}/isom. →֒ {LCH•
ε+0 ,ε+1

(Λ+)}/isom.

of the sets consisting of isomorphism classes of bilinearised Legendrian contact co-
homologies, for all possible pairs of augmentations.

This corollary can be used to obstruct the existence of Lagrangian concordances.
For example, it can be applied to the computation of the linearised Legendrian
contact homologies given by Chekanov in [20, Theorem 5.8] to prove that there is
no exact Lagrangian concordance from either of the two Chekanov-Eliashberg knots
to the other. We also use Corollary 1.20 to deduce new examples of non-symmetric
concordances in the spirit of the example given by the first author in [16]. We refer
to Section 12.4.3 for a simply connected example in high dimensions.

We recall that a Legendrian isotopy induces a Lagrangian concordance. Since
Legendrian isotopies are invertible, two isotopic Legendrian submanifolds thus ad-
mit Lagrangian concordances going in either direction. On the other hand, we
have now many examples of non-symmetric Lagrangian concordances, and hence
the following natural question can be asked.

Question 1.21. Assume that there exists Lagrangian concordances from Λ0 to Λ1 as
well as from Λ1 to Λ0. Does this imply that the Legendrian submanifolds Λ0 and Λ1

are Legendrian isotopic? Are such Lagrangian concordances moreover Hamiltonian
isotopic to one induced by a Legendrian isotopy (as constructed by [39, 4.2.5])?

We argue that this question will not be easily answered by Legendrian contact ho-
mology. Chekanov showed in [20] that the set of isomorphism classes of all linearised
Legendrian contact homology groups is invariant under Legendrian isotopy. Later
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Bourgeois and the first author in [12] extended this result to bilinearised Legen-
drian contact homology. However, Corollary 1.20 says that bilinearised Legendrian
contact homology in fact is an invariant of Lagrangian concordances, rather than
of Legendrian isotopies. This means that, every time two Legendrian submanifolds
have been proved not to be Legendrian isotopic by exhibiting two non-isomorphic
bilinearised Legendrian contact homology groups, what has in fact been proved is
that there cannot exist Lagrangian concordances between the Legendrian subman-
ifolds going both directions.

1.4. Remarks about the hypotheses.

1.4.1. Restrictions on the ambient manifolds. The reasons for restricting our at-
tention to Lagrangian cobordisms in the symplectisation of the contactisation of a
Liouville manifold are two-fold. First, the analytic framework to have a well de-
fined complex (Cth(Σ0,Σ1), dε−0 ,ε−1

) is vastly simplified from the fact that the Reeb

flow has no periodic Reeb orbits. Using recent work of Pardon in [60] (or the poly-
fold technology being developed by Hofer, Wysocki and Zehnder), it is possible to
extend the construction of the complex (Cth(Σ0,Σ1), dε−0 ,ε−1

) to more general sym-

plectic cobordisms. Second, our applications use exact sequences arising from the
acyclicity of the complex (Cth(Σ0,Σ1), dε−0 ,ε−1

), which is a consequence of the fact

that that any Lagrangian cobordism can be displaced in the symplectisation of a
contactisation. Floer theory for Lagrangian cobordisms in more general symplectic
cobordisms will be investigated in a future article.

1.4.2. Restrictions on the Lagrangian submanifolds. Now we describe some exam-
ples showing that many of the hypotheses we made in Subsection 1.3 are in fact es-
sential, and not merely artefacts of the techniques used. First, an exact Lagrangian
cobordism having a negative end whose Chekanov-Eliashberg algebra admits no
augmentation can be a quite flexible object: in fact Eliashberg and Murphy proved
in [40] that exact Lagrangian cobordisms with a loose negative end satisfy an h-
principle, and therefore one cannot hope for a result in the spirit of Theorem 1.13
to hold in complete generality. Indeed, we refer to the work of the second and
fourth authors in [26] for examples of exact Lagrangian cobordisms from a loose
Legendrian sphere to itself having arbitrarily big Betti numbers.

Second, the condition that Λ is a homology sphere in the statement of Theorem
1.13 was shown to be essential already in [26, Section 2.3].

Finally, the importance of the condition on the Reeb chords of the positive end
in Theorem 1.16 is emphasised by the following example, which will be detailed in
Section 12.4.

Proposition 1.22. There exists a non-simply connected exact Lagrangian cobor-
dism from the two-dimensional standard Legendrian sphere to a Legendrian sphere
inside the symplectisation of standard contact (R5, ξstd).

As a converse to Theorem 1.16, the existence of a non-simply connected exact
Lagrangian cobordism can be used to show the existence of degree zero Reeb chords
on the positive end of the cobordism.

1.5. Outline of the article. This article is organised as follows. In sections from
2 to 5 we collect some basic material: in Section 2 we describe our geometric setup
and give a precise definition of the class of Lagrangian cobordisms that we consider,
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in Section 3 we introduce the moduli spaces used to define dε−0 ,ε−1
and discuss their

compactification, in Section 4 we study their Fredholm theory (e.g. indices and
transversality), and in Section 5 we briefly review the definitions of Legendrian
contact homology and augmentations.

Sections 6 to 8 are the theoretical core of the paper: in Section 6 we define
the complex (Cth(Σ0,Σ1), dε−0 ,ε−1

), in Section 7 we show how (Cth(Σ0,Σ1), dε−0 ,ε−1
)

behaves under concatenations of cobordisms, and in Section 8 we show that the
complex (Cth(Σ0,Σ1), dε−0 ,ε−1

) is acyclic.

The last part of the article is devoted to applications. In Section 9 we prove
Theorem 1.3 and in Section 10 we deduce the long exact sequences of Section 1.2.
In Section 11 we lift the coefficient ring to the group ring R[π1(Σ)] and to its L2-
completion. Finally, in Section 12 we prove the results concerning the topology
of Lagrangian cobordisms stated in Section 1.3, and then describe examples which
exhibit the necessity of their hypotheses.
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2. Geometric preliminaries

2.1. Basic definitions. A contact manifold (Y, ξ) is a (2n+1)-manifold Y equipped
with a smooth maximally non-integrable field of hyperplanes ξ ⊂ TY , which is
called a contact structure. Non-integrability implies that locally ξ can be written
as the kernel of a 1-form α satisfying α ∧ (dα)n 6= 0. We will be interested only in
coorientable contact structures, which are globally the kernel of a 1-form α called a
contact form. A contact form α defines a canonical vector field Rα, called the Reeb
vector field, via the equations

{
iRα

dα = 0,
α(Rα) = 1.

We will use φt : (Y, α) → (Y, α) to denote the flow of the Reeb vector field Rα,
which can be seen to preserve α. Also, in the following we will always assume the
contact form to be fixed.

An n-dimensional submanifold Λ ⊂ Y which is everywhere tangent to ξ is called
Legendrian. The Reeb chords of Λ are the trajectories of the Reeb flow starting and
ending on Λ. We denote the set of the Reeb chords of Λ by R(Λ).

Let γ be a periodic orbit of Rα of length T . It is non-degenerate if dφTq − Id is
invertible for one (and thus all) q ∈ γ. Let γ be a Reeb chord of length T . The flow
φt of the Reeb vector field preserves ξ, and therefore dφTγ(0)(Tγ(0)Λ) ⊂ ξγ(T ). We

say that a Reeb chord γ is non-degenerate if dφTγ(0)(Tγ(0)Λ) is transverse to Tγ(T )Λ

in ξγ(T ). We say that Λ is chord-generic if all its Reeb chords are non-degenerate.
From now on we assume that all Legendrian submanifolds are chord-generic. This
is not a restrictive assumption because chord genericity is a property which can
be achieved by a generic Legendrian perturbation of Λ, provided that all periodic
Reeb orbits are non-degenerate.
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We will here restrict ourselves to the case when (Y, α) is the contactisation of a
Liouville manifold. We recall that a Liouville manifold is a pair (P, θ), where P is a
2n-dimensional open manifold and θ is a one-form on P such that dθ is symplectic.
The Liouville vector filed v, which is defined by the equation

ιvdθ = θ,

is moreover required to be a pseudo-gradient for an exhausting function f : P →
R≥0 outside of a compact set. For simplicity we will assume that f has a finite
number of critical points. We define the contactisation (Y, α) of (P, θ) to be Y =
P × R and α := dz + θ, where z is the coordinate on the R-factor. Note that
in this case Rα = ∂z and then there are no periodic Reeb orbits. This implies,
in particular, that if Λ is a chord-generic closed Legendrian submanifold, then
|R(Λ)| <∞. The prototypical example of contactisation of a Liouville manifold is
the standard contact structure on R2n+1 defined by the contact form

α0 = dz −
n∑

i=1

yidxi.

There is a natural projection ΠLag : P ×R → P defined by ΠLag(x, z) := x which
is called the Lagrangian projection. Given a Legendrian submanifold Λ ⊂ P × R,
ΠLag|Λ : Λ → P is an exact Lagrangian immersion. In this situation, there is a
one-to-one correspondence between the Reeb chords of Λ and the double points of
ΠLag(Λ). Furthermore, Λ is chord-generic if and only if the only self-intersections
of ΠLag(Λ) are transverse double points.

2.2. Lagrangian cobordisms. The main object of study in this article are exact
Lagrangian cobordisms in the symplectisation of a contactisation. Recall that, for a
general contact manifold (Y, α), its symplectisation is the exact symplectic manifold

(X,ω) := (R× Y, d(etα)),

where t denotes the standard coordinate on the R-factor. In the case when dimY =
2n + 1, a (n + 1)-dimensional submanifold of the above symplectisation is exact
Lagrangian if the pull-back of the one-form etα is exact.

Definition 2.1. Let Λ− and Λ+ be two closed Legendrian submanifolds of (Y, α). An
exact Lagrangian cobordism from Λ− to Λ+ in (R×Y, d(etα)) is a properly embedded
submanifold Σ ⊂ R× Y without boundary satisfying the following conditions:

(1) for some T ≫ 0,
(a) Σ ∩ ((−∞,−T )× Y ) = (−∞,−T )× Λ−,
(b) Σ ∩ ((T,+∞)× Y ) = (T,+∞)× Λ+, and
(c) Σ ∩ ([−T, T ]× Y ) is compact;

(2) There exists a smooth function fΣ : Σ → R for which
(a) etα|TΣ = dfΣ,
(b) fΣ|(−∞,−T )×Λ− is constant, and
(c) fΣ|(T,∞)×Λ+ is constant.

We will call (T,+∞)× Λ+ ⊂ Σ and (−∞,−T )× Λ− ⊂ Σ the positive end and the
negative end of Σ, respectively. We will call a cobordism from a submanifold to
itself an endocobordism.

Conditions (2b) and (2c) are equivalent to saying that for any smooth paths γ− :
([0, 1], {0, 1}) → (Σ, (−∞,−T ) × Λ−) and γ+ : ([0, 1], {0, 1}) → (Σ, (T,∞) × Λ+),
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we have
∫
γ±
etα = 0. Condition (2b) will later be used to rule out certain bad

breakings of pseudoholomorphic curves. Condition (2c) is used to ensure that the
concatenation of two exact Lagrangian cobordisms (as in Defintion 2.3) still is an
exact Lagrangian cobordism. If one does not care about concatenations, then this
condition can be dropped.

Example 2.2. If Λ is a closed Legendrian submanifold of (Y, ξ), then R × Λ is an
exact Lagrangian cobordism inside (R× Y, d(etα)) from Λ to itself. Cobordisms of
this type are called (trivial) Lagrangian cylinders.

In the case when there exists an exact Lagrangian cobordism from Λ− to Λ+

we say that Λ− is exact Lagrangian cobordant to Λ+. If Σ is an exact Lagrangian
cobordism from the empty set to Λ, we call Σ an exact Lagrangian filling of Λ. In
the latter case we also say that Λ is exactly fillable.

The group R acts on R× Y by translations in the first factor. For any s ∈ R we
define

τs : R× Y → R× Y,

τs(t, p) = (t+ s, p).

It is easy to check that the translate of an exact Lagrangian cobordism still is an
exact Lagrangian cobordism.

Definition 2.3. Given exact Lagrangian cobordisms Σa from Λ− to Λ and Σb from
Λ to Λ+, their concatenation Σa ⊙ Σb is defined as follows.

First, translate Σa and Σb so that

Σa ∩ ((−1,+∞)× Y ) = (−1,+∞)× Λ,

Σb ∩ ((−∞, 1)× Y ) = (−∞, 1)× Λ.

Then we define

Σa ⊙ Σb := (Σa ∩ ((−∞, 0]× Y )) ∪ (Σb ∩ ([0,+∞)× Y )).

Conditions (2b) and (2c) of Definition 2.1 imply that Σa ⊙ Σb is an exact La-
grangian cobordism from Λ− to Λ+.

Lemma 2.4. The compactly supported Hamiltonian isotopy class of Σa ⊙ Σb is
independent of the above choices of translations.

Proof. In order to prove the lemma, it is enough to show that any translation of
an exact Lagrangian cobordism can be realised by a compactly supported Hamil-
tonian isotopy. It is a standard fact that a smooth isotopy of exact Lagrangian
submanifolds can be realised by a Hamiltonian isotopy. In this case, the exact La-
grangian submanifolds considered are obviously non-compact and translations act
on them in a non compactly supported way. However, given an exact symplectic
cobordism Σ ⊂ R× Y and S ≥ 0, we can find a compactly supported smooth iso-
topy ψs : R× Y → R× Y such that ψs(Σ) = τs(Σ) for all s ∈ [−S, S]. The isotopy
ψs can be defined by integrating the vector field χ̃∂t, where χ̃ : R × Y → R is the
pull-back of a bump function χ : R → R such that χ(t) = 1 for t ∈ [−S−T, S+T ],
while χ(t) = 0 for t 6∈ [−S − T − 1, S + T + 1]. (Here T ≥ 0 is the constant in
Definition 2.1.) �

2.3. Deligne-Mumford spaces and labels.
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Figure 2. A surface with strip-like ends. The incoming end is on
the right, the outgoing ends are on the left.

2.3.1. Universal families of pointed discs. For fixed d ∈ N, we denote by Rd+1 the
moduli space of Riemann discs having a number d+1 of ordered marked points on
its boundary. One realisation of Rd+1 is given by

Rd+1 =
{
(a0, . . . , ad) : aj = eiθj with θ0 < . . . < θd < θ0 + 2π

}
/Aut(D2),

where the action of Aut(D2) is defined as f · (a0, . . . , ad) := (f(a0), . . . , f(ad)) for
f ∈ Aut(D2).

We denote by Sd+1 → Rd+1 the universal curve over Rd+1. One of its realisa-
tions is

Sd+1 =
{
(z, a0, . . . , ad) : z ∈ D2, aj = eiθj , θ0 < . . . < θd < θ0 + 2π

}
/Aut(D2),

where the action of Aut(D2) is defined as f ·(z, a0, . . . , ad) := (f(z), f(a0), . . . , f(ad))
for f ∈ Aut(D2). The map Sd+1 → Rd+1 is induced by the projection

(z, a0, . . . , ad) 7→ (a0, . . . , ad),

and therefore is a fibre bundle with d+ 1 canonical sections σ0, . . . , σd,

σi : R
d+1 → Sd+1,

where σi is induced by (a0, . . . , ad) 7→ (ai, a0, . . . , ad). By an abuse of notation,
when r is clear from the context, we will denote σi(r) = ai.

For r ∈ Rd+1, we denote by Sr ⊂ Sd+1 its preimage under the projection and
write Sr = Sr \ {a0, . . . , ad}. The connected components of ∂Sr are oriented arcs,
and we let ∂iSr, i = 0, . . . , d, denote the arc whose closure has ai as a starting
point.

2.3.2. Strip-like ends. We denote by Z+ and Z− the Riemann surfaces (0,+∞)×
[0, 1] and (−∞, 0)× [0, 1] respectively, with coordinates (s, t) and conformal struc-
ture induced by the complex coordinate s+ it.

A universal choice of strip-like ends is given by d+1 disjoint neighbourhoods νi
of the images of the sections σi together with identifications

ε0 : Rd+1 × Z+ → ν0 \ σ0 and εi : R
d+1 × Z− → νi \ σi, for i ≥ 1,

such that for each r ∈ Rd+1 we have:

• The maps εi|{r}×Z± : {r} × Z± → νi ∩ Sr are holomorphic,
• lims→±∞ εi(s, t) = ai, and

The point a0 is called an incoming end, all the other ai’s are called outgoing ends
(see Remark 2.5). See Figure 2.

We still denote by (s, t) the coordinates on the strip-like ends Sr∩(νi\σi) induced
by the identifications εi and the coordinates (s, t) on Z±. In [64, Section 9a], it is
shown that such universal choices of strip-like ends exist.
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2.3.3. Deligne-Mumford compactification of Rd+1. In this Section, we describe a

compactification of the space Rd+1 into a manifold with corners Rd+1. We describe
the faces of this compactification using the language of stable trees following [64,
Section 9]. A stable rooted tree is a tree with one distinguished exterior vertex (i.e.
of valence one), called the root, and whose interior vertices all have valence at least
three. Exterior vertices other than the root are called leaves.

For a stable rooted tree with d leaves T , we denote byRT the product Πv∈Ve(T )R
|v|,

where Ve(T ) is the set of interior vertices and |v| denotes the valence of the vertex
v, which is at least 3 by the stability condition.

Remark 2.5. The root induces a natural orientation of each edges of a rooted tree
T by the following convention: the edge at the root is oriented so that it leaves the
root. And at each other vertex there is exactly one incoming edge.

If a stable rooted tree T ′ is obtained from the stable rooted tree T by collapsing
k edges, in [64, Sections 9e and 9f] there is a description of a gluing map

(7) γT,T ′

: RT × (−1, 0)k → RT ′

.

Naively, for an element (rv)v∈Ve(T ) of R
T and a k-tuple (le) of positive numbers

indexed by the collapsed edges, gluing is performed by cutting the strip-like ends of
Srv1

and Srv2
corresponding to a collapsed edge e from v1 to v2 at time |t| = e−πle ,

identifying the remaining part of the strip-like ends, and then uniformising the
resulting disc.

Remark 2.6. Actually, [64] defines only the map γT,Td , where Td is the tree with
only one interior vertex, which corresponds to Rd+1.

The gluing maps satisfy the cocycle relation:

γT
′,T ′′

(γT,T ′

({rv}, ρ1, . . . , ρk1), ρk1+1, . . . , ρk1+k2)(8)

= γT,T ′′

({rv}, ρ1, . . . , ρk1+k2).

We define Rd+1 = ⊔TR
T (as a set). The gluing maps in Equation (7) allow us

to build an atlas on Rd+1, and therefore one can prove the following.

Lemma 2.7. [64, Lemma 9.2] The set Rd+1 has a structure of manifold with
corners which is induced by the gluing maps (7). For every stable rooted tree T

with d leaves, RT is a stratum of the stratification of Rd+1 defined as follows: if
T ′ is obtained from T by collapsing some interior edges, then RT is a face of the
compactification of RT ′

.

Elements of Rd+1 are called nodal stable (d+ 1)-punctured discs.

Remark 2.8. Note that the definition of the maps γT,T ′

depends on the choice of
strip-like ends for all Rd′

for d′ < d. However, the structure of a manifold with

corners on Rd+1 turns out to be independent of these choices.

An element {rv} of RT is called a nodal stable (d + 1)-punctured disc. In this
situation, marked points of rv corresponding to interior edges are called boundary
nodes, while those corresponding to edges connected to leaves or to the root are
called ends. A nodal stable (d + 1)-punctured disc in RT ′

which is in the image

of a map γT,T ′

inherits two strip-like ends: one coming from the universal choices
of strip-like ends in the moduli spaces R|v| for v ∈ Ve(T ′), and one coming from
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the universal choices of strip-like ends in the moduli spaces R|v| for v ∈ Ve(T ). If
there exists an ǫ > 0 such that, for all gluing parameters smaller than ǫ and for
all nodal stable (d + 1)-punctured discs, those two strip-like ends agree, then we
call the universal choices of strip-like ends in the moduli spaces Rd+1 consistent.
Consistent universal choices of strip-like ends exist because the space of strip-like
ends is contractible, and the relation (8) allows an inductive argument. From now
on, we assume that such consistent choices have been made.

2.3.4. Asymptotics labels for Deligne-Mumford spaces. In the present paper we will
consider various moduli spaces of punctured holomorphic discs whose punctures
are asymptotic to either Reeb chords or intersection points between Lagrangian
cobordisms. We therefore make the following definitions.

Let Σ0 and Σ1 be two Lagrangian cobordisms from Legendrian submanifolds Λ−
0

and Λ−
1 at the negative ends to Legendrian submanifolds Λ+

0 and Λ+
1 at the positive

ends, respectively. A Lagrangian label L for Rd+1 is a map from Z/(d + 1)Z to
{Σ0,Σ1}. If L(i− 1) 6= L(i), then the marked point ai for i ∈ {0, . . . , d} is called a
jump of L. Note that a Lagrangian label has an even number of jumps.

A Lagrangian label is simple if it satisfies the following conditions:

• If a0 is not a jump, then none of the ai’s are jumps.
• It has at most two jumps.
• If a0 is a jump, then L(0) = Σ0.

Remark 2.9. A Lagrangian label for Rd+1 induces compatible Lagrangian labels

for all faces of Rd+1. If the Lagrangian label is simple, then the induced labels are
also simple.

The set of asymptotics of a given pair of Lagrangian cobordisms Σ0, Σ1 is the
union

A(Σ0,Σ1) := (Σ0 ∩ Σ1) ∪R(Λ+
0 ⊔ Λ+

1 ) ∪R(Λ−
0 ⊔ Λ−

1 ).

The main definition in this section is the following.

Definition 2.10. • An asymptotics label for Rd+1 is an assignment of an as-
ymptotic in A(Σ0,Σ1) to each section σi, i = 0, . . . , d (thus inducing asymp-
totics for each marked point ai given any r ∈ Rd+1).

• A Lagrangian label is compatible with a given asymptotics label if:
– Every marked point asymptotic to a double point is a jump;
– In the case when the asymptotic of ai is a Reeb chord starting on Λ±

j

and ending on Λ±
k (here {j, k} ⊂ {0, 1}), it follows that L(i− 1) = Σj

while L(i) = Σk.

Remark 2.11. It is an obvious fact that there can be at most one simple Lagrangian
label compatible with a given asymptotics label, thus we will always only specify a
set of asymptotics assuming that the implicit compatible label is chosen.

2.3.5. Semi-stable nodal discs. In the paper we will also consider more general do-
mains called semi stable whose combinatorics is still described by decorated trees
similarly as in Section 2.3.3, but possibly containing semi-stable vertices. We use
the convention that Rd+1 consists of a single point when d = 0, 1. Elements of S0+1

or S1+1 is called a semi-stable punctured disc. In other word a punctured disc is
semi-stable if it has either one or two punctures on the boundary. After removing
the punctures, they can be uniformised either as the strip Z = R × [0, 1] or the
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half-plane H = {im z > 0} ∈ C with their standard Riemann structures. We call
(s, t) the global coordinates on Z, and we require that any strip-like end on Z is a
restriction of these coordinates.

A semi-stable rooted tree with d leaves is a tree T with one chosen valence one
vertex (the root) and d chosen valence one vertices (the leaves). All other vertices,
including the remaining valence one vertices, will be called internal vertices.

The stabilisation of T , denoted S(T ), is the stable tree obtained by performing
the following two operations:

• promoting valence one interior vertices to leaves, and
• suppressing all vertices of valence 2 and merging the corresponding edges.

Note that the interior vertices of S(T ) are in natural bijection with the vertices of
T of valence at least three and, therefore, S(T ) is empty in the case when every
vertex of T has valence one or two.

To any semi-stable tree T together with an element of RS(T ), we associate a
punctured nodal disc as follows.

• To any interior vertex of T we associate a disc;
• For any edge of T we put a boundary node between the discs corresponding
to the vertices joined by the edge; and

• For any exterior vertex we put a marked point in the disc associated to the
closest interior vertex.

The element of RS(T ) specifies a conformal structure for any disc associated to
a vertex of valence at least three (there are no moduli for discs with one or two
punctures). Finally, the boundary marked points associated to the root will become
an incoming puncture and the marked points associated to the leaves will become
outgoing punctures.

For any semi-stable tree T with k interior vertices and d leaves, there is a gluing
map

γT,Td : RS(T ) → Rd+1

similar to the one described in Section 2.3.3, but since H and Z have nontrivial
automorphism groups, these gluing maps are not local embeddings.

Lagrangian and asymptotics labels can be defined for unstable curves in the same
way. Obviously, the Lagrangian label on H must have no jumps.

To a (stable or semi-stable) nodal discs S = {rv} ∈ RT one associates its nor-

malisation which is simply the quadruple (Ŝ,m, n, ι) with

• Ŝ = ⊔k
v∈Ve(T )Srv .

• m is the union of the marked points of Ŝ corresponding to edges of T
connecting to leaves or to the root of T .

• n is the union of the marked point of Ŝ corresponding to interior edges of
T . It comes equipped with a fixed point free involution ι determined by
ι(n0) = n1 if n0 and n1 are connected by an edge e.

Elements of m are called ends of S and elements of n are called nodes. Note that
one can rebuild the gluing tree out of the data (Ŝ,m, n, ι).

3. Analytic preliminaries

3.1. Almost complex structures. Before defining the moduli spaces of pseudo-
holomorphic curves that are relevant for the theory (see Section 3.2), it is necessary
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to describe the almost complex structures. For technical reasons it will be necessary
to make certain additional assumptions on them that we here describe.

3.1.1. Cylindrical almost complex structures. Let (Y, α) be a contact manifold with
the choice of a contact form. We denote by J cyl(Y ) the set of cylindrical almost
complex structures on the symplectisation (R × Y, d(etα)), i.e. almost complex
structures J satisfying the following conditions:

• J is invariant under the natural (symplectically conformal) action of R on
R× Y ;

• J ∂
∂t = Rα;

• J(ξ) = ξ, where ξ := kerα ⊂ TY ; and
• J is compatible with dα|ξ, i.e. dαξ(·, J ·) is a metric on ξ.

We will say that an almost complex structure defined on a subset of the symplec-
tisation of the form I × Y (where I is an interval) comes from J cyl(Y ) if it is the
restriction of an almost complex structure in J cyl(Y ).

3.1.2. Almost complex structures on Liouville manifolds. Let (P, θ) be a Liouville
manifold. Recall that there is a subset P∞ ⊂ P that is exact symplectomorphic to
half a symplectisation

([0,+∞)× V, d(eταV )),

and where P \ P∞ ⊂ P is pre-compact. We say that an almost complex structure
JP compatible with dθ is admissible if the almost complex structure JP on P comes
from J cyl(V ) outside of a compact subset of P∞. We denote by J adm(P ) the set
of these almost complex structures.

3.1.3. Cylindrical lifts. We will now restrict our attention to the manifolds that we
will be considering here; namely, the contactisation of a Liouville manifold (P, θ),
i.e.

(Y, α) := (P × R, dz + θ),

and its symplectisation

(X,ω) := (R× P × R, d(et(dz + θ))).

From now on (Y, α) and (X,ω) will always denote manifolds of this type.
Given a compatible almost complex structure JP in J adm(P ) as defined above,

there is a unique cylindrical almost complex structure J̃P on (X, d(etα)) which
makes the projection

π : X = R× P × R → P

a (J̃P , JP )-holomorphic map. We will call this almost complex structure the cylin-
drical lift of JP . An important feature of the cylindrical lift is that the diffeo-
morphisms (t, p, z) 7→ (t, p, z + z0), z0 ∈ R, induced by the Reeb flow all are J-
holomorphic.

We denote by J cyl
π (Y ) ⊂ J cyl(Y ) the set of cylindrical lifts of almost complex

structures in J adm(P ).
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3.1.4. Compatible almost complex structures with cylindrical ends. Let J+ and J−

be almost complex structures in J cyl
π (Y ), and let T ∈ R+. We will require that

both almost complex structures J± coincide outside of R × K for some compact
subset K ⊂ Y . We denote by J adm

J−,J+,T (X) the set of almost complex structures

on X = R× Y that tame d(etα) and satisfy the following.

(a) The almost complex structure J is equal to the cylindrical almost complex
structures J− and J+ on subsets of the form

(−∞,−T ]× P × R,

[T,+∞)× P × R,

respectively; and
(b) outside of R×K, the almost complex structure J coincides with a cylindrical

lift in J cyl
π (X).

Condition (b) is needed in order to deal with compactness issues. Recall that the
contact manifold P × R as as well as the Liouville manifold P are non-compact.

In the case when we do not care about the parameter T > 0, we will simply
write J adm

J−,J+(X). The union of all J adm
J−,J+(X) over all J−, J+ ∈ J cyl(Y ) is denoted

J adm(X), almost complex structure in this set will be called admissible.

3.1.5. Domain dependent almost complex structures. Let J± ∈ J cyl(Y ) be two
cylindrical almost complex structures and let {Jt} be a smooth path in J adm

J−,J+(X)

which is locally constant near t = 0 and t = 1.
Let Σ0 and Σ1 be two Lagrangian cobordisms in the symplectisation (X, d(etα))

of (Y, ξ) with Legendrian ends Λ±
i i = 0, 1. To a punctured disc S (either stable

or semi-stable) with simple Lagrangian label L we associate a domain-dependent
almost complex structure J(S,L) : S → J adm

J−,J+(X) using the path {Jt}, as described
below.

For every punctured disc S, if L has no jumps, then J(S,L) is constant and has
value J0 or J1 depending if the Lagrangian label L is constant at Σ0 or Σ1. Note
that S = H (i.e. a half-plane) always falls into this case.

If L has two jumps (which means, in particular, that S has d + 1 boundary
punctures with d ≥ 1), we uniformise S to a strip R× [0, 1] (with coordinates (s, t))
with d− 1 punctures in the boundary, such that the jumps of L correspond to the
ends of the strip, and moreover the incoming puncture of S corresponds to the end
of the strip at s ≪ 0. This uniformisation, which is unique up to translations in
the s-coordinate of the strip, defines a map t : S → [0, 1] by composition with the t-
coordinate on the strip, and we define J(S,L) : S → J adm

J−,J+(X) by J(S,L)(z) = Jt(z).

Note that J(S,L) is constantly equal to J0 near the boundary components associated
to Σ0 and constantly equal to J1 near the boundary components associated to Σ1.

When S is a stable (d+1)-punctured disc, the maps J(S,L) fit into smooth maps

J(d,L) : S
d+1 → J adm

J−,J+

which are obviously compatible with the degenerations of the Deligne-Mumford
moduli spaces. In order to uniformise the notation we will denote J(2,L) := J(Z,L)

and J(1,L) := J(H,L), The collection of these maps is called a universal choice of

domain dependent almost complex structures induced by (J+, J−, Jt). For a point
z ∈ Sd+1 we denote by J(z) the corresponding almost complex structure on X
induced by this construction.
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3.2. Moduli space of holomorphic discs. We describe now the moduli space of
discs used in Section 6 in order to define the differential of the Cthulhu complex.
We begin with the general definition of these moduli spaces, and then detail some
of them with particular asymptotics.

3.2.1. General definitions. In this subsection we set up some terminology which
will be used in all subsequent discussions about moduli spaces. Let S be a d + 1-
punctured disc (d ≥ 0) and L a simple Lagrangian label for S with values in a pair of
Lagrangian cobordisms (Σ0,Σ1). Suppose we have a (possibly domain dependent)
almost complex structure J on X . We say that a map u : S → X is J-holomorphic
with boundary conditions in L if ∀z ∈ S

(9) dzu ◦ j = J(z) ◦ dzu,

where j denotes the standard complex structure on D2, and u(∂iS) ⊂ L(i). If the
Lagrangian label L is constant, we will say that u is pure; if it has jumps, we will
say that u is mixed. Here we will remain vague about the almost complex structure
J , because it will depend on the specific moduli space that we will consider.

Given an intersection point p ∈ Σ0 ∩Σ1, we say that u is asymptotic to p at ai if

• the marked point ai is a jump, and
• limz→ai

u(z) = p.

Let γ be a Reeb chord of Λ±
0 ⊔ Λ±

1 of length T . The map u = (a, v) into R× Y
has a positive asymptotic to γ at ai if:

• lims→+∞ v(εi(s, t)) = γ(T t) and lims→+∞ a(εi(s, t)) = +∞, given that
ai = a0 is the incoming puncture, or

• lims→−∞ v(εi(s, t)) = γ(T (1 − t)) and lims→−∞ a(εi(s, t)) = +∞, given
that i 6= 0.

Let γ be a Reeb chord of Λ±
0 ⊔Λ±

1 of length T . The map u = (a, v) has a negative
asymptotic to γ at ai, i 6= 0, given that

• lims→−∞ a(εi(s, t)) = −∞ and lims→−∞ v(εi(s, t)) = γ(T t).

We will never consider holomorphic curves which have a negative asymptotic at the
incoming end.

Associated to a pair of cobordisms there are three types of possible targets for
Lagrangian labels that will be considered here: (Σ0,Σ1), (R × Λ±

0 ,R × Λ±
1 ) and

R×Λ±
i for i = 0, 1; note that the asymptotics of the latter two are subsets of those

of the first pair. We will use L to denote any of those labels. Given x0, . . . , xd in
A(Σ0,Σ1) and r ∈ Rd+1, we denote by

Mr
L(x0;x1, . . . , xd; J)

the space of J-holomorphic maps from Sr to X with asymptotics to xi at ai modulo
reparametrisations of Sr. In other words, x0 is the asymptotic of the incoming
puncture. We denote by

ML(x0;x1, . . . , xd; J)

the union of the Mr
L(x0;x1, . . . , xd; J) over all r ∈ Rd+1. Note that once the

asymptotics for the moduli space is fixed, the actual Lagrangian label is uniquely
determined and, hence, we do not need to specify it.

In the case when both L and J are invariant under translations of the sym-
plectisation coordinate, there is an induced R-action on ML(x0;x1, . . . , xd; J). We
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use

M̃L(x0;x1, . . . , xd; J)

to denote the quotient of the moduli space by this action.
In the following subsections we describe the moduli spaces with simple La-

grangian labels that appear in the definition of the Cthulhu differential in Section
6.

3.2.2. Strips and half-planes. As already seen, the pseudoholomorphic discs con-
sidered here will have a number of different types of asymptotics. However, it will
be useful to make a distinction between the following two types of discs considered.

• A pseudoholomorphic disc with no jumps is called a (punctured) half-plane;
while

• A pseudoholomorphic disc having precisely two jumps will be called a
(punctured) strip. The puncture corresponding to the unique incoming end
will be called the output while the puncture corresponding to the unique
outgoing end at which a jump occurs will be called the input.

Remark 3.1. The fact that outgoing ends are inputs and incoming ends are outputs
might seem confusing. The incoming/outgoing dichotomy comes from the notion of
incoming and outgoing edges in a rooted tree (see Remark 2.5) and refers to partic-
ular coordinates of the domain (the strip like ends). This follows the convention of
[64]. The dichotomy input/output refers to what will belong to the domain/codomain
of the differential as defined in Section 6.

The above two types of pseudoholomorphic discs (i.e. halfplanes and strips)
will play radically different roles in our theory. Roughly speaking, punctures half-
planes appear when defining Chekanov-Eliashberg DGA as well as DGA morphisms,
while punctured strips appear when defining the Floer homology, the bilinearised
Legendrian contact cohomology, and the Cthulhu homology.

3.2.3. LCH moduli spaces. The LCHmoduli spaces are the moduli spaces appearing
in the definition of linearised contact homology. We will consider two types of LCH
moduli spaces, depending on whether the involved Reeb chords are mixed or not.
We fix two cylindrical almost complex structures J± ∈ J cyl(Y ) on X = R × Y
and a path {Jt} of almost complex structures in J adm

J+,J−(X). We denote J(d,L) the

corresponding universal choice of domain dependent almost complex structures.
Denote Σ = Σi and Λ± = Λ±

i for i = 0, 1. Let γ+, δ+i , . . . , δ
+
d be Reeb chords

of Λ+ and γ−, δ
−
1 , . . . , δ

−
d Reeb chords of Λ−. Throughout the paper we will

write a d-tuple of pure Reeb chords as a word; this notation is reminiscent of
the multiplicative structure of the Chekanov-Eliashberg algebra. Therefore, we set
δ± = δ±1 . . . δ

±
d .

We will consider three types of pure LCH moduli spaces:

M̃R×Λ+(γ+; δ+; J+), M̃R×Λ−(γ−; δ−; J−), and MΣ(γ
+; δ−; J(d,L)).

The first two moduli spaces will be called pure cylindrical LCH moduli spaces and
are used to define the Legendrian contact homology differential of Λ±. The third
moduli space will be called pure cobordism LCH moduli space and is used in [36] to
define maps between Legendrian contact homology algebras. Since the Lagrangian
labels are constant for these moduli spaces, the almost complex structures J(d,L))
are actually domain independent. However, their value depends on whether Σ = Σ0
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or Σ = Σ1. Finally, recall that in the cylindrical moduli spaces, we take a quotient
by the R-action, while such an operation is not possible (nor desirable) for the
cobordism moduli space.

Now we describe mixed LCH moduli spaces. Let δ± := δ±1 . . . δ
±
i−1 be Reeb

chords of Λ±
1 and ζ± = ζ±i+1 . . . ζ

±
d be Reeb chords of Λ±

0 . We will consider three
types of mixed LCH moduli spaces:

M̃
R×Λ±

0 ,R×Λ±

1
(γ+; δ±, γ−, ζ±; J±) and MΣ0,Σ1(γ

+; δ−, γ−, ζ−; J(d,L)),

where γ± ∈ R(Λ+
1 ,Λ

+
0 ) for M̃

R×Λ+
0 ,R×Λ+

1
(γ+; δ+, γ−, ζ+; J+), γ± ∈ R(Λ−

1 ,Λ
−
0 )

for M̃
R×Λ−

0 ,R×Λ−

1
(γ+; δ−, γ−, ζ−; J−), and γ+ ∈ R(Λ+

1 ,Λ
+
0 ), γ

− ∈ R(Λ−
1 ,Λ

−
0 ) for

MΣ0,Σ1(γ
+; δ−, γ−, ζ−; J(d,L)).

The first two moduli spaces will be called mixed cylindrical LCH moduli spaces
and are used to define the bilinearised Legendrian contact homology differential of
(Λ±

0 ,Λ
±
1 ) (see Section 5.3 or [12]). The third moduli space will be called mixed

cobordism LCH moduli space and is used to define maps between bilinearised Leg-
endrian contact homology groups. An illustration of a curve in the mixed cobordism
LCH moduli spaces is shown in Figure 3.

γ+

δ1 δ2 γ− ζ1 ζ2

Σ0 Σ1

Figure 3. A mixed cobordism LCH curve.

3.2.4. Floer moduli space. Let p, q ∈ Σ0∩Σ1 be intersection points, δ− = δ−1 . . . δ
−
i−1

a word of Reeb chords on Λ−
0 , and ζ− = ζ−i+1, . . . ζ

−
d a word of Reeb chords on Λ−

1 .
J-holomorphic curves in the moduli space

MΣ0,Σ1(p; δ
−, q, ζ−; J(d,L))

will be called Floer strips. (Note that this is an abuse of terminology as the actual
domain is not a strip unless δ− and ζ− are empty.) See Figure 4.

Furthermore, the punctured disc is here required to makes a jump from Σ1 to
Σ0 at the puncture asymptotic to p (this is the incoming puncture), while it makes
a jump from Σ0 to Σ1 at the puncture asymptotic to q. This follows from our
convention for Lagrangian labels; see Remark 2.11.
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p

δ1 δ2

q

ζ1 ζ2

Σ0 Σ1

Figure 4. A Floer strip.

3.2.5. LCH to Floer moduli space. Let γ− ∈ R(Λ−
1 ,Λ

−
0 ) be a mixed chord, p ∈

Σ0 ∩ Σ1 an intersection point, δ− = δ−1 . . . δ
−
i−1 a word of Reeb chords on Λ−

0 , and

ζ− = ζ−i+1 . . . ζ
−
d a word of Reeb chords on Λ−

1 . Curves in the moduli space

MΣ0,Σ1(p; δ
−, γ−, ζ−; J(d,L))

will be called holomorphic Cthulhus. See Figure 5.

p

δ1 δ2 γ− ζ1 ζ2

Σ0 Σ1

Figure 5. A holomorphic Cthulhu.

3.2.6. Floer to LCH moduli space. Let γ+ ∈ R(Λ+
1 ,Λ

+
0 ) be a mixed chord, p ∈ Σ0∩

Σ1 an intersection point, δ− = δ−1 . . . δ
−
i−1 Reeb chords of Λ−

0 and ζ− = ζ−i+1 . . . ζ
−
d

Reeb chords of Λ−
1 . Curves in the moduli space

MΣ0,Σ1(γ
+; δ−, p, ζ−; J(d,L))

will be called J-holomorphic cultists. See Figure 6.
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γ+

δ1 δ2

q

ζ1 ζ2

Σ0 Σ1

Figure 6. Curve contributing to the second cultist map.

3.2.7. Bananas moduli space. Let γ1,0 ∈ R(Λ+
1 ,Λ

+
0 ) and γ0,1 ∈ R(Λ+

0 ,Λ
+
1 ) be

mixed Reeb chords (and note that they go in opposite directions), let δ− = δ−1 . . . δ
−
i−1

be Reeb chords of Λ−
0 and ζ− = ζ−i+1 . . . ζ

−
d Reeb chords of Λ−

1 . Curves in the moduli
space

MΣ0,Σ1(γ1,0; δ
−, γ0,1, ζ

−; J(d,L))

will be called J-holomorphic bananas. See Figure 7.

γ1,0

δ1 δ2

γ0,1

ζ1 ζ2

Σ0

Σ1

Figure 7. A J-holomorphic banana.

When Σi = R × Λi, we again use M̃(γ1,0; δ, γ0,1, ζ
−) to denote the quotient of

the moduli space by the natural R-action.
Note that, by our our definition of an exact Lagrangian cobordism, there are

no non-constant pseudoholomorphic curves with boundary on Σ0 ∪ Σ1 with all
punctures having negative asymptotics to Reeb chords; see Section 3.3.2 for more
details.
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3.3. Energy and compactness. In this section, we recall the notion of the Hofer
energy for holomorphic curves in the symplectisation of a contact manifold as in-
troduced in [52] and [13]. We also give estimates for this energy in terms of the
asymptotics of the curves appearing in the moduli spaces of Section 3.2. The goal is
to formulate the compactness theorem for pseudoholomorphic curves in the present
setting.

3.3.1. The Hofer energy. Assume that we are given two exact Lagrangian cobor-
disms Σ0 and Σ1 in the symplectisation (X = R × Y, d(etα)) of (Y, α). Let
fi : Σi → R be primitives of etα|Σi

which are constant at the cylindrical ends.
(By a slight abuse of notation, we will denote by ·|Σi

the pull-back of etα under
the inclusion of Σi.) Without loss of generality we will assume that both constants
are 0 on the negative ends, while the constants on the positive end of Σi will be
denoted by ci, i = 0, 1. Here we rely on Definition 2.1 of an exact cobordism.

Take any T > 0 and T > ǫ > 0 for which

Σi ∩ ((−∞,−T + ε)× Y ) = (−∞,−T + ε)× Λ−
i

Σi ∩ ((T − ε,+∞)× Y ) = (T − ε,+∞)× Λ+
i ,

for i = 0, 1. Now, we let φ : R → [e−T , eT ] be a smooth function satisfying:

• φ(±t) = e±T for t > T ;
• φ(t) = et for t ∈ [−T + ǫ, T − ǫ];
• φ′(t) ≥ 0.

In the case when both Σ0 and Σ1 are trivial cylinders over Legendrian submanifolds,
we will also allow the case T = ǫ = 0, and φ ≡ 1.

By construction we have φα|Σi
= etα|Σi

for the reason that α|Σi
= 0 in the

subset where φ is not equal to et. A primitive of etα|Σi
(which exists by exactness)

is hence also a primitive of φα|Σi
.

Let C− be the set of compactly supported smooth functions

w− : (−∞,−T + ǫ) → [0,+∞)

satisfying

∫ −T+ǫ

−∞

w−(s)ds = e−T , and let C+ be the set of compactly supported

smooth functions
w+ : (T − ǫ,+∞) → [0,+∞)

satisfying

∫ +∞

T−ǫ

w+(s)ds = eT .

We are now ready to introduce different versions of energies for pseudoholomor-
phic curves in the symplectisation, all which are standard. We refer to [13] for the
absolute case, and [30] as well as [1] for the relative case.

Definition 3.2. Let S be a punctured disc and u = (a, v) : S → R× Y be a smooth
map.

• The d(φα)-energy of u is given by

Ed(φα)(u) =

∫

S

u∗(d(φα)).

• The α-energy of u is given by

Eα(u) = sup
(w−,w+)∈C−×C+

(∫

S

(w− ◦ a)da ∧ v∗α+

∫

S

(w+ ◦ a)da ∧ v∗α

)
.
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• The total energy, or the Hofer energy, of u is given by

E(u) = Eα(u) + Ed(φα)(u).

In the case when u is a proper map for which E(u) < ∞, we say that u is a finite
energy pseudoholomorphic disc.

Non-constant holomorphic curves have positive total energy, as stated in the
following simple lemma. We leave the proof to the reader.

Lemma 3.3. If u is non-constant punctured pseudoholomorphic disc with boundary
on a pair of exact Lagrangian cobordisms, and if the almost complex structure is
cylindrical outside of [−T+ǫ, T−ǫ]×Y , then E(u) > 0, Eα(u) ≥ 0, and Ed(φα)(u) ≥
0. Moreover, Ed(φα)(u) = 0 implies that u is contained inside a trivial cylinder over
a Reeb orbit.

The techniques in [53] can be to the applied to the current setting with non-
empty boundary, similarly to what was done in [1], in order to show that

Proposition 3.4. Assume that we endow R × P × R with an admissible complex
structure in the sense of Section 3.1.4. A proper punctured pseudoholomorphic disc
inside the symplectisation having boundary on a Lagrangian cobordism Σ0 ∪ Σ1 is
of finite energy if and only if all of its punctures are contained in the boundary,
and such that the disc is exponentially converging to either trivial strips over Reeb
chords on Λ±

0 ∪Λ±
1 or intersection points Σ0∩Σ1 at each of its boundary punctures.

3.3.2. Action and energy. Consider a pair of exact Lagrangian cobordisms Σi, i =
0, 1, from Λ−

i to Λ+
i . Here we define the action of intersection points and Reeb

chords and relate it to the different energies of holomorphic discs having boundary
on this pair of cobordisms.

For a Reeb chord c we define

ℓ(c) :=

∫

c

α.

Recall that we are given a choice of T ≥ 0 in the construction of the Ed(φα)-energy
above, where equality only is possible under the assumption that both cobordisms
are trivial cylinders. The action of a mixed Reeb chord γ on Λ±

1 ∪Λ±
0 is defined by

a(γ) := eT ℓ(α) + (ci − cj) if γ is a chord from Λ+
i to Λ+

j , and

a(γ) := e−T ℓ(α) if γ is a chord on Λ−
0 ∪ Λ−

1 .

In particular, we observe that the action of a pure Reeb chord γ on Λ±
i is defined

by

a(γ) := e±T ℓ(γ).

The action of an intersection point p ∈ Σ0 ∩Σ1 is defined by

a(p) := f1(p)− f0(p).

Applications of Stoke’s theorem gives the following proposition (see [24] for de-
tails), where we heavily rely on the fact that each cobordism Σi, i = 0, 1, is exact.

Proposition 3.5. Let γ± ∈ R(Λ±
1 ,Λ

±
0 ) be mixed Reeb chords, δ− = δ−1 . . . δ

−
i−1

and ζ− = ζi+1 . . . ζd words of pure Reeb chords on Λ−
1 and Λ−

0 , respectively, and



Floer theory for Lagrangian cobordisms 29

p, q ∈ Σ0 ∩ Σ1 intersection points. We denote a(δ−) :=
i−1∑
k=1

a(δ−k ) and a(ζ−) :=

d∑
k=i+1

a(ζ−k ).

• If u ∈ ML(γ
+; δ−, γ−, ζ−), then

Ed(φα)(u) = a(γ+)− a(γ−)−
(
a(δ−) + a(ζ−)

)
.(10)

Eα(u) ≤ 2a(γ+)

• If u ∈ ML(γ
+; δ−, p, ζ−), then

Ed(φα)(u) = a(γ+)− a(p)−
(
a(δ−) + a(ζ−)

)
.(11)

Eα(u) ≤ 2a(γ+)

• If u ∈ ML(p; δ
−, γ−, ζ−), then

Ed(φα)(u) = a(p)− a(γ−)−
(
a(δ−) + a(ζ−)

)
.(12)

Eα(u) ≤ a(p)

• If u ∈ ML(p; δ
−, q, ζ−), then

Ed(φα)(u) = a(p)− a(q)−
(
a(δ−) + a(ζ−)

)
.(13)

Eα(u) ≤ a(p)

• If u ∈ ML(γ1,0; δ
−, γ0,1, ζ

−), then

Ed(φα)(u) =
(
a(γ1,0) + a(γ0,1)

)
−
(
a(δ−) + a(ζ−)

)
.(14)

Eα(u) ≤ 2a(γ1,0) + 2a(γ0,1)

For the above inequalities involving the α-energy we must assume that the almost
complex structure is cylindrical outside of [−T + ǫ, T − ǫ]× Y .

3.3.3. Holomorphic buildings with boundary on Lagrangian cobordisms. The moduli
space of punctured pseudoholomorphic discs with boundary on a Lagrangian cobor-
dism can be compactified by the space of pseudoholomorphic buildings, which we
now proceed to define.

Definition 3.6. Let S be a (stable or semi-stable) nodal disc with normalisation

(Ŝ,m ∪ n, ι) as described in Section 2.3.5. By a level function for S we mean a
locally constant map

f : Ŝ → {−k−,−k− + 1, . . . , k+ − 1, k+}

for some k−, k+ ∈ Z≥0 such that for any node n ∈ n we have |f(n)− f(ι(n))| ≤ 1,
while f(n) = f(ι(n)) is allowed only if f(n) = 0.

If S is a nodal disc with level function f , a Lagrangian label L on (S, f) will
be a collection of Lagrangian labels Li on each connected component Si of the
normalisation such that:

• Li takes values in {R× Λ+
0 ,R× Λ+

1 } if f(Si) > 0, in {Σ0,Σ1} if f(Si) = 0
and in {R× Λ−

0 ,R× Λ−
1 } if f(Si) < 0; and

• At a node n ∈ n the asymptotic corresponding to n agrees with the asymp-
totic corresponding to ι(n).
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In particular, performing boundary connected sums at all nodes of S, one can
canonically assign a Lagrangian label on the resulting nodal disc taking values in
{Σ0,Σ1}. A Lagrangian label on (S, f) is simple if, after performing boundary
connected sums at all nodes, the resulting Lagrangian label is simple.

Let Σ0,Σ1 be two admissible exact Lagrangian cobordisms, and {Jt} a path in
J adm
J+,J− inducing domain dependent almost complex structures J(d,L) for any d ≥ 0

and any Lagrangian label L for elements in Rd+1.

Definition 3.7. Let S be a nodal disc with Lagrangian label L and level function
f mapping onto {−k−,−k− + 1, . . . , k+ − 1, k+} for some integers k± ≥ 0. A
holomorphic building of height k−|1|k+ with domain S is given by a family {ui | i =
1, . . . , k} of punctured pseudo-holomorphic discs, where the connected component
Si of the normalisation of S corresponds to ui, such that the following conditions
moreover are satisfied:

• All discs satisfying f(Si) = l for some fixed l are said to live in level
l ∈ Z. We require that each level different from zero contains at least one
component which is not a trivial strip over a Reeb chord.

• If f(Si) > 0, then ui ∈ Mri
R×Λ+

0 ,R×Λ+
1

(y0; y1, . . . , ydi
; J+). These discs are

said to live in a top level.
• If f(Si) < 0, then ui ∈ Mri

R×Λ−

0 ,R×Λ−

1

(y0; y1, . . . , ydi
; J−). These discs are

said to live in a bottom level.
• If f(Si) = 0, then ui ∈ Mri

Σ0,Σ1
(y0; y1, . . . , ydi

; J(di,Li)
). These discs are

said to live in the middle level.
• For any node n whose asymptotic corresponds to a Reeb chord, we require
that |f(n)− f(ι(n))| = 1;

• For any node n such that 0 ≤ f(n) < f(ι(n)), let yn and yι(n) be the corre-

sponding asymptotics. Then yn = yι(n) is a Reeb chord on R× (Λ+
0 ⊔Λ+

1 ),
such that yn and yι(n) is a positive and negative asymptotic, respectively.

• For any node n such that f(n) < f(ι(n)) ≤ 0 let yn and yι(n) be the corre-

sponding asymptotics. Then yn = yι(n) is a Reeb chord on R× (Λ−
0 ⊔Λ−

1 ),
such that yn and yι(n) is a positive and negative asymptotic, respectively.

• For any node n such that f(n) = f(ι(n)) (and thus is equal to 0) the
corresponding asymptotics yn and yι(n) correspond to a given intersection
point in Σ0 ∩Σ1.

• The positive (negative) punctures asymptotic to Reeb chords which are not
nodes correspond precisely to the positive (negative) punctures in the k+:th
(k−:th) level.

Furthermore, we identify two buildings consisting of the same nodal domain when-
ever the images of the discs in level l = 0 coincide, while the images in level l 6= 0
differ by a translation of the symplectisation coordinate by a number that only
depends on the level l.

By

M
k−|1|k+

Σ0,Σ1
(x0;x1, . . . , xd)

we denote the buildings having a single incoming puncture x0 which is not a node
(necessarily contained in level k+), and whose outgoing punctures which are not
nodes correspond to x1, . . . , xd (respecting the order of the punctures induced by the
boundary orientation after a boundary connected sum). Observe that, by definition,
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we have

MΣ0,Σ1(x0;x1, . . . , xd) ⊂ M
0|1|0
Σ0∪Σ1

(x0;x1, . . . , xd).

The latter subspace consists of honest one-component pseudoholomorphic curves,
and they will sometimes be referred to as unbroken solutions, while the pseudoholo-
morphic buildings not being of this form will be referred to as broken solutions.

The definition of a building is analogous in the case when the boundary condition
is a single Lagrangian cobordism Σ, and we use

M
k−|1|k+

Σ (x0;x1, . . . , xd)

to denote the space of such buildings.

Remark 3.8. Observe that the dichotomy between punctured pseudo-holomorphic
half-planes and strips (see Section 3.2.2) also applies to the above pseudo-holomorphic
buildings. We will call a pseudoholomorphic building a broken punctured pseudo-
holomorphic half-plane (resp. strip) in the case when taking a boundary connected
sum at each node produces a topological punctured half-plane (resp. strip).

The space of buildings has a topology as defined in [13] and [2], where it also is
shown that a sequence of buildings with fixed outgoing punctures has a subsequence
converging to another building of the same type (but with possibly additional lev-
els). Observe that, here we also rely on the compactness results for Lagrangian
intersection Floer homology [46]. We do not reproduce the definition of the topol-
ogy used in order to formulate this convergence, and we refer the reader to the
relevant sections of the papers above. The following result is the main compactness
result that we will need, obtained by combining the above mentioned compactness
results in the SFT and Floer settings.

Theorem 3.9. For an admissible almost complex structure, the disjoint unions of
all buildings

⊔

k+,k−≥0

M
k−|1|k+

Σ0,Σ1
(x0;x1, . . . , xd)

⊔

k+,k−≥0

M
k−|1|k+

Σ (x0;x1, . . . , xd)

are compact and, in particular, these unions are finite.

The crucial property needed in order to apply the compactness theorems is that
the above buildings consist of components having an a priori upper bound on the
sum of their total energies. Indeed, this upper bound can be expressed solely in
terms of the action a(x0) of the asymptotic x0. This can be readily seen to follow
from Proposition 3.5, using the fact that there is only a finite number of Reeb chords
and intersection points below a fixed action. (In fact, in the setting considered here
it is even the case that the totality of Reeb chords and intersection points for a
given pair (Σ0,Σ1) is finite.)

4. Fredholm theory and transversality

4.1. Linear Cauchy-Riemann operators.
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4.1.1. The Grassmannian of Lagrangian planes. Let (V, ω) be a symplectic vector
space of dimension 2n+2. We denote by Gr(V, ω) the space of Lagrangian subspaces
of (V, ω). The choice of a symplectic basis of V leads to an identification Gr(V, ω) ∼=
U(n + 1)/O(n + 1). Given a path λ : [0, 1] → Gr(V, ω), for |s − r| small enough
there is a family of linear isomorphisms φr,s : λ(s) → λ(r) such that φs,s = Id. If

λ ∈ Gr(V, ω), the crossing form qλ,λ,s is the quadratic form on λ(s) ∩ λ defined by

(15) qλ,λ,s(v) := −
d

dr

∣∣∣∣
r=s

ω(φr,s(v), v).

Example 4.1. Let η ∈ Gr(V, ω) be a Lagrangian plane and f : [0, 1] → R a smooth
function. We fix a complex structure on V compatible with ω and define the path
λ : [0, 1] → Gr(V, ω) as λ(t) := eif(t)η. Then, at any point s ∈ [0, 1], the crossing
form qλ,λ(s),s is

qλ,λ(s),s(v) = f ′(s)‖v‖2.

We denote by P−(Gr(V, ω)) the set of paths λ : [0, 1] → Gr(V, ω) such that
λ(0) ⋔ λ(1) and the crossing form qλ,λ(1),1 is negative definite. For a generic path

λ ∈ P−(Gr(V, ω)) the spaces λ(s) ∩ λ(1) has positive dimension only at at finite
set of s, and the crossing forms on the positive dimensional intersections is non-
degenerate. (We can also assume, generically, that λ(s) ∩ λ(1) has dimension at
most one for s 6= 1.) If λ is a generic path, we define

(16) I(λ) :=
∑

s<1

ind(qλ,λ(1),s),

where ind(q) denotes the number of negative eigenvalues of a non-degenerate qua-
dratic form q.

Let det : U(n+ 1) → S1 denote the complex determinant. The map

A 7→ det(A)2

descends to a well-defined map α : Gr(V, ω) → S1 which induces an isomorphism
α∗ : π1(Gr(W,ω)) → π1(S

1). We regard α∗ as a cohomology class µ ∈ H1(Gr(V, ω);Z)
called the Maslov class.

We denote by Gr#(V, ω) → Gr(V, ω) the universal covering of Gr(V, ω). The

elements of Gr#(V, ω) are called graded Lagrangian planes. The map α : Gr(V, ω) →

S1 lifts, in a non-unique way, to a map α# : Gr#(V, ω) → R such that α = e2πiα
#

.
Different choices for α# differ by an integer constant. We can think of a graded
Lagrangian plane λ# as a pair (λ, α#(λ#)).

Similarly, we denote by P−(Gr#(V, ω)) the set of paths λ# : [0, 1] → Gr#(V, ω)

that project to paths λ ∈ P−(Gr(V, ω)). Given λ#0 , λ
#
1 ∈ Gr#(V, ω) whose projec-

tions λ0 and λ1 intersect transversely, we chose a path λ# ∈ P−(Gr#(V, ω)) such

that λ#(0) = λ#0 and λ#(1) = λ#1 and define the absolute index

i(λ#0 , λ
#
1 ) := I(λ).

Since λ#0 and λ#1 determine the homotopy class of λ and I is invariant under
homotopies relative to the boundary, the absolute index is well defined.

Now we want to extend the absolute index to a map

i : Gr#(V, ω)×Gr#(V, ω) → Z.
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Let λ#0 and λ#1 be graded Lagrangian planes. If λ0 ∩ λ1 = 0, then i(λ#0 , λ
#
1 )

is defined as above. Otherwise, let (λ0 ∩ λ1)
ω be the symplectic orthogonal to

λ0 ∩ λ1 and define Ṽ := (λ0 ∩ λ1)
ω/(λ0 ∩ λ1). The symplectic form ω induces,

by linear symplectic reduction, a symplectic form ω̃ on Ṽ . If λ ⊂ (λ0 ∩ λ1)ω is a

Lagrangian subspace of (V, ω), then λ̃ = λ/(λ0 ∩ λ1) is a Lagrangian subspace of

(Ṽ , ω̃). This construction gives an embedding Gr(Ṽ , ω̃) →֒ Gr(V, ω) which lifts to

an embedding Gr#(Ṽ , ω̃) →֒ Gr#(V, ω). Let λ̃#0 and λ̃#1 be the preimages of λ#0
and λ#1 in Gr#(Ṽ , ω̃). Since λ̃0 and λ̃1 intersect transversely in Ṽ , we define

(17) i(λ#0 , λ
#
1 ) := i(λ̃#0 , λ̃

#
1 ).

Next we study how the index changes for small perturbation of the Lagrangian
planes. From now on we fix a complex structure on V which is compatible with ω.
For a Lagrangian plane λ# and a real number δ 6= 0, we define eiδλ# as the end
point of the path [0, 1] → Gr#(V, ω) which starts at λ# and lifts the path t 7→ eiδtλ.

In particular α#(eiδλ#) = α#(λ#) + (n+1)δ
π . Given two graded Lagrangian planes

λ#0 and λ#1 , we say that δ ∈ R∗ is “small” if λ0 ⋔ eiδtλ1 for all t ∈ (0, 1].

Lemma 4.2. Let λ#0 and λ#1 be graded Lagrangian planes and δ 6= 0 a small real
number.

(1) If δ > 0, then i(λ#0 , e
iδλ#1 ) = i(λ#0 , λ

#
1 ) + dim(λ0 ∩ λ1), and

(2) If δ < 0, then i(λ#0 , e
iδλ#1 ) = i(λ#0 , λ

#
1 ).

Proof. There is an equivalent definition of the absolute index which is less intrinsic,
but more practical for this computation. Let η = λ0 ∩ λ1, and choose a symplectic
subspace (V ′, ω′) ⊂ (V, ω) containing η as a Lagrangian subspace. Let (V ′′, ω′′) be
the symplectic orthogonal of (V ′, ω′); then the subspaces ζi = λi ∩ V ′′, for i = 0, 1,
are Lagrangian in V ′′. Let ζ ∈ P−(Gr(V ′′, ω′′) be a path from ζ0 to ζ1 such that

λ = η ⊕ ζ lifts to a path in Gr#(V, ω) from λ#0 to λ#1 . Here η is regarded as a
constant path. The path ζ exists because (V ′′, ω′′) is symplectically isomorphic to

(Ṽ , ω̃). Then we have

(18) i(λ#0 , λ
#
1 ) = I(ζ).

Choose a complex structure on V which is compatible with ω and preserves the
direct sum decomposition V = V ′ ⊕ V ′′, and define ζδ(t) := eiδtζ(t) and ηδ(t) :=

eiδtη. Since δ is small, ζδ ∈ P−(Gr(V ′′, ω′′)) and I(ζδ) = I(ζ) = i(λ#0 , λ
#
1 ).

If δ < 0, then by Example 4.1 the crossing form qηδ,ηδ(1),1 is negative definite,

so ηδ ∈ P−(Gr(V ′, ω′)) and I(ηδ) = 0. Then λδ = ηδ ⊕ ζδ ∈ P−(Gr(V, ω)), and

therefore i(λ#0 , e
iδtλ#1 ) = I(λδ) = i(λ#0 , λ

#
1 ).

If δ > 0, then by Example 4.1 the crossing form qηδ,ηδ(1),1 is positive definite, so

we have to modify ηδ to obtain a path in P−(Gr(V ′, ω′)). One possible modification

consists in replacing the path ηδ with the path η̃δ defined as η̃δ(t) := eiδ(−2t2+3t)η. If
δ is small enough, η̃δ(t) = eiδη only for t = 1 and t = 1

2 . Moreover, by Example 4.1,
the crossing form qη̃δ,η̃δ(1),1/2 is positive definite and the crossing form qη̃δ,η̃δ(1),1

is negative definite. Then η̃δ ∈ P−(Gr(V ′, ω′) and I(η̃δ) = dim η. Therefore

i(λ#0 , e
iδtλ#1 ) = I(λδ) = i(λ#0 , λ

#
1 ) + dim(λ0 ∩ λ1). �
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4.1.2. Cauchy-Riemann operators over punctured discs. Let r ∈ Rd+1. We assume
that the punctured disc Σr is equipped with strip-like ends εi as described in Section
3.1 such that ε0 is an incoming end and εi, for i = 1, . . . , d, are outgoing ends. For
i = 0, . . . , d we choose orientation preserving parametrisations li : R → ∂Σr of
the connected components ∂iΣr of ∂Σr, which we assume to be cyclically ordered
according to the natural boundary orientation.

Given λ = (λ0, . . . , λd), where each λi is a map λi : R → Gr(Cn, ω0) which is
constant outside a compact set, for every p > 2 we define the Banach space

W 1,p(Σr,λ) := {ζ ∈ W 1,p(Σr,C
n) | ∀i ζ(li(s)) ∈ λi(s)}.

We denote byDr,λ : W
1,p(Σr,λ) → Lp(Σr,C

n) the standard linear Cauchy-Riemann
operator. Here we have identified T 0,1Σ⊗C Cn with Cn.

We denote λ+i = lim
s→+∞

λi(s) and λ−i = lim
s→−∞

λi(s). It is well known (see [47,

Proposition 4.1] for the case of strips; the general case is similar) that Dr,λ is

a Fredholm operator if λ+i ⋔ λ−i+1 for all i = 0, . . . , d (with the convention that
λd+1 = λ0). If this is the case, the index of Dr,λ can be computed as follows.

For each path λi : R → Gr(Cn, ω0) we make the choice of a continuous lift

λ#i : R → Gr(Cn, ω0)
#. Then it follows from [64, Proposition 11.13] that

(19) ind(Dr,λ) = i((λ−0 )
#, (λ+d )

#)−
d−1∑

i=0

i((λ+i )
#, (λ−i+1)

#).

Note that the above expression is independent of the choice of lifts made.
We will need to consider also more general boundary conditions which do not

intersect transversely on the strip-like ends. It is well known that the Cauchy-
Riemann operator with these boundary conditions is not Fredholm, unless we use
weighted Sobolev spaces, which we are now going to describe briefly.

We define χ : Σr → R to be a smooth function which is equal to 0 outside the
strip-like ends (i.e. on Σr \ (ν0 ∪ . . . ∪ νd)), is equal to 1 on the outgoing strip-like
end ε0 (where s ≥ 1), and is equal to −1 on the incoming strip-like ends εi, for
i = 1, . . . , d (where s ≤ −1). Given δ > 0, we introduce the Banach spaces

W 1,p
δ (Σr,λ) := {ζ : eδχ(z)sζ ∈W 1,p(Σr,λ)} and

Lp
δ(Σr) := {ζ : eδχ(z)sζ ∈ Lp(Σr,C

n)};

note that the function χ(z)s is well defined as χ(z) = 0 outside the neighbourhoods
where s is a well defined coordinate. Moreover the function eδχ(z)s goes to +∞ as
s→ ±∞, and this forces the functions ζ in the weighted Sobolev spaces to go to zero
sufficiently fast in the strip-like ends. We will denote by Dδ

r,λ the Cauchy-Riemann

operator from W 1,p
δ (Σr,λ) to L

p
δ(Σr).

We define the Lagrangian label λδ = (λδ0, . . . , λ
δ
d) by the isomorphism

W 1,p
δ (Σr,λ) →W 1,p(Σr,λ

δ), ζ 7→ eδχ(z)(s+it)ζ.
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In order to understand the Fredholm properties of Dδ
r,λ, we introduce the operator

D̃r,λδ defined by the following commutative diagram:

W 1,p
δ (Σr,λ)

(eδχ(z)(s+it))·

��

Dδ
r,λ // Lp

δ(Σr,C
n)

(eδχ(z)(s+it))·

��
W 1,p(Σr,λ

δ)
D̃

r,λδ
// Lp(Σr,C

n).

In other words,

D̃r,λδ (ζ) = eδχ(z)(s+it)Dδ
r,λ(e

−δχ(z)(s+it)ζ) = Dr,λδ (ζ) − δ∂(χ(z)(s+ it))ζ

for ζ ∈ W 1,p(Σr,λ
δ), and thus D̃r,λδ is a compact deformation of Dr,λδ because

χ is constant outside a compact set. For a generic choice of δ, the asymptotic

Lagrangian labels associated to λδ are transverse, and therefore D̃δ
r,λ is Fredholm.

Standard Fredholm theory implies that Dδ
r,λ also is Fredholm and that

Ind(Dδ
r,λ) = Ind(D̃r,λδ ) = Ind(Dr,λδ ).

Choose lifts (λδ0)
#, . . . , (λδd)

#; then by Equation (19) the index of Dδ
r,λ is

(20) ind(Dδ
r,λ) = i((λδ,−0 )#, (λδ,+d )#)−

d−1∑

i=0

i((λδ,+i )#, (λδ,−i+1)
#).

In order to make Equation (20) more explicit, we relate the absolute indices of the
asymptotic Lagrangian labels before and after the perturbation.

At the incoming puncture

(λδ,−0 )# = eiδ(λ−0 )
#, and (λδ,+d )# = (λ+d )

#,

while at the outgoing punctures , for i = 0, . . . , d− 1,

(λδ,+i )# = e−iδ(λ+i )
#, and (λδ,−i+1)

# = (λ−i+1)
#.

Since i(eiδ(λ−0 )
#, (λ+d )

#) = i((λ−0 )
#, e−iδ(λ+d )

#) and i(e−iδ(λ+i )
#, (λ−i+1)

#) =

i((λ+i )
#, eiδ(λ−i+1)

#), Example 4.1 implies that the index of Dδ
r,λ is

(21) Ind(Dδ
r,λ) = i((λ−0 )

#, (λ+d )
#)−

d−1∑

i=0

(i((λ+i )
#, (λ−i+1)

#) + dim(λ+i ∩ λ−i+1)).

4.2. Grading. We are now ready to define the gradings of the generators that will
appear in the Cthulhu complex described Section 6. For intersection points, the
grading follows Seidel [64], while for Reeb chords we recover the definition in [32]
by Ekholm-Etnyre-Sullivan.
The Maslov potential of a Lagrangian cobordism. We assume that 2c1(P ) =
0, which is equivalent to saying that Λn

C
(TX)⊗2 ≃ X × C. Let ν̃ be such a trivi-

alisation. Note that since Σ is Lagrangian for any basis (v1, . . . , vn+1) of TpL, the
value

ν(v1, . . . , vn+1) := ν̃(v1, . . . , vn+1, v1, . . . , vn+1)

is non-zero and, moreover,

ν(v1, . . . , vn+1)

‖ν(v1, . . . , vn+1)‖
∈ S1
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does not depend on the choice of the basis. This defines a function α : L→ S1 whose
homotopy class [α] ∈ [L, S1] ≃ H1(L) is mapped to the Maslov class µ ∈ H2(M,L)
through the connecting homomorphisms ρ : H1(L) → H2(M,L). We now make
the assumption that the Maslov class vanishes, from which it follows that there

exists a (not uniquely determined) function α# : L → R satisfying α = e2iπα
#

.
Note that, for any p ∈ Σ, the pair (TpΣ, α

#(p)) can be identified with an element

of Gr#(TpX,ωp).

Remark 4.3. In the case when the Maslov does not vanish one defines the potential
to take values in the cover of S1 associated to im[α] ⊂ H1(S1) = Z; this leads to a
cyclic grading defined modulo im[α].

Let us now assume that we have fixed choices of functions α#
0 and α#

1 as above
for both of the cobordisms Σ0 and Σ1; these functions are called Maslov potentials

for the cobordisms. Using the same notation as in Section for p ∈ Σi, we let α#
i (p)

denote (TpΣi)
#.

Grading of intersection points. Let p be an intersection point between Σ0 and
Σ1. Given a choice of ordering (Σ0,Σ1), we define the grading of p by

gr(p) = i(α#
0 (p), α

#
1 (p)).

Grading of Reeb chords. Let γ be a Reeb chord of the link Λ± := Λ±
0 ∪Λ±

1 with
starting point p− ∈ Λ±

i− , endpoint p
+ ∈ Λ±

i+ , and length ℓ. The Maslov potential
on Σ0 ∪ Σ1 restricts to a Maslov potential on the cylindrical ends R× Λ±. Let φt
be the flow of the Reeb vector field ∂

∂z . Observe that a Hamiltonian isotopy acts
on the space of graded Lagrangian planes by the homotopy lifting property. Let

α#
γ,t be the lift of the path of Lagrangian planes dφt(T(t0,p−)(R × Λ±)) starting at

αi(t0, p
−)# for any t0 ∈ R. We define

gr(γ) = i(αi+(t0, p
+)#, α#

γ,ℓ)− 1.

Remark 4.4. This grading coincides with the grading of the Reeb chord generators
of the Chekanov-Eliashberg algebra used in [34], which are defined in terms of the
Conley-Zehnder index.

Note that the above Lagrangian subspaces do not intersect transversely. Here
we must use the definition that utilises the symplectic reduction as in Section 4.1.1.
In this case, this symplectic reduction can be seen to geometrically correspond to
taking the canonical projection R× P × R → P .

4.2.1. Virtual dimension of the moduli spaces. We now turn our attention to the
general settings and prove the virtual dimension formulae for the moduli spaces of
holomorphic discs ML(x0, x1, . . . , xj++j−+l) for a Lagrangian label L taking values

in {Σ0,Σ1}. Let p and {qk}lk=1 be intersection points of Σ0 ∩ Σ1. In addition, we

let {γ+0 } and {γ+k }j
+

k=1 be Reeb chords of Λ+
0 ∪Λ+

1 , and {γ−k }j
−

k=1 be Reeb chords of

Λ−
0 ∪ Λ−

1 . We require that the Lagrangian label satisfies the property that:

• The asymptotic x0 at the incoming puncture is either an intersection point
p0, or a positive puncture asymptotic to the Reeb chord γ+0 . In either case,
this puncture is required to be a jump from Σ1 to Σ0; and

• The asymptotics of the other punctures x1, . . . , xj++j−+l correspond bijec-

tively to {γ+k }j
+

k=1 ∪ {γ−k }j
−

k=1 ∪ {qk}
l
k=1. Here we make no requirements
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regarding the jumps made at the different punctures. (In the case of a
Reeb chord, such a jump is uniquely determined. The jumps at intersection
points are determined by the order of the asymptotics (x1, . . . , xj++j−+l)
since the jump at x0 is fixed.) For an intersection point, we define the
function (σqk(0), σqk (1)) := (0, 1) in case the jump is from Σ0 to Σ1, while
we define (σqk (0), σqk(1)) := (1, 0) in case the jump is from Σ1 to Σ0. Note
that here we do not insist on the Lagrangian label being simple.

For a punctured pseudoholomorphic disc u : Sr → X inside the above moduli
space ML(x0, x1, . . . , xj++j−+l) we let Fu be the linearisation of Equation (9).
The following result provides a computation of the Fredholm index of Fu. Recall
that this Fredholm index is equal to the dimension of the moduli space of such discs
modulo reparametrisation in the case when this moduli space is transversely cut
out.

Theorem 4.5. Let (Σ0,Σ1) be an ordered pair of Lagrangian cobordisms of dimen-
sion n+ 1, and let u be a punctured disc with boundary on this pair of Lagrangian
submanifolds as described above. The Fredholm index of Fu given by

Ind(Fu) = gr(p0) +

j+∑

k=1

gr(γ+k )−
∑

σqk
(0)=1

(n+ 1− gr(qk))+(22)

−
∑

σqk
(0)=0

gr(qk)−

j−∑

k=1

gr(γ−k )+

+ (2 − n)j+ + l − 2 if x0 = p0,

Ind(Fu) = gr(γ+0 ) +

j+∑

k=1

gr(γ+k )−
∑

σqk
(0)=1

(n+ 1− gr(qk))+(23)

−
∑

σqk
(0)=0

gr(qk)−

j−∑

k=1

gr(γ−k )+

+ (2 − n)j+ + l if x0 = γ+0 ,

where the gradings of intersection points are defined using the order (Σ0,Σ1) as in
Section 4.2.

Proof. The operator Fu decomposes as Du ⊕ Ku ⊕ τm where Du acts on W 1,p
δ ,

Ku : R
j → 0 with j = j+ + j− (resp. j = j+ + j− + 1) in the case when x0 = p0

(resp. x0 = γ+0 ), and τj++j−+l+1 is the operator associated to the deformation of
the Teichmüller space at r. The latter operator has index equal to the dimension

of Rj++j−+l+1, minus the dimension of the automorphisms group of the curve Sr.
The index of Ku is j+ + j− if x0 = p0 and j+ + j− + 1 if x0 = γ+0 . Moreover,

Ind τm = j+ + j− + l− 2. For k ∈ {1 . . . j±} we denote by p±k the end of the chord
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γ±k . From Equation (21)we get that

Ind(Du) = i((Tp0Σ0)
#, (Tp0Σ1)

#)−

j+∑

k=1

(
i(α#

γ+
k
,ℓk
, T(0,p+

k
)(R× Λ+)#) + 1

)

−
∑

k

i(TqkΣσqk
(0))

#, (TqkΣσqk
(1))

#)−

j−∑

k=1

(
i(T(0,p−

k
)(R× Λ−)#), α#

γ−

k
,ℓk

) + 1
)

or

Ind(Du) = i(T(0,p+
0 )(R× Λ+)#, α#

γ+
0 ,ℓ0

)−

j+∑

k=1

(
i(α#

γ+
k
,ℓk
, T(0,p+

k
)(R× Λ+)#) + 1

)

−
∑

k

i(TqkΣσqk
(0))

#, (TqkΣσqk
(1))

#)−

j−∑

k=1

(
i(T(0,p−

k
)(R× Λ−)#, α#

γ−

k
,ℓk

) + 1
)
.

Depending on whether x0 is p0 or γ+0 .
Note that for q ∈ Σ0 ∩ Σ1, we have

i((TqΣ0)
#, (TqΣ1)

#) = n+ 1− i((TqΣ1)
#, (TqΣ0)

#)

whereas that for a Reeb chord γ with end point p+ we have that

i(α#
γ,ℓ, T(0,p+)(R× Λ±)#) = n− i(T(0,p+)(R× Λ±)#, α#

γ,ℓ).

Thus we obtain

Ind(Du) = gr(p0)−

j+∑

i=1

(n− gr(γ+k ))−
∑

σ(qk)(0)=0

gr(qk)

−
∑

σqk
(0)=1

(n+ 1− gr(qk))−

j−∑

1

(gr(γ−k ) + 2) or

Ind(Du) = gr(γ+0 ) + 1−

j+∑

i=1

(n− gr(γ+k ))

−
∑

σ(qk)(0)=0

gr(qk)−
∑

σqk
(0)=1

(n+ 1− gr(qk))−

j−∑

1

(gr(γ−k ) + 2) or

Since Ind(Fu) = Ind(Du) + Ind(Ku) + Ind(τm) the result follows. �

We apply Equation (22) to compute the virtual dimension of the moduli spaces
defined in Section 3.2. For (n+ 1)-dimensional Lagrangian cobordisms, we obtain

dim(M̃(γ+; δ−, γ−, ζ−)) = dim(M(γ+; δ−, γ−, ζ−))− 1(24)

= gr(γ+)− gr(γ−)− gr(δ)− gr(ζ)− 1,

dim(M(γ+; δ−, q, ζ−)) = gr(γ+)− gr(q)− gr(δ)− gr(ζ) + 1,(25)

dim(M(p; δ−, q, ζ−)) = gr(p)− gr(q)− gr(δ)− gr(ζ)− 1,(26)

dim(M(p; δ−, γ−, ζ−)) = gr(p)− gr(γ−)− gr(δ)− gr(ζ)− 2,(27)

dim(M̃(γ2,1; δ
−, γ1,2, ζ

−)) = dim(M(γ2,1; δ
−, γ1,2, ζ

−))− 1(28)

= gr(γ2,1) + gr(γ1,2)− gr(δ)− gr(ζ)− n+ 1.
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4.3. Transversality. Here we have gather various results from the literature that
are needed in order to achieve transversality for the relevant moduli spaces of punc-
tured pseudoholomorphic discs inside R×P ×R. Recall that the transversality of a
moduli space in particular implies that it is a smooth manifold of dimension equal
to the Fredholm index of the corresponding linearised problem (see Section 4.1.2).
As usual, an almost complex structure for which the relevant moduli spaces are
transversely cut out is called regular.

4.3.1. Punctured discs and strips with a cylindrical boundary condition. Consider
the moduli spaces for a cylindrical boundary condition, and where all punctures
are asymptotic to Reeb chords of which precisely one is positive with asymptotic
γ+. In other words, we are interested in moduli spaces of the form

MR×Λ(γ
+; γ−1 , . . . , γ

−
d ),

MR×Λ0,R×Λ1(γ
+; γ−1 , . . . , γ

−
d ), γ+ ∈ R(Λ1,Λ0),

as described in Section 3.2.3. Note that solutions in the latter moduli space also
are solutions (of a special kind) inside the former moduli space for Λ = Λ0 ∪ Λ1.
We also consider moduli spaces of the form

MR×Λ0,R×Λ1(γ1,0; δ
−, γ0,1, ζ

−),

as considered in Section 3.2.7. Recall that here all punctures have negative asymp-
totics to Reeb chords except precisely two, where these two punctures moreover
have positive asymptotics to two distinct Reeb chords γ1,0 ∈ R(Λ1,Λ0), γ0,1 ∈
R(Λ0,Λ1), and where δ− and ζ− denote words of chords on Λ0 and Λ1, respec-
tively.

The result [24, Proposition 3.13] can be applied to all of these moduli spaces,
showing that they are transversely cut-out for a Baire first category subset of almost
complex structures J cyl(P × R). This result can be seen as an adaptation of
Dragnev’s result in [28] to the case of a cylindrical boundary condition. Note
that, even if the aforementioned result assumes that there is precisely one positive
puncture, in this case its proof can still be applied, since the two positive punctures
of the solution have different asymptotics.

For technical reasons it will be necessary to achieve transversality also for the
subset J cyl

π (P ×R) ⊂ J cyl(P ×R) of cylindrical lifts of almost complex structures

(see Section 3.1.3). In this case, [25, Lemma 8.2] shows that a J̃P -holomorphic disc
ũ in R× P ×R is transversely cut out if and only if its JP -holomorphic projection
u := π ◦ u is transversely cut out. That the latter discs are transversely cut out for
a Baire first category subset of admissible almost complex structures was shown in
[34, Proposition 2.3] under the following additional assumption:

(A) Fix a chord-generic Legendrian submanifold Λ ⊂ P × R. The pair (Λ, JP )
said to be admissible if the following is satisfied. The almost complex
structure JP is integrable in some neighbourhood of each double point of
the Lagrangian projection ΠLag(Λ), where the two sheets of this Lagrangian
immersion moreover are real-analytic.

Note that this condition imposes no restriction on the Legendrian submanifold.
Namely, every transverse Lagrangian intersection is symplectomorphic to the in-
tersection of the real and imaginary parts in (Cn, ω0) by a version of Weinstein’s
Lagrangian neighbourhood theorem.

Combining the above results, we obtain:
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Proposition 4.6. The above moduli spaces are transversely cut out for a Baire first
category subset of the cylindrical almost complex structures J cyl(P ×R), as well as
for a Baire first category subset of the admissible cylindrical lifts J cyl

π (P × R) of
almost complex structures on JP satisfying condition (A).

4.3.2. Discs with boundary on a general embedded Lagrangian cobordism. We are
here interested in the case when the boundary condition is a general embedded
Lagrangian cobordism Σ from Λ− to Λ+, and when all asymptotics are Reeb chords.
In other words, we consider moduli spaces of the form

MΣ(γ
+; γ−1 , . . . , γ

−
d )

as described in Section 3.2.3.

Proposition 4.7. Assume that we are given cylindrical almost complex structures
J± ∈ J cyl(P × R) which are regular for MR×Λ±(γ+; γ−1 , . . . , γ

−
d ), as well as a

number T > 0 for which Σ \ ([−T, T ] × P × R) is cylindrical. The above moduli
spaces of the form

MΣ(γ
+; γ−1 , . . . , γ

−
d )

are transversely cut out for a Baire first category subset of J adm
J−,J+,T (R× P × R).

Proof. From [17, Theorem 2.8] it follows that the discs in these moduli spaces are
simple, and a standard transversality argument [56, Chapter 3] can thus be applied.
To that end, observe that it suffices to find an injective point of the disc contained
inside (−T, T ) × P × R, where the sought perturbation of the almost complex
structure will be supported. (In the case when the disc is disjoint from this subset,
it is in fact already transversely cut out by the assumptions of the proposition.) �

4.3.3. Strips with at least one asymptotic to an intersection point. Let Σi, i = 0, 1,
be two transversely intersecting exact Lagrangian cobordisms from Λ−

i to Λ+
i . We

now consider moduli spaces of strips being of the form

MΣ0,Σ1(x0; δ
−, x1, ζ

−),

where δ− and ζ− denote words of Reeb chords on Λ−
1 and Λ−

0 , respectively, and
where at least one of x0 and x1 is an intersection point of Σ0 ∩ Σ1. See Sections
3.2.4, 3.2.5, and 3.2.6. Recall that exactness implies that x0 6= x1 holds in either of
the cases. It is here important to note that Σ0 ∪ Σ1 is not an embedded boundary
condition.

One option for achieving transversality for these moduli spaces is via the tech-
nique in [34], while imposing a condition analogous to (A) near the intersection
points. In other words, one has to consider almost complex structures which are
integrable in a neighbourhood of Σ0 ∩ Σ1, which moreover make the Lagrangian
submanifolds real-analytic inside the same neighbourhood.

Alternatively, transversality is also possible to achieve when using so-called
“time-dependent” almost complex structures as described in Section 3.1.5. This
technique goes back to Floer [46]. Recall that the strips in the above moduli space
are maps of the form

u : (R× [0, 1],R× {0},R× {1}) → (R× P × R,Σ0,Σ1),

where the domain is endowed with the conformal structure coming from the stan-
dard holomorphic coordinate s+ it on R× [0, 1] ⊂ R2 = C (this parametrisation is
determined up to a translation of the s coordinate).
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We consider sufficiently regular one-parameter families {Jt}t∈[0,1] of almost com-

plex structures Jt ∈ J adm
J−,J+(R× P × R), and define the moduli spaces for the cor-

responding time-dependent version of the Cauchy-Riemann operation on a strip as
in Section 3.1.5. The somewhere injectivity result in e.g. [59, Theorem 5.1] or [9,
Section 8.6] also holds in the current setting, showing that:

Proposition 4.8. Assume that we are given cylindrical almost complex structures
J± ∈ J cyl(P × R) which are regular for MR×Λ±(γ+; γ−1 , . . . , γ

−
d ), as well as a

number T > 0 for which Σ \ ([−T, T ] × P × R) is cylindrical. The above moduli
spaces of the form

MΣ0,Σ1(x0; δ
−, x1, ζ

−)

are transversely cut out for a Baire first category subset of the time-dependent
almost complex structures Jt : I → J adm

J−,J+,T (R× P × R).

4.3.4. Strips with only Reeb chord asymptotics. We now consider moduli spaces of
strips being of the form

MΣ0,Σ1(γ
+; δ−, γ−, ζ−)

as above, but where γ± both are Reeb chords; see Sections 3.2.3 and 3.2.7. Observe
that this strip has a puncture with a positive asymptotic to a Reeb chord γ+ from
Λ+
1 to Λ+

0 , while γ
− is either a Reeb chord from Λ−

1 to Λ−
0 , which hence is a negative

asymptotic, or a Reeb chord from Λ+
0 to Λ+

1 , which hence is a positive asymptotic.
In either case, we have γ+ 6= γ−.

Proposition 4.9. Assume that we are given cylindrical almost complex structures
J± ∈ J cyl(P × R) which are regular for every moduli space of the form

M
R×Λ±

0 ∪R×Λ±

1
(γ+; γ−1 , . . . , γ

−
d ),

M
R×Λ±

0 ,R×Λ±

1
(γ+1 ; γ−1 , . . . , γ

−
d1
, γ+2 , γ

−
d1+1, . . . , γ

−
d ),

as well as a number T > 0 for which Σ \ ([−T, T ] × P × R) is cylindrical. Any
almost complex structure J ∈ J adm

J−,J+,T (R × P × R) can be perturbed to an almost

complex structure J ′ ∈ J adm
J−,J+,T ′(R×P ×R) which is regular for the moduli spaces

of the form

MΣ0,Σ1(γ
+; δ−, γ−, ζ−),

under the assumption that T ′ ≫ T was chosen sufficiently large.

Proof. The argument is done by induction on the energy of the discs in the moduli
spaces. To that end, the following feature of the SFT compactness theorem is
crucial:

• In our setting, the space of solutions of d(φα)-energy at most E > 0 has
also a uniform bound on the total energy. Hence, the space ME of these

solutions can be compactified to M
E
by adding broken configurations con-

sisting of pseudoholomorphic buildings;

• The boundary strata of the compactified moduli space M
E

consists of
buildings whose components u1, . . . , uk have d(φα)-energies whose sum is
at most E; and

• The complement of any open neighbourhood of the boundary strata in M
E

is a compact subspace of ME in the appropriate Whitney topology.
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We also note that, in our setting, the possible d(φα)-energies attained by a non-
trivial pseudoholomorphic curve having at most one output puncture is a finite set
of numbers Ek > Ek−1 > . . . > E1 > 0, as follows from the finite possibilities of
asymptotics in the current setting.

The base case of the induction is as follows. The J-holomorphic discs in ME1

of lowest d(φα)-energy cannot break by the above, and must thus be compact as a
space of maps. Using the asymptotic properties of finite energy discs, all solutions
must have injective points in some subset of the form [T ′′, T ′′ + 1] × P × R, for
T ′′ ≫ T sufficiently big. After a perturbation of J supported inside [T ′′, T ′′ + 1]×

P × R, we may thus assume that the moduli space ME1 = M
E1

of lowest energy
is transversely cut out.

By induction we assume that all moduli spaces of energy strictly less than Ei > 0,
i > 1, are transversely cut out. Pseudoholomorphic gluing as in Theorem 4.11 can
be upgraded to the following statement: Gluing of transversely cut out solutions
can always be performed and, a priori, produces transversely cut out solutions.

Since the boundary strata of M
Ei

consists of transversely cut out components
by the induction hypothesis together with the assumptions of the proposition, the
moduli space MEi thus also consists of transversely cut out solutions in some
neighbourhood of its boundary strata.

We are thus left to achieve transversality for a subset of solutions contained in

the complement of some neighbourhood of the boundary of M
Ei
. By the above,

these solutions form a compact space of maps. An argument as in the base case can
again be used to show the following. After a suitable perturbation of the almost
complex structure J in a region containing the positive end (where these maps all
have injective points by the asymptotic properties), the full moduli space MEi can
be assumed to be transversely cut out. �

We also give the following alternative approach to transversality, using time-
dependent almost complex structures.

Proposition 4.10. Assume that we are given a pair J± ∈ J cyl(P×R) of cylindrical
almost complex structures which are regular for all moduli spaces of the form

M
R×Λ±

0 ∪R×Λ±

1
(γ+; γ−1 , . . . , γ

−
d ),

M
R×Λ±

0 ,R×Λ±

1
(γ+1 ; γ−1 , . . . , γ

−
d1
, γ+2 , γ

−
d1+1, . . . , γ

−
d ),

as well as a number T > 0 for which Σ\ ([−T, T ]×P ×R) is cylindrical. The above
moduli spaces of the form

MΣ0,Σ1(γ
+; δ−, γ−, ζ−)

are transversely cut out for a Baire first category subset of the time-dependent
almost complex structures Jt : I → J adm

J−,J+,T (R× P × R).

Proof. The somewhere injectivity result in [9, Section 8.6] can be extended to the
case when all asymptotics of the strip are Reeb chords. Observe that the strips
that do not pass through [−T, T ]× P × R are transversely cut out by assumption.
Consequently, it suffices to turn on the time-dependence in that region. �

4.4. Gluing. In this section we explain how transversely cut-out buildings as in
Section 3.3.3 can be glued to give a family of holomorphic disc which converges to
the original building. In other words, the moduli space of buildings, which can be
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compactified by Theorem 3.9, will under transversality assumptions be a compact
manifold whose boundary strata consists of broken solutions.

We assume from now on that all almost complex structures are regular (see

Section 4.3). To a nodal curve S with normalisation Ŝ, we associate a tree TŜ as

in Section 2.3.3 whose vertices correspond to connected components of Ŝ, interior
edges connecting two vertices correspond to nodes, and whose leaves correspond to
ends.

The following theorem is a standard consequence of the techniques used in [32,
Section 8].

Theorem 4.11. Assume that the almost complex structure is regular and admis-
sible, and let $ denote either “Σ” or “Σ0,Σ1”. Consider a holomorphic building in

M
k−|1|k+

$ (x0;x1, · · · , xd) associated a nodal curve S, a tree TS, and consisting of the
pseudoholomorphic discs {ui}. For ǫ0 > 0 sufficiently small, let ǫ0 > ρ1, . . . , ρν > 0
be numbers associated to each pairs of nodes asymptotic to an intersection point,
and let ǫ0 > ρν+1, . . . , ρν+k > 0, k = k+ + k− ≥ 0, be numbers associated to each
non-empty level of the building except the 0:th level. Then, there exists a uniquely
determined punctured pseudoholomorphic disc

uρ ∈ M$(x0;x1, · · · , xd), ρ = (ρ1, . . . , ρν+k),

the so-called glued solution, satisfying the property that uρi
, i → ∞, converges

to the original building whenever ρi = (ρ1,i, . . . , ρν+k,i) satisfies limi→∞ ρj,i = 0,
j = 1, . . . , k + ν.

Remark 4.12. The expected dimension of a glued solution in M$(x0;x1, · · · , xd)
produced by the above theorem is given by the sum

ν +
∑

i

Ind(ui),

in terms of the expected dimensions of all involved components u1, . . . , um in the
original building, where ν is the total number of the involved pairs of nodes asymp-
totic to intersection points.

Together with the compactness result in Theorem 3.9 we obtain the following
crucial result.

Corollary 4.13. Assume that the almost complex structure is regular and admissi-
ble, and let $ denote either “Σ” or “Σ0,Σ1”. The compactification M$(x0;x1, . . . , xd)
of a moduli space M$(x0;x1, . . . , xd) of punctured pseudoholomorphic discs being of
index one is a transversely cut out one-dimensional manifold with boundary. More-
over, its boundary points are in bijective correspondence with the broken solutions

inside M
k−|1|k+

$ (x0;x1, · · · , xd) whose components u1, . . . , um satisfy

ν +
∑

i

Ind(ui) = 1,

and where ν denotes the total number of pairs of nodes asymptotic to intersection
points.

A geometric analysis of the a priori possibilities of building leads to the following
structure of the boundary of the relevant moduli spaces of dimension one.
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Let a, b be asymptotics and δ and ζ be sets of Reeb chords of Λ−
0 and Λ−

1 respec-
tively such that for regular J the moduli space M(a; δ, b, ζ) is a 1-dimensional man-
ifold. By Corollary 4.13 it follows that the compactified moduli space M(a; δ, b, ζ)
is a compact 1-dimensional manifold whose boundary consists of broken solutions.

For words w, w′ and w′′ in a free group such that w′ is a subword of w (denoted
w′ ⊂ w) we denote by ww′ the word obtain removing w′ from w and by ww′(w′′)
the word obtain replacing w′ by w′′.

We proceed to explicitly describe the boundary of M(a; δ, b, ζ) for different in-
coming and outgoing ends. Note that, by the energy estimates of Section 3.3.2
(which use the exactness assumptions), there are no components all whose punc-
tures have negative asymptotics. Also, since every possible component of a broken
configuration has non-negative index by the regularity assumptions, we have a re-
striction on the number of breakings involved in these compactification. In the
following lists all unions are assumed to be over 0-dimensional moduli spaces.

For a = p ∈ Σ0 ∩Σ1 and b = γ− ∈ R(Λ−
1 ,Λ

−
0 ) we conclude that (see Figure 8)

∂M(p; δ, γ−, ζ) =(29)
⋃

c,δ′δ′′=δ,ζ′ζ′′=ζ

M(p; δ′, c, ζ′′)×M(c; δ′′, γ−, ζ′)

⋃

δ′⊂δ,δ0

M(p; δδ′(δ0), γ
−, ζ)×M(δ0; δ

′)

⋃

ζ′⊂ζ,ζ0

M(p; δ, γ−, ζζ′(ζ0))×M(ζ0; ζ
′)

Figure 8. A schematic view of the boundary of M(p; δ, γ−, ζ).

Observe that the latter two types of boundary points in the above union, i.e. in-
volving pseudoholomorphic half-planes, always can appear in the boundary of a
1-dimensional moduli space. We call them ∂-breakings and denote them by

M
∂
(a; δ, b, ζ).
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The upshot of the constructions of the Cthulhu complex will be that, when count-
ing the boundary points of the moduli space weighted by an augmentation, the
boundary points corresponding to ∂-breakings will give a total contribution by 0;
see (II) below for more details.

For a = p, b = q ∈ Σ0 ∩ Σ1 we conclude that

∂M(p; δ, q, ζ) =(30)
⋃

r,δ′δ′′=δ,ζ′ζ′′=ζ

M(p; δ′′, r, ζ′)×M(r; δ′, q, ζ′′)

⋃
M(p; δ′, γ10, ζ

′′′)×M(γ10; δ
′′, γ01, ζ

′′)×M(γ01; δ
′′′, q, ζ′)

⋃
M

∂
(p; δ, q, ζ).

Where the second union is over:

• γ01 ∈ R(Λ−
0 ,Λ

−
1 ), γ10 ∈ R(Λ−

1 ,Λ
−
0 ); and

• δ′δ′′δ′′′ = δ, ζ ′ζ′′ζ′′′ = ζ.

The second type of breaking here is depicted in Figure 9.

Figure 9. A boundary point in M(p; δ, q, ζ)

For a = γ+ ∈ R(Λ+
1 ,Λ

+
0 ) and b = γ− ∈ R(Λ−

1 ,Λ
−
0 ), we have

∂M(γ+; δ, γ−, ζ) =(31)
⋃

M(γ+; δ+1 · · · δ+l , γ0, ζ
+
1 · · · ζ+m)×

(
M(δ+1 ; δ

−
1 ) ⊔ · · · ⊔M(δ+m; δ−

m)

⊔M(γ0; δ
−
l+1, γ

−, ζ−
0 ) ⊔M(ζ+1 ; ζ−

1 ) ⊔ · · · ⊔M(ζ+m; ζ−
m)
)

⋃
M(γ+; δ′, c, ζ′′)×M(c; δ′′, γ−, ζ ′)

⋃
M

∂
(γ+; δ, γ−, ζ)

with the first union being over

• γ+ ∈ R(Λ+
1 ,Λ

+
0 );

• δ+1 , . . . , δ
+
l ∈ R(Λ+

0 );

• ζ+1 , . . . , ζ
+
m ∈ R(Λ+

1 ); and
• δ−

1 δ
−
2 · · · δ−

l+1 = δ, ζ−
0 ζ

−
1 · · · ζ−

m = ζ,

and the second being over

• c ∈ Σ0 ∩ Σ1 ∪R(Λ−
1 ,Λ

−
0 ); and

• δ′δ′′ = δ, ζ ′ζ′′ = ζ.



46 Chantraine, Dimitroglou Rizell, Ghiggini, Golovko

The first type of breaking is depicted in Figure 10.

Figure 10. A boundary point in M(γ+; δ, γ−, ζ)

Finally, for a = γ+ ∈ R(Λ+
1 ,Λ

+
0 ) and b = p ∈ Σ0 ∩ Σ1, we have

∂M(γ+; δ, p, ζ) =(32)
⋃

M(γ+; δ+1 · · · δ+l , γ0, ζ
+
1 · · · ζ+m)×

(
M(δ+1 ; δ

−
1 ) ⊔ · · · ⊔M(δ+m; δ−

m)

⊔M(γ0; δ
−
l+1, p, ζ

−
0 ) ⊔M(ζ+1 , ζ

−
1 ) ⊔ · · · ⊔M(ζ+m, ζ

−
m)
)

⋃

q∈Σ0∩Σ1

M(γ+; δ′, q, ζ′′)×M(q; δ′′, p, ζ′)

⋃
M(γ+; δ′, γ10, ζ

′′′)×M(γ10; δ
′′, γ01, ζ

′′)×M(γ01, δ
′′′, p, ζ′)

⋃
M

∂
(γ+; δ, p, ζ)

The union being over the same sets as in (31) and (30).

5. Preliminaries of Legendrian contact homology

Here we give a quick review of the theory of Legendrian contact homology, and
we direct the reader to [34] and [30] for more details. Legendrian contact homology
is a Legendrian isotopy invariant associated to a Legendrian submanifold which
was defined by Chekanov for Legendrian knots in the standard R3 [20] and then
extended to Legendrian submanifolds of contactisations of Liouville manifolds by
Ekholm, Etnyre and Sullivan [34].

5.1. The Chekanov-Eliashberg DGA. Let (Y, ξ) be the contactisation of a Li-
ouville manifold (P, λ) and Λ ⊂ (Y, ξ) a chord-generic Legendrian submanifold. Fix
a unital commutative ring R which, most often, we will be R = Z or R = Z/2Z.
However, recall that we have to assume Λ to be spin and fix a spin structure in order
to use R different from a unital algebra over a field of characteristic 2. The Leg-
endrian contact homology differential graded algebra (DGA) of Λ, also called the
Chekanov-Eliashberg algebra and denoted by (A(Λ), ∂), is a unital tensor R-algebra
freely generated by the Reeb chords of Λ.

The grading of a Reeb chord generator a ∈ R(Λ) is given by

|γ| := gr(γ) ∈ Z/ZµΛ(H2(P×R,Λ))

as defined in Section 4.2. Here µΛ : H2(P × R,Λ) → Z is the Maslov class of Λ
associated to the contact planes. We define the degree of the unit to be zero.
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Its differential ∂ is of degree −1 and counts certain punctured holomorphic discs
in the symplectisation of Y which have boundary on R× Λ and are asymptotic to
Reeb chords. More precisely, ∂ is defined on a generator δ0 ∈ R(Λ) as

∂(δ0) :=
∑

dimMR×Λ(δ0;δ)=1

#M̃R×Λ(δ0; δ)δ,

where δ = δ1 . . . δm(δ) is a formal product of Reeb chords and M̃R×Λ(δ0; δ) is
the moduli space defined in Section 3.2.3. Here (and from now on) the symbol ‘#’
indicates the signed count of 0-dimensional moduli spaces and we use the convention
that it gives 0 for moduli spaces of dimension different from zero. Then we extend
∂ to all of A(Λ) by R-linearity together with the Leibniz rule

∂(δδ′) = ∂(δ)δ′ + (−1)|δ|δ∂(δ′).

Remark 5.1. By the results in [25], we may equivalently define ∂ by counting
holomorphic polygons in P having boundary on the Lagrangian projection of Λ.
For us, however, the above perspective will turn out to be more useful, since it fits
better with the SFT framework.

The fact that ∂2 = 0 and that the homology is independent of the choice of
almost complex structure and invariant under Legendrian isotopy was shown in
[34].

5.2. The DGA morphism induced by an exact Lagrangian cobordism.
Given an exact Lagrangian cobordism Σ ⊂ R× P × R from Λ− to Λ+, there is an
induced unital DGA morphism

ΦΣ : (A(Λ+), ∂Λ+) → (A(Λ−), ∂Λ−),

constructed in [30] and [36], following the general philosophy of SFT. This DGA
morphism is defined on a generator δ+ of A(Λ+) by the J-holomorphic disc count

ΦΣ(δ
+) :=

∑

dimMΣ(δ+;δ−)=0

#MΣ(δ
+; δ−)δ−,

and then extended as a unital algebra map. Here δ− = δ−1 . . . δ
−

m(δ−)
is an element

of A(Λ−), and the moduli space MΣ(a;b) is defined in Section 3.2.3. Observe that,
in order to define the above map with coefficients in Z, we must fix a spin structure
on each end Λ± which can be extended to a spin structure on Σ.

Example 5.2. For the trivial (cylindrical) cobordism R×Λ, we get ΦR×Λ = idA(Λ).

The fact that ΦΣ is a chain map was shown in [30]. In fact, based upon the
abstract perturbations in the same paper, it follows that the DGA-homotopy class
(as defined in [36, Lemma 3.13]) of ΦΣ is independent of the choices of almost
complex structure and Hamiltonian isotopy class of Σ.

Remark 5.3. The invariance properties of our Floer theory does not rely on the
above abstract perturbation argument in the cases under consideration here, i.e. that
of a symplectisation of a contactisation. The reason is that, in these cases, our in-
variance statement boils down to showing that the complex Cth•(Σ0,Σ1) is acyclic.
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5.3. Augmentations and bilinearised Legendrian contact homology. An
(R-valued) augmentation is a unital DGA morphism ε : A(Λ) → R, where R is
regarded as a DGA with trivial differential. In general, the Chekanov-Eliashberg
algebra need not admit any augmentations. However, in the case when the Legen-
drian submanifold Λ ⊂ Y has an exact Lagrangian filling Σ ⊂ R × Y , the above
unital DGA morphism

εΣ := ΦΣ

is indeed an augmentation (also see [31]). In fact, one can think of the trivial DGA
R as the Chekanov-Eliashberg DGA of the empty set.

On the other hand, there are plenty of examples of Legendrian submanifolds
which do not admit any exact Lagrangian filling in the symplectisation, but whose
Chekanov-Eliashberg algebra still admits augmentations. For instance, this is the
case for the Legendrian twist knots constructed in [45]; see the discussion in [63,
Section 10.1].

Augmentations are important for the following reason. Loosely speaking, they
should be seen as “obstruction cocycles” for the Chekanov-Eliashberg algebra.
Given an augmentation, Chekanov defined linearised Legendrian contact homol-
ogy in [20], which is a Legendrian isotopy invariant in the form of a chain com-
plex spanned by the Reeb chords on Λ. Linearised Legendrian contact homol-
ogy is computationally tractable at the expense of discarding non-linear (and non-
commutative) information.

Recently, Bourgeois and the first author have introduced a generalisation of
linearised LCH which is called bilinearised Legendrian contact homology [12]. It is
constructed using a pair of augmentations ε0 and ε1 of (A(Λ), ∂). We proceed to
give a brief description of this complex.

The bilinearised Legendrian contact homology complex is the free module

LCCε0,ε1
• (Λ) := R〈R(Λ)〉

spanned by the Reeb chords with the above grading, whose differential is of degree
−1 and defined by

∂ε0,ε1(δ) =
∑

dimMR×Λ(δ;δ)=1

mδ∑

i=1

#M̃R×Λ(δ; δ)ε0(δ1 . . . δi−1)ε1(δi+1 . . . δmδ
)δi.

The corresponding homology groups will be denoted by

LCHε0,ε1
• (Λ).

The set of augmentations of the Chekanov-Eliashberg algebra (A(Λ), ∂) is not a
Legendrian isotopy invariant of Λ. However, as shown in [12], the invariance proof
of [20] can be generalised to show that the isomorphism classes

{LCHε0,ε1
• (Λ)}/ ∼

of the graded modules, where the union is over all pairs of augmentations, is a
Legendrian isotopy invariant of Λ. Observe that, when ε0 = ε1, we simply recover
Chekanov’s linearised LCH.

We will also be interested in the dual complex of (LCCε0,ε1
• (Λ), ∂ε0,ε1), the so-

called bilinearised Legendrian cohomology complex, where the differential ∂ε0,ε1 is
of degree 1. This complex will be denoted by

(LCC•
ε0,ε1(Λ), dε0,ε1),
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while we write

LCH•
ε0,ε1(Λ)

for the corresponding cohomology group.
The bilinearised LCH is a stronger invariant compared to linearised LCH, due to

the fact that it remembers some of the “non-commutativity” of A(Λ). In [12] it was
shown that these homology groups are the morphisms spaces of an A∞-category
Aug−(Λ) called the augmentation category, whose objects are the augmentations
of the Chekanov-Eliashberg algebra of Λ.

Given an exact Lagrangian cobordisms Σ from Λ− to Λ+, and two augmentations
ε−0 ε−1 of Λ−, the DGA map ΦΣ described in the previous section induces a linear
chain map from LCC•

ε−0 ε−1
(Λ−) to LCC•

ε+0 ε+1
(Λ+) via the formula

Φ
ε−0 ε−1
Σ (γ−) =

∑

γ+,δ−,ζ−

#MΣ(γ
+; δ−, γ−, ζ−)ε−0 (δ

−)ε−1 (ζ
−)γ+,

where ε+i = ε−i ◦ ΦΣ for i = 0, 1.

6. The Cthulhu complex

Let Σ0 and Σ1 be two exact Lagrangian cobordisms inside the symplectisation
(R× P × R, d(etα)) of a contactisation. We assume that:

• Σ0 ⋔ Σ1 (in particular this implies that Λ±
0 ∩ Λ±

1 = ∅),
• The links Λ±

0 ⊔ Λ±
1 are chord-generic.

The Cthulhu complex of the pair (Σ0,Σ1) is the complex whose underlying graded
R-module

Cth•(Σ0,Σ1) := C•(Λ+
0 ,Λ

+
1 )[2]⊕ C•(Σ0,Σ1)⊕ C•(Λ−

0 ,Λ
−
1 )[1]

for a unital ring R. Here C•(Λ+
0 ,Λ

+
1 ) is the free graded module spanned by the

Reeb chords from Λ±
1 to Λ±

0 and C•(Σ0,Σ1) is the free graded module spanned by
the intersection points Σ0∩Σ1. The gradings are taken as described in Section 4.2,
depending on the choice of a Maslov potential.

6.1. The Cthulhu differential. Fix two augmentations ε−0 and ε−1 of the Chekanov-
Eliashberg algebras of Λ−

0 and Λ−
1 , respectively, both of which are defined using a

cylindrical almost complex structure J−. We will define the Cthulhu differential
dε−0 ,ε−1

, which is a differential of degree 1 on the above graded module. With respect

to the above decomposition, this differential takes the form

(33) dε−0 ,ε−1
=



d++ d+0 d+−

0 d00 d0−
0 d−0 d−−


 .

Loosely speaking, every non-zero entry in this matrix is given by a count of rigid
punctured pseudoholomorphic strips of appropriate type, as described in Section
3.2, where the counts are “weighted by” the above augmentations.

First, however, we need to fix the choice of an admissible almost complex struc-
ture J ∈ J adm

J−,J+,T (R × P × R), i.e. a compatible almost complex structure on

R × P × R satisfying the assumptions in Section 3.1.4. In particular, J coincides
with the cylindrical almost complex structures J− and J+ in subsets of the form
(−∞,−T ]× P × R and [T,+∞) × P × R, respectively. In order for these moduli
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spaces to be transversely cut out, we moreover assume that the almost complex
structure was generically chosen as in Section 4.3.

Below we give a careful description of each term in the above matrix, where the
degrees mentioned are the degrees as maps between the above summands without
the shifts in grading as appearing in the above definition of Cth•(Σ0,Σ1).

In the cases when we want to emphasise to which pair of Lagrangian cobordisms

the differential belongs, we use the superscript “Σ0,Σ1”, i.e. d
Σ0,Σ1

ε+0 ,ε−1
, dΣ0,Σ1

+,− ,..., etc.

6.1.1. The bilinearised LCH differential. We define ε+i := ε−i ◦ ΦΣi,J , i = 0, 1,
for the pull-backs of the above augmentations to augmentations of the Chekanov-
Eliashberg algebras of Λ+

0 and Λ+
1 , respectively.

The term d±± is the bilinearised Legendrian cohomology differential for (Λ±
0 ,Λ

±
1 )

induced by the pair (ε±0 , ε
±
1 ) of augmentations as defined in [12] and described in

Section 5.3. In other words, it is given by

d±±(γ
±
2 ) := dε±0 ,ε±1

(γ±2 ) =(34)

=
∑

γ±

1

∑

δ±,ζ±

#M̃
R×Λ±

0 ,R×Λ±

1
(γ±1 ; δ±, γ±2 , ζ

±; J±) · ε±0 (δ
±)ε±1 (ζ

±) · γ±1 .

It follows can be computed using Equation (24) that this term is of degree 1.

6.1.2. The Floer differential. The differential d00 can be seen as a modification of
the differential in Lagrangian Floer homology as introduced by Floer in [46], where
the version defined here has found its inspiration in [31]. For an intersection point
q, it is defined by the count

d00(q) :=
∑

p

∑

δ−,ζ−

#MΣ0,Σ1(p; δ
−, q, ζ−; J) · ε−0 (δ

−)ε−1 (ζ
−) · p.(35)

From Equation (26) we deduce that this map is of degree 1.

6.1.3. The Cultist maps. The maps d+0 and d0− are defined using the moduli spaces
described in Section 3.2.6 and in Section 3.2.5, respectively. A version of the map
d+0 appears in [31] in the case when the negative ends of the cobordisms are empty.
More precisely, we define

d0−(γ
−) :=

∑

p

∑

δ−,ζ−

#MΣ0,Σ1(p; δ
−, γ−, ζ−) · ε−0 (δ

−)ε−1 (ζ
−) · p,(36)

d+0(q) :=
∑

γ+

∑

δ−,ζ−

#MΣ0,Σ1(γ
+; δ−, q, ζ−) · ε−0 (δ

−)ε−1 (ζ
−) · γ+.(37)

Equations (25) (resp. (27)) show that d0− (resp. d+0) is of degree 2 (resp. −1).

6.1.4. The LCH map. The map d+− is defined analogously to the bilinearised map
in LCH induced by an exact Lagrangian cobordism. It is given as follows:

d+−(γ
−) :=

∑

γ+

∑

δ−,ζ−

#MΣ0,Σ1(γ
+; δ−, γ−, ζ−) · ε−0 (δ

−)ε−1 (ζ
−) · γ+.(38)

As follows from Equation (24), this map is of degree 0.
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6.1.5. The Nessie map. Let C•(Λ
±
1 ,Λ

±
0 ) be the dual of C•(Λ±

1 ,Λ
±
0 ) with δ±± the

induced adjoint of the differential dΣ1,Σ0

±± . These differentials are entries in the

Cthulhu differential dΣ1,Σ0

ε−1 ,ε−0
. Further, let CF•(Σ0,Σ1) be the dual of CF •(Σ0,Σ1).

Observe that, since all the above spaces are endowed with a canonical basis, we
are free to identify any such space with its dual. Moreover, with a fixed choice of
Maslov potentials for the two cobordisms, there is also a canonical identification

CF •(Σ0,Σ1) = CF•(Σ0,Σ1) = CFn+1−•(Σ1,Σ0),

when reversing the ordering of the pair of cobordisms.
The count of “banana” pseudoholomorphic strips gives rise to a map

b : Cn−1−•(Λ
±
1 ,Λ

±
0 ) → C•(Λ±

0 ,Λ
±
1 ),

γ01 7→
∑

γ10

∑

δ,ζ

#MΣ0,Σ1(γ10; δ, γ01, ζ) · ε0(δ)ε1(ζ) · γ10,

where the degree of the map follows from Equation (28).
Using δ−0 : CF•(Σ1,Σ0) → C•−2(Λ

−
1 ,Λ

−
0 ) to denote the adjoint of the map

dΣ1,Σ0

0− in the entry of dΣ1,Σ0
ε1,ε0 , we are finally ready to define

d−0 := b ◦ δ−0 : CF
•(Σ0,Σ1) = CFn+1−•(Σ1,Σ0) → C•(Λ−

0 ,Λ
−
1 ),

which is of degree 0.
The moduli spaces above were previously considered in the Floer theory involving

concave ends due to Akaho in [4]. Also, see [5] where Morse homology in the
presence of a non-empty boundary was considered by the same author.

6.2. The proof of dε−0 ,ε−1

2 = 0. We are now ready to present and prove the

following central result.

Theorem 6.1. Let Σi ⊂ R × P × R, i = 0, 1, be a pair of exact Lagrangian
cobordisms from Λ−

i to Λ+
i as above. Given a generic admissible almost complex

structure J ∈ J adm
J−,J+(R×P ×R) in the sense of Section 3.1.4, and augmentations

ε−i of the Chekanov-Eliashberg algebras of Λ−
i defined using J−, then

• dε−0 ,ε−1
is well-defined, and

• dε−0 ,ε−1

2 = 0,

under the assumption that the entries above have been defined using J . In the case
when Σi, i = 0, 1, both are spin, the above counts can moreover be defined by signed
counts with coefficients in Z given the choice of a spin structure on each cobordism.
In general, the count can always be performed in Z2.

In order to prove dε−0 ,ε−1

2 = 0, we need to study the boundary points of one-

dimensional moduli spaces of pseudoholomorphic strips. As usual in Floer theory,
this composition is defined by counting broken pseudoholomorphic strips that cor-
respond to the boundary points of these moduli spaces. Recall that, in our setting,
every strip is punctured, and that all counts are weighted by the augmentations
chosen. For this reason, we start by prescribing two important points that need to
be taken into account when performing these counts:

(I) Recall that the punctured pseudoholomorphic strips used in the definition of
d++ live in the top level and are allowed to have negative punctures. When
adjoining the rigid punctured strips in the definition of d++ and d+∗, where
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∗ = 0,−, i.e. the glued configurations corresponding to the compositions
d++d+∗, we do not necessarily obtain a broken pseudoholomorphic strip.
In order to obtain a broken strip, we will adjoin the pseudoholomorphic
half-planes that appear in the count defining the right-hand side of

ε+i = ε−i ◦ ΦΣi
, i = 0, 1,

to the middle level. From the latter equality, it also follows that the com-
position d++d+∗ indeed is obtained by counting buildings of precisely this
form.

(II) Not all broken punctured pseudoholomorphic strips correspond to two glued
pseudoholomorphic strips. Namely, as shown in Section 4.4, there are so-
called ∂-breakings that consist of a punctured strip together with a punc-
tured half-plane of index 1 having boundary on R × Λ±

i , i = 0, 1. Recall
the fact that the counts of the latter half-planes define the differential ∂±
of the Chekanov-Eliashberg algebras of Λ±

0 ∪ Λ±
1 , and that the equality

ε±i ◦ ∂± = 0, i = 0, 1,

holds by definition. It thus follows that the counts of the totality of the bro-
ken strips of this kind must vanish in the case when this count is weighted
by the augmentations.

Proof. The fact that the map is well-defined follows form the compactness result
Theorem 3.9 together with the transversality results in Section 4.3. Namely, all
moduli spaces of index 0 having fixed asymptotics are compact (since there is a
uniform upper bound on its total energy) 0-dimensional manifolds.

We now make a term-by-term argument for the matrix

dε−0 ,ε−1

2 =


d++

2 d++d+0 + d+0d00 + d+−d−0 d++d+− + d+0d0− + d+−d−−

0 d00d00 + d0−d−0 d00d0− + d0−d−−

0 d−0d00 + d−−d−0 d−0d0− + d−−d−−




in order to show that all entries vanish.

• d2++ = 0. The term d++ is the standard bilinearised Legendrian contact co-

homology differential [12] restricted to mixed chords from Λ+
1 to Λ+

0 . More
precisely, the subspace generated by these chords form a subcomplex of the
linearised cohomology complex of the link Λ+

0 ⊔Λ+
1 , under the assumption

that we use an augmentation of the link which vanishes on mixed chords,
while it takes the value ε+i (γi) on a chord γi ∈ R(Λ+

i ). This term thus
vanishes, as mentioned in Section 5.3.

• d++d+0 + d+0d00 + d+−d−0 = 0. We must study the boundary of a moduli
space MΣ0,Σ1(γ; δ, p, ζ) being of dimension 1. The possibilities for the
breakings involved are schematically depicted in Figure 11.

We claim that, when counting these boundary points weighted by the
augmentations ε−i , i = 0, 1, we get the contribution

〈(d++d+0 + d+0d00 + d+−d−0)(p), γ〉.

Indeed, inspecting the boundary components of different types as described
in Equation (32) we obtain the terms 〈d++d+0(p), γ〉 (here we use ε+i =
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ε−i ◦ΦΣi
; see (I)), 〈d+0d00(p), γ〉, and 〈d+−d−0)(p), γ〉, together with the ∂-

breakings which can be seen to contribute to zero (here we use ε±i ◦∂± = 0;
see (II)).

Λ+
0 ∪ Λ+

1

Σ0 ∪Σ1

Λ−
0 ∪ Λ−

1

0

0

0

1

0

0

0

1

0

0

1

0

Figure 11. Breakings involved in d++d+0+d+0d00+d+−d−0 = 0.
The number on each component denotes its Fredholm index.

• d++d+−+d+0d0−+d+−d−− = 0. The argument is similar to the argument
above, but where Equation (31) has been used. The possibilities for the
breakings involved are schematically depicted in Figure 12 (also, see Figure
10 for some of the breakings with explicit negative ends).

Λ+
0 ∪ Λ+

1

Σ0 ∪ Σ1

Λ−
0 ∪ Λ−

1

0

0

1 0

0

1 0

0

0

0 0

1

0

0 0

0

1

0

0

Figure 12. Breakings involved in d++d+−+d+0d0−+d+−d−− =
0. The number on each component denotes its Fredholm index.

• d00d00+d0−d−0 = 0. Again this follows as above, but while using Equation
(30). The possibilities for the breakings involved are schematically depicted
in Figure 13 (also, see Figure 9).

• d00d0− + d0−d−− = 0. This follows similarly as above, but while using
Equation (29). The possibilities for the breakings involved are schematically
depicted in Figure 14.

• d−0d00 + d−−d−0 = 0. Analysing the breakings of holomorphic bananas,
we get that the map b satisfies b ◦ δ−− = d−− ◦ b (see Figure 15), where

δ−− again denotes the adjoint of dΣ1,Σ0

−− . Hence, we get that

d−0d00 + d−−d−0 = bδ−0d00 + d−−bδ−0 = b
(
δ−0d00 + δ−−δ−0

)
,
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Σ0 ∪Σ1

Λ−
0 ∪ Λ−

1

0 0
0

1

0

1

0

Figure 13. Breakings involved in d00d00 + d0−d−0 = 0. The
number on each component denotes its Fredholm index.

Λ+
0 ∪ Λ+

1

Σ0 ∪ Σ1

Λ−
0 ∪ Λ−

1

0

0
0

0

1 0

0

1
0

0

1

0

Figure 14. Breakings involved in d00d0− + d0−d−− = 0. The
number on each component denotes its Fredholm index.

where δ−0 is the adjoint of dΣ1,Σ0

0− . Since ∂00 := d00 is the adjoint of dΣ1,Σ0

00 ,

the factor δ−0d00 + δ−−δ−0 above is actually the adjoint of dΣ1,Σ0

00 dΣ1,Σ0

0− +

dΣ1,Σ0

0− dΣ1,Σ0

−− . Since the latter term vanishes by the previous case, the claim
now follows. See Figure 9.

Λ−
0 ∪ Λ−

1

Λ−
0 ∪ Λ−

1

1 0

1

1

1

0 1

0

Figure 15. Breakings involved in b ◦ δ−− = d−− ◦ b.

• d−0d0− + d−−d−− = 0. For action reasons we must have d−0d0− = 0.
Finally, d−−d−− = 0 holds since d−− is the bilinearised Legendrian contact
cohomology differential, i.e. for the same reason to why d++d++ = 0.

�
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7. The transfer and co-transfer map for concatenations of
cobordisms

Recall that two exact Lagrangian cobordisms having a common end can be con-
catenated; see Section 2.2. In this section we will provide formulas which relate the
Floer homologies of the different pieces of such a concatenation. This will be done by
introducing a relative version of Viterbo’s transfer map, originally defined in [69] for
symplectic (co)homology. (Recall that Viterbo’s transfer map concerns concatena-
tions of symplectic cobordisms.) For the Hamiltonian formulation of wrapped Floer
homology, the transfer map was constructed and treated in [3].

In the following we will consider the exact Lagrangian cobordisms V0, V1,W0,W1 ⊂
R× P ×R inside the symplectisation of a contactisation. We assume that Vi is an
exact Lagrangian cobordism from Λ−

i to Λi, and that Wi is an exact Lagrangian
cobordism from Λi to Λ+

i , i = 0, 1. It follows that we can form the concatenations

Vi ⊙Wi ⊂ R× P × R, i = 0, 1,

being exact Lagrangian cobordisms from Λ−
i to Λ+

i .
Under the further assumption that the negative ends of Vi, i = 0, 1, are empty,

a transfer map

ΦW0,W1 : Cth•(V0, V1) → Cth•(V0 ⊙W0, V1 ⊙W1)

was constructed in [31, Section 4.2.2]; recall that the analytic set-up of the latter
article is the same as the one used here. Our construction of the transfer map
will be a straight-forward generalisation of this construction to the case when the
negative ends are non-empty.

We will also construct a map that we call a co-transfer map

ΦV0,V1 : Cth•(V0 ⊙W0, V1 ⊙W1) → Cth•(W0,W1).

This map should be thought of as a quotient projection associated to a transfer
map.

7.1. Concatenations and stretching of the neck. Recall that the Hamiltonian
isotopy class of a concatenation is unique. However, for us it will be necessary to
concatenate the cobordism together with an almost complex structure, i.e. keeping
track of conformal data as well, thus breaking this symmetry. In order to pin-point
the almost complex structure obtained it will be useful to introduce a parameter
keeping track of how the concatenation was performed.

We start with the following hypotheses. Assume that we are given almost com-
plex structures Ja and Jb on R×P×R which are cylindrical in the subsets {t ≥ −1}
and {t ≤ 1}, respectively, and which moreover agree in the subset {−1 ≤ t ≤ 1}.
We also assume that V and W are cylindrical in the subsets {t ≥ −1} and {t ≤ 1},
respectively, where they coincide. For each N ≥ 0 we define

V ⊙N W := (V ∩ {t ≤ 0}) ∪ (τN (W ) ∩ {t ≥ 0}),

(Ja ⊙N Jb)(t, p, z) :=

{
Ja(t, p, z) t ≤ 0

Jb(t−N, p, z) t ≥ 0,

where we recall that τT is the translation of the t-coordinate by T ∈ R. We also
write Ja ⊙ Jb := Ja ⊙0 Jb.

The Hamiltonian isotopy class of V ⊙NW ⊂ R×P ×R is independent of N ≥ 0.
In the case when Ja and Jb are cylindrical outside of a compact subset we have
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produced a family of boundary-value problems of Ja ⊙N Jb-holomorphic curves in
R × P × R having boundary on V ⊙N W , N ≥ 0. It can be seen that this family
of boundary-value problems in fact is conformally equivalent to the family which
“stretches the neck” along the contact-type hypersurface {0}×P ×R ⊂ R×P ×R

with boundary condition V ⊙W ; see [13, Section 3.4] as well as [38, Section 1.3]
for more details. This fact will be important below.

There is a compactness theorem analogous to Theorem 3.9 in the case of a neck-
stretching sequence of almost complex structure; see [13, Section 10] for the precise
formulation. The key fact is that a sequence of Ja ⊙N Jb-holomorphic discs, with
N → +∞, has a subsequence converging to a building consisting of several levels
whose components satisfy non-cylindrical boundary conditions. In the case under
consideration, the limit buildings consist of:

• An upper level containing punctured Jb-holomorphic discs with boundary
on W0 ∪W1; and

• A lower level containing punctured Ja-holomorphic discs with boundary on
V0 ∪ V1.

A priori there can also be intermediate levels consisting of pseudoholomorphic discs
for a cylindrical almost complex structure satisfying a cylindrical boundary con-
dition. Since we are only interested in rigid configurations, and since the latter
solutions will have positive dimension (unless they are trivial strips), they can be
omitted from our breaking analysis (given the assumption that transversality is
achieved for every level).

The gluing result Theorem 4.11 also generalises to this setting (see [30, Lemma
3.14]), giving a bijection between buildings of the above type where all components
are of Fredholm index zero, and punctured Ja ⊙N Jb-holomorphic discs for each
N ≫ 0 sufficiently large. Figure 16 schematically depicts two such buildings.

W0 ∪W1

V0 ∪ V1

(1) (2)

Figure 16. A holomorphic buildings appearing after stretching
the neck along Λ

7.2. The complex after a neck stretching procedure. The first goal is to find
a description of the complex

(Cth•(V0 ⊙N W0, V1 ⊙N W1), d
V ⊙W

ε−0 ε−1
)

when the almost complex structure is given by Ja ⊙N Jb for N ≫ 0 sufficiently
large. Here we assume that the almost complex structures Ja and Jb satisfy the
properties described in Section 7.1, i.e. so that their concatenations can be taken.
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We first consider the complex defined using Ja

(Cth•(V0, V1) = C•−2(Λ0,Λ1)⊕ C•(V0, V1)⊕ C•−1(Λ
−
0 ,Λ

−
1 ), d

V
ε−0 ε−1

),

d
V
ε−0 ε−1

=



−dV0,V1

++ dV0,V1

+0 dV0,V1

+−

0 dV0,V1

00 dV0,V1

0−

0 dV0,V1

−0 dV0,V1

−−


 .

Consider the entries dV1,V0

+0 , dV1,V0

+− , and dV0,V1

±± in the differential of the complex
Cth•(V1, V0), where again the almost complex structure Ja has been used. We will
need their adjoints

δV0,V1

0+ := (dV1,V0

+0 )∗ : C•(Λ1,Λ0) → C•−2(V0, V1),

δV0,V1

−+ := (dV1,V0

+− )∗ : C•(Λ1,Λ0) → C•−1(Λ
−
1 ,Λ

−
0 ),

δV0,V1

++ := (dV1,V0

++ )∗ : C•(Λ1,Λ0) → C•−1(Λ1,Λ0),

δV0,V1

−− := (dV1,V0

−− )∗ : C•(Λ
−
1 ,Λ

−
0 ) → C•−1(Λ

−
1 ,Λ

−
0 ),

δV0,V1

−+ := (dV1,V0

+− )∗ : C•(Λ1,Λ0) → C•−1(Λ
−
1 ,Λ

−
0 ),

where the canonical basis of Reeb chords and double points has been used in order
to identify the modules and their duals. Observe that, exploiting the same notation,

we also get δV0,V1

00 = dV0,V1

00 .
We write

ε′i := εi ◦ ΦVi,Ja
, i = 0, 1,

for the pull-backs of the augmentations under the DGA morphisms induced by the
respective cobordisms. These augmentations now give rise to a complex

(Cth•(W0,W1) = C•−2(Λ
+
0 ,Λ

+
1 )⊕ C•(W0,W1)⊕ C•−1(Λ0,Λ1), d

W
ε′0ε

′
1
),

d
W
ε′0ε

′
1
=



−dW0,W1

++ dW0,W1

+0 dW0,W1

+−

0 dW0,W1

00 dW0,W1

0−

0 dW0,W1

−0 dW0,W1

−−


 ,

where the moduli spaces are defined using the almost complex structure Jb. Note

that dW0,W1

−− = dV0,V1

++ .
In addition we will also need the map

bV0,V1 : C•(Λ1,Λ0) → Cn−2−•(Λ0,Λ1)

which is defined similarly to

bΛ0,Λ1 : C•(Λ1,Λ0) → Cn−1−•(Λ0,Λ1)

as defined in Section 6.1.5, but which instead counts rigid “bananas” having bound-
ary on V0 ∪ V1, and two punctures with positive asymptotics to Reeb chords.

Recall that the compactness theorem for a neck-stretching sequence together
with pseudoholomorphic gluing shows the following. For N ≫ 0 sufficiently large,
the rigid Ja ⊙N Jb-holomorphic curves in R × P × R having boundary on (V0 ⊙N

W0)∪(V1⊙NW1) are in bijective correspondence with pseudoholomorphic buildings
of the form described in Section 7.1, in which every involved component is rigid.

Analysing the possible such pseudoholomorphic buildings, we obtain the follow-
ing. When N ≫ 0 is sufficiently large, the differential of the complex for the
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concatenated cobordisms, defined using the almost complex structure Ja ⊙N Jb as
in the previous paragraph, is given by

(Cth•(V0 ⊙N W0, V1 ⊙N W1)

= C•−2(Λ
+
0 ,Λ

+
1 )⊕ C•(W0,W1)⊕ C•(V0, V1)⊕ C•−1(Λ

−
0 ,Λ

−
1 ), d

V ⊙W

ε−0 ε−1
),

d
V⊙W

ε−0 ε−1
=




−dW0,W1

++ dW0,W1

+0 + dW0,W1

+− bV0,V1δW0,W1

−0 dW0,W1

+− dV0,V1

+0 dW0,W1

+− dV0,V1

+−

0 dW0,W1

00 + dW0,W1

0− bV0,V1δW0,W1

−0 dW0,W1

0− dV0,V1

+0 dW0,W1

0− dV0,V1

+−

0 dV0,V1

0+ δW0,W1

−0 dV0,V1

00 dV0,V1

0−

0 bΛ
−

0 ,Λ−

1 δV0,V1

−+ δW0,W1

−0 bΛ
−

0 ,Λ−

1 δV0,V1

−0 dV0,V1

−−


 ,

in terms of pseudoholomorphic strips on V0 ∪ V1 and W0 ∪ W1 for each N ≫ 0

sufficiently large. (For instance the term dW0,W1

+− bV0,V1δW0,W1

−0 corresponds to the

breaking (1) in Figure 16 and the term dW0,W1

+− dV0,V1

+0 corresponds to the breaking
(2) in the same figure.)

We have here relied on the exactness assumptions in Definition 2.1 and action
considerations from Section 3.3.2 in order to rule out certain configurations.

7.3. Definition of the transfer and co-transfer maps. The transfer and co-
transfer maps on the chain level are defined for a very “stretched” almost complex
structure on a concatenated cobordism (i.e. when the parameter N ≫ 0 in Section
7.1 is sufficiently large), so that the complexes take the form as described in Section
7.2 above.

Definition 7.1. The transfer map is defined by

ΦW0,W1 : Cth•(V0, V1) → Cth•(V0 ⊙N W0, V1 ⊙N W1),

ΦW0,W1 =




dW0,W1

+− 0 0

dW0,W1

0− 0 0
0 id 0
0 0 id


 ,

while the co-transfer map is defined by

ΦV0,V1 : Cth•(V0 ⊙N W0, V1 ⊙N W1) → Cth•(W0,W1),

ΦV0,V1 =



id 0 0 0
0 id 0 0

0 bV0,V1δW0,W1

−0 dV0,V1

+0 dV0,V1

+−


 .

Lemma 7.2. Under the assumption that d
V
ε−0 ε−1

, d
W
ε′0ε

′
1
and d

V ⊙W

ε−0 ε−1
are computed

using Ja, Jb and Ja ⊙N Jb (for N ≫ 0 as before) respectively, the transfer and
co-transfer maps defined above are chain maps.

Proof. We start by showing the claim for the transfer map; i.e. we have to establish
the equality

ΦW0,W1 ◦ d
V
ε−0 ε−1

= d
V ⊙W
ε′0ε

′
1

◦ ΦW0,W1 .

The matrices on the left and right hand sides become



−dW0,W1

+− dV0,V1

++ dW0,W1

+− dV0,V1

+0 dW0,W1

+− dV0,V1

+−

−dW0,W1

0− dV0,V1

++ dW0,W1

0− dV0,V1

+0 dW0,W1

0− dV0,V1

+−

0 dV0,V1

00 dV0,V1

0−

0 dV0,V1

−0 dV0,V1

−−



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and



−dW0,W1

++ dW0,W1

+− + dW0,W1

+0 dW0,W1

0− +A1 dW0,W1

+− dV0,V1

+0 dW0,W1

+− dV0,V1

+−

dW0,W1

00 dW0,W1

0− +A2 dW0,W1

0− dV0,V1

+0 dW0,W1

0− dV0,V1

+−

A3 dV0,V1

00 dV0,V1

0−

A4 dV0,V1

−0 dV0,V1

−−


 ,

respectively, where

A1 := dW0,W1

+− bV0,V1δW0,W1

−0 dW0,W1

0− ,

A2 := dW0,W1

0− bV0,V1δW0,W1

−0 dW0,W1

0− ,

A3 := dV0,V1

0+ δW0,W1

−0 dW0,W1

0− ,

A4 := bΛ
−

0 ,Λ−

1 δV0,V1

−+ δW0,W1

−0 dW0,W1

0− .

As in Section 6.2
δW0,W1

−0 dW0,W1

0− = 0

by action reasons, and hence Ai = 0, i = 1, 2, 3, 4. What now remains is showing
the equalities

−dW0,W1

++ dW0,W1

+− + dW0,W1

+− dV0,V1

++ + dW0,W1

+0 dW0,W1

0− = 0,

dW0,W1

00 dW0,W1

0− + dW0,W1

0− dV0,V1

++ = 0.

Recall that dV0,V1

++ = dW0,W1

−− and, hence, both these equalities hold since the left-
hand sides are defined by the signed counts of the number of boundary components
of certain one-dimensional moduli spaces of pseudoholomorphic strips with bound-
ary on (W0,W1). The first one comes from the boundary of MW0,W1(γ

+; δ, γ−, ζ)
for γ± a chord from Λ±

1 to Λ±
0 . The second comes from M(q; δ, γ−, ζ) for q ∈

W0 ∩W1. Also, see Figures 12 and 14.
We now continue with the co-transfer map; i.e. we have to establish the equality

ΦV0,V1 ◦ dV ⊙W

ε−0 ε−1
= d

W
ε′0ε

′
1
◦ ΦV0,V1 .

The matrices on the left and right hand side become


−dW0,W1

++ dW0,W1

+0 + dW0,W1

+− bV0,V1δW0,W1

−0 dW0,W1

+− dV0,V1

+0 dW0,W1

+− dV0,V1

+−

0 dW0,W1

00 + dW0,W1

0− bV0,V1δW0,W1

−0 dW0,W1

0− dV0,V1

+0 dW0,W1

0− dV0,V1

+−

0 A1 +B1 A2 +B2 A3 +B3


 ,

where

A1 = bV0,V1δW0,W1

−0 dW0,W1

0− bV0,V1δW0,W1

−0 ,

A2 = bV0,V1δW0,W1

−0 dW0,W1

0− dV0,V1

+0 ,

A3 = bV0,V1δW0,W1

−0 dW0,W1

0− dV0,V1

+− ,

B1 = bV0,V1δW0,W1

−0 dW0,W1

00 + dV0,V1

+− bΛ
−

0 ,Λ−

1 δV0,V1

−+ δW0,W1

−0 + dV0,V1

+0 δV0,V1

0+ δW0,W1

−0 ,

B2 = dV0,V1

+0 dV0,V1

00 + dV0,V1

+− dV0,V1

−0 ,

B3 = dV0,V1

+0 dV0,V1

0− + dV0,V1

+− dV0,V1

−− ,

and


−dW0,W1

++ dW0,W1

+0 + dW0,W1

+− bV0,V1δW0,W1

−0 dW0,W1

+− dV0,V1

+0 dW0,W1

+− dV0,V1

+−

0 dW0,W1

00 + dW0,W1

0− bV0,V1δW0,W1

−0 dW0,W1

0− dV0,V1

+0 dW0,W1

0− dV0,V1

+−

0 dW0,W1

−0 + dW0,W1

−− bV0,V1δW0,W1

−0 dW0,W1

−− dV0,V1

+0 dW0,W1

−− dV0,V1

+−


 ,
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respectively.
Again, we have Ai = 0, i = 1, 2, 3, by action reasons. The equalities remaining

to be shown are

dV0,V1

+0 dV0,V1

00 + dV0,V1

+− dV0,V1

−0 − dV0,V1

++ dV0,V1

+0 = 0

dV0,V1

+0 dV0,V1

0− + dV0,V1

+− dV0,V1

−− − dV0,V1

++ dV0,V1

+− = 0

(recall again that dW0W1
−− = dV0V1

++ ) together with the equality

(bΛ0,Λ1 + dV0,V1

++ bV0,V1)δW0,W1

−0 =

= bV0,V1δW0,W1

−0 dW0,W1

00 + (dV0,V1

+− bΛ
−

0 ,Λ−

1 δV0,V1

−+ + dV0,V1

+0 dV0,V1

0+ )δW0,W1

−0 .

(Recall that dW0,W1

−0 = bΛ0,Λ1δW0,W1

−0 .)
The first two equalities again follow from the fact that the left-hand sides corre-

spond to counts of number of boundary component of appropriate one-dimensional
moduli spaces of pseudoholomorphic discs (M(γ+; δ, p, ζ) for the first one, the sec-
ond follows by an analysis similar to the one for the transfer map). Also, see Figures
14 and 12.

The third equality finally follows from

δW0,W1

−0 dW0,W1

00 − δW0,W1

−− δW0,W1

−0 = 0

bΛ0,Λ1 + dV0,V1

++ bV0,V1 = bV0,V1δW0,W1

−− + dV0,V1

+− bΛ
−

0 ,Λ−

1 δV0,V1

−+ + dV0,V1

+0 δV0,V1

0+ ,

both which can be shown by arguments similar to the above (more precisely, study-
ing M(q; δ, γ1, ζ) for the first, and degeneration of bananas on (V0, V1) for the
second). Also, see Figures 11 and 22. �

Remark 7.3. In the special case when there are no Reeb chords from Λ1 to Λ0

(recall that these are the Legendrian submanifolds along which the concatenations
are performed), the corresponding transfer and co-transfer maps take the following
particularly simple form. Since C(Λ0,Λ1) = 0, the transfer map ΦW0,W1 is simply
the inclusion of a subcomplex, while the co-transfer map ΦV0,V1 becomes the corre-
sponding quotient projection. In fact, as will be shown below in Section 8.1, this
situation can always be achieved after the application of a Hamiltonian isotopy that
“wraps” the positive and negative ends of V1 and W1, respectively.

The following lemma is standard. It follows from the fact that, in the cylindrical
situation, regular 0-dimensional moduli space are trivial, together with a stretching-
the-neck argument.

Lemma 7.4. The (co)transfer map satisfies the following properties

• In the case when Wi = R × Λi, i = 0, 1, and Jb is a cylindrical almost
complex structure we have

ΦW0,W1 = ΦR×Λ0,R×Λ1 = id.

• In the case when Vi = R × Λi, i = 0, 1, and Ja is a cylindrical almost
complex structure we have

ΦV0,V1 = ΦR×Λ0,R×Λ1 = id.

• In the case when Wi = Ui ⊙M U ′
i , i = 0, 1, and Jb = Jc ⊙M Jd we have

ΦW0,W1 = ΦU ′
0,U

′
1
◦ ΦU0,U1

in the case when M ≫ 0 is sufficiently large
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• In the case when Vi = Ui ⊙M U ′
i , i = 0, 1, and Ja = Jc ⊙M Jd we have

ΦV0,V1 = ΦU ′
0,U

′
1 ◦ ΦU0,U1

in the case when M ≫ 0 is sufficiently large.

In the case when W1 = R× Λ, we write

ΦW0 := ΦW0,W1 = ΦW0,R×Λ

and, similarly, when V1 = R× Λ ⊂ R× Y , we write

ΦV0 := ΦV0,V1 = ΦV0,R×Λ.

7.4. An auxiliary complex. Here we try to shed some light on the algebraic
relationship between the transfer and the co-transfer map. We assume that all
differentials are computed using almost complex structures such that Lemma 7.2
holds.

Starting with the above complex

(C• := Cth•(V0 ⊙N W0, V1 ⊙N W1), d
V ⊙W

ε−0 ε−1
),

we construct the complex

(C̃• := C• ⊕ C•(Λ0,Λ1)⊕ C•−1(Λ0,Λ1), d̃
V ⊙W

ε−0 ε−1
),

d̃
V ⊙W

ε−0 ε−1
:=



d
V ⊙W 0 0

0 dW0,W1

−− 0

0 id dV0,V1

++


 .

(Again, dW0W1
−− = dV0V1

++ .) This complex is clearly homotopic to (C•, d
V ⊙W

ε−0 ε−1
), since

the canonical inclusion and projection maps

ι : (C•, d
V ⊙W

ε−0 ε−1
) → (C̃•, d̃

V ⊙W

ε−0 ε−1
),

π : (C̃•, d̃
V ⊙W

ε−0 ε−1
) → (C•, d

V ⊙W

ε−0 ε−1
),

are homotopy inverses of each other.
We have a canonical identification

C̃• = Cth•(V0, V1)⊕ Cth•(W0,W1)

on the level of modules. We let

ιV0,V1 : Cth•(V0, V1) →֒ C̃•,

ιW0,W1 : Cth•(W0,W1) →֒ C̃•,

be the canonical inclusions of the respective summands.
Even though ιV0,V1 is not a chain-map in general, after a change of coordinates

it will be apparent that (C̃•, d̃
V⊙W

ε−0 ε−1
) in fact is the mapping-cone of a chain map

δVW : Cth•(W0,W1) → Cth•(V0, V1).

To that end, we start by considering the map

Ψ: C• ⊕ C•(Λ0,Λ1)⊕ C•−1(Λ0,Λ1) → C• ⊕ C•(Λ0,Λ1)⊕ C•−1(Λ0,Λ1),

Ψ =




id 0 dW0,W1

+− + dW0,W1

0−

−(dV0,V1

+− + dV0,V1

+0 + bV0,V1δW0,W1

−0 ) id 0
0 0 id


 .
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The property that

δW0,W1

−0 dW0,W1

0− = 0,

which holds by action considerations, implies the equality

(dV0,V1

+− + dV0,V1

+0 + bV0,V1δW0,W1

−0 )(dW0,W1

+− + dW0,W1

0− ) = 0.

From this it follows that Ψ in fact is an isomorphism of modules, with inverse given
by

Ψ−1 =




id 0 −(dW0,W1

+− + dW0,W1

0− )

dV0,V1

+− + dV0,V1

+0 + bV0,V1δW0,W1

−0 id 0
0 0 id


 .

Using Ψ we define the complex

Ψ: (C̃•, d
V⊙W

ε−0 ε−1
) → (C̃•, d̃

V ⊙W

ε−0 ε−1
),

d
V ⊙W

ε−0 ε−1
:= Ψ−1 ◦ d̃V ⊙W

ε−0 ε−1
◦Ψ,

obtained by applying a coordinate change to the original complex.

The upshot is that the differential of (C̃•, d
V ⊙W

ε−0 ε−1
) has the following particularly

nice and apparent cone structure. The proof follows from a breaking analysis similar
to the one in the proof of Lemma 7.2.

Lemma 7.5. The complex (C̃•, d
V ⊙W

ε−0 ε−1
) is equal to the mapping cone

(C̃• = Cth•(W0,W1)⊕ Cth•(V0, V1), d
V ⊙W

ε−0 ε−1
),

d
V ⊙W

ε−0 ε−1
=

(
d
W
ε′0ε

′
1

δV W

0 d
V
ε−0 ε−1

)
,

where

C•−1(Λ
+
0 ,Λ

+
1 )⊕ C•(W0,W1)⊕ C•(Λ0,Λ1)

↓ δV W

C•−1(Λ0,Λ1)⊕ C•(V0, V1)⊕ C•(Λ
−
0 ,Λ

−
1 ),

is of the form

δVW =



0 −bV0,V1δW0,W1

−0 idC(Λ0,Λ1)

0 dV0,V1

0+ δW0,W1

−0 0

0 bΛ
−

0 ,Λ−

1 δV0,V1

−+ δW0,W1

−0 0


 .

In particular, the canonical inclusion

ιV0,V1 : (Cth•(V0, V1), d
V
ε−0 ε−1

) →֒ (C̃•, d
V ⊙W

ε−0 ε−1
)

as well as the canonical projection

πW0,W1 : (C̃•, d
V⊙W

ε−0 ε−1
) → (Cth•(W0,W1), d

W
ε′0ε

′
1
),

are both chain maps. Furthermore, the transfer and co-transfer map can be ex-
pressed as

ΦW0,W1 = π ◦Ψ ◦ ιV0,V1 ,

ΦV0,V1 = πW0,W1 ◦Ψ
−1 ◦ ι,

where all factors are chain maps.
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Proof. The claim that

ιV0,V1 : (Cth•(V0, V1), d
V
ε−0 ε−1

) →֒ (C̃•, d
V ⊙W

ε−0 ε−1
)

is a chain map can be seen by considering the relations
{
d
W
ε′0,ε

′
1
(dW0,W1

+− + dW0,W1

0− ) + (dW0,W1

+− + dW0,W1

0− )dΛ0,Λ1 = 0,

dΛ0,Λ1(dV0,V1

+− + dV0,V1

+0 ) = (dV0,V1

+− + dV0,V1

+0 )dV
ε−0 ,ε−1

,

which follow from the fact that (dWε′0ε′1
)2 = 0 and (dV

ε−0 ε−1
)2 = 0, respectively, together

with the expressions of dV ⊙W

ε−0 ε−1
, dWε′0ε′1

and d
V
ε−0 ε−1

as given in Section 7.2.

To see that the corresponding quotient complex is as claimed, one must use the
identity

(−dΛ0,Λ1 + dV0,V1

+− + dV0,V1

+0 )δVW + bV0,V1δW0,W1

−0 )dW0,W1

00 = bΛ0,Λ1δW0,W1

−0 ,

which in turn follows from{
−dΛ0,Λ1bV0,V1 + bV0,V1δV0V1

++ + dV0,V1

+− bΛ
−

0 ,Λ−

1 δV0,V1

−+ + δV0,V1

+0 dV0,V1

0+ = bΛ0,Λ1 ,

δW0,W1

−0 dW0,W1

00 = δW0,W1

−− δW0,W1

−0 .

The latter identities can be seen by analysing the possible boundaries of the appro-
priate one-dimensional moduli spaces. �

8. Proof of the acyclicity (the invariance)

In this section we establish the invariance result for our Floer theory. In fact,
in our context, the invariance is simply the fact the complex Cth(Σ0,Σ1) is acyclic
(actually null-homotopic). The naive reason for this is that the symplectisation of a
contactisation (R×P ×R, d(et(dz+ θ))) is “subcritical”: it is symplectomorphic to
(P ×R2, dθ⊕ω0). More precisely, the main feature that will be used is that one can
use the Reeb flow (which is Hamiltonian) in order to displace an exact Lagrangian
cobordism from any other given cobordism.

In order to circumvent certain technical difficulties, we will here restrict our
attention to almost complex structures on the symplectisation R× P × R that are
admissible, as defined in Section 3.1.4, and moreover coinciding with cylindrical
lifts of almost complex structures in P outside of a compact subset; see Section
3.1.3.

8.1. Wrapping the ends. Let Σi, i = 0, 1, be exact Lagrangian cobordisms from
Λ−
i to Λ+

i , i = 0, 1. We assume that Σi, i = 0, 1, both are cylindrical in the subset
{|t| ≥ T } for some T > 0.

Fix a smooth non-decreasing cut-off function ρ : R → [0, 1] satisfying ρ(t) = 0
for t ≤ 1 and ρ(t) = 1 for t ≥ 2. Consider the smooth real-valued function

hN : R× P × R → R,

(t, p, z) 7→ etρN (t),

where ρN : R → [0, 1] is defined uniquely by the relations ρN (−t) = ρN (t), and
ρN(t) = ρ(t − (T + N)) for all t ≥ 0. We also consider the smooth real-valued
functions

hN,± : R× P × R → R,

(t, p, z) 7→ etρ(±t− (T +N)),
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and set h± := h0,±. The above functions are then used to construct the Hamiltonian
isotopies

φshN∂z
(t, p, z) = (t, p, z + sρN (t)),

φshN,±∂z
(t, p, z) = (t, p, z + sρ(±t− (T +N))),

which should be thought of as “wrapping” the ends of R×P×R. For instance, after
applying the isotopy φ−S

hN∂z
to Σ0 for S ≫ 0 sufficiently large, we get additional

double points φ−S
hN∂z

(Σ0)∩Σ1, all which correspond to the Reeb chords going from
the ends of Σ1 to the corresponding end of Σ0. More precisely, the following is true:

Lemma 8.1. When

S ≥ S0 := 2 max
c∈R(Λ−

1 ,Λ−

0 )∪R(Λ+
1 ,Λ+

0 )
ℓ(c)

there is a canonical bijective correspondence

w± : φ−S
hN,±∂z

(R× Λ±
0 ) ∩ (R× Λ±

1 ) → R(Λ±
1 ,Λ

±
0 )

induced by the Lagrangian projection, i.e. by identifying elements on both sides
with a double point in ΠLag(Λ

±
0 ∪ Λ±

1 ) ⊂ P . On the level of gradings this bijection
moreover satisfies

|w−(p)| = |p| and |w+(p)| = |p| − 1.

In particular, there is a canonical identification

Cth•(Σ0,Σ1) = Cth•(φ
−S
hN∂z

(Σ0),Σ1)

on the level of graded modules. After taking N ≫ 0 sufficiently large, we may
assume that the action of a generator in

C(Λ−
0 ,Λ

−
1 ) ⊂ Cth•(φ

−S
hN∂z

(Σ0),Σ1),

is arbitrarily small, the action of a generator in

C(Λ+
0 ,Λ

+
1 ) ⊂ Cth•(φ

−S
hN∂z

(Σ0),Σ1)

is arbitrarily large, while the action of a generator in

C(Σ0,Σ1) ⊂ Cth•(φ
−S
hN∂z

(Σ0),Σ1)

coincides with its original action.

The first goal will be showing that the identification given by the above lemma,
in fact may be assumed to hold on the level of complexes as well.

Proposition 8.2. For each N ≫ 0 sufficiently large and S ≥ S0 as defined above,
there is a canonical identification of complexes

(Cth•(Σ0,Σ1), dε−0 ε−1
) = (Cth•(φ

−S
hN∂z

(Σ0),Σ1), dε−0 ε−1
),

under the assumption that J ∈ J adm
J−,J+(R × P × R) is a regular admissible almost

complex structure and where, moreover, J± = J̃P both are the cylindrical lift of an
almost complex structure on (P, dθ).

Remark 8.3. • Recall that J is equal to J̃P outside of a compact set by as-
sumption, where the latter is a cylindrical almost complex structure which is
invariant under the Reeb flow. Since the negative ends of Σ0 and φ−S

hN∂z
(Σ0)

differ by the time-S Reeb flow, it follows that these Legendrian submanifolds
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have canonically isomorphic Chekanov-Eliashberg algebras when defined by

J̃P and, in particular, we can identify their augmentations.
• For a general choice of almost complex structure, there should again exist
an analogous isomorphism, albeit non-canonical.

Proof. Consider the transfer and co-transfer maps

Φφ−S
h+∂z

(R×Λ+
0 ) : Cth•(Σ0,Σ1) → Cth•(φ

−S
hN,+∂z

(Σ0),Σ1),

Φ
φ−S
h−∂z

(R×Λ−

0 )
: Cth•(φ

−S
hN∂z

(Σ0),Σ1) → Cth•(φ
−S
hN,+∂z

(Σ0),Σ1),

defined by counting J̃P -holomorphic strips having boundary on φ−S
hN,+∂z

(R×Λ+
0 )∪

(R × Λ+
1 ) and φ−S

hN,−∂z
(R × Λ−

0 ) ∪ (R × Λ−
1 ), respectively. In order to identify the

domains and codomains of the above maps we have used the fact that,

J ⊙N J̃P = J̃P ⊙N J = J, N ≥ 0,

which holds by the assumptions made on J , as well as the facts that

φ−S
hN,+∂z

(Σ0) = Σ0 ⊙N φ−S
h+∂z

(R× Λ+
0 ),

φ−S
hN∂z

(Σ0) = φ−S
h−∂z

(R× Λ−
0 )⊙N φ−S

hN,+∂z
(Σ0),

hold for every N ≥ 0 by construction.
Recall that the transfer and co-transfer maps are chain maps by Lemma 7.2, as-

suming that N ≫ 0 has been chosen sufficiently large. The proposition will follow

from the claim that Φφ−S
hN,+∂z

(R×Λ+
0 ) and Φ

φ−S

hN,−∂z
(R×Λ−

0 )
both are isomorphisms

that, moreover, induce the respective canonical identifications of graded modules
described in Lemma 8.1. The latter facts follows by the explicit disc count per-
formed in the proof of [17, Theorem 2.15]; also, see [25, Proposition 5.11] for a

similar argument. Roughly speaking, it is there shown that every J̃P -holomorphic
disc of index zero in the definition of the above (co)transfer map is a transversely
cut-out strip having one positive puncture and one negative puncture, and whose
image under the canonical projection to P is constant. Conversely, there is an
explicitly defined such strip for every double point in P corresponding to a Reeb
chord. In particular, under an appropriate choice of basis, the matrices of both

maps Φφ−S
hN,+∂z

(R×Λ+
0 ) and Φ

φ−S
hN,−∂z

(R×Λ−

0 )
are equal to the identity matrices. �

8.2. Invariance under compactly supported Hamiltonian isotopies. The
following is the core of the invariance result that we need in order to deduce the
acyclicity of the Cthulhu complex. (As we need to compare the complexes computed
with two different almost structures, here we denote by dε−0 ε−1

(J) the differential

on Cth•(Σ0,Σ1) computed using the almost complex structure J .)

Proposition 8.4. Let (Σs
0,Σ1), s ∈ [0, 1], be a compactly supported one-parameter

family of pairs of exact Lagrangian cobordisms from Λ−
i to Λ+

i , i = 0, 1. Also,
consider a one-parameter family {Js}s∈[0,1] of admissible almost complex structures
which agree outside of a compact set. There is an induced homotopy equivalence

Ψ{(Σs
0,Js)} : (Cth•(Σ

0
0,Σ1), dε−0 ε−1

(J0)) → (Cth•(Σ
1
0,Σ1), dε−0 ε−1

(J1)).



66 Chantraine, Dimitroglou Rizell, Ghiggini, Golovko

Furthermore, the restriction of Ψ{(Σs
0,Js)} to the subcomplex

(C•(Λ
+
0 ,Λ

+
1 ),−d++) ⊂ Cth•(Σ0,Σ1))

induces an isomorphism

Ψ{(Σs
0,Js)}|C(Λ+

0 ,Λ+
1 ) : (C(Λ+

0 ,Λ
+
1 ),−d++) → (C(Λ+

0 ,Λ
+
1 ),−d++).

Remark 8.5. • Under the additional assumption that Λ−
i = ∅, i = 0, 1, this

result was established in [31, Section 4.2.1].
• Our proof of the above proposition does not rely on abstract perturbations.
This is possible since we can use Proposition 8.2 in order to replace Reeb
chords with intersection points, thereby breaking some of the symmetry.
An alternative proof, more closely adapted to the SFT formalism, would
be simply to generalise [31, Section 4.2.1] to the current setting. The lat-
ter approach depends on the abstract perturbation scheme outlined in [30,
Appendix B].

Proof. After an application of Proposition 8.2, we may assume that there are no
Reeb chords from Λ±

1 to Λ±
0 and, hence, that the involved complexes are generated

by intersection points only. More precisely, the aforementioned proposition provides
such natural identifications

(Cth•(Σ
0
0,Σ1), dε−0 ε−1

(J0)) = (Cth•(φ
−S
hN∂z

(Σ0
0),Σ1), dε−0 ε−1

(J0)),

(Cth•(Σ
1
0,Σ1), dε−0 ε−1

(J1)) = (Cth•(φ
−S
hN∂z

(Σ1
0),Σ1), dε−0 ε−1

(J1)),

of complexes for S,N ≫ 0 sufficiently large. Obviously φ−S
hN∂z

(Σs
0) still is a com-

pactly supported family of exact Lagrangian cobordisms. This family is moreover
fixed in a neighbourhood of the intersection points corresponding to the generators
of C(Λ±

0 ,Λ
±
1 ), assuming that N ≫ 0 is chosen sufficiently large.

To sum up, we have reduced the invariance problem to the case when there
are no Reeb chords from Λ±

1 to Λ±
0 . In this case the involved complexes thus

have generators corresponding to the intersection points of Σs
0 ∩ Σ1, s = 0, 1, and

the one-parameter family Σs
0 is a compactly supported family of exact Lagrangian

cobordisms.
In this case, the bifurcation analysis conducted in [32], [34] can be generalised

to produce the sought homotopy equivalence. We proceed to provide a sketch of
this argument, highlighting the points where some additional care must be taken
to adapt it to the current setting.

Recall that the differential is defined via a count of Js-holomorphic strips having
boundary on Σs

0∪Σ1, two punctures asymptotic to intersection points, and possibly
additional negative punctures asymptotic to Reeb chords on either Λ−

0 or Λ−
1 . For

a generic one-parameter family Σs
0 ∩ Σ1 and Js s ∈ [0, 1], we can assume that for

all but a finite number of instances s ∈ [0, 1],

• the intersection Σs
0 ∩ Σ1 is transverse, and

• the above spaces of Js-holomorphic strips are transversely cut out.

Moreover, in the case when the above two conditions do not hold for some s0 ∈ [0, 1]
we may assume that precisely one of the following cases occur.

Birth/death: All intersection points of Σs0
0 ∩Σ1 are transverse except a single

intersection point. The latter intersection point moreover arises in the family as
a standard birth/death-intersection point, which was described in [32, Section 3]
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(note that the Lagrangian cobordisms considered are of dimension at least two by
assumption). Moreover, all Js0 -holomorphic strips as above whose punctures are
asymptotic to transverse intersection points are transversely cut out.

Handleslide: The intersection Σs0
0 ∩ Σ1 is transverse, and all Js-holomorphic

strips with boundary on Σs0
0 ∪ Σ1 are regular except a single solution. Moreover,

the latter strip has index −1, and is generic when considered in the one-parameter
family of boundary value problems.

Observe that, it suffices to consider each case above separately in order to deduce
the sought invariance. Namely, for a generic family in which none of the above cases
occur, all involved complexes are naturally isomorphic.

The case of a birth/death moment is treated analogously as in the closed case
in [46], a careful account appearing also in [67]. Note that the difference of action
between the newly created intersection points is small near the birth point and,
thus, the involved holomorphic curves cannot have negative asymptotics to Reeb
chords.

In the case of a handle slide we construct an isomorphism of complexes by the
following formula. Assume that the unique strip u of index −1 has the intersection
points x, y as incoming and outgoing ends, respectively, and that it has additional
negative punctures asymptotic to the words a, b of Reeb chords on Λ−

0 and Λ−
1 ,

respectively. On the intersection point generators we define the isomorphism

p 7→ p+K(p),

K(p) =

{
ε0(a)ε1(b)x, p = y,

0, p 6= y,

of graded modules.

0
−1 −1

1

−1 0

1

Λ+
0 ∪ Λ+

1

Σ0 ∪ Σ1

Λ−
0 ∪ Λ−

1

Figure 17. The a priori possibilities for the boundary points of a
one-parameter family of rigid strips with both incoming and out-
going ends asymptotic to intersection points. The number on each
component denotes its Fredholm index.

We must show that this isomorphism in fact is a chain map. Again, this is shown
by gluing of pseudoholomorphic curves. The only difference between this case and
the case when a = b = ∅ comes from the gluing of ∂-breakings. More precisely,
the difference between the differential ds0−ǫ before the handle slide and ds0+ǫ come
from glued rigid configuration of index 0 curve to u such configuration are of two
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types (see Figure 17): The first type of gluing does not involve pure negative Reeb
chords, and correspond to the term K in the definition of the isomorphism. The
second type of gluing involves a pure Reeb chord, and corresponds to that of a
∂-breaking. The totality of the glued solutions of this kind thus contributes to 0
when counted utilising the augmentation (see the proof of Theorem 6.1). Finally,
note that breaking involving an index −1 curve with a negative asymptotic to a
mixed chord cannot occur; such a breaking would involve a holomorphic banana
and, one of its two ends would necessarily be a chord from Λ−

1 to Λ−
0 (which does

not exist by assumption).
Finally, in order to deduce the last claim of the proposition, it will be necessary to

use the following additional property of the identifications of complexes described in
the proof of Proposition 8.2. Consider the subset C ⊂ φ−S

hN∂z
(Σs

0)∩Σ1 of intersection

points corresponding to the Reeb chords from Λ+
1 to Λ+

0 ; these intersection points
are contained in a subset of the form (N,+∞) × P × R, which may be assumed

to be fixed in the one-parameter family φ−S
hN∂z

(Σs
0) of cobordisms. Even though

these intersection points are fixed, their actions will in general vary with s ∈ [0, 1].
We use M to denote the minimum of the action of a intersection point in C ⊂
φ−S
hN∂z

(Σs
0) ∩ Σ1 taken over all s ∈ [0, 1] . For N ≫ 0 sufficiently large, Lemma 8.1

shows that any intersection point (φ−S
hN∂z

(Σs
0)∩Σ1) \C has action strictly less than

M . In conclusion, we must have K(C(Λ+
0 ,Λ

+
1 )) ⊂ C(Λ+

0 ,Λ
+
1 ) for the map K as

defined above, thus implying the claim. �

8.3. The proof of the acyclicity. We are finally ready to prove the main result
of this section. Recall that we are in the special case of a symplectisation of a
contactisation. In this setting, the idea is to show that a complex having no Reeb
chord generators is acyclic by alluding to Proposition 8.4, together with an explicitly
defined compactly supported Hamiltonian displacement. Finally, Proposition 8.2
shows that we can replace every complex with a complex induced by a pair of
Lagrangian cobordisms having no Reeb chord generators (which is obtained by
wrapping the cylindrical ends of one of the Lagrangian cobordisms).

Theorem 8.6. Assume that we are given a choice of regular admissible almost
complex structure coinciding with a cylindrical lifts outside some subset of the form
[−T, T ]×Y . For any pair Σ0,Σ1 ⊂ R×P ×R of exact Lagrangian cobordisms from
Λ−
i to Λ+

i , and choices ε−i of augmentations of the Chekanov-Eliashberg algebra of
Λ−
i , i = 0, 1, the complex

(Cth•(Σ0,Σ1), dε−0 ε−1
)

is homotopic to the trivial complex,

Proof. We use the fact that, for S ≫ 0 sufficiently large, there is an exact La-
grangian cobordism Σ′

0 ⊂ R × (P × R) satisfying the properties that, first, it is

isotopic to φ−S
hN∂z

(Σ0) by a compactly supported Hamiltonian isotopy and, second,
the complex

(Cth(Σ′
0,Σ1), dε−0 ε−1

) = 0

has no generators. To that end, observe that the complex Cth(φ−S
hN∂z

(Σ0),Σ1) has
no Reeb chord generators for S ≫ 0 sufficiently large by Lemma 8.1. Moreover, the

compactly supported Hamiltonian isotopy φ−s
et ◦φ

−(S−s)
hN∂z

(Σ0) can be seen to remove
all intersection points, whenever s≫ 0 is sufficiently large.
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The invariance result for a compactly supported Hamiltonian isotopy provided
by Proposition 8.4 thus implies that the complex Cth•(φ

−S
hN∂z

(Σ0),Σ1) is null-

homotopic. The fact that the same is true for the complex Cth•(Σ0,Σ1) is now
an immediate consequence of Proposition 8.2, for N ≫ 0 that have been chosen
sufficiently large. �

9. Proof of the main theorem

Now we proceed to prove the main result of the paper. In Section 10, this will
then be used to deduce several long exact sequences.

We denote the quotient complex C(Σ0,Σ1) ⊕ C(Λ−
0 ,Λ

−
1 ) of Cth(Σ0,Σ1) by

CF−∞(Σ0,Σ1) with differential given by d∞ =

(
d00 d0−
d−0 d−−

)
, its homology is de-

noted by HF−∞(Σ0,Σ1). The complex Cth(Σ0,Σ1) is the cone of the chain map
d+0 + d+− : CF∞(Σ0,Σ1) → C(Λ+

0 ,Λ
+
1 ).

The acyclicity of the complex (Cth(Σ0,Σ1), dε−0 ε−1
) implies that this map is a

quasi-isomorphism, and hence that

(39) LCHk
ε+0 ,ε+1

(Λ+
0 ,Λ

+
1 ) ≃ HF k+1

−∞ (Σ0,Σ1).

Let fi, i = 0, 1, be primitives of etα|Λi
as in Section 3.3. A point p ∈ Σ0 ∩Σ1 is

positive (resp. negative) if f1(p)− f0(p) is positive (resp. negative). This leads to
a decomposition CF (Σ0,Σ1) = CF+(Σ0,Σ1)⊕ CF−(Σ0,Σ1).

Proposition 9.1. With respect to the decomposition

CF−∞(Σ0,Σ1) = CF+(Σ0,Σ1)⊕ C(Λ−
0 ,Λ

−
1 )⊕ CF−(Σ0,Σ1),

the differential takes the form

(40) d−∞ =



d0+0+ d0+− d0+0−

0 d−− d−0−

0 0 d0−0−




of an upper-triangular matrix.

Proof. This follows from the energy estimates of Section 3.3. �

This decomposition allows us to prove Theorem 1.3.

Proof of Theorem 1.3. From Equations (33) and (40), the decomposition

Cth(Σ0,Σ1) = C(Λ+
0 ,Λ

+
1 )⊕ CF+(Σ0,Σ1)⊕ C(Λ−

0 ,Λ
−
1 )⊕ CF−(Σ0,Σ1)

induces a filtration for the differential dε−0 ,ε−1
. The first page thus takes the pre-

scribed form by construction. The fact that (Cth(Σ0,Σ1), dε−0 ,ε−1
) is acyclic implies

that the associated spectral sequence collapses on the fourth page. �

Note that if either all intersection points have positive actions or they all have
negative actions, then the differential described in Formula (40) is a mapping cone
from or to C(Λ−

0 ,Λ
−
1 ). This motivates the following definition for a pair (Σ0,Σ1)

of cobordisms.

Definition 9.2. We say that (Σ0,Σ1) is directed if CF+(Σ0,Σ1) = 0, while it is
called V -shaped if CF−(Σ0,Σ1) = 0.

We are now able to prove Corollary 1.5.
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Proof of Corollary 1.5. For directed cobordisms, from Equation (40) we get that
the differential on CF−∞(Σ0,Σ1) is the cone of the map d−0 : CF (Σ0,Σ1) →
C(Λ−

0 ,Λ
−
1 ). Thus we get a long exact sequence

· · · // HF k
−∞(Σ0,Σ1)

��

HF k
−(Σ0,Σ1) // LCHk

ε−0 ,ε−1
(Λ−

0 ,Λ
−
1 )

// HF k+1
−∞ (Σ0,Σ1) // · · ·

For the case of V -shaped cobordisms we get that the differential on CF−∞(Σ0,Σ1)
is the cone of the map d0− : C(Λ−

0 ,Λ
−
1 ) → CF (Σ0,Σ1) which leads to the following

exact sequence

· · · // HF k+1
−∞ (Σ0,Σ1) // LCHk

ε−0 ,ε−1
(Λ−

0 ,Λ
−
1 )

// HF k+2
+ (Σ0,Σ1)

��

HF k+2
−∞ (Σ0,Σ1) // · · ·

In both cases the isomorphism LCHk
ε+0 ,ε+1

(Λ+
0 ,Λ

+
1 ) ≃ HF k+1

−∞ (Σ0,Σ1) of equation

(39) concludes the proof. �

10. Long exact sequences induced by an exact Lagrangian cobordism

Here we establish the long exact sequences described in Section 1.2 associated
to a Lagrangian cobordism Σ. In order to do this, we need to make use of the
invariance result proven in the former section. More precisely, the sought long
exact sequence will be induced by Corollary 1.5 applied to a pair (Σ0,Σ1) of exact
Lagrangian cobordisms, where Σ0 := Σ and Σ1 is obtained from Σ by a suitable
Hamiltonian perturbation.

10.1. Various push-offs of an exact Lagrangian cobordism. In the following,
we assume that we are given an exact Lagrangian cobordism Σ ⊂ R× P × R from
Λ− to Λ+ inside the symplectisation of a contactisation. We furthermore assume
that Σ is cylindrical outside of the set [A,B] × P × R for some A < B. We shall
write

Σ := Σ ∩ {t ∈ [A,B]},

∂−Σ := Σ ∩ {t = A},

∂+Σ := Σ ∩ {t = B},

so that clearly ∂Σ = ∂−Σ ∪ ∂+Σ.
We will consider different push-offs constructed via autonomous Hamiltonians

h : R×P×R → R induced by a function h(t) only depending on the symplectisation
coordinate. We write

Σh := φ1h(Σ)

and observe that the Hamiltonian flow takes the particularly simple form

φsh(t, p, z) = (t, p, se−th′(t) + z).

In particular, the one-form etα pulls back to etα+ (h′′ − h′)dt under φ1h. So, if Σ0

is an exact Lagrangian cobordism with a primitive f0 : Σ0 → R of Σ∗
0e

tα, then the
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primitive of (φ1h(Σ0))
∗(etα) is given by

(41) f̃0(q) = f0(q) + (h′ − h)(a(Σ0(q))),

where a is the canonical projection to Rt, and Σ0 : Σ0 →֒ R × P × R denotes the
inclusion. Assuming that h coincides with λet near −∞ for a constant λ ∈ R (i.e.

h′ = h), the primitive f0 vanishes at −∞ if and only if f̃0 vanishes there.
We are now ready to define the Hamiltonians h : Σ → R needed for the different

perturbations needed. The long exact sequences of Theorems 1.6, 1.7 and 1.8 are
then derived by combining Corollary 1.5 applied to (Σ,Σh) with Theorems 10.3
and 10.5 proven below.

hdir(t)

A B

1

1

t

t

e−th′dir(t)

A B

Figure 18. The Hamiltonian hdir : R × P × R → R applied to
an exact Lagrangian cobordism Σ produces a directed pair. The
corresponding Hamiltonian vector field is given by e−th′dir(t)∂z .

10.1.1. The push-off inducing the long exact sequence of a pair. Consider the Hamil-
tonian hdir : R× P × R → R depending only on the t-coordinate and satisfying

• hdir(t) = et for t ≤ 0;
• hdir(t) = et − C for all t ≥ B + 1, and some C ≥ 0; and
• (h′dir)

−1(0) is a connected interval containing [A,B] (in particular hdir is
constant on [A,B].

See Figure 18 for a schematic picture of hdir(t) and the corresponding Hamiltonian
vector field e−th′dir(t)∂z .

Let Σ′ := Σǫhdir , for ǫ > 0 sufficiently small, and take Σ1 to be a generic suf-
ficiently small and compactly supported Hamiltonian perturbation of Σ′. Let f0
be the primitive of Σ∗(etα) which vanishes at −∞. From Equation (41) and from
the fact that h > 0 and h′ = 0 on [A,B] we get that the primitive of (Σ′)∗(etα)
is smaller than f0 on [A,B] × Y . Writing Σ0 := Σ, for ǫ > 0 sufficiently small,
all intersections between Σ0 and Σ1 are contained inside [A,B] × Y . Thus, if the
Hamiltonian perturbation of Σ′ is small enough, we get that CF+(Σ0,Σ1) = 0 or,
using the terminology of Definition 9.2, that the pair of cobordisms (Σ0,Σ1) is
directed.

Furthermore, under the assumption that Σ1 is a sufficiently C1-small pertur-
bation of Σ0, and that the almost complex structures are chosen appropriately,
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Theorem 1.6 now follows by applying Theorems 10.3 and 10.5 to the terms in the
long exact sequence (2) of Corollary 1.5 (also see Remark 10.6).

hV (t)

A B

1

−1

−1

t

t

e−th′V (t)

A B

Figure 19. The Hamiltonian hV : R× P × R → R applied to an
exact Lagrangian cobordism Σ produces a V -shaped pair. The
corresponding Hamiltonian vector field is given by e−th′V (t)∂z.

10.1.2. The push-off inducing the duality long exact sequence. Consider a Hamil-
tonian hV : R× P × R depending only on the t-coordinate and satisfying

• hV (t) = −et for t ≤ A− 1;
• hV (t) = et − C for all t ≥ B + 1, and some C > 0; and
• (h′V )

−1(0); is a connected interval containing [A,B].

See Figure 18 for a schematic picture of hV (t) as well as of the corresponding
Hamiltonian vector field e−th′V (t)∂z .

Let Σ′ := ΣǫhV , for ǫ > 0 sufficiently small, and let Σ1 be a generic, sufficiently
C1-small, and compactly supported Hamiltonian perturbation of Σ′. Again, from
Equation (41), we deduce that the primitive of etα on Σ′ is equal to f0+(h′V −hV )◦
a ◦Σ, which is this time greater than f0 on [A,B]. In conclusion, CF−(Σ0,Σ1) = 0
or, using the terminology of Definition 9.2, (Σ0,Σ1) is a V -shaped pair.

When Σ1 is a sufficiently small perturbation of Σ0, and the almost complex
structures are chosen appropriately, Theorem 1.7 follows by applying Proposition
10.1 and Theorems 10.3 to the terms in the long exact sequence (3) of Corollary
1.5 (also see Remark 10.6).

10.1.3. The push-off inducing the Mayer-Vietoris long exact sequence. The Hamil-
tonian hV considered above also gives rise to the long exact sequence in Theorem
1.8. It is simply a matter of applying Theorem 1.3 to a different filtration of the
same complex.

Consider the filtration

C(Λ+
0 ,Λ

+
1 ) > C+(Λ

−
0 ,Λ

−
1 )⊕ CF+(Σ0,Σ1) > C0(Λ

−
0 ,Λ

−
1 )

where the decomposition

C(Λ−
0 ,Λ

−
1 ) = C+(Λ

−
0 ,Λ

−
1 )⊕ C0(Λ

−
0 ,Λ

−
1 )
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has been made so that the left summand is generated by those Reeb chords cor-
responding to Reeb chords on Λ− (being of length bounded from below by the
minimal length of a Reeb chord on Λ−, i.e. of some significant length), while the
right summand is generated by those Reeb chords corresponding to the critical
points of a Morse function on Λ− (being of length roughly equal to ǫ > 0, which
thus may be assumed to be arbitrarily small). To see this, observe that we have
Λ−
0 = Λ−, and that Λ−

1 is obtained as the one-jet j1g of a negative Morse function
g : Λ− → (−ǫ, 0) in some standard contact neighbourhood of Λ−, where the latter
is identified with a neighbourhood of the zero-section in J1Λ−. For simplicity, we
here make the assumption that there is a unique local minimum and maximum of
g.

The above filtration induces a spectral sequence whose first page is given by

E2,•
1 ⊕ E1,•

1 ⊕ E0,•
1

‖

LCH•−2

ε+0 ,ε+1
(Λ+

0 ,Λ
+
1 )⊕ (LCH•−1

ε−0 ,ε−1
(Λ−)⊕HF+

• (Σ0,Σ1))⊕H•(Λ
−),

where we rely on [35] together with Proposition 10.1 in order to make the identifi-
cations

Hi(C•
+(Λ

−
0 ,Λ

−
1 )) = LCHi

ε−0 ,ε−1
(Λ−),

Hi(C•
−(Λ

−
0 ,Λ

−
1 )) = HMorse

n−1−i(g).

Note that the middle term on the first page of the above spectral sequence really
is a direct sum. This follows from the fact that the positive intersection points
may be assumed to have arbitrarily small action and hence, in particular, action
smaller than the length of any Reeb chord generator of C+(Λ

−
0 ,Λ

−
1 ). Consequently,

there are no pseudoholomorphic strips as in the definition of the differential with
input being a Reeb chord in C+(Λ

−
0 ,Λ

−
1 ) and output being an intersection point

contained in CF+(Σ0,Σ1), or vice versa.
The technique in the proof of [25, Theorem 6.2(ii)] shows that the Cthulhu

differential restricts to the natural map

Hn−1−i(Λ
−) ≃ Hi(C•

−(Λ
−
0 ,Λ

−
1 )) → Hn−1−i(Σ)

in homology induced by the topological inclusion Λ− →֒ Σ. To that end, we start by

considering a perturbation h̃V (t) of hV (t) being of the form as shown in Figure 20.

Note that any sufficiently C1-small perturbation f : Σ → R of the restriction h̃V |Σ
has the property that the map H•(Λ

−) → H•(Σ) can be realised as the inclusion of
the Morse homology complex generated by the critical points near {t = a} into the
full Morse homology complex of f . Also, see Section 11.3.2 for a similar analysis.
It then suffices to show that the differential is equal to the identity map

Hn−1−i(Λ
−) ≃ Hi(C•

−(Λ
−
0 ,Λ

−
1 )) → Hn−1−i(Λ

−)

under the appropriate natural identifications.
Finally, the statements concerning the fundamental classes is a consequence of

[35, Theorem 5.5], a result which is only valid if we are working with ε−0 = ε−1 = ε.
Namely, the latter result shows that the minimum of −g defines a nonvanishing
cycle inside LCH−1

ε,ε (Λ
−
0 ,Λ

−
1 ). Similarly, under the additional assumption that Λ−
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h̃V (t)

a A B

1

−1

−1

t

t

e−th̃′V (t)

a

A B

Figure 20. The Hamiltonian h̃V : R× P × R → R applied to an
exact Lagrangian cobordism Σ produces a V -shaped pair. The

corresponding Hamiltonian vector field is given by e−th̃′V (t)∂z.

is horizontally displaceable, the differential of the maximum of −g is a non-zero
class in

Hn(C•
+(Λ

−
0 ,Λ

−
1 )) ≃ LCHn

ε,ε(Λ
−)

called the fundamental class in Legendrian contact cohomology (also see Section
11.3).

With the above considerations, we have now managed to establish Theorem 1.8.

10.2. Computing the Floer homology of a Hamiltonian push-off. We now
consider the pair (Σ0,Σ1), where Σ0 = Σ and Σ1 is equal to Σh for a C1-small
smooth function h : R → R as constructed above.

To that end, we will assume that J̃P is the cylindrical lift of a regular almost
complex structure JP on P , i.e. the unique cylindrical almost complex structure on

R× P × R for which the canonical projection to P is (J̃P , JP )-holomorphic.
Recall that the time-s Hamiltonian flow generated by the Hamiltonian et on the

symplectisation R× P ×R simply is a translation of the z-coordinate by s. Recall
that this is the same as the time-s flow φs : P ×R of the Reeb vector field induced
by the standard contact form.

Proposition 10.1. For the cylindrical lift J̃P of an almost complex structure, we
have a canonical isomorphism

LCC•
ε0,ε1(Λ, φ

ǫ(Λ′)) ≃ LCC•
ε0,ε1(Λ)

of complexes for any sufficiently small epsilon > 0, and generic and sufficiently
C1-small Legendrian perturbation Λ′ of Λ.

Under the additional assumption that Λ is horizontally displaceable, we moreover
have a quasi-isomorphism

LCC•
ε0,ε1(Λ, φ

−ǫ(Λ′)) ∼ LCCε0,ε1
n−1−•(Λ)

of complexes, where n is the dimension of Λ.
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Remark 10.2. The above identifications of augmentations, despite the fact that
the DGAs are associated to geometrically different Legendrians, can be justified as
follows. For Λ,Λ′′ ⊂ P×R being sufficiently C1-close together with a fixed choice of
compatible almost complex structure JP on P , the invariance theorem in [34] gives
a canonical isomorphism between the Chekanov-Eliashberg algebras (A(Λ), ∂Λ) and
(A(Λ′′), ∂Λ′′) induced by the canonical bijection identifying the Reeb chords on Λ
with the Reeb chords on Λ′′.

Proof. The first isomorphism is simply [17, Proposition 2.7].
The second isomorphism follows by combining this result with the isomorphism

LCC•
ε0,ε1(Λ, φ

−ǫ(Λ′)) ≃ LCCε0,ε1
n−1−•(Λ)

established in [35, Proposition 4.1]. Here we must use the assumption of horizontal
displaceability. �

Consider an admissible almost complex structure J on R×P×R which coincides

with the cylindrical lifts J̃+
P and J̃−

P of almost complex structures on P in subsets
of the form

(−∞,−T ]× P × R,

[T,+∞)× P × R,

respectively. In the following we will also assume that h : R×P×R is an autonomous
Hamiltonian being of the form ±et+C in each of the two latter cylindrical subsets.

Theorem 10.3. Let Σ be an (n + 1)-dimensional exact Lagrangian cobordisms
from Λ− to Λ. Assume that there are augmentations εi, i = 0, 1, of the Chekanov-

Eliashberg algebra of Λ− defined using J̃−
P . For ǫ > 0 sufficiently small, and Σ′ being

a sufficiently C1-small compactly supported perturbation of Σ, we may assume that
J is a regular admissible almost complex structure for which:

(1) There is a natural isomorphism

LCC•
ε0◦ΦΣ,ε1◦Φφǫ

h
(Σ′)

(Λ, φǫ(Λ)) = LCC•
ε0◦ΦΣ,ε1◦ΦΣ

(Λ)

of complexes;
(2) There is an equality

Φ
ε−0 ,ε−1
Σ = d+−

of chain maps, where the former is the map induced by the linearised DGA
morphism ΦΣ, as described in Section 5.3, and the latter is the correspond-
ing component of the differential dε−0 ε−1

on Cth•(Σ, φ
ǫ
h(Σ

′)).

Remark 10.4. All Legendrian contact homology complexes above are induced by

J̃±
P , while the DGA morphisms, as well as d+−, are induced by J .

Proof. Both results follow from Proposition 10.1 together with the bijections pro-
vided by [17, Theorem 2.15], where the latter provides the necessary identifications
of pseudoholomorphic strips on the cobordism Σ and its two-copy Σ ∪ φǫh(Σ

′) that
are used in the definitions of the DGA morphisms induced by the respective cobor-
disms. To that end, an admissible almost complex structure as above must be used,
i.e. which coincides with cylindrical lifts in the prescribed subsets. �
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Theorem 10.5. For an appropriately chosen Maslov potential and for any generic
smooth function f : Σ → R obtained as a sufficiently C1-small and compactly sup-
ported perturbation of h|Σ′ : Σ → R, there is an induced Hamiltonian perturbation
Σ′ of Σ inducing a canonical identification of complexes

CF•(Σ, φ
ǫ
h(Σ

′)) = CMorse
n+1−•(f).

Here we require that the almost complex structure is regular, admissible, and in-
duced by a Riemannian metric on g for which (f, g) is a Morse-Smale pair in some
compact neighbourhood of the non-cylindrical part of Σ. If Σ is pin, then the Hamil-
tonian perturbation admits an pin structure for which the above identification holds
with coefficients in Z.

Proof. Observe that the Weinstein Lagrangian neighbourhood theorem implies that
there is a symplectomorphism identifying a neighbourhood of Σ with a neighbour-
hood of T ∗Σ, such that Σ moreover gets identified with the zero-section; see Section
11.3.2. For an appropriate such identification, we may assume that φǫh(Σ) = φ1ǫh(Σ)
is contained in this neighbourhood and that this Lagrangian is identified with the
section −ǫd(h|Σ). In particular, every intersection point φ1ǫh(Σ) ∩ Σ corresponds
to a critical point of ǫh and may be assumed to have action corresponding to ǫh.
After replacing ǫh with ǫf , we can choose Σ′ to be the exact Lagrangian cobordism
given as the graph of ǫdf , while using the above Weinstein neighbourhood.

The isomorphism of Morse and Floer complexes is standard, going back to the
original work made by Floer [46]. For the current setting, the analogous computa-
tion made in [25, Theorem 6.2] is also relevant. �

Remark 10.6. Consider the autonomous Hamiltonian h in Theorem 10.5 above,
together with the induced perturbation f of h|Σ.

(1) If h = hdir as defined in Section 10.1.1, then

H(CMorse
n+1−•(f)) = Hn+1−•(Σ, ∂−Σ;R) ≃ H•(Σ, ∂+Σ;R).

(2) If h = hV as defined in 10.1.2, then

H(CMorse
n+1−•(f)) = Hn+1−•(Σ;R).

10.3. Seidel’s isomorphism. We end this section by recalling the definition of
Seidel’s isomorphism. Let h : R×P ×R be an autonomous Hamiltonian coinciding
with et + C+ on the positive end, and with −et on the negative end; we can take
e.g. the Hamiltonian hV constructed in Section 10.1.2. Combining Theorem 10.5
and Proposition 10.1 we obtain a module morphism

G
ε−0 ,ε−1
Σ : CMorse

n+1−•(f) → LCC•−1

ε+0 ,ε+1
(Λ+, φǫ(Λ+);R) = LCC•−1

ε+0 ,ε+1
(Λ+;R),

identified with the term d+0 in the differential of (Cth(Σ, φǫf (Σ)), dε−0 ,ε−1
). Observe

that, since the pair of cobordisms is V -shaped, we can conclude that

Lemma 10.7. The above map G
ε−0 ,ε−1
Σ is a chain map which, in the case when the

negative end of Σ is empty, is a quasi-isomorphism.
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11. Twisted coefficients, L2-completions, and applications

In order to deduce information about the fundamental group of an exact La-
grangian cobordism it is necessary to introduce a version of our Floer complex
coefficients twisted by the fundamental group, analogous to that defined for La-
grangian Floer homology in [67] by Sullivan and in [22] by Damian. Since it is
not possible to make sense of the rank of a general module with group ring co-
efficients, it will also be necessary to introduce a version of an L2-completion of
this complex. So-called L2-coefficients were first considered by Atiyah in [8]. We
start by describing the version of the complex with twisted coefficients, and we also
introduce a version of the fundamental class in this setting. The fundamental class
will be crucial for the proof of Theorems 1.16 (see Section 12.3.1). We then con-
tinue by defining the L2-completion of this complex, for which we recall some basic
properties. The proof of Theorem 1.18 will use this theory (see Section 12.3.2).

11.1. Floer homology with twisted coefficients. First, we introduce the alge-
braic setup needed in order to define the Chekanov-Eliashberg algebra, along with
its linearisations, in the setting of twisted coefficients. We refer the reader to [18]
by the authors for a more detailed treatment.

11.1.1. The tensor ring of a bimodule. First we recall a few classical and general
algebraic constructions. Let A be a (not necessarily commutative) unital ring. We
start with the definition of tensor product of A− A-bimodules. Given two A−A-
bimodules M and N , their (balanced) tensor product M ⊗A N is the quotient of
the abelian group M ⊗Z N by the relation

∀m ∈M, n ∈ N, a ∈ A : ma⊗ n = m⊗ an.

Observe that M ⊗AN has the structure of a A−A-bimodule, where left and right
multiplications are given by the formula a(m ⊗ n)a′ = (am) ⊗ (na′) with m ∈ M ,
n ∈ N , and a, a′ ∈ A. In order to avoid confusion, we would like to emphasise that
in the bimodule M ⊗A N elements of the form m ⊗ n and m ⊗ an are in general
not in relation to each other.

Given a A−A-bimodule M , the tensor ring of M is the graded ring

TA(M) =

∞⊕

k=0

M⊗Ak,

where M⊗A0 = A, and M⊗Ak = M ⊗A M⊗Ak−1. Multiplication in TA(M) is
induced by the natural isomorphism from M⊗Al ⊗A M

⊗Am to M⊗Al+m. Observe
that TA(M) contains a subringM⊗A0 = A as well as a A−A-bimoduleM⊗A1 =M ,
and that TA(M) is the universal ring satisfying these properties. (Note that, as
A is not necessarily commutative, TA(M) is not an algebra according to standard
terminology. This is the reason why we refer to it as the tensor ring).

If M is freely generated by elements {γ1, . . . , γk} as a bimodule, homogeneous
elements of TA(M) are generated by elements of the form

a1γi1 ⊗ a2γi2 ⊗ · · · ⊗ ajγijaj+1,

where a1, . . . , aj+1 ∈ A. In most cases A will be the group ring R[π] over a commu-
tative ring R. In this situation, the tensor ring ofM over A = R[π] will be denoted
by Tπ(M) for simplicity.



78 Chantraine, Dimitroglou Rizell, Ghiggini, Golovko

11.1.2. The Chekanov-Eliashberg algebra with twisted coefficients. Legendrian con-
tact homology with twisted coefficients has previously been considered in [37], and
a detailed account is currently under development in [42]. Here we consider a ver-
sion of the Chekanov-Eliashberg algebra for a Legendrian submanifold Λ ⊂ P × R

with twisted coefficients, constructed as tensor ring over the group ring R[π1(Λ)],
as defined above, where R is a commutative ring.

Fix a base point ∗ ∈ Λ and write π1(Λ) := π1(Λ, ∗) for short. Let A be a unital,
not necessarily commutative, ring for which:

• There is a ring homomorphism i : R[π1(Λ)] → A. This induces anR[π1(Λ)]−
R[π1(Λ)]-bimodule structure on A;

• There is an augmentation homomorphism a : A → R such that Π := a ◦ i
is the standard augmentation Π : R[π1(Λ)] → R.

By abuse of notation we will see any element a in R[π1(Λ)] as an element of A
by identifying it with its image under the ring homomorphism i. For example,
take any group homomorphism π1(Λ) → G, this induces a ring homomorphism
R[π1(Λ)] → R[G] and the augmentation corresponds to the standard ring homo-
morphism R[G] → R. When G = {1}, the construction we describe below will
recover the standard Chekanov-Eliashberg DGA.

For any Reeb chord γ of Λ, we fix a capping path ℓeγ (resp. ℓsγ) on Λ which
connects the end point (resp. starting point) of γ to the base point ∗. (Such
paths exist because we assume that Λ is connected.) Let C(Λ) be the free A −A-
bimodule generated by the Reeb chords of Λ. A punctured pseudoholomorphic disc
u ∈ Mr(γ+; γ−1 , γ

−
2 , . . . , γ

−
k ) determines an element cu of C(Λ)⊗Ak via the following

procedure. Let ∂0Sr, . . . , ∂kSr be the connected components of ∂Sr ordered as in
Section 2.3.1. We denote by p the canonical projection R× P × R → P × R from
the symplectisation to the contact manifold.

• For j ∈ {1, . . . , k−1}, we denote by aj the based loop (ℓe
γ−

j+1

)−1 ∗ (p◦u|∂j
)∗

ℓs
γ−

j

;

• For j = 0, we denote by aj the based loop ℓe
γ−

1

∗ (p ◦ u|∂0) ∗ (ℓ
e
γ+)−1 ; and

• For j = k, we denote by aj the based loop ℓsγ+ ∗ (p ◦ u|∂k
) ∗ (ℓs

γ−

k

)−1.

The element cu is then given by

cu = a0γ
−
1 a1 ⊗ γ−2 a2 ⊗ · · · ⊗ γ−k ak.

The Chekanov-Eliashberg differential is defined on TA(C(Λ)) by the formula

∂(γ+) =
∑

γ1,...,γk

∑

u∈M(γ+;γ−

1 ,γ−

2 ,...,γ−

k
)

sign(u)cu

on generators, where the sum is taken over the rigid components of the moduli
spaces. The differential is then extended as a bimodule homomorphism to C(Λ),
and ultimately to the whole tensor ring using the Leibniz rule. The DGA obtained
will be denoted by AA(Λ) (or AG(Λ) if A = R[G]). If in this notation we omit the
subscript A, then we just mean the standard Chekanov-Eliashberg algebra of Λ,
which is the particular case A(Λ) := AR(Λ).

By an augmentation of the Chekanov-Eliashberg DGA we mean a homomor-
phism of R[π1(Λ)] − R[π1(Λ)]-bimodules ε : TA(C(Λ)) → A being a unital ring
homomorphism satisfying ε ◦ ∂ = 0.
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Remark 11.1. (1) An augmentation in this setting is still determined by its
values on the Reeb chord generators.

(2) Any homomorphism G → H of groups induces a unital DGA morphism
r : AG(Λ) → AH(Λ). In particular, when H is the trivial group, we get a
canonical DGA homomorphism r : AG(Λ) → A(Λ). The pre-composition
ε̃ := ε ◦ r of an augmentation ε of A(Λ) is clearly an augmentation of
AG(Λ); this augmentation will be called the lift of ε.

(3) Similarly to the definition of the differential of the DGA with twisted coef-
ficients, an exact Lagrangian cobordism Σ from Λ− to Λ+ can be seen to

induce a unital DGA homomorphism Φ̃Σ : Aπ1(Σ)(Λ
+) → Aπ1(Σ)(Λ

−) with
twisted coefficients. In particular, an exact Lagrangian filling induces an
augmentation in the group ring of its fundamental group.

For any pair of augmentations, the linearisation procedure gives rise to a differen-
tial dε0,ε1 : LCCε0,ε1

• (Λ;A) → LCCε0,ε1
• (Λ;A) on the free A−A-bimodule spanned

by the Reeb chords in the usual way. The map dε0,ε1 is in this situation a bimodule
homomorphism. We again denote the resulting homology by LCHε0,ε1

• (Λ;A) called
the bilinearised Legendrian contact homology with twisted coefficients.

In the case when Λ = Λ0 ⊔ Λ1 and εi comes from an augmentation of Λi for
i = 0, 1, we can again define the sub-complex LCC•

ε0,ε1(Λ0,Λ1;A) which is the free
right A-module spanned by the Reeb chords starting on Λ1 and ending on Λ0, as
well as the corresponding cohomology groups LCH•

ε0,ε1(Λ0,Λ1;A). The result [17,
Proposition 2.7] carries over immediately to this setting, and thus the identification

LCH•
ε0,ε1(Λ,Λ

′;A) = LCH•
ε0,ε1(Λ;A)

holds on the level of homology (again, for a suitable small push-off Λ′ of Λ, together
with a suitable lifted almost complex structure).

Remark 11.2. Note that, if ε1 takes values in R, then the left action of ε1(γ) on the
free module is the same as the right action. In this case, the whole module structure
factors through a complex defined as a free left R[π1(Σ0)]-module generated by the
Reeb chords. This is relevant for the next section, where we will twist coefficients
using R[π1(Σ0)] in a way so that the augmentation ε1 still will take values in R.

11.1.3. The Floer complex with twisted coefficients. Let R be a unital commutative
ring. We are now ready to define our Floer complex for a pair (Σ0,Σ1) of exact La-
grangian cobordisms with twisted coefficients, defined as an R[π1(Σ0)]−R[π1(Σ0)]
bimodule. For Lagrangian intersection Floer homology, such a construction has
previously been carried out in [67] and [22]. This was subsequently generalised
to the case of Wrapped Floer homology in [17, Section 4.2], i.e. for a pair of La-
grangian cobordisms having empty negative ends. Here we will define this theory
for a pair of exact Lagrangian cobordisms having non-empty negative ends whose
Chekanov-Eliashberg algebras admit augmentations.

As before, we let Σi ⊂ R× P × R be exact Lagrangian cobordisms from Λ−
i to

Λ+
i , i = 0, 1, where both Σ0 and Λ−

0 are assumed to be connected. We consider the
non-free R[π1(Λ

±
0 )] − R[π1(Λ

±
0 )]-bimodule R[π1(Σ0)] with structure coming from

the ring homomorphism induced by the inclusion maps {±T } × Λ±
0 → Σ0. In

order to obtain this bimodule structure, the base point of Σ0 need to be chosen
of the form (−T, ∗), where ∗ is the based point of Λ−

0 . We then choose, once and
for all, a path connecting (−T, ∗) and (T, ∗′), where ∗′ is the based point of Λ+

0 .
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Fix augmentations ε−0 and ε−1 of Aπ1(Σ0)(Λ
−
0 ) and A(Λ−

1 ), respectively (which by
definition take values in R[π1(Σ0)] and R, respectively). Let u ∈ Mr(x; ζ, y, δ) be
a pseudoholomorphic strip involved in the Cthulhu differential dε−0 ,ε−1

as defined in

Section 3.2. Order the connected components of the boundary of ∂Sr which are
mapped to Σ0 starting with the arc adjacent to the incoming puncture (as in Section
2.3.1), and denote them by ∂0Sr, . . . , ∂kSr. We associate to each of these arcs an
element aj ∈ π1(Σ0) in the same manner as in the definition of the differential of
the Chekanov-Eliashberg algebra with twisted coefficients described above. These
paths, together with the above augmentations, now determine an element

c
ε−0 ,ε−1
u = a1ε

−
0 (ζ1)a2ε

−
0 (ζ2) · · · ak−1ε

−
0 (ζk−1)akε

−
1 (δ) ∈ R[π1(Σ0)].

This construction allows us to define the Cthulhu differential dε−0 ,ε−1
on the non-free

R[π1(Σ0)]–R[π1(Σ0)]-bimodule

Cth(Σ0,Σ1;R[π1(Σ0)]) := Cth(Σ0,Σ1)⊗R R[π1(Σ0)]

First, when y is either a intersection point or a Reeb chord from Λ−
0 to Λ−

1 , we
define

dε−0 ,ε−1
(y) =

∑

x

∑

u∈Mr(x;ζ,y,δ)

sign(u)c
ε−0 ,ε−1
u x,

where the sum is taken over the rigid components of the moduli space. The for-
mula for y being a Reeb chord from Λ+

1 to Λ+
0 is similar, but involves the pull-backs

ε−0 ◦Φ̃Σ0 and ε−1 ◦ΦΣ1 of the augmentations under the DGA homomorphism induced
by the cobordisms with and without twisted coefficients, respectively. The differen-
tial is then extended to all of Cth(Σ0,Σ1;R[π1(Σ0)]) as a right R[π1(Σ0)]-module
homomorphism.

The techniques in Section 8 can be used to prove the following theorem.

Theorem 11.3. The map dε−0 ,ε−1
: Cth(Σ0,Σ1;R[π1(Σ0)]) → Cth(Σ0,Σ1;R[π1(Σ0)])

satisfies d
2
ε−0 ,ε−1

= 0, i.e. it is a differential, and it gives rise to an acyclic complex,

i.e. H(Cth(Σ0,Σ1;R[π1(Σ0)]), dε−0 ,ε−1
) = 0.

Proof. The proof is similar to the one in Sections 6.2 and 8.3. To that end, we
observe the following important feature of the above construction of the coefficient

c
ε−0 ,ε−1
u . Let u and v be holomorphic strips whose outgoing and incoming punctures,
respectively, agree so that one can pre-glue them to a strip u∗v. It then follows that

c
ε−0 ,ε−1
u∗v = c

ε−0 ,ε−1
v ∗c

ε−0 ,ε−1
u . It now follows from the compactness theorem that that the

boundary of a component of a one-dimensional moduli space of holomorphic strips
either consists of two broken configurations u ∗ v and u′ ∗ v′, both which contribute
with the same coefficient (with opposite signs)

c
ε−0 ,ε−1
v ∗ c

ε−0 ,ε−1
u = −c

ε−0 ,ε−1
v′ ∗ c

ε−0 ,ε−1
u′ ,

or at least one boundary point corresponds to a broken configuration involving a
pure chord. However, when counted with the augmentations as above, the counts
of the latter boundary points cancel for the algebraic reason that the augmentation
is a chain map (see (II) in Section 6). �

In view of the above theorem, the computations in Section 10 can be carried over
immediately to the case of twisted coefficients. We proceed to explicitly describe
the long exact sequence analogous to (4) in Theorem 1.6. Let Σ be an exact
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Lagrangian cobordism from Λ− to Λ+. Let ε−0 and ε−1 be two augmentations of
Aπ(Σ)(Λ

−) and A(Λ−) into R[π(Σ)] and R, respectively. Further, we consider the

pull-backs ε+0 := ε−0 ◦ Φ̃Σ and ε+1 := ε−0 ◦ ΦΣ of these augmentations.

Remark 11.4. It is important to note that ε+0 need not be the lift of an augmen-
tation into R in general, even in the case when ε−0 is.

Writing Σ̃ for the universal cover of Σ, and Σ̃ for its compactification to a man-
ifold with boundary, there is a long exact sequence:

(42) · · · // LCHk−1

ε+0 ,ε+1
(Λ+;R[π1(Σ)])

��

Hn+1−k(Σ̃, ∂−Σ̃;R) // LCHk
ε−0 ,ε−1

(Λ−;R[π1(Σ)])

��

LCHk
ε+0 ,ε+1

(Λ+;R[π1(Σ)]) // · · ·

.

The identification of the topological term Hn+1−k(Σ̃, ∂−Σ̃;R) is proven in the same
manner as before (see Theorem 10.5), while making the observation that the Morse
homology of a manifold with coefficients twisted by its fundamental group computes
the homology of its universal cover.

Finally, we point out that

LCHk
ε−0 ,ε−1

(Λ−;R[π1(Σ)]) = LCHk
ε−0 ,ε−1

(Λ−)⊗R[π1(Σ)]

is satisfied in the case when Λ− is simply connected.

11.2. Augmentations in finite-dimensional non-commutative algebras. The
DGAs with “coefficients” in non-commutative unital algebras as treated in Section
11.1 can also be considered in a setting where the algebra is more general than a
group ring, and without using twisted coefficient. Here we describe augmentations
in non-commutative unital algebras, as done by the second and fourth authors in
[27], which can be seen to fit into this framework. Since we will be interested in
computing the ranks of involved linearised complexes, we will restrict ourselves to
the case when the involved algebra is finite-dimensional over the ground field F.

A finite-dimensional augmentation of the Chekanov-Eliashberg algebra is a unital
DGA homomorphism

ε : (A(Λ), ∂) → (A, 0),

where A is a not necessarily commutative unital algebra which is finite-dimensional
over the ground field F. Here F denotes the field that was used as coefficient ring
for A(Λ). Recall that the existence of such a (graded) augmentation is equivalent
to the existence of a finite-dimensional representation of the so-called characteristic
algebra, which is defined as the quotient algebra A(Λ)/〈∂(A)〉 by the two-sided
ideal generated by the boundaries (see [58]).

Given two such augmentations

εi : (A(Λ−
i ), ∂i) → (Ai, 0), i = 0, 1,

we can form all our complexes as free A0 ⊗F (A1)
op-modules or, differently put,

a free A0 − A1 bimodule. It is important to note that the dimension over F still
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makes sense, since the latter modules are of dimension (dimFA0)(dimFA1) times
the number of generators.

To construct the differentials in this setting one proceeds as in [27], which also
is analogous to the construction of the complexes in Section 11.1 with twisted
coefficients. In particular, the differentials are of the form

d((a0 ⊗ a1)x) =
∑

y

∑

δ−,ζ−

#M(y; δ−, x, ζ−) · ε0(δ
−)a0 ⊗ a1ε1(ζ

−) · y,

where x and y denote either intersection points or Reeb chords, and where ai ∈ Ai,
i = 0, 1.

Remark 11.5. This convention tells us that the differential is defined by multipli-
cation of A0 ⊗Aop

1 from the left, and is hence a morphism of right modules.

The long exact sequences in homology for these bimodules now follow verbatim
from the proofs in the case when the augmentation is taken into F. It is important
to notice that all the complexes above are of finite dimension over F. More precisely,

dimF LCC
•(Λ±

0 ,Λ
±
1 ) = |R(Λ±

1 ,Λ
±
0 )| · dimFA0 · dimFA1,

while

dimFH•(X,Y ;A0 ⊗F (A1)
op) = dimFH•(X,Y ;F) dimF(A0) dimF(A1)

holds by the universal coefficients theorem.

Example 11.6. There are examples of Legendrian submanifolds which admit aug-
mentations into finite-dimensional non-commutative unital algebras, but which do
not admit any augmentation into any commutative unital algebra. We refer to
Part (1) of Example 12.4 below for such Legendrian torus knots found by Sivek in
[65], which admit augmentations into the matrix algebra M2(Z2). The second and
the fourth author later used these examples in order to construct plenty of Legen-
drian submanifolds inside contact spaces (R2n+1, ξstd) for arbitrary n ∈ N whose
Chekanov-Eliashberg algebras admit augmentations into M2(Z2), but not into any
commutative algebra.

11.3. The fundamental class and twisted coefficients. In this section we will
introduce the fundamental class in the setting of twisted coefficients. We will prove
that this class coincides with the fundamental class introduced in [35] in the general
twisted coefficients setting. We will also prove that this class is functorial under
exact Lagrangian cobordisms. In Section 12.3.1 we will use the naturality of this
class to prove Theorem 1.16. In the following we let Σ be a connected exact La-
grangian cobordism from Λ− to Λ+, where the latter Legendrian submanifolds are
connected as well.

11.3.1. The definition of the fundamental class. Recall the map

G
ε−0 ,ε−1
Σ : H•(Σ;R) → LCHn−•

ε+0 ,ε+1
(Λ+,Λ+

1 ;R)

in homology constructed in Section 10.3, whose underlying chain map is defined by a
count of punctured strips with boundary on Σ1∪Σ. Here Σ1 is an exact Lagrangian
cobordism from Λ−

1 to Λ+
1 obtained by the Hamiltonian push-off of Σ as defined in

Section 10.1.2. Roughly speaking, Σ1 is obtained by a small perturbation using the
positive and negative Reeb flows at the positive and negative end of Σ, respectively.
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The underlying chain map of G
ε−0 ,ε−1
Σ lifts to the corresponding complexes with

twisted coefficients. Namely, we define the chain map by the same counts of pseudo-
holomorphic strips, but where the count takes the homotopy class of the boundary
of the strips into account in the manner described above. The lifted map on ho-
mology will be denoted by

G̃
ε−0 ,ε−1
Σ : H•(Σ;R[π1(Σ)]) → LCHn−•

ε+0 ,ε+1
(Λ+,Λ+

1 ;R[π1(Σ)]).

We will be particularly interested in the restriction to the degree 0 part of
H0(Σ;R[π1(Σ)])

G̃
ε−0 ,ε−1
Σ : H0(Σ;R[π1(Σ)]) → LCHn

ε+0 ,ε+1
(Λ+,Λ+

1 ;R[π1(Σ)]).

Observe that this map is linear over R[π1(Σ)] or, put differently, it is π1(Σ)-
equivariant. Also, we recall that H•(Σ;R[π1(Σ)]) of the twisted complex here

computes the homology H•(Σ̃, R) of the universal cover Σ̃ → Σ, and that

(43) LCH•
ε+0 ,ε+1

(Λ+,Λ+
1 ;R[π1(Σ)]) ≃ LCH•

ε+0 ,ε+1
(Λ+;R[π1(Σ)]).

holds by [17, Proposition 2.7]. Later we will be particularly interested in the case
when Λ+ is simply connected and when ε+i , i = 0, 1, both take values in R. In this
situation the universal coefficients theorem gives us an identification

(44) LCH•
ε+0 ,ε+1

(Λ+;R[π1(Σ)]) = LCH•
ε+0 ,ε+1

(Λ+;R)⊗R R[π1(Σ)].

Choosing a generator m ∈ H0(Σ;R[π1(Σ)]), the fundamental class induced by Σ
is defined to be the image

c̃
ε−0 ,ε−1
Σ,m := G̃

ε−0 ,ε−1
Σ (m) ∈ LCHn

ε+0 ,ε+1
(Λ+;R[π1(Σ)]),

where we rely on the identification (43) above.
Let Λ+

1 be obtained from Λ by a C1-small perturbation of its image under the
time-ǫ Reeb flow, where ǫ > 0 is sufficiently small. We moreover assume that Λ+

1 can
be identified with the graph j1f+ ⊂ J1Λ+ in a standard contact neighbourhood
of Λ+, where f+ : Λ+ → R is a Morse function with a unique local minimum
m+ ∈ Λ+. Recall the definition of the fundamental class in [35], which was defined
by the following count of pseudoholomorphic strips having boundary on Λ+

1 ∪ Λ+:

c̃
ε+0 ,ε+1
Λ+,m+ :=

∑

u∈M̃(γ,δ,m+,ζ)

sign(u)c
ε+0 ,ε+1
u γ ∈ LCHn

ε+0 ,ε+1
(Λ+;R[π1(Σ)]).

Here we have again used identification (43) above. In the case when ε+0 = ε+1
and Λ+ is horizontally displaceable, this class has moreover been shown to be non-
vanishing; see [35, Theorem 5.5].

The following proposition shows that the two definitions of the fundamental class
given above in fact coincide.

Proposition 11.7. Assume that the natural map

H0(Λ
+;R[π1(Σ)]) → H0(Σ;R[π1(Σ)])

sends m+ ∈ H0(Λ
+, R[π1(Σ)]) to m ∈ H0(Σ;R[π1(Σ)]). For appropriate choices

of almost complex structures and Hamiltonian perturbations in the constructions,
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there is an identification

c̃
ε+0 ,ε+1
Λ+,m+ = c̃

ε−0 ,ε−1
Σ,m ∈ LCHn

ε+0 ,ε+1
(Λ+;R[π1(Σ)])

of fundamental classes.

In Section 12.3.1 we will see that Theorem 1.16 is a direct consequence of the
above proposition. Its proof is postponed until Section 11.3.3, and it relies on
studying a specific push-off of Σ to be describe in the subsequent subsection.

11.3.2. A more careful version of the push-off defined in Section 10.1.2. In order to
facilitate the proof of Proposition 11.7 we will choose a push-off Σ1 of Σ of a very
special form, where Σ1 will be an exact Lagrangian cobordism from Λ−

1 to Λ+
1 . We

will suppose that Σ is cylindrical outside of the subset [−T, T ]× P × R.
First we need to construct a Weinstein neighbourhood of Σ of a particular form.
Begin by fixing contact-form preserving contactomorphisms φ± : U± → J1Λ±

identifying a neighbourhood U± ⊂ P × R of Λ± with a neighbourhood φ±(U±) of
Λ± ⊂ (J1Λ±, dz− θΛ±), where φ±(Λ±) = 0Λ± ⊂ J1Λ± is the zero-section. We also
get induced exact symplectomorphisms

(IdR, φ
±) : R× U± → R× φ±(U±) ⊂ R× J1Λ±.

Pre-composing (IdR, (φ
±)−1) with the (non-exact) symplectomorphism

ψ± : (T ∗(I± × Λ±), d(pidqi)) → (R× J1(Λ±), d(et(dz − yidxi))),

((q,q), (p,p)) 7→ (log q, (q,−p/q,−p)),

where I+ = [eT ,+∞) and I− = (0, e−T ], we get an induced Weinstein neighbour-
hood of the cylindrical ends of Σ parametrised by (IdR, (φ

±)−1) ◦ ψ±.
Fix a proper open embedding

I− × Λ− ⊔ I+ × Λ+ →֒ Σ.

An adaptation of the proof of Weinstein’s Lagrangian neighbourhood theorem (see
e.g. [55]) shows that we can construct a symplectic identification

Ψ: (D∗
δΣ, d(pidqi)) →֒ (R× P × R, d(et(dz + θ)))

of a co-disc bundle of some small radius δ > 0, for which the zero-section is identified
with Ψ(0Σ) = Σ ⊂ R× P × R, and whose restriction to

(D∗
δ (I− × Λ− ⊔ I+ × Λ+), d(pidqi)) ⊂ (D∗

δΣ, d(pidqi)),

coincides with the symplectomorphisms (IdR, (φ
±)−1) ◦ψ± constructed above. For

the definition of the above disc bundle we will pick a metric on the cotangent bundle
T ∗Σ which is induced by a Riemannian metric on Σ being of the form dq⊗dq+q−1g±
on the ends I± × Λ±, where g± denote Riemannian metrics on Λ±.

We are now ready to describe the construction of the Hamiltonian push-off Σ1

of Σ, which is done by performing the push-off in Section 10.1.2 while taking extra
care.

First, we choose a C1-small push-off Σ′
1 of Σ by applying the time-ǫ flow of the

Hamiltonian vector-field e−th′Λ(t)∂z defined in Section 10.1.2. Here ǫ > 0 is chosen
smaller than the shortest Reeb chords on both ends Λ±. (Recall that this flow
coincides with the positive and negative Reeb flow at the positive and negative end,
respectively.) Second, we perform a non-compact perturbation of the cylindrical
ends of Σ′

1 induced by cylindrically extending a perturbation of the Legendrian
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ends (where this perturbation has been appropriately cut off). Finally, we perform
a compactly supported Hamiltonian perturbation of Σ′

1 yielding the sought exact
Lagrangian cobordism Σ1. These perturbations will moreover be performed so that
the following properties are satisfied.

(1) Under the above identifications of standard contact neighbourhoods of Λ±,
we require that φ±(Λ±

1 ) = ±j1f± ⊂ J1Λ± for positive Morse functions
f± : Λ± → (0, ǫ]. We moreover require that f+ has a unique local minimum
m+. (This is possible since Λ+ is connected by assumption.)

(2) Under the above identification of a Weinstein neighbourhood of Σ, we re-
quire that Ψ−1(Σ1) = −dF ⊂ T ∗Σ for a Morse function F : Σ → R. We
moreover require that F has a unique local minimum m (note the sign!).
(This is possible since Σ is connected and since F increases as |t| → +∞
along either of the cylindrical ends.)

(3) Above I− × Λ−, the function F is required to restrict to a function of the
form

F |I−×Λ− = −qf−,

where q denotes the standard coordinate on I− = (0, e−T ] ⊂ R.
(4) Above I+ × Λ+ ⊂ Σ, the function F restricts to a function of the form

F |I+×Λ+ = qf+ + C(q)

by construction, where q is the standard coordinate on I+ = [eT ,+∞) ⊂ R

and C(q) is constant outside of a compact set. We moreover require that
C : R → R satisfies:
(a) C(q) = −2(maxΛ+ f+) · q < minI−×Λ− F < 0 holds near q = eT ;
(b) C(q) ≡ 0 for all q ≫ 0 sufficiently large;
(c) C′(q) is non-decreasing;

(d) C′(eT
′

) = −f+(m+), i.e. (eT
′

,m+) ∈ I+ ×Λ+ is a critical point being
a local minimum for some T ′ > T ; and

(e) C′′(eT
′

) > 0, i.e. this critical point is a non-degenerate local minimum.
Note that, in particular, we require that the unique local minimum of F is
given by the above critical point m = (eT

′

,m+) ∈ I+ × Λ+ ⊂ Σ. Also, see
Figure 21.

In order to see that we indeed can find the above function F , we observe that
a function defined on the subsets I− × Λ− ∪ I+ × Λ+ ⊂ Σ satisfying the above
requirements (3) and (4) can be extended to a Morse function F : Σ → R without
introducing additional local minima, as follows by considering property (4a).

f+(m+)

f+(m+)− 2maxΛ+ f+

q

f+(m+) + C′(q)

eT eT
′

Figure 21. The graph of the differential ∂qF along [eT ,+∞) ×
{m+} ⊂ I+ × Λ+. Observe that F |{q}×Λ+ has a non-degenerate

local minimum at (q,m+) for each q ∈ I+.
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Lemma 11.8. Let Σ1 be the Hamiltonian push-off of Σ described by all the previous
conditions. For a suitable choice of almost complex structure J there is a unique
and transversely cut out J-holomorphic disc having boundary on Σ ∪ Σ1 and a
single positive puncture asymptotic to γm+ . This disc is moreover a rigid strip
having precisely two punctures, where the second puncture maps to the intersection
point m = (eT

′

,m+) ∈ Σ ∩ Σ1.

Proof. We will choose an admissible almost complex structure J on R × P × R

which, on the subset [T,+∞) × P × R, will be the cylindrical lift of a compatible
almost complex structure JP on (P, dθ) as described in Section 3.1.3.

First we show that a punctured disc as in the assumption cannot pass through the
hypersurface {t = T } for a suitable choice of almost complex structure J . Namely,
consider a neck-stretching limit around this hypersurface, and observe that

{t = T } ∩ (Σ ∪ Σ1) = R× (Λ+ ∪ φ−2maxΛ+ f+

(Λ+
1 ))

holds by property (4a) above. (Here φs(t, x, z) = (t, x, z+ s) denotes the Reeb flow
as usual.) By action reasons it thus follows that no such strip can pass through this
hypersurface for a sufficiently stretched almost complex structure, since otherwise
we would get a component of negative energy in the SFT limit. Observe that
stretching the neck in this setting can be equivalently performed by fixing the
almost complex structure J , but while changing the boundary condition in a way
so that T ′ ≫ 0 above becomes arbitrarily large.

We may hence assume that any disc as in the assumption is contained in {t ≥
T }. The canonical (J, JP )-holomorphic projection [T,+∞) × P × R → P maps
{t ≥ T } ∩ (Σ ∪ Σ1) to the Lagrangian projection ΠLag(Λ

+ ∪ Λ+
1 ) ⊂ (P, dθ). The

fact that the positive puncture of the projection of the disc in the assumption is
mapped to m+ ∈ ΠLag(Λ

+)∩ΠLag(Λ
+
1 ) implies that this disc must have a constant

projection to P . In other words, the disc is contained inside the J-holomorphic
plane [T,+∞)× {m+} × R ⊂ R× P × R.

Finally, it can be checked by hand that there exists a unique J-holomorphic strip
contained in the above plane [T,+∞)×{m+}×R having boundary on Σ∪Σ1; see
Figure 21 for a picture. This strip is transversely cut out by the explicit calculation
made in [25, Lemma 8.2]. (This argument is similar to the proof of [17, Theorem
2.15].) �

11.3.3. The proof of Proposition 11.7. We now proceed with the proof of Proposi-
tion 11.7.

Proof of Proposition 11.7. Let lγ denote the coefficient of the Reeb chord generator

γ of the fundamental class c
ε+0 ,ε+1
Λ+,m+ (using the canonical basis of the Reeb chord

generators). Recall that this coefficient is given by the count of rigid punctured

strips inside the moduli spaces of the form M̃(γ; δ,m+, ζ), where each strip is
counted with the weight ε+0 (δ)ε

+
1 (ζ).

Consider punctured Floer strips with boundary on Σ0 ∪ Σ1 having precisely
two positive punctures asymptotic to Reeb chords: one being the Reeb chord m+

from Λ+
0 to Λ+

1 corresponding to the minimum of the Morse function f , and one
corresponding to the above Reeb chord γ from Λ+

1 to Λ+
0 . By the non-negativity

of the Fredholm index for a generic almost complex structure, together with the
positivity of the energy, the compactification of this moduli space a priori consists
of pseudoholomorphic buildings of the following form:
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(1) Pseudoholomorphic buildings with:
• A top level consisting of a single punctured strip with boundary on
R× Λ+

0 ∪ R× Λ+
1 (which hence is rigid up to translation);

• A middle level consisting of punctured half-planes of index zero having
boundary on Σi, i = 0, 1.

(2) Pseudoholomorphic buildings with:
• A top level consisting of one punctured strip of index one having
boundary on R × Λ+

0 ∪ R × Λ+
1 (which hence is rigid up to transla-

tion) together with a trivial strip over a Reeb chord;
• A middle level consisting of a single punctured strip of index zero
having boundary on Σ0 ∪ Σ1.

(3) Pseudoholomorphic buildings with:
• A middle level consisting of two punctured strips of index zero having
boundary on Σ0 ∪ Σ1;

• A bottom level consisting of a single punctured strip with boundary
on R × Λ−

0 ∪ R × Λ−
1 which is of index one (and hence rigid up to

translation).
(4) Pseudoholomorphic buildings with:

• A middle level consisting of a single punctured strip of index zero
having boundary on Σ0 ∪ Σ1;

• A bottom level consisting of a single punctured half-plane of index
one with boundary on R × Λ−

i , i = 0, 1 (which hence are rigid up to
translation), together with additional trivial strips over Reeb chords.

(5) A broken punctured strip having boundary on Σ0 ∪ Σ1.

See Figure 22 for a schematic picture of the above pseudoholomorphic buildings.
A gluing argument implies that the configurations in (1) are in bijection with the

configurations contributing to the above coefficient lγ in front of γ of the fundamen-
tal class. Furthermore, the count of the configurations in (5) gives the coefficients of

G̃
ε−0 ,ε−1
Σ by Lemma 11.8. We proceed to infer that the signed counts of all buildings

of type (2)-(4) is equal to the coefficient of γ in the expression dε+0 ,ε+1
◦ bΣ1,Σ(m+),

from which the sought equality on the level of homology now follows. (As usual,
all counts above are weighted by the augmentations ε−i , i = 0, 1.)

(2): There are two cases: either the non-trivial strip in the top level has a
positive puncture asymptotic to m+, or it has positive puncture asymptotic to γ.
The former case can be excluded by actions reasons, while the count of the latter
configurations corresponds exactly to the coefficient in front of γ of the boundary
dε+0 ,ε+1

◦ bΣ1,Σ(m+).

(3): There are no buildings of this type. Namely, by Lemma 11.8, we may assume
there are no punctured pseudoholomorphic strips with boundary on Σ0∪Σ1 having
positive asymptotic to the minimumm+ and a negative asymptotic to a Reeb chord
from Λ−

0 to Λ−
1 .

(4): The sum of these contributions vanishes, as follows from the fact that ε−i ,
i = 0, 1, vanishes on any boundary of the Chekanov-Eliashberg algebra of Λ−

i

(see (II) in Section 6). Recall that the latter differential is defined by a count of
punctured pseudoholomorphic half-planes of index one having boundary on R×Λ−

i .
�
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(1) (2) (3) (4) (5)

1 1

0

0 0 0

0 0

1

0

0

0

1

0

0

0

0

Λ+ ∪ Λ+
1

Σ ∪ Σ1

Λ− ∪ Λ−
1

Figure 22. The pseudoholomorphic buildings (1)-(5) described
in the proof of Proposition 11.7. The number on each component
denotes its Fredholm index.

Not that the construction allows us to give a proof of the fact (already pointed out
in [36]) that the fundamental class is functorial with respect to exact Lagrangian
cobordisms. Indeed, stretching the neck in the slice {t = −T } decomposes the

map G
ε−0 ,ε−1
Σ into Φ

ε−0 ,ε−1
Σ ◦G

ε−0 ,ε−1
R×Λ− , where ΦΣ is the DGA morphism induced by the

cobordism. Alternatively, one can also use the long exact sequence produced by
Theorem 1.8 together with Proposition 11.7 in order to deduce this. In either case,
we have:

Theorem 11.9. [36, Theorem 7.7] Let Σ be a connected exact Lagrangian cobordism
from Λ− to Λ+, and let ε−i , i = 0, 1, be augmentations of the Chekanov-Eliashberg
algebra of Λ− which pull back to augmentations ε+i under the DGA morphism ΦΣ

induced by Σ. It follows that

Φ
ε−0 ,ε−1
Σ (c

ε−0 ,ε−1
Λ−,m−) = c

ε+0 ,ε+1
Λ+,m+ ,

i.e. the fundamental class is preserved under the bilinearised dual of the DGA mor-
phism induced by Σ, under the additional assumption that the images of m± under
the natural maps H0(Λ

±,F) → H0(Σ) agree.

11.4. A brief introduction to homology with L2-coefficients. We use the
technology of L2-Betti numbers, introduced by Atiyah in [8], as a tool to study
rank properties of Legendrian contact cohomology when the coefficient ring is a
group ring C[π] for a group π. In the following, π denotes the fundamental group
of the cobordism. Observe that in this case π is countable. The main idea is
to replace C[π], which is not a priori a Noetherian ring, with a more manageable
module. Namely, we consider its L2-completion ℓ2(π) defined by the set of functions
f : π → C satisfying

∑
g∈π |f(g)|

2 < ∞, endowed with its natural structure of a
Hilbert space.

We do not intend to give a comprehensive introduction to the subject of L2-
ranks and refer the reader to the book of Lück [54] and the introductory paper of
Eckmann [29] as the main references for the results used, but we still try to give
an understandable overview of the needed techniques. The main result that we
will need is a version of the snake lemma for L2-cohomology, due to Cheeger and
Gromov [19] (also, see [54, Theorem 1.21]), which applies since all our complexes
are finitely generated as ℓ2(π)-modules.
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A Hilbert π-module V is a Hilbert space on which π acts by isometry. It is said
to be of finite type if it can be realised as a closed subspace of ℓ2(π) ⊗C Cm for a
certain m ∈ N. Morphisms of Hilbert π-modules are bounded linear maps which
are π-equivariant. Given an endomorphism f : V → V of a Hilbert module of finite
type, we define its von Neumann trace by

(45) trL2(f) :=
m∑

i=1

〈f(1⊗ ei), 1⊗ ei〉.

Here f := i ◦ f ◦ p, i : V → ℓ2(π)⊗CC
m is the inclusion, p : ℓ2(π)⊗CC

m → V is the
orthogonal projection, and {ei} is the standard basis of Cm. A simple computation
shows that this trace only depends on f and not on the particular choice of the
embedding.

The von Neumann dimension of V is rkL2(V ) = trL2 Id, which clearly is a non-
negative number bounded from above by m, under the assumption that V can
be embedded in ℓ2(π) ⊗C Cm. Note that the von Neumann dimension can take
non-integer values. The following basic properties will be crucial:

Lemma 11.10 (Theorem 1.12 in [54]). (1) V = 0 if and only if rkL2(V ) = 0;
and

(2) If 0 → U → V →W → 0 is weakly exact, i.e. im i = ker p, then rkL2(V ) =
rkL2(U) + rkL2(W ).

We will be interested in applying this theory to a complex (C•, ∂) which is the L2-
completion of a G-equivariant complex (C•, ∂) consisting of finitely generated free
C[G]-modules. In this case, the L2-modules are all of finite type. The corresponding

L2-homology will be denoted by H
(2)
• (C•, ∂), where we note that H

(2)
i (C•, ∂) is

defined as the quotient of the subspace of cycles by the closure of the subspace of

boundaries. It follows that H
(2)
• (C•, ∂) again is a G-equivariant L2-module of finite

type.

Lemma 11.11. In the above situation, we have

rkL2 H
(2)
i (C•, ∂) ≤ rkC[G] Ci.

Furthermore, for a finite-dimensional complex (C′
•, ∂

′) over C, we have

H
(2)
i (C′

• ⊗ C[G], ∂′ ⊗ IdC[G]) = Hi(C
′
•, ∂

′)⊗C ℓ
2(G),

and thus, in particular,

rkL2 H
(2)
i (C′

• ⊗ C[G], ∂′ ⊗ IdC[G]) = dimCHi(C
′
•, ∂

′).

Proof. The first statement follows from Lemma 11.10 together with the Hodge
decomposition in [54, Lemma 1.18]. The second statement follows by a direct
computation. �

For a pair of CW complexes (X,Y ), Y ⊂ X and a choice of homomorphism

ϕ : π1(X) → G, there is an induced covering (X̃, Ỹ ) → (X,Y ) with fibre G, mon-
odromy described by ϕ, and where there is a natural free G-action on the covering.
In the case when (C•, ∂) is the G-equivariant cellular complex associated to such a

covering, we will write the corresponding L2-homology groups by H
(2)
• (X,Y ;ϕ) or,

by abuse of notation, H
(2)
• (X,Y ;G).
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11.5. Estimating the first L2-Betti number of a tower. Suppose that Σ is
a compact (n + 1)-dimensional manifold with boundary ∂Σ = ∂+Σ ⊔ ∂−Σ, such

that ∂±Σ ∼= Λ both are simply connected. Let Σ
⊙k

be the quotient of ⊔k
i=1Σi,

Σi
∼= Σ, which identifies ∂+(Σ) ⊂ Σi with ∂−(Σ) ⊂ Σi+1. We will write ∂Σ

⊙k
=

∂−Σ
⊙k

⊔ ∂+Σ
⊙k

, where ∂−Σ
⊙k

= ∂−Σ1, ∂+Σ
⊙k

= ∂+Σk.

Further, consider the covering space Σ̃⊙k → Σ
⊙k

obtained by gluing the bound-

ary of the universal cover ⊔k
i=1Σ̃i → ⊔k

i=1Σi via the identification of the induced
cover

Σ̃i ⊃ ⊔g∈π1(Σ)∂+(Σ) → ∂+(Σ) ⊂ Σi

with the induced cover

Σ̃i+1 ⊃ ⊔g∈π1(Σ)∂−(Σ) → ∂−(Σ) ⊂ Σi+1.

Observe that the covering Σ̃⊙k → Σ
⊙k

obtained is induced by a group epimorphism

π1(Σ
⊙k

) ≃ π ∗ . . . ∗ π︸ ︷︷ ︸
k

→ π.

Lemma 11.12. In the case when π is finite, we have

dimF(H1(Σ̃
⊙k, ∂−Σ̃

⊙k;F)) = (|π| − 1)k, k ≥ 1.

If π := π1(Σ) is infinite, the L2-homology H
(2)
1 (Σ

⊙k
, ∂−Σ

⊙k
;π) with coefficients

twisted by the above covering Σ̃⊙k → Σ
⊙k

satisfies

rkL2(H
(2)
1 (Σ

⊙k
, ∂−Σ

⊙k
;π)) ≥ k.

Proof. The first statement is proven by induction on k, using a standard comparison
of dimensions obtained via the Mayer-Vietoris long exact sequence

. . .→ H1(∂−Σ̃;F) →

→ H1(Σ̃;F)⊕H1(Σ̃
⊙(k−1), ∂−Σ̃

⊙(k−1);F) →

→ H1(Σ̃
⊙k, ∂−Σ

⊙k
;F)

→ H0(∂−Σ̃;F) → . . . .

We now show the statement concerning the L2-ranks, which follows by analogous
computations. Lemma 11.11 implies that

H
(2)
0 (∂±Σ;π) = ℓ2(π) and H

(2)
1 (∂±Σ;π) = 0,

since ∂±Σ are simply connected. Observe that we also have

H
(2)
0 (Σ

⊙k
;π) = 0, k ≥ 1,

as follows from [54, Theorem 1.35(8)], using the fact that π is infinite. The (weak)
long exact sequence of a pair [54, Theorem 1.21] immediately implies the base case

rkL2 H
(2)
1 (Σ

⊙1
, ∂−Σ

⊙1
;π) = rkL2 H

(2)
1 (Σ, ∂−Σ;π) ≥ 1

as well as the vanishing

H
(2)
0 (Σ

⊙k
, ∂−Σ

⊙k
;π) = 0.
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The Mayer-Vietoris long (weakly) exact sequence

. . .→ H
(2)
1 (∂−Σ;π) →

→ H
(2)
1 (Σ;π)⊕H

(2)
1 (Σ

⊙(k−1)
, ∂−Σ

⊙(k−1)
;π) →

→ H
(2)
1 (Σ

⊙k
, ∂−Σ

⊙k
;π)

→ H
(2)
0 (∂−Σ;π) → 0 → . . . ,

together with H
(2)
1 (∂−Σ; ℓ

2(π)) = 0 and [54, Theorem 1.12(2)] gives that

rkL2 H
(2)
1 (Σ

⊙k
, ∂−Σ

⊙k
;π) ≥

≥ rkL2 H
(2)
1 (Σ

⊙(k−1)
, ∂−Σ

⊙(k−1)
;π) + rkL2 H

(2)
0 (∂−Σ;π).

Since rkL2 H
(2)
0 (∂−Σ;π) = 1, the claim now follows by induction. �

12. Applications and examples

In this section we deduce all applications mentioned in the introduction of the
paper. In addition, we provide explicit examples of Lagrangian cobordisms: both
examples to which our results apply, but also examples showing the importance of
the different hypotheses used.

12.1. The homology of an endocobordism. The following proofs of Theo-
rems 1.11 and 1.13 are similar to the proofs given in [26].

Proof of Theorem 1.11. We begin by showing the result in the case when F = Z2.
(i): First, recall the elementary fact from algebraic topology that

dimFH(Σ;F) ≥ dimFH(Λ;F)(46)

is satisfied, which follows by studying the long exact sequence of the pair (Σ, ∂Σ)
together with Poincaré duality (see [26, Lemma 2.1]).

We proceed to prove the opposite inequality dimFH(Σ;F) ≤ dimF(Λ;F). The
linearised Legendrian contact cohomology satisfies the bound

dimF LCHε′(Λ) ≤ |R(Λ)|

for any ε′. Thus we can fix an augmentation ε of A(Λ;F) satisfying

dimF LCHε(Λ;F) = max
ε′

{dimF LCHε′(Λ;F)}.(47)

The exact triangle in Theorem 1.8 gives us

dimF LCHε+(Λ;F) ≥

≥ dimF LCHε(Λ;F) + dimFH(Σ;F)− dimFH(Λ;F)

where ε+ is the augmentation of A(Λ;F) obtained as the pull-back ε+ := ε ◦
ΦΣ. Formula (47) implies that dimFH(Σ;F) − dimFH(Λ;F) ≤ 0. Together with
inequality (46), we obtain

dimFH(Σ;F) = dimFH(Λ;F)(48)

of the dimension of the total homology.
In order to show that dimFHi(Σ;F) = dimFHi(Λ;F) for all i, we argue by

contradiction, assuming that

di0 (Σ) := dimFHi0(Σ;F)− dimFHi0(Λ;F) > 0
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for some i0. By the Mayer-Vietoris sequence we conclude that the inequality

dimFHi0(Σ⊙ Σ;F) ≥ 2 dimFHi0 (Σ;F)− dimFHi0(Λ;F)

holds. In particular,

di0(Σ⊙ Σ) := dimFHi0(Σ⊙ Σ;F)− dimFHi0(Λ;F) ≥ 2di0(Σ),

which by induction leads to a contradiction with equality (48).
(ii): The argument is the same as the one in the proof of [26, Theorem 1.6 (ii)],

and follows form Part (i) applied to the concatenation Σ⊙ Σ. Namely the Mayer-
Vietoris sequence for the concatenation Σ⊙ Σ seen as two copies of Σ glued along
the boundary component Λ shows that

dimFH(Σ⊙ Σ;F) ≥ 2 dimFH(Σ;F)− dimF im(i−∗ , i
+
∗ )

and by the above result, we conclude that

dimF im(i−∗ , i
+
∗ ) = dimFH(Σ;F) = dimFH(Λ;F),

from which the claim follows.
(iii): By contradiction, we assume that i+∗ ⊕ i−∗ : H(Λ ⊔ Λ) → H(Σ) is not a

surjection. Considering a representative V ⊂ H(Σ) of the cokernel of this map,
which hence is of dimension dimF V > 0, the Mayer-Vietoris long exact sequence
implies that the image of V ⊕ V under the map

H(Σ)⊕H(Σ) → H(Σ⊙ Σ)

has image being of dimension 2 dimF V > 0. Moreover, V ⊕V can again be seen to
not be contained in the image of

i+∗ ⊕−i−∗ : H(Λ ⊔ Λ) → H(Σ⊙ Σ).

Namely, the above inclusion factorises through the canonical maps as

i+∗ ⊕−i−∗ : H(Λ ⊔ Λ) → H(Σ ⊔ Σ) → H(Σ⊙ Σ),

where the latter morphism is the one from the above Mayer-Vietoris long exact
sequence. In conclusion, the cokernel of

i+∗ ⊕ i−∗ : H(Λ ⊔ Λ) → H(Σ⊙ Σ)

is of dimension at least 2 dimF V . Arguing by induction, now we arrive at the sought
contradiction with Part (i) above.

The proof is now complete for Z2.
Under the additional assumption that Λ is spin, and admitting an augmentation

in an arbitrary field F, Corollary 12.3 of Theorem 1.14 implies that any endocobor-
dism of Λ is spin as well. This allows us to repeat the previous argument with
coefficients in the field F. Note that Theorem 1.14 relies on Theorem 1.11, which
we established above in the needed case F = Z2. �

We now prove the following Theorem of which Theorem 1.13 is an immediate
corollary. Observe that the following result also can be proved by alluding to
Theorem 1.11.

Theorem 12.1. Let Λ be a Legendrian homology sphere inside a contactisation, Σ
be an exact Lagrangian cobordism from Λ to itself inside the symplectisation, and
F a field. If A(Λ;F) admits an augmentation, then H•(Σ,Λ;F) = 0, i.e. Σ is a
F-homology cylinder.
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Proof. Let Σ⊙k, k ≥ 1, be the k-fold concatenation of Σ with itself, which again
is an exact Lagrangian cobordism from Λ to Λ. Since Λ is a homology sphere it is
spin and, hence, Σ⊙k is spin for all k ≥ 1 by Corollary 12.3.

We fix an augmentation ε of A(Λ;F) and let εk be the augmentation of A(Λ;F)
obtained by the pull-back of ε under the unital DGA morphism induced by Σ⊙k.

The (ungraded version of the) long exact sequence in Theorem 1.6 becomes

(49) LCH•
ε (Λ) // LCH•

εk(Λ)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠

H•(Σ
⊙k
, ∂−Σ

⊙k
;F)

hh◗◗◗◗◗◗◗◗◗◗◗

Observe that

dimHi(Σ
⊙k
, ∂−Σ

⊙k
;F) =

{
0, i = 0, n+ 1,

k dimHi(Σ, ∂−Σ;F), 0 < i < n+ 1,

as follows from the Mayer-Vietoris long exact sequence together with the assump-
tion that Λ is a F-homology sphere.

Since the linearised contact cohomology satisfies the bound

dimF LCHε′(Λ) ≤ |R(Λ)|

for any ε′, we get the inequality

k dimHi(Σ, ∂−Σ;F) = dimHi(Σ
⊙k
, ∂−Σ

⊙k
;F) ≤ 2|R(Λ)|, 0 < i < n+ 1,

for each k, where the exactness of the above triangle has been used to show the last
inequality. In conclusion, we have established

dimHi(Σ, ∂−Σ;F) = 0, 0 < i < n+ 1,

which finishes the proof. �

Proof of Theorem 1.13. Since Λ is assumed to have an augmentation over Z it
admits an augmentation over Q as well. And thus it follows from Theorem 12.1
that H•(Σ,Λ;Q) = 0 and thus that H•(Σ,Λ;Z) is torsion. The augmentation over
Z also induces an augmentation over any finite field, and thus Theorem 12.1 implies
that H•(Σ,Λ;Z) has no p-torsion for any prime p. Thus H•(Σ,Λ;Z) = 0. �

Remark 12.2. Following the discussion in Section 11.2 we get that Theorem 1.13
holds under the weaker assumption that the Chekanov-Eliashberg algebra admits a
non-commutative augmentation in a finite-dimensional F-algebra. (The proof is a
verbatim reproduction of the precedent.)

12.2. Characteristic classes of endocobordisms. Recall that from Section 1.1.1,
that Theorem 1.11 still applies in the case when the cobordism Σ is not orientable
and of Maslov number one i.e. when the Cthulhu complexes involving Σ necessarily
are ungraded. In this case, we obtain exact triangles instead of long exact sequences.

Assume now that we are given a chord-generic orientable Legendrian submanifold
Λ ⊂ P×R whose Chekanov-Eliashberg algebra admits an augmentation over Z2 (or,
more generally, a linearm-dimensional representation over Z2). The dual statement
of Part (iii) of Theorem 1.11 reads as follows. Let Σ be an exact Lagrangian
endocobordism Σ of Λ. The map (i∗+, i

∗
−) : H

∗(Σ,Z2) → H∗(Λ⊔Λ,Z2) is injective.
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Theorem 1.14 is an immediate corollary of this and of the naturality of characteristic
classes. In turn, it implies the following:

Corollary 12.3. If Λ is orientable (respectively, spin), and that it admits an aug-
mentation into a finite-dimensional algebra, then any exact endocobordism Σ of Λ
is orientable (respectively, spin) as well.

This result can be seen as a generalisation of the result of Capovilla-Searle and
Traynor, see [14, Theorem 1.2]. The proof of Theorem 1.14 for Pontryagin classes
follows similarly assuming that Λ is spin.

Figure 23. The front projection of Λ(5,−8).

Example 12.4. Recall that a Legendrian knot in the standard contact R3 for which
the Kauffman bound on tb is not sharp does not admit an augmentation in a
commutative ring [61].

(1) Consider a family of the Legendrian representatives of torus (p,−q)-knots
Λ(p,−q) ⊂ R3 with q > p ≥ 3 and p odd; see Figure 23. Following Sivek [65],
we observe that tb(Λ(p,−q)) = −pq and, hence, from the classification result
of Etnyre and Honda [43] it follows that Λ(p,−q) is tb-maximising. Recall
that Sivek [65] proved that the Chekanov-Eliashberg algebra of Λ(p,−q) ad-
mits a 2-dimensional representation over Z2, but for which the Kauffman
bound on tb is not sharp. Therefore, these Legendrian knots do not admit
non-orientable exact Lagrangian endocobordisms.

(2) Consider Λ(p,−q)#Λ, where p is odd, q > p ≥ 3, and let Λ be a tb-

maximising Legendrian knot of R3 whose Chekanov-Eliashberg algebra ad-
mits an augmentation (or, more generally, m-dimensional linear represen-
tation) over Z2. Then, following the discussion in [27, Lemma 4.3], we
see that the Kauffman bound for Λ(p,−q)#Λ is not sharp and that the
Chekanov-Eliashberg algebra of Λ(p,−q)#Λ admits a finite-dimensional lin-
ear representation over Z2. In addition, from the fact that Λ(p,−q) and Λ
are tb-maximising, together with [44, Corollary 3.5] (or [68, Theorem 1.1]),
it follows that Λ(p,−q)#Λ also is tb-maximising. This leads us to many
other examples, besides Λ(p,−q), which do not admit non-orientable exact
Lagrangian endocobordisms.

(3) There is also an example due to Sivek, see [65, Sections 2.2 and 3], of a tb-
maximising knot with non-sharp Kauffman bound on tb, whose Chekanov-
Eliashberg algebra does not admit a finite-dimensional linear representation
over Z2.
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Remark 12.5. The above examples provide a negative answer to a question of
Capovilla-Searle and Traynor, see [14, Question 6.1].

12.3. Restrictions on the fundamental group of an endocobordism be-
tween simply connected Legendrians. We now prove the results concerning
the fundamental groups of endocobordisms between simply connected Legendrian
submanifolds.

12.3.1. Proof of Theorem 1.16.

Proof of Theorem 1.16. Recall the construction of the fundamental class in the
setting of twisted coefficients carried out in Section 11.3. The proof will be a
straightforward consequence of Proposition 11.7 therein.

From the assumptions of the theorem, the Legendrian submanifold Λ+ has
a unique augmentation. It follows that [35, Theorem 5.5] can be applied, and

hence the fundamental class c̃
ε+0 ,ε+1
Λ+,m+ is non-vanishing. By Proposition 11.7 we,

moreover, conclude that this fundamental class is the image of a generator m of

H0(Σ;R[π1(Σ)]) under the map G̃ε−,ε−

Σ . Since Λ+ is simply connected by assump-
tion, it follows from (44) above that this image is not torsion. In particular

g · c̃
ε+0 ,ε+1
Λ+,m+ 6= c̃

ε+0 ,ε+1
Λ+,m+ , ∀g ∈ π1(Σ).

Thus, m is not torsion either, and since it generates H0(Σ;R[π1(Σ)]) we conclude

that H0(Σ;R[π1(Σ)]) = R[π1(Σ)]. However, since Σ̃ is connected, we know that

H0(Σ;R[π1(Σ)]) = H0(Σ̃) = R. In other words, π1(Σ) is the trivial group, as
sought. �

12.3.2. Proof of Theorem 1.18.

Proof of Theorem 1.18. Here it will be crucial to use the machinery of L2-coefficients
as described in Section 11.4.

We will let Σ⊙k, k ≥ 1, denote the k-fold concatenation of the cobordism Σ
from Λ to Λ. Since Λ is spin by assumption, it follows from Corollary 12.3 that the

cobordisms Σ⊙k are spin for all k ≥ 1. We also consider the cover p : Σ̃⊙k → Σ
⊙k

as constructed in the previous section.
First, we argue that the claim follows from the fact |π1(Σ)| < ∞, which will

be shown below. Indeed, under these assumptions, the version of the long exact
sequence in Theorem 1.6 applied to the system of local coefficients induced by the
above covering (see Section 11.1), becomes

(50) LCH•
ε (Λ;C[π1(Σ)]) // LCH•

εk(Λ;C[π1(Σ)])

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

H•(Σ̃
⊙k, ∂−Σ̃

⊙k;C)

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

Here the augmentation εk is the pull-back of the augmentation ε under the unital
DGA morphism induced by Σ⊙k and the covering. Observe that εk takes values in
C[π1(Σ)].

For k ≫ 0 sufficiently large, unless |π1(Σ)| = 1, the equality

dimC(H1(Σ̃
⊙k, ∂−Σ̃

⊙k;C)) = (|π1(Σ)| − 1)k, k ≥ 1,
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as shown in Lemma 11.12, together with the universal bound

dimC LCH
•
ε0,ε1(Λ;C[π1(Σ)]) ≤ |π1(Σ)||R(Λ)|

gives a contradiction.
It remains to show that |π1(Σ)| is finite. Assuming the contrary, we use the

(weakly) long exact sequence obtained from (50) by taking the L2-completions of the
above C[π1(Σ)]-equivariant complexes (since the complexes are freely and finitely
generated we can again apply Cheeger and Gromov’s result in [19]), establishing
the exact triangle

LCH
(2)•
ε (Λ) // LCH

(2)•
εk (Λ)

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

H
(2)
• (Σ

⊙k
, ∂−Σ

⊙k
;π1(Σ))

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

The inequality

rkL2(H
(2)
1 (Σ

⊙k
, ∂−Σ

⊙k
;π1(Σ))) ≥ k,

as shown in Lemma 11.12, together with the universal bound

rkL2 LCH
(2)•
ε′ (Λ) ≤ |R(Λ)|,

which follows by Lemma 11.11, finally gives the sought contradiction, from which
it follows that π1(Σ) is finite. �

12.4. Explicit examples of Lagrangian cobordisms. We start by recalling a
few general constructions of Legendrian submanifolds and exact Lagrangian cobor-
disms. Below these will be used in order to construct explicit examples of La-
grangian cobordisms.

12.4.1. A Legendrian ambient surgery on the front-spin. The front Sm-spinning
construction described in [50] by the fourth author constructs a Legendrian em-
bedding ΣSmΛ ⊂ (R2(m+n)+1, ξstd) of Sm × Λ, given a Legendrian embedding
Λ ⊂ (R2n+1, ξstd). In the same article, it was also shown that the same con-
struction can be applied to an exact Lagrangian cobordism Σ ⊂ R × R2n+1 from
Λ− to Λ+ inside the symplectisation, producing an exact Lagrangian cobordism
ΣSmΣ ⊂ R×R2(n+m)+1 from ΣSmΛ− to ΣSmΛ+ that is diffeomorphic to Sm ×Σ.

Consider a Legendrian knot Λ ⊂ (R3, ξstd). Its left-most cusp edge in the front
projection for a generic representative corresponds to a cusp edge diffeomorphic
to Sm in the front projection of the front spin ΣSmΛ ⊂ (R2m+3, ξstd). Moreover,
this cusp edge bounds an obvious embedding of a Lagrangian (m + 1)-disc D ⊂
(R2(m+n)+1, ξstd) whose interior is disjoint from ΣSmΛ, while its boundary coincides
with this cusp edge; see Figure 24.

A Legendrian ambient m-surgery, as described in [24] by the second author,
can be applied to the sphere Sm →֒ ΣSmΛ corresponding to the cusp edge ∂D,
utilising the bounding Legendrian disc D. The Legendrian submanifold Λ+ ⊂
(R2(m+n)+1, ξstd) resulting from the surgery has the front projection shown in Figure
25 in the case of m = 1 = dimΛ. Recall that there also is a corresponding elemen-
tary Lagrangian (m + 1)-handle attachment, which is an exact Lagrangian cobor-
dism from ΣSmΛ to the Legendrian submanifold Λ+ obtained after the surgery.
Topologically, this cobordism is simply the handle attachment corresponding to
the surgery.
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z

x1

x2 D

ΣS1Λ

Λ

Figure 24. The front projection of the front spin ΣS1Λ ⊂
(R5, ξstd) near the left-most cusp of Λ ⊂ (R3, ξstd). The corre-
sponding cusp-edge for the front projection of the front spin bounds
an obvious embedded Legendrian disc D intersecting ΣS1Λ cleanly
along this cusp edge.

z

x1

x2

Λ+

Λ

Figure 25. The front projection of the Legendrian submanifold
Λ+ ⊂ (R5, ξstd) obtained after a Legendrian ambient surgery on
the front spin ΣS1Λ ⊂ (R5, ξstd), utilising the Legendrian disc D
as shown in Figure 24.

12.4.2. Non-simply connected exact Lagrangian fillings of Legendrian spheres (the
proof of Proposition 1.22). Using the constructions in Section 12.4.1 above, the
sought examples will not be difficult to produce. We start with a Legendrian
knot Λ ⊂ (R3, ξstd) which admits a non-simply connected Lagrangian filling Σ.
For instance, we can take the Legendrian right handed trefoil knot and its ex-
act Lagrangian filling by a punctured torus; see [36]. It follows that ΣSmΛ ⊂
(R2(m+1)+1, ξstd) is a Legendrian Sm×S1 which admits an exact Lagrangian filling
ΣSmΣ diffeomorphic to Sm × Σ that is not simply connected.

The Legendrian ambient surgery along a cusp-edge in the class Sm × {p} for
p ∈ Λ corresponding to the left-most cusp edge of Λ ⊂ (R3, ξstd) as described above
produces a Legendrian sphere, and concatenating ΣSmΣ with the corresponding
elementary Lagrangian (m + 1)-handle provides a non-simply connected filling of
ΣSmΛ. These are the sought non-simply connected exact Lagrangian cobordisms.

Remark 12.6. Theorem 1.18 is applicable to the constructed sphere in order to
rule out non-simply connected endocobordisms. In addition, note that since the
conclusion of Theorem 1.16 is not satisfied, the Reeb chords created by the surgery
are essential, and the Legendrian sphere admits at least two distinct augmentations.
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12.4.3. Non-invertible Lagrangian concordances. Here we will prove the statement
that

Proposition 12.7. In all contact spaces (R2n+1, ξstd) with n ≥ 1 there exists a
Legendrian n-sphere Λ of tb = −1 which is fillable by a Lagrangian disc, but for
which there is no Lagrangian concordance to the standard Legendrian sphere Λ0 of
tb = −1. (Recall that the filling induces a Lagrangian concordance from Λ0 to Λ.)

In [16] the first author proved that the relation of Lagrangian concordance is not
symmetric by establishing the above proposition in the case n = 1. In particular,
it was shown that the Legendrian representative Λ946 ⊂ (R3, ξstd) of the knot 946
as depicted in Figure 26 (satisfying tb = −1; this is maximal for this smooth knot
class), which is fillable by a Lagrangian disc, is not concordant to the standard
Legendrian unknot Λ0 of tb = −1.

Recall that an exact Lagrangian filling by a disc can be used to construct a
concordance C from Λ0 to Λ946 , which was explicitly described in the same article.
One such concordance is described in Figure 27 below. Notice that along the entire
concordance the leftmost cusp-edge p is fixed, and so we can assume that the
cylinder C coincides with the trivial cylinder R × l for a small arc p ∈ l ⊂ Λ946

inside a neighbourhood of this cusp. This fact will be important below.
Using the results in the current article, the non-existence of a concordance from

Λ946 to Λ0 can be reproved by applying Corollary 1.20 together with the calculations
in [16]. Namely, in the latter article it is shown that, for an appropriate pair ε0, ε1
of augmentations of the Chekanov-Eliashberg algebra of Λ0, we have

LCHε0,ε1
−1 (Λ946) 6= 0,

and no concordance going the other way can thus exist by Corollary 1.20.
The front spinning construction produces exact Lagrangian concordances ΣSmC ⊂

R × R3+2m, obtained as the front spin of C, from ΣSmΛ0 ⊂ (R3+2m, ξstd) to
ΣSmΛ946 ⊂ (R3+2m, ξstd). Here, the latter Legendrian submanifolds are the front
spins of Λ0 and Λ946 , respectively. In [17, Section 5] the authors proved using the
Künneth formula in Floer homology that again

LCH ε̃0,ε̃1
−1 (ΣSmΛ946) 6= 0

holds for a suitable pair of augmentations, which together with Corollary 1.20
implies that there is no Lagrangian concordance from ΣSmΛ946 to ΣSmΛ0.

Figure 26. Front (left) and Lagrangian (right) projections of the
maximal TB m(946) knot.

Recall that ΣSmΛ0 ≃ ΣSmΛ946 ≃ Sm × S1, while ΣSmC ≃ R × Sm × S1. We
will now perform an explicit modification of the above example to produce an
example of Legendrian spheres in all dimensions which admit a concordance from
the standard sphere, but which do not admit a concordance to the standard sphere;
this establishes Proposition 12.7.
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Figure 27. A Lagrangian concordance from Λ0 to Λ946 .

Proof of Proposition 12.7. The Legendrian ambient surgery can be performed to
the cusp-edge of the front projection of ΣSmΛ946 corresponding to the left-most
cusp edge p ∈ Λ946 . In this way, a Legendrian sphere Λ+ ⊂ (R2(m+1)+1, ξstd) is pro-
duced. Since the concordance C moreover may be assumed to be a trivial cylinder
over a neighbourhood of p ∈ Λ and, hence, so is ΣSmC, we obtain a Lagrangian
concordance from Λ− to Λ+, where Λ− is the Legendrian sphere obtained by per-
forming the corresponding Legendrian ambient surgery on ΣSmΛ0. In fact, the
latter sphere is the standard Legendrian (m+ 1)-sphere of tb = −1.

Recall that the Legendrian ambient surgery also produces an exact Lagrangian
handle attachment cobordism from ΣSmΛ946 to Λ+. Inspecting the long exact
sequence induced by Theorem 1.6, we immediately conclude that there are aug-
mentations ε+i , i = 0, 1 for the Chekanov-Eliashberg algebra of the Legendrian
sphere Λ+ satisfying

LCH
ε+0 ,ε+1
−1 (Λ+) ≃ LCH ε̃0,ε̃1

−1 (ΣSmΛ946) 6= 0.

Once again, Corollary 1.20 shows that there is no concordance from Λ+ to Λ−.
�
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