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Abstract

This paper introduces multi-quality firms within a Schumpeterian framework. Fea-
turing non-homothetic preferences and income disparities in an otherwise standard
quality-ladder model, we show that the resulting differences in the willingness to pay
for quality among consumers generate both positive investments in R&D by industry
leaders and positive market shares for more than one quality, hence allowing for the
emergence of multi-product firms within a vertical innovation framework. This posi-
tive investment in R&D by incumbents is obtained with complete equal treatment in
the R&D field between the incumbent patentholder and the challengers: in our frame-
work, the incentive for a leader to invest in R&D stems from the possibility for an
incumbent having innovated twice in a row to efficiently discriminate between rich and
poor consumers displaying differences in their willingness to pay for quality. We hence
exemplify a so far overlooked demand-driven rationale for innovation by incumbents.
Such a framework also makes it possible to analyze the impact of inequality both on
long-term growth and on the allocation of R&D activities between challengers and
incumbents. We find that an increase in the income gap positively impacts an econ-
omy’s growth rate, partly shifting R&D activities from challengers to incumbents. On
the other hand, a greater income concentration is detrimental for growth, diminishing
both the incumbents’ and the challengers’ R&D activities.
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1 Introduction

The importance and specificities of multi-product firms (MPFs) have lately been ex-
emplified by a growing body of literature.1 In particular, because of unique supply and
demand linkages, MPFs’ product-market decisions such as intra-firm portfolio adjustments
or investment in product innovation have been shown to obey to specific incentives (Eckel
and Neary, 2010; Dhingra, 2013). Dynamic R&D-driven growth models studying the be-
havior and impact on aggregate innovation of MPFs have already been provided for the
cases where firms are multi-industry (Klette and Kortum, 2004; Akcigit and Kerr, 2010) or
multi-varieties (Minniti, 2006). However, the standard quality-ladder framework has so far
not been able to account for the existence of “multi-quality” firms, i.e. firms selling more
than one quality-differentiated version of the same good. Indeed, the “creative destruction”
mechanism at the heart of Schumpeterian models traditionally not only deters leaders from
investing in R&D, but also guarantees the systematic exit of any quality that has moved
away from the frontier.2

Examples of firms offering more than one quality-differentiated version of the same
product however abound. Apple recently jointly launched its latest flagship phone, the
iPhone 6s, along with two lower-cost versions (iPhone 6 and iPhone 5S); the iPad is now
declined in iPad pro, iPad Air and iPad mini. Similarly, Intel commercializes a whole array
of microchips, selling its latest, highly efficient processors at high prices (Xeon, Core) while
simultaneously offering cheaper models further from the industry frontier (Celeron, Atom).
In the car industry, Renault-Nissan launched in the last decade several low-cost cars specif-
ically marketed for developing countries (Dacia’s Logan initially designed for the Eastern
European markets, Datsun’s Go programmed to be launched in 2017 on the Indian mar-
ket), re-using obsolete technologies previously featured in leading brands of the constructor
(Renault Clio for the Logan, Nissan Micra for the Go). Those examples show how firms
resort to vertical brand diversification so as to give a second life to technologies having
moved down the quality ladder, and how they are motivated to do so by income inequality,
i.e. so as to better price-discriminate among consumers having different purchasing powers.

The present paper builds on this body of anecdotal evidence, and provides a model
accounting for the existence of multi-quality leaders within a dynamic Schumpeterian
framework. More precisely, along the salient features of the examples described above,
we argue that as long as we allow preferences to be non-homothetic, income distribution
impacts the strength and scope of the “creative destruction” process. Income differences

1Among others, Bernard et al. (2010) estimate that MPFs account for 41% of the total number of US
firms as well as for 91% of total output; also, they estimate that the contribution to the US output growth
of product mix decisions of MPFs (i.e. product adding and dropping) is greater than the one of firm entry
and exit.

2Mussa and Rosen (1978) study pricing decisions of multi-quality firms, but in a static framework
precluding any specific modeling of the R&D process leading to the initial design of the product line.
Klette and Kortum (2004) as well as Akcigit and Kerr (2010) feature MPFs in a quality-ladder world;
however, multi-product firms are also multi-industry firms in their models, with only one quality being
sold within each product line.
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then account for both the survival of more than one quality at the equilibrium and for
positive investment in R&D by incumbents. The result is the endogenous emergence in
a dynamic framework of multi-quality leaders whose product portfolio composition and
investment in R&D activities are both influenced by the extent of income disparities.

The intuition behind this result is straightforward, and is related to the well-explored
notion of second-degree price discrimination. For a monopolist, serving costumers who do
not care much for quality creates negative externalities, since it hinders the captation of
costumer surplus from those who have a stronger taste for quality. Mussa and Rosen (1978)
have demonstrated that a monopolist confronted to such disparities in consumers’ taste for
quality optimally chooses to offer lower quality items charged at a lower price to the less
enthusiastic consumers, opening the possibility of charging higher prices to more adamant
buyers of high quality units. In their microeconomic static set-up, the monopolist has by
assumption a whole product line at its disposition. In a standard quality-ladder dynamic
framework on the other hand, the monopolist only has access to as many qualities as times
he has innovated. We demonstrate that in such a dynamic set-up, internalization of such
negative externalities then leads to investment in R&D by incumbent monopolists, and in
case of success, to the existence of firms simultaneously offering more than one quality of
their product.

We first demonstrate the general nature of the identified price-discrimination mecha-
nism in a partial equilibrium framework. We show that provided there exists differences
in the willingness to pay for quality among consumers, the expected value of innovating
once more differs between challengers and incumbents: the Arrow effect operating under
free entry then becomes compatible with positive investment in R&D by incumbents. We
then integrate such a mechanism in a Schumpeterian model by featuring non-homothetic
preferences in an otherwise traditional quality-ladder framework, hence allowing for sev-
eral different qualities to be consumed at the equilibrium in the presence of differences in
wealth endowment.3 In such a framework, a challenger winning the latest innovation race
and being the producer of the highest quality needs to decide between two alternatives:
capturing the whole market by charging a price sufficiently low to appeal to the poorest
households, or selling its product at a higher price only to the wealthiest consumers, at
the cost of abandoning the rest of the market to its direct competitor (i.e. the previous
quality leader). On the other hand, an incumbent winning an innovation race retains ex-
clusive monopoly rights over two successive qualities: he can then efficiently discriminate
between rich and poor consumers by offering two distinct price/quality bundles, capturing
the whole market and reaping the maximum surplus from the wealthy consumers at the
same time.

3This property is obtained by imposing unit consumption of quality goods in a two-class society, the
rest of a consumer’s income being spent on standardized goods: within each industry, a given consumer
then buys the quality that, given its price, offers him the highest utility. By contrast, in the standard
quality-ladder models (Segerstrom et al., 1990; Grossman and Helpman, 1991a; Aghion and Howitt, 1992),
the quality goods are divisible, the quality goods are divisible, ensuring that only the highest quality is
consumed at the equilibrium, even in the case of wealth endowment disparities: the poorest consumers
only consume a lower amount of the top quality good.
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We then model R&D races in which both incumbents and challengers are participating,
and show that without any advantage of any kind in the R&D field and under free entry,
the incumbent still invests a strictly positive amount in R&D. Such a behavior directly
stems from the existing increment between the profits realized when being a successful
challenger and a successful incumbent.

We then finally move to studying the impact of income distribution on the innovation
incentives of both challengers and incumbents, and by extension on long-term growth. We
show that in a quality-ladder model, the impact on growth of an increase in the inequality
level depends on the nature of the considered shock. More precisely, an increase in the
income gap has a positive impact on the R&D activities of both incumbents an challengers,
hence increasing an economy’s growth rate. On the other hand, a greater income concen-
tration is unequivocally detrimental for growth, diminishing both the incumbents’ and the
challengers’ R&D investments. Indeed, in that case the positive price effect stemming from
a wealthier rich class is systematically more than offset by the negative market size effect
resulting from the decrease in the number of rich consumers.

The main contribution of this paper is to provide a dynamic framework endogenously
accounting for the emergence of multi-quality leaders in the presence of income dispari-
ties among consumers. Beyond its novelty, such a result bears several implications. First,
while so far the incentives for innovation by quality leaders have essentially been modeled
as stemming from the structure of the R&D process (i.e. from the supply side), this paper
is the first to provide a demand-driven incentive for investment in R&D by incumbents.
Second, such a framework makes it possible to investigate the impact of income distribution
on the intensity of both challengers’ and incumbents’ innovation activities, a feature that
totally overturns the predictions that had so far been obtained in the quality-ladder liter-
ature regarding the interactions of growth and inequality operating through the product
market (Zweimuller and Brunner, 2005).

Relation to literature.

This paper contributes to the literature accounting for innovation by incumbents in
quality-ladder models. Segerstrom and Zolnierek (1999) as well as Segerstrom (2007) have
obtained positive incumbent investment in R&D by assuming that the expertise granted
by quality leadership confers R&D cost advantages. Etro (2004, 2008) models sequential
patent races with concave R&D costs where the incumbent, acting as a Stackelberg leader,
is given the opportunity to make a strategic precommitment to a given level of R&D
investment: the quality leader then has an incentive to invest in R&D in order to deter
outsiders’ entry. Denicolo and Zanchettin (2012) as well as Acemoglu and Cao (2015)
provide models where incumbents and challengers participate to two different kinds of
R&D races, differing in terms of costs and rewards: leaders invest in R&D to improve
their products (incremental innovation), while challengers participate to R&D races in the
hope of leapfrogging the existing incumbent (radical innovation). All those models have
hence explored various possible incentives for innovation by incumbent stemming from the
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structure of the R&D process, i.e. from the supply side. While all those channels are indeed
certainly relevant, this paper explores another venue and provides a demand-based rationale
for leader R&D, stemming from the perspective of more efficient price discrimination in
the case of successive successful innovations. All those papers also feature homothetic
preferences, hence guaranteeing that even in the presence of consumer heterogeneity, only
the highest quality will be produced and consumed within each industry: the emergence
of multi-quality leaders cannot be a consequence of positive innovation by incumbent in
those models.

A paper more closely related to this work is the one of Aghion et al. (2001), who
analyze the influence of product market competition on innovation intensity, developing a
framework in which goods of different quality are imperfect substitutes and can therefore
coexist in the market. They show that the perspective to lessen the competition pressure
(and broaden the market share) provides the incentive for the incumbent to resort to step-
by-step innovation in order to improve its own product. They however preclude free entry
by exogenously imposing that only two firms are active and invest in R&D, while our paper
on the other hand provides a product market-driven incentive that is robust to the free
entry condition.

This work also contributes to the small literature studying the R&D investment of
multi-product firms in a dynamic, general equilibrium framework. Klette and Kortum
(2004) as well as Akcigit and Kerr (2010) have already provided quality-ladder models
in which industry leaders invest in exploration R&D so as to expand their activities in
other sectors; those frameworks however cannot account for leaders widening their product
portfolio within a given industry. Minniti (2006) embeds multi-product firms selling more
than one horizontally-differentiated variety of a given good in an endogenous growth model;
however, his model is an expanding-variety one, hence precluding the emergence of multi-
quality firms.

This paper is finally also related to the literature examining the relationship between
long-term growth and income distribution operating through the demand side. Foellmi and
Zweimuller (2006) demonstrate that in an expanding-variety framework, higher inequality
levels are systematically beneficial for long-term growth. Foellmi et al. (2014) provide a
model combining both product innovations (introducing new luxury goods) and process
innovations (transforming those goods into necessities through mass production technolo-
gies): in such a framework, the impact of higher inequality is ambiguous on growth, and
depends on the scope of the productivity gains stemming from the process innovations.
Both those contributions however investigate the impact of income distribution on growth
in a horizontal differentiation framework, where firms retain permanent monopoly rights
over their single product. Li (2003) and Zweimuller and Brunner (2005) on the other hand
have studied the impact of disparities in purchasing power of households in a quality-ladder
framework. Zweimuller and Brunner (2005) in particular show that a reduction in the level
of inequality through a reduction in the income gap is beneficial for innovation intensity
and hence for growth. They however only consider the R&D investment of challengers, and
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overlook the existing incentives for incumbent innovation in the presence of differences in
the willingness to pay of consumers. We demonstrate that taking into account the R&D
investment by incumbents actually totally changes the predictions regarding the overall
growth rate of the economy: it reverses them in the case of an increased income gap, and
enables to study the impact of an increased income concentration.

The rest of the paper is organized as follows. Section 2 illustrates in a simple partial
equilibrium framework how differences in the willingness to pay for quality impact the
innovation incentives of both challengers and incumbents. Section 3 presents the structure
of our general equilibrium model, while section 4 studies its steady state properties. Section
5 then analyzes the effects of the extent of inequality on the innovation intensity. Section
6 concludes.

2 Reconciling the Arrow effect with incumbent’s innovation

In order to demonstrate the generality of the mechanism driving the emergence of multi-
quality leaders in our model, we first isolate it within a partial equilibrium framework. we
hence model R&D races meeting the most standard assumptions of the baseline Schum-
peterian growth model (Barro and i Martin (2003), chapter 7; Acemoglu (2008), chapter
14).

More precisely, we consider the R&D investment decisions of firms aiming at entering
a final good industry characterized by an array of quality-differentiated products. Each
innovation increases the quality by a rung q, with the n-th innovation being of quality
qn. The successful researcher retaining the exclusive rights over the latest technology
obtains a flow of monopoly profits π(n).4 We assume that the probability to innovate
p(n) in an industry where the highest quality currently available is qn depends linearly on
the total expenditures over R&D φ(n): more precisely, we have p(n) = Q(n)φ(n), with
Q(n) capturing the effect of the current technology position n.5 The expected value of an
innovation is then E[v(n)] = π(n)

r+p(n) , with r being the interest rate over time (we consider
the steady state of such an economy, and hence assume r to be constant). We assume
that both challengers and incumbents have the possibility to invest in R&D, and denote
by φC(n) and φI(n) the respective amounts being invested.

In an industry where the highest quality currently available is qn, the standard, free-
entry condition for challengers equates the costs incurred when engaging in R&D φC(n)

and the expected value of innovating p(n)E[v(n+ 1)]:

φC(n) (1−Q(n)E[v(n+ 1)]) = 0 (1)
4Indeed, whether he needs to resort to limit pricing or can charge the unconstrained monopoly price,

the successful innovator is systematically able to charge a price that will ensure him a monopoly position
(Grossman and Helpman, 1991b; Aghion and Howitt, 1992).

5We hence do not impose decreasing returns, neither at the firm nor at the industry level.
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On the other hand, the Hamilton-Jacobi-Bellman equation of the incumbent deciding
whether to invest in R&D or not is of the form:

rv(n) = max
φI(n)≥0

{π(n)− φI(n) +Q(n)φI(n)(E[v(n+ 1)]− E[v(n)])−Q(n)φC(n)E[v(n)]}

with the first order condition (f.o.c.) being:

(−1 +Q(n)E[v(n+ 1)]︸ ︷︷ ︸
(∗)

−Q(n)E[v(n)︸ ︷︷ ︸
(∗∗)

])φI(n) = 0

The value of the (∗) term is null under the free-entry condition (1). The remaining term
(∗∗) is negative, and represents the well-known “Arrow effect”, capturing the fact that
the incumbent would loose its current profits if it innovated a second time. We are hence
confronted to the classic result that under free-entry, incumbents do not have any incentive
to carry out research in a vertical framework, since they would cannibalize their own market
in case of a successful innovation.6

This result relies on the “creative destruction” phenomenon at work in quality-ladder
models: since a new quality has an objective advantage over all the previous ones, its
producer can (and will) exclude all the other competitors from the market. However, the
industrial organization literature studying competition and pricing decisions in vertically-
differentiated markets has since long shown that quality differentiation does not preclude
the survival of more than one quality and/or more than one producer. Indeed, provided
there exist differences in the willingness to pay for quality among consumers, strategic
pricing of firms in a situation of natural oligopoly or monopoly will lead to more than one
quality being sold and consumed at the equilibrium. Such differences among consumers in
the price they are ready to pay for a given quality are generated either by income differences
among consumers displaying non-homothetic preferences7 (Gabszewicz and Thisse, 1980;
Shaked and Sutton, 1982), or by exogenously imposed different tastes for quality (Mussa
and Rosen, 1978; Glass, 1997). In such a framework, Gabszewicz and Thisse (1980) as well
as Shaked and Sutton (1982) have shown that competition among vertically-differentiated
firms yields several qualities being sold at different prices at the equilibrium (the total num-
ber of qualities is however naturally limited by the existence of marginal production costs
increasing along quality). Similarly, Mussa and Rosen (1978) have proved that a monopoly
firm having at its disposal a whole product line and being unable to perfectly discriminate
among heterogenous consumers8 offers a whole menu comprising different qualities sold at

6As already stated in our literature review, models where incumbents innovate have already been
provided (Aghion et al., 2001; Segerstrom, 2007; Etro, 2008; Acemoglu and Cao, 2010). However, they all
depart in one way or the other from the standard specification I outlined in my example.

7Indeed, income differences alone do not guarantee differences in the willingness to pay: in the case of
homothetic preferences such as the standard quality-augmented CES utility function, the constant elasticity
of substitution along income will lead poor and rich individuals to consume the same quality, but in different
amounts.

8Perfect discrimination means that a monopolist can distinguish among consumers prior to any actual
sale, and charge different prices to different consumers for the same good.
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different prices. To sum it up, “vertical product differentiation refers to a class of products
which cohabit simultaneously on a given market, even though customers agree on a unan-
imous ranking between them. (...)The survival of a low-quality product then rests on the
seller’s ability to sell it at a reduced price, (...) specializing in the segment of costumers
whose propensity to spend is low, either because they have relatively lower income, or rela-
tively less intensive preferences, than other costumers” (Gabszewicz and Thisse, 1986).

We hence claim that provided consumers display differences in their willingness to pay
for quality, the profits realized by a firm having a product line comprising two qualities
are superior to the profits realized by a firm having the knowledge to produce only one
quality level. Indeed, a firm being able to produce and sell two qualities will be able
to better discriminate among consumers differing in their willingness to pay, capturing
the incremental profits generated by charging a higher price to quality-loving consumers,
while still offering a lower quality (charged at a lower price) to consumers less prone to
value quality. In other words, we claim that in a framework allowing for differences in the
willingness to pay to arise, the expected value of being the winner of the next innovation
race is higher for the incumbent than for the challenger: E[vI(n+1)] > E[vC(n+1)]. Taking
into account those different valuations of further innovating, the free-entry condition for
challengers then becomes:

φC(n) (1−Q(n)E[vC(n+ 1)]) = 0 (2)

while the HJB equation of the incumbent yields the following f.o.c.:

(−1 +Q(n)E[vI(n+ 1)]︸ ︷︷ ︸
>0

−Q(n)E[vC(n)]︸ ︷︷ ︸
(∗∗)

)φI(n) = 0

The negative cannibalization term (∗∗) is now compensated by a positive term. The
Arrow effect is hence a priori not incompatible with investment in R&D by in-
cumbents any more. Indeed, as long as the incumbent has not fully exploited the price
discrimination possibilities offered when having more than one quality at one’s disposal,
the free entry condition will not preclude a positive amount being invested in R&D by
incumbents.

Having precisely identified the mechanism at work in a partial equilibrium framework,
we now present an economy displaying the required feature, i.e. differences in the will-
ingness to pay for quality among consumers. More precisely, we model non-homothetic
preferences through unit consumption of the quality good, and incorporate this feature in
an otherwise canonical quality-ladder framework displaying income inequality.
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3 The model

It will first prove useful to provide a quick sketch of the model architecture. We consider
an economy featuring a continuum of industries producing quality-differentiated goods;
heterogenous consumers in terms of wealth consume both those goods and a composite
standardized good. Firms operating in the differentiated industries proceed to R&D so as
to improve the quality of the final consumption goods; they decide on the amount invested
in R&D by taking into account that once they have successfully innovated, the existing
disparities in the consumers’ income will have an impact on their pricing strategy and the
corresponding profits. Labor is divided between the production of the quality-differentiated
goods, the production of the aggregate homogenous good, and participation to the R&D
sector. In such a product-innovation model (i.e. without any mechanism ensuring pro-
ductivity improvements), the balanced growth path is characterized by constant levels of
innovation, overall wealth and consumption; consumers however still become better-off over
time due to the quality improvements of the differentiated goods and the resulting growth
of individual utility. We now move to presenting the details of the model.

3.1 Consumers

The economy is populated by a fixed number L of consumers that live infinitely and
supply one unit of labor each period, paid at a constant wage w. While all consumers
are identical with respect to their preferences and their labor income, they are assumed to
differ in terms of wealth, based on firms’ assets ownership. More precisely, we assume a
two-class society with rich (R) and poor (P) consumers being distinguished by their wealth
ωR(t) and ωP (t).9

The share of “poor” consumers within the population is denoted by β. The extent of
inequality within the economy is determined by this share, as well as by the repartition
between rich and poor of the aggregate stock of assets Ω(t). d ∈ (0, 1) is defined as the
ratio of the value of the stock of assets owned by a poor consumer relative to the average
per-capita wealth: d = ωP (t)

Ω(t)/L . The wealth position of the rich can be computed for a given

d and β, and we finally have ωP (t) = dΩ(t)
L and ωR(t) = 1−βd

1−β
Ω(t)
L .

Current income yi(t) of an individual belonging to the group i (i = P,R) is then of the
form:

yi(t) = w + r(t)ωi(t) (3)

with r(t) being the interest rate.

The existence of such income disparities among consumers is however not sufficient to
generate variations in the quality choice along income. Indeed, in the case of standard
quality-ladder models traditionally featuring quality-augmented CES utility functions, the

9All the results presented in the paper pertaining to investment in R&D by incumbents are robust
under the alternative specification of inequality being generated through differences in income, i.e. through
different endowments in labor efficiency units.
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homotheticity of the preference specification guarantees that both poor and rich con-
sumers end up purchasing the same quality, but in different amounts. So as to obtain
the possibility of different quality choices for different consumer groups, I hence consider
non-homothetic preferences in the form of a unit consumption requirement (i.e. the
consumption of a given quality good yields a positive utility only for the first unit, and
zero utility for any additional unit).10

More precisely, two types of final goods are available within the economy. One group
of products, indexed by s ∈ [0, 1], is subject to quality innovation over time. At any date
t, the following “quality ladder” determines the current highest quality qn(s, t) available
within one industry:

qn(s, t) = kn(s,t)q0(s, 0)

with k > 1, and where n(s, t) denotes the number of innovations in industry s between
time 0 and t. For the sake of simplicity, we also set q0(s, 0) = 1 ∀ s ∈ [0, 1]. Two successive
quality levels j and j − 1 hence differ by a fixed factor k > 1: qj(s, t) = k.qj−1(s, t). As
stated above, the crucial assumption is that quality goods are indivisible, and consumers
value at most one unit of each differentiated good. For each industry s at each period t,
an individual belonging to group i then needs to proceed to two distinct choices:

(1) whether to consume or not good s;

(2) if he does choose to consume good s, he then needs to determine what quality level
qj(s, t) (with j ∈ [0, n(s, t)]) offers him the highest utility given its price pj(s, t).

Considering these assumptions, let xi(s, t) be an indicator function that takes value 1 if a
consumer belonging to group i consumes good s at time t (and 0 otherwise), qij(s, t) be the
chosen quality by a type i consumer in sector s at time t, and Qi(t) =

∫ 1
0 xi(s, t)q

i
j(s, t)ds

the (group-specific) index of consumed qualities over industries.
Consumers then spend the rest of their income over the consumption of ci(t) units of a

composite standardized commodity. This homogenous good is produced with a unit labor
input of 1/w; being competitively priced, it hence serves as the numeraire.

At time τ , the objective function of a type i consumer is given by:

Ui(t) =

∫ ∞
τ

ln(ci(t)Qi(t))e
−ρ(t−τ)dt (4)

with ρ being the rate of time preference. Households make consumption choices both within
and across periods so as to maximize the above lifetime utility subject to the lifetime budget
constraint ∫ ∞

τ
(ci(t) + Pi(t))e

−R(t,τ)dt ≤ ωi(τ) +

∫ ∞
τ

we−R(t,τ)dt (5)

10Unit consumption of the quality-differentiated goods ensures the non-homotheticity of the preference
structure in this model. This particular way to model non-homotheticity is the most classic in qualitative
choice models featuring strategic pricing of firms (Gabszewicz and Thisse, 1980; Shaked and Sutton, 1982).
One could also have obtained differences in the willingness to pay by imposing exogenously different tastes
for quality (Glass, 1997).
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where R(t, τ) =
∫ t
τ r(s)ds is the cumulative discount factor between times τ and t, r(t)

is the interest rate at time t, ωi(τ) is the initial wealth level held by a type i consumer,
and Pi(t) =

∫ 1
0 xi(s, t)pj(s, t)ds is the (group-specific) price index associated to the quality

good consumption index Qi(t).

We first characterize the intra-temporal consumption choices of the consumers. The
first-order condition associated to the consumption of the homogenous good ci(t) is:

1

ci(t)
= λi(t) (6)

with λi(t) being the marginal utility of wealth at time t (i.e. the current-value multiplier).
On the other hand, the first-order conditions for the discrete consumption choice of
the quality-differentiated goods are of the form:{

xi(s, t), q
i
j(s, t)

}
(7)

=



{
1, kn(s,t)

}
if µi(t)k

n(s,t) − pn(s, t) ≥ max
[
µi(t)k

n(s,t)−1 − pn−1(s, t), ..., µi(t)− p0(s, t), 0
]{

1, kn(s,t)−1
}

if µi(t)k
n(s,t)−1 − pn−1(s, t) ≥ max

[
µi(t)k

n(s,t) − pn(s, t), ..., µi(t)− p0(s, t), 0
]

...

{1, 1} if µi(t)− p0(s, t) ≥ max
[
µi(t)k

n(s,t) − pn(s, t), ..., µi(t)k − p1(s, t), 0
]

{0, .} otherwise

with µi(t) = 1
λi(t)Qi(t)

being household’s i willingness to pay per unit of quality. Those
f.o.c.s state that: (1) for a type i consumer, the purchase of a unit of the quality good s
needs to represent a positive utility gain; (2) provided a utility gain is possible, good s will
be purchased at the quality level that offers the highest gain given its price and the price
of every other available quality within industry s.11

We now move to the inter-temporal aspect of the consumer problem. First, separability
of utility (both over time and across goods) guarantees that for any given foreseen time path
Pi(t) of expenditures devoted to the continuum of quality goods, the optimal time path
of consumption expenditures ci(t) on homogenous commodities has to fulfill the standard
first-order condition of such an intertemporal maximization problem:

ċi(t)

ci(t)
= r(t)− ρ (8)

The time path of Qi(t), on the other hand, is the combined result of (i) the succes-
sive stochastic quality jumps occurring in every quality-differentiated industry s, and (ii)
the resulting optimal consumer choices given the prices charged for the different qualities
available within industry s. We will hence go back to fully characterizing it once we have
described the firms’ pricing and R&D decisions (see equation (16) in section 3.2.3) and
established the BGP properties of such a model (see Proposition 1 and footnote 19 in
section 3.2.4). It is already worth mentioning that in product-innovation models such as

11For a similar consumer choice problem in a R&D-driven growth model, see Foellmi et al. (2014).
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ours (as opposed to process-innovation models, where productivity improves over time),
the quality index is the sole variable displaying a strictly positive growth rate along the
balanced growth path, resulting in a positive growth of the consumer’s utility.

In the rest of the economy presentation, we will now focus on a “multi-quality firms”
equilibrium, i.e. an equilibrium in which incumbent firms invest a positive amount in R&D.
While we take the existence of such an equilibrium for granted in the rest of this section,
we will clearly discuss the parameter conditions guaranteeing its existence and uniqueness
in section 4. Also, the analysis carried out in this article pertains to the balanced growth
path (BGP) properties of such a model, along which all variables remain constant or grow
at a constant rate. Even though this BGP will only be formally defined in section 4, from
now on we will omit the functional dependance of the different variables on time, so as to
simplify notations.

3.2 Market structure and pricing

Within each industry s ∈ [0, 1], firms carry out R&D in order to improve the quality of
the final consumption good s. Two types of firms have the possibility to engage in R&D
races: the current quality leader (incumbent), and followers (challengers). Within each
sector s, each type of firms chooses an optimal amount to invest in R&D, with the prob-
ability to win the next innovation race linearly increasing along the amount invested (cf
subsection 2.3 for a full description of the R&D technology). Since firms carry out those in-
vestment decisions considering their expected profits in the case of a successful innovation,
we proceed by backward induction, first detailing in this subsection the optimal pricing of
successful innovators, and then determining the corresponding optimal investment in R&D
in the next one.

The market for quality goods is non-competitive. Labor is the only input, with constant
unit labor requirement a < 1.12

The quality goods being characterized by unit consumption and fixed quality incre-
ments, firms use prices as strategic variables. Firms know the shares of groups P and R
in the population, the respective incomes yR and yP as well as the preference structure
of the consumers, but cannot distinguish individuals by income. In order to describe the
strategic decisions operated by firms within a given industry, it proves convenient to define
the “threshold” price pT{j,j−m}(i, s) for which a consumer belonging to group i is indiffer-
ent between quality j − m and quality j in industry s, given the price pj−m(s) charged
for quality j − m. Determining such a threshold price amounts to solving the following
equality, immediately derived from condition (7):

µik
j − pT{j,j−m}(i, s) = µik

j−m − pj−m(s) (9)

Considering the fact that qj = kmqj−m, solving for pT{j,j−m}(i, s) in the above equality

12Given the model assumes unit consumption of the quality goods, a necessarily has to be inferior to 1.
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yields:13

pT{j−m,j}(i, s) = kj−m(km − 1)µi + pj−m(s) (10)

The price pT{j−m,j}(i, s) is the maximum price that the firm selling the quality j in industry
s can charge to a type i consumer in order to have a positive market share, when competing
against the firm selling the quality j −m. As one can see, this threshold price positively
depends on the willingness to pay for one unit of quality of type i consumers µi = 1

λiQi

(with µR > µP ), as well as on the price charged by the competitor pj−m(s).

Having defined this threshold price, it is possible to establish the following lemma:

Lemma 1: Within each industry s ∈ [0, 1], if pj(s) ≥ wa holds for the price of some
quality qj, then for the producer of any higher quality qj+m, 1 ≤ m ≤ n(s)− j, there exists
a price pj+m(s) > wa such that:
(i) any consumer prefers quality qj+m to qj,
(ii) he makes strictly positive profits.

Proof: Considering (10), it is straightforward that pT{j+m,j}(i, s) > pj(s). Hence, it is
always possible for the producer of the quality j +m to set a price pj+m(s) > pj(s) ≥ wa
such that pj+m(s) ≤ pT{j+m,j}(i, s), i.e. such that quality qj+m is preferred to quality qj by
the consumers of group i. �

Hence, within each industry s, if we take for granted that a producer never sells its
quality at a price below the unit production cost wa, it is always possible for the producer
of the highest quality to drive all of its competitors out of the market while still making
strictly positive profits. Along this result, any firm entering the industry s with a new
highest quality qn(s)14 has to consider the following trade-off concerning the pricing of its
product: setting the highest possible price for any given group of costumers, vs.
lowering its price in order to capture a further group of consumers.

It is then possible to show that in an economy characterized by two distinct groups of
consumers (R and P), we have:

Lemma 2: Within each sector s ∈ [0, 1], we have that at equilibrium,
(1) The highest quality is produced,
(2) At most the two highest qualities qn(s) and qn−1(s) are actually produced,

Proof: As mentioned in the last paragraph of subsection 2.1., we focus in this article
on parameter cases where growth occurs within the economy, i.e. where quality goods are
consumed in at least a fraction of the continuum of sectors [0, 1].15 We hence postulate

13We resort to the assumption (classic in the monopolistic literature) that firms within a particular sector
s take the economy-wide willingness to pay for one unit of quality µi as given in their decision-making.
Indeed, because of the existence of a continuum of quality good industries, firms within a given sector are
“small in the big, but big in the small” (Neary, 2009): even though they resort to strategic pricing within
their own industry, they do not take into account the impact of their pricing decisions on economy-wide
variables such as λi and Qi.

14Along the definition of the quality ladder in a given sector provided in subsection 2.1., n(s) indeed
designates the total number of innovations that took place so far within a given sector s.

15As also mentioned in this last paragraph, while we take for granted that we are under such parametric
conditions in section 2, we clearly detail those conditions in section 3.
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that there exists at least one sector s in which the quality good is consumed along the
BGP, i.e. in which we necessarily have µi ≥ wa (µi being the willingness to pay for a single
unit of quality, and wa being the unit production costs, i.e. the lowest price the producer
of any quality can charge). (7) also entails that the price for which the consumer prefers
to buy a given quality in a sector s rather than no quality at all is increasing along the
quality level. Since the production costs wa are similar for any quality level in any sector
at any point in time, it means that it is either profitable to produce every existing quality
in every sector, or it is never profitable to produce any quality. Along lemma 1, higher
qualities drive out lower ones: provided we are under parametric conditions that guarantee
growth within the economy, the producer of the highest quality within each sector s will
hence always be able to fix a price such that (i) its quality is preferred to any other by a
given consumer group i; (ii) it makes positive profits. Furthermore, since there are only
two consumer groups within the economy, at most two distinct qualities can be sold within
each sector. This ends the proof. �

As it can be seen from lemma 2, two different situations are possible for the equilibrium
market structure and associated prices within each industry s ∈ [0, 1]: either only the top
quality good qn(s) is sold to both groups of consumers (groups P and R), or the top quality
good is sold only to the rich consumers (group R) while the second-best quality good is
sold to the poor consumers (group P). Lemma 1 shows that the decision regarding the
market structure belongs to the producer of the highest quality qn(s), considering that
he is always able to set a price that will drive its competitors out. The pricing structure
resulting from this optimal decision then depends on two factors: (i) the deterministic
extent of inequality within the economy, and (ii) the result of the latest stochastic in-
novation race, where the winner (who is also the producer of the highest quality good) is
either a former incumbent or a challenger.

More precisely, each industry s ∈ [0, 1] fluctuates between two states over time, with
its position being determined by the identity of the winner of the last innovation race. The
two possible states (SC) and (SI) can be characterized in the following way:

• “Successful Challenger” (SC) state: a challenger is the winner of the last R&D
race, i.e. the new quality leader is different from the former quality leader. In that
case, the new quality leader retains exclusive monopoly rights for the highest quality
qn(s) only. As we will comment below, the market structure then depends on the
income distribution within the economy.

• “Successful Incumbent” (SI) state: the former quality leader, still carrying out
R&D, is the winner of the last R&D race, and hence retains exclusive monopoly
rights for both the highest quality qn(s) and the second-best quality qn−1(s). The
market structure is then necessarily a monopoly.

Figure 1 illustrates the fluctuations between the two possible states over time. I will now
discuss the market structure as well as the prices being charged in the two existing states.
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Figure 1: Two possible states

3.2.1 Prices and profits in the (SC) state

In industries being in the (SC) state, a challenger is the winner of the latest innovation
race. The distance between this new leader and the “competitive fringe” (i.e. potential
competitors with patent rights over lower qualities) is then of only one rung along the
quality ladder. That is, even if we assume that being able to produce a quality qj auto-
matically grants the ability to produce any lower quality qj−m (m ∈ [0; j]), the new leader
will face Bertrand competition for any quality below the frontier:16 he will hence be able
to extract monopoly rents (i.e. positive profits) solely from the sale of the highest quality
qn(s). One or two qualities can then be sold on the market, depending on the pricing strat-
egy chosen by the new quality leader (which will itself depend on the wealth distribution
in the economy). More precisely, the market structure in this state is either a monopoly
(only quality qn(s) is sold), with the new quality leader charging a price that enables him
to capture the whole market, or a duopoly (both qualities qn(s) and qn−1(s) are sold),
with the new quality leader charging a higher price and serving only the upper part of the
market, leaving the lower part to the producer of quality qn−1(s).

For the sake of exposition clarity, I will limit myself to discussing at length
the resolution of the case where the equilibrium market structure in the (SC)
state is a monopoly, i.e. where the income distribution makes it optimal for the
new quality leader to sell the highest quality qn(s) at a price being attractive for
both the poor and the rich consumers. Indeed, as it will become clear in the following
sections, not only can the monopoly case be fully analytically solved and analyzed in terms
of comparative statics, but it is also the one being robust in most parametric cases (the
duopoly case is actually only a possible equilibrium under some further conditions identified
in Zweimuller and Brunner, 2005). The full discussion, exposition and resolution of the
duopoly case can however be found in Appendices B and E.

It is straightforward to notice that within a given industry s, charging a price guaran-
16Indeed, since we impose unit consumption of every quality good, firms necessarily use prices as strategic

variables; also, our utility specification guarantees that different qualities are perfect substitutes (for an
alternative set-up where goods are imperfect substitutes and different producers can coexist on the market
selling the same quality, see Aghion et al., 2001).

15



teeing that the “poor” consumers buy the highest quality qn(s) automatically ensures that
the rich consumers will consume the highest quality too, since pT{n,n−1}(i, s) is increasing
along a consumer’s willingness to pay µi = 1

λiQi
. It then immediately follows that the op-

timal price chosen by a quality leader willing to capture the whole market is pT{n,n−1}(P, s).
Assuming that the producer of quality qn−1(s) engages in limit pricing (i.e. pn−1(s) = wa)
and using (6) so as to obtain µi = ci

Qi
, the price pSC(s) being charged by the quality leader

in a sector s being in the (SC) state is then of the form:

pSC(s) = kn(s)

(
k − 1

k

)
cP
QP

+ wa (11)

The profits πSC
(
n(s)

)
of a successful challenger in an industry s where there have been

n(s) successful innovations so far are then of the form:

πSC
(
n(s)

)
= kn(s)L

(
k − 1

k

)
cP
QP

(12)

3.2.2 Prices and profits in the (SI) state

In an industry being in the (SI) state, the former quality leader has won a second
R&D race in a row, and retains exclusive monopoly rights for both the highest quality
qn(s) and the second-best quality qn−1(s). According to lemma 2, the market structure is
then necessarily a monopoly ; however, unlike the monopoly case in the (SC) state, the two
highest qualities both have positive market shares. Indeed, the quality leader is two rungs
above the competitive fringe along the quality ladder: facing two groups of consumers
having different levels of income, he will hence be able to offer two distinct price-quality
bundles so as to maximize its profit (Mussa and Rosen, 1978). The price charged by the
monopolist for its second-best quality qn−1(s) will be the maximal price enabling him to
capture the poor group of consumers pT{n−1,n−2}(P, s), given that the producer of quality
qn−2(s) engages in limit pricing. Denoting this price by pPSI(s), we have:

pPSI(s) = kn(s)−1

(
k − 1

k

)
cP
QP

+ wa (13)

The price charged for the highest quality qn(s) will then be pT{n,n−1}(R, s), given the price
pPSI(s) charged for quality qn−1(s). Denoting this price by pRSI(s), we have:

pRSI(s) = kn(s)

(
k − 1

k

)
cR
QR

+ kn(s)−1

(
k − 1

k

)
cP
QP

+ wa (14)

The profits πSI
(
n(s)

)
of a successful incumbent in an industry s where there have been

n(s) successful innovations so far are then of the form:

πSI
(
n(s)

)
= kn(s)L

[
(1− β)

(
k − 1

k

)
cR
QR

+

(
k − 1

k2

)
cP
QP

]
(15)
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3.2.3 Quality consumption indices

Denoting by θSC and θSI the shares of sectors being respectively in the (SC) and the
(SI) state, it is finally possible to notice that the “quality consumption indices” QP and
QR take the following form in the case we have a monopoly in the (SC) state:

QP =

∫
θSC

kn(s)ds+

∫
θSI

kn(s)−1ds; QR =

∫ 1

0
kn(s)ds (16)

3.3 The R&D sector

Within each industry s ∈ [0, 1], firms carry out R&D in order to discover the next
quality level. Two types of firms have the possibility to engage in R&D races: the current
quality leader (incumbent), and followers (challengers). We assume free entry, with every
firm having access to the same R&D technology within each sector s. Innovations are
random, and occur for a given firm f within sector s according to a Poisson process of
hazard rate φf (s). Labor is the only input, and we assume constant returns to R&D at the
firm level: in order to have an immediate probability of innovating of φf (s) in a sector s
having reached the quality level kn(s), a firm needs to hire F kn(s)+1

Q φf (s) units of labor, F
being a positive constant and Q =

∫ 1
0 k

n(s)ds being the economy’s “quality index” (i.e. the
average quality level being reached across sectors). This R&D cost function implies that
R&D becomes more difficult in sectors that are too much ahead of the “average technology”
being reached in the rest of the economy.

As it becomes clear when considering the sector-specific profit functions (12) and (15),
such a cost structure ensures that innovations become neither more profitable in sectors
where there have already been more quality jumps, nor less profitable as the quality index
grows: while the first case would ultimately lead to the disappearance of every sector but
the most performant (and hence profitable) one, the second would lead to a no-growth
steady-state.17 More precisely, our R&D sector specification guarantees that within the
group of industries being in a given state, the probability to innovate for a given type
of firm (challengers or incumbents) will be the same in every sector, regardless of the
sector-specific rung n(s) having been reached along the quality ladder. This
will lead to the survival of every quality sector along the BGP, and guarantees that every
industry is symmetric with respect to transition probabilities from one state to the other.
For the sake of notation brevity, we hence drop the sector dependance in the rest of this
subsection.

For a given sector s in which n innovations have occurred so far, we define vC(n) as
the value of a challenger firm, vSC(n) as the expected present value of a quality leader
having innovated once, and vSI(n) as the expected present value of a quality leader having
innovated twice. Free entry and constant returns to scale imply that R&D challengers

17This type of assumption is standard in quality-ladder models to ensure long-term balanced growth; it
can be indifferently embodied in growing R&D costs for a given innovation probability or in a decreasing
probability to innovate for given R&D costs (see Barro and i Martin (2003), Chapter 7).
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have no market value, whatever state the economy finds itself in: vC(n) = 0. Free entry
of challengers in the successive R&D races also yields the traditional equality constraint
between expected profits of innovating for the first time φCvSC(n) and engaged costs
φC

kn+1

Q wF :

vSC(n) =
kn+1

Q
wF (17)

The incumbent on the other hand participates to the race while having already innovated at
least once, and hence being the current producer of the leading quality for industries in the
(SC) state/of the two highest qualities for industries in the (SI) state. In industries being
in the (SC) state, the incumbent faces the following Hamilton-Jacobi-Bellman equation:

rvSC(n) = max
φI≥0

{
πSC(n)− wF k

n+1

Q
φI

+ φI

(
vSI(n+ 1)− vSC(n)

)
+ φC

(
vC − vSC(n)

)}
(18)

In a (SC)-state sector, the incumbent earns the profits πSC(n) and incurs the R&D
costs wF kn+1

Q φI . With instantaneous probability φI , the leader innovates once more, the
industry jumps to the state (SI), and the value of the leader (now detaining monopoly rights
over two distinct qualities) climbs to vSI(n + 1).18 However, with overall instantaneous
probability φC , some R&D challenger innovates, and the quality leader falls back to being
a follower: its value drops to vC = 0. The industry then remains in the state (SC), and
only one quality is produced.

In industries being in the (SI) state, the “quality-differentiated” incumbent faces the
following Hamilton-Jacobi-Bellman equation:

rvSI(n) = max
φDI≥0

{
πSI(n)− wF k

n+1

Q
φDI

+ φDI

(
vSI(n+ 1)− vSI(n)

)
+ φC

(
vC − vSI(n)

)}
(19)

The incumbent in the (SI) state earns the profits πSI(n) of a monopolist being able
to discriminate between rich and poor consumers by offering two distinct price/quantity
bundles. He incurs the R&D costs wF kn+1

Q φDI . With instantaneous probability φDI , the
incumbent innovates once more, in which case its value becomes vSI(n+ 1).19 Hence, the
incumbent will still be the producer of the two qualities being sold, but he will drive himself
out of the market for the former quality qn−1, that has become quality qn−2 with the latest
quality jump. The industry then remains in state (SI). With instantaneous probability
φC ,20 some R&D follower innovates, and the quality leader then falls back to being an

18Accordingly to the crucial condition identified and discussed in the introduction as being necessary so
as to to generate innovation by incumbent, this expected value of innovating for a second time vSI(n+ 1)
is different from the expected value of innovating for the first time vSC(n).

19We have indeed established with Lemma 2 that at most two successive quantities are sold at equilibrium.
20The challengers will invest the same amount in the R&D sector φC whether the considered sector is

in state (SC) or (SI), since they face the same expected reward vSC(n + 1) in both cases: a successful
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R&D challenger: its value falls to vC = 0. The industry then jumps to the state (SC), and
only the new highest quality is sold by the latest successful innovator.

In both states, the incumbent firm chooses its R&D effort so as to maximize the right-
hand side of its Bellman equation. (18) and (19) then yield the following first-order condi-
tions: (

−wF k
n+1

Q
+ vSI(n+ 1)− vSC(n)

)
φI = 0, φI ≥ 0 (20)(

−wF k
n+1

Q
+ vSI(n+ 1)− vSI(n)

)
φDI = 0, φDI ≥ 0 (21)

For industries being in the (SC) state, (20) yields a relationship between the R&D costs
and the incremental value of a further innovation. Combined with (20), (21) entails either
φDI = 0 or vSC(n) = vSI(n). The second possibility cannot be true, since πSI(n) > πSC(n):
we hence necessarily have that φDI = 0. Plugging (17), (20) and (21) in (18) and (19) and
substituting for the profit values obtained in (12) and (15), it is possible to obtain the 2
following expressions, equating incurred R&D costs and expected profits in both possible
states:21

wF

Q
=

L
(
k−1
k

)
cP
QP

r + φC
(22)

(
k + 1

k

)
wF

Q
=

L
[
(1− β)

(
k−1
k

)
cR
QR

+
(
k−1
k2

)
cP
QP

]
r + φC

(23)

4 Balanced growth path equilibrium

4.1 Labor market equilibrium

We first move to characterizing the equilibrium on the labor market. While challengers
invest a total amount of F kn(s)+1

Q φC in R&D in every industry s, incumbents only invest the

amount F kn(s)+1

Q φI in industries being in the (SC) state. The total labor demand in the

R&D sector is hence equal to F
(∫ 1

0
kn(s)+1

Q φCds+
∫
θSC

kn(s)+1

Q φIds
)
. Unit consumption

of the differentiated goods and identical marginal costs of production regardless of the
quality level yield a total amount of aL units of labor being devoted to the production of
the quality goods. Finally, (L/w) (βcP + (1− β)cR) are the units of labor being devoted
to the production of the standardized good.

The following equation then describes the equilibrium on the labor market:

L = FkφC + FkφI

∫
θSC

kn(s)ds

Q
+ aL+ (L/w) (βcP + (1− β)cR) (24)

innovation by a challenger indeed always brings the industry back to state (SC).
21Considering (22) and (23), it is also confirmed that the conditions ruling the R&D investment decisions

within one sector don’t depend on any sector-specific value, but only on economy-wide variables: as
announced in the beginning of the subsection, the probabilities to innovate are hence the same in every
sector.
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4.2 Balanced growth path analysis

Definition 1 In the case we have a monopoly market structure in the (SC) state, an
equilibrium is defined by a time path for consumption of the homogenous good for both
types of consumers {ci(t)}∞i=(R,P ),t=0 that satisfies (6), a time path for the “quality index”
for both types of consumers {Qi(t)}∞i=(R,P ),t=0 that satisfies (7), time paths for innovation
probabilities (and corresponding sector-specific R&D expenditures) by incumbents and chal-
lengers {φC(t), φI(t)}∞t=0 that satisfy (17) and (20), time paths for sector-specific prices and
profits {pSC(s, t), pPSI(s, t), p

R
SI(s, t), πSC

(
n(s, t)

)
, πSC

(
n(s, t)

)
}∞s∈(0,1),t=0 that satisfy (11),

(13), (14), (12) and (15), and a time path of the interest rate {r(t)}∞t=0 which satisfies (8).

In addition, we define a balanced growth path (BGP) as an equilibrium path along
which every variable grows at a constant rate, either null or positive. In such a product-
innovation model (i.e. precluding any productivity improvement) with fixed wage and
population levels w and L, the BGP is characterized by constant levels of innovation φC
and φI , overall wealth Ω and consumption ci (i = R,P ).22 Consumers however still become
better-off over time due to the quality improvements of the differentiated goods and the
resulting growth of individual utility. As already stated in the previous section, we focus
in this paper on such a BGP, and we now proceed to describing its properties.

4.2.1 Residual consumption levels cP and cR along the BGP

The R&D sector as well as the labor market equilibrium conditions (22), (23) and (24)

depend on the “residual” consumption of the standardized homogenous good ci,23 which
we will now further characterize. First, constant levels of consumption imply that along
the BGP, current income yi equates current consumption ci + Pi, i.e. we have ci = yi − Pi
once we have reached the long-run growth path.

Using (11), (13) and (14) as well as the BGP properties of the random process governing
the fluctuations between the two possible states (SC) and (SI) within every industry, it
is then possible to obtain the following expressions for the economy-wide price indices PR
and PP (see Appendix A for the demonstration and detailed computations):

PP =
(k − 1)yP + kwa

2k − 1
(25)

PR =
(2k − 1)(k − 1)θSIyR + (k − 1)kyP + k2wa

(2k − 1)(k + θSI(k − 1))
(26)

As we can see considering (26), the economy-wide price index PR depends on the
share θSI describing the proportion of industries being in the (SI) state. This stems from

22The consumption of the continuum of quality-differentiated goods is anyway always constant, since we
impose unit consumption in this model.

23In the case of the R&D sector equilibrium conditions, it is through the willingness to pay µi = ci
Qi

.
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the fact that rich consumers pay less than their maximum threshold price in (SC)-state
industries, while being efficiently price-discriminated (and hence paying a higher price) in

(SI)-state industries. More precisely, we have ∂PR
∂θSI

=
k(k−1)

(
(2k−1)yR−(k−1)yP−kwa

)
(2k−1)(k+(k−1)θSI)2

> 0:
quite intuitively, PR is higher for a higher proportion of industries being in the (SI) state;
as a consequence, the willingness to pay for one unit of quality µR = yR−PR

Q is on the other
hand decreasing along θSI . For some intuitions regarding the impact of inequality on the
long-run growth rate (cf. next section), it is finally also interesting to notice that within
a specific sector s being in the (SI) state, the price pRSI that the incumbent will be able to
charge to the rich is decreasing along θSI (since pRSI as presented in (14) depends positively
on µR): the fewer industries in the (SI) state, the higher the price the leaders will be able
to charge to the rich consumers within those industries.

PP on the other hand does not depend on the shares θSC and θSI : indeed, the poor
consumers pay their maximum threshold price in every industry.

Using (25) and (26), it is then finally possible to obtain the following expressions for
the homogenous good consumption of both consumer groups cP and cR:

cP =

(
k

2k − 1

)
(yP − wa) (27)

cR =
k
(
(2k − 1)yR − (k − 1)yP − kwa

)
(2k − 1)(k + (k − 1)θSI)

(28)

4.2.2 Industry shares along the BGP

Along the BGP equilibrium, it is possible to express θSC and θSI as functions of the
innovation rates φC and φI . Indeed, so as to ensure that cR as expressed in (28) remains
constant, the share of industries being in each state must remain constant. Hence, the
flows in must equal the flows out of each state: we then have the condition φCθSI = φIθSC

that has to be respected along the BGP.24 Combining it with the fact that the two shares
sum up to 1 (i.e. θSC + θSI = 1), we obtain:

θSC =
φC

φI + φC
, θSI =

φI
φC + φI

(29)

4.2.3 Labor market equilibrium along the BGP

The BGP properties of the random process governing the fluctuations between the two
possible states (SC) and (SI) within every industry (cf. Appendix A for a full exposure)
make it possible to obtain the following expression for the long-run labor market equilibrium
condition:

L = FkφC + θSCFkφI + aL+ (L/w) (βcP + (1− β)cR) (30)

24Indeed, for each industry being in the (SC) state, the probability to exit this state is equal to the
probability φI(s) of an incumbent innovating; for each industry being in the (SI) state, the probability to
enter the (SC) state corresponds to the probability φC(s) of a challenger innovating.

21



4.2.4 Existence and uniqueness of the BGP

Having now fully described the long-run properties of our economy, we can move to
characterizing the parametric conditions ensuring the existence and uniqueness of a “multi-
quality firms BGP”.

Proposition 1 (Existence and uniqueness of a steady state equilibrium):
For k and β sufficiently high and for not too low values of d, there exists a unique BGP
along which (i) we necessarily have a monopoly in the (SC) state, (ii) both incumbents and
challengers invest strictly positive amounts in R&D, and (iii) the economy-wide quality
index grows at the constant rate γ = Q̇

Q = (k − 1)φC(1 + φI
φI+φC

).25

Proof: cf Appendix C. �

Note that Proposition 1 implies not only that there exists a unique positive solution
for the system of variables as defined in Definition 1, but also that the equilibrium with a
monopoly market regime is robust (existence) while its duopoly counterpart is not (unique-
ness). While the full demonstration of this proposition is available in Appendix C, I will
here provide intuitions regarding the conditions on the exogenous parameters needed so as
to obtain this result.

A first condition guarantees a strictly positive amount invested in R&D by incumbents
along the BGP, and this is that k needs to be sufficiently high. Indeed, k represents the
utility increment of consuming quality qn over quality qn−1: the higher k, the higher the
gap between pSC and pRSI in any given industry. In other words, high values of k ensure
that the gains from price-discriminating are high enough to represent viable incentives for
the incumbent to invest in R&D.

The second two conditions (β sufficiently high and d not too low) are needed so as to
guarantee the existence and uniqueness of the obtained BGP. Regarding the existence, we
indeed need to check that for the obtained equilibrium values of the endogenous variables,
the monopoly market structure in the (SC) state is robust, i.e. the new leader does not
prefer the alternative regime when comparing expected profits. Regarding the uniqueness,
we also have to make sure that the equilibrium values obtained when solving for a BGP
with a duopoly market structure in the (SC) state (as defined in Appendix B) do not
define a robust equilibrium. Intuitively enough, high values of β and not too low values
of d ensure that the monopoly is the only viable price regime: indeed, a leader facing an
important group of poor people (both in terms of size and in terms of purchasing power)
is not going to be willing to abandon that part of the market to its direct competitor.

A “multi-quality firms BGP” with a monopoly market regime in the (SC) state hence
emerges only for parameter values respecting the conditions stated in Proposition 1 above.
Appendices B and E similarly define conditions under which there exists a robust “multi-

25The BGP times paths of the quality consumption indices QP and QR can be directly derived from
the growth rate of the quality index. We have Q̇R

QR
= Q̇

Q
; on the other hand, along (16) we have Q̇P

QP
=

(k − 1)φC
(
1 + φI

φC+(1/k)φI

)
.
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quality firms BGP” with a duopoly market regime in the (SC) state.26 Outside those
parameter constellations though, condition (20) yields φI = 0, and the model collapses to
a multi-industry version of the Zweimuller and Brunner (2005) framework.

Proposition 1 states that in an economy where sufficiently strong disparities in pur-
chasing power exist, incumbents have an incentive to keep investing in R&D beyond their
first successful innovation. In our framework, the immediate consequence of this result is
the endogenous emergence of multi-quality leaders in a dynamic quality-ladder
model, since income disparities generate both (1) the survival of more than one quality
at the equilibrium, and (2) positive investment in R&D activities by incumbents.

A few further comments can be made. First, a salient implication of this result is
the existence of demand-related determinants of innovation by incumbents. Here, positive
investment in R&D by quality leaders is obtained with complete equal treatment in the
R&D field between the incumbent patentholder and the challengers, as well as without any
concavity in the R&D cost function. This model therefore hints at the existence of so far
overlooked incentives for innovation by incumbent stemming from the demand structure
rather than from the supply side (i.e. R&D sector characteristics and R&D capabilities
of challenger and incumbent firms), and opens the field for further investigations.27 Sec-
ond, this result emphasizes the macroeconomic consequences of the negative “heterogenous
taste for quality” externality identified by Mussa and Rosen (1978) in a micro framework.
This externality can be formulated in the following way: in the absence of the possibility of
first-degree discrimination, the existence of “poor” consumers prevents the monopolist from
capturing the maximum costumer surplus from those who have a stronger taste for quality.
In a static framework, a multi-quality monopolist internalizes this negative externality by
inducing less enthusiastic consumers to buy lower quality items charged at a lower price,
opening the possibility of charging higher prices to more adamant buyers of high quality
units. As a consequence, a wider range of qualities than what would be optimal is finally
offered. In our dynamic model with endogenous innovation, the monopolist only retains
exclusive patent rights for as many qualities as R&D races he has won: the negative exter-
nalities stemming from having to serve two distinct groups of consumers having different
quality valuations is then internalized by expanding the line of product towards higher
(and not lower) qualities, i.e. through R&D investment.

5 Distribution of income and long-term growth

We now investigate the implications of such a model regarding the existing interactions
between income distribution and long-run growth operating through the demand market.

26However, due to the impossibility to obtain closed-form solutions, we have to resort to simulations so
as to determine the robustness conditions of the BGP in the case of a duopoly in the (SC) state.

27As we already pointed out in the introduction, Aghion et al. (2001) had already provided a quality-
ladder framework in which it was possible to investigate the influence of product market competition on
innovation intensity. However, they did not allow for free entry of firms, only allowing for the existence of
two active firms in the R&D sector.
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In their contribution, Zweimuller and Brunner (2005) had argued that in a vertical dif-
ferentiation framework featuring non-homothetic preferences and heterogenous consumers,
a rising level of inequality systematically decreases the R&D investment rate of challengers.
This result led them to conclude to an unambiguous detrimental impact of inequality
(whether it stems from higher income gaps or greater wealth concentration) on long-term
growth. However, as already stated before, their model pins down the R&D investment
rate with a simple free entry condition in the R&D sector, overlooking the possibility of
incumbents investing in R&D. As we will now show below, taking into account the possi-
bility of second-degree price discrimination and the resulting participation of incumbents
to innovation races totally modifies the predictions of the model regarding the impact of
varying inequality on R&D investment and the resulting long-run growth rate.

In the following analysis, we consider two types of variations in the extent of wealth
disparities: (a) a larger income gap (i.e. a decrease in d for a fixed level of β), and (b)
a greater wealth concentration (i.e. an increase in β for a given d). The results of those
comparative statics can be summarized in the following proposition:

Proposition 2 (Wealth distribution and long-term growth):
Under the parametric conditions guaranteeing the existence of a unique BGP with a monopoly
market structure in the (SC) state, we have the following comparative statics for varying
values of β and d:

• (a) Effect of a larger income gap (corresponding to a decrease in d): the challengers’
innovation rate φC as well as the incumbent’s innovation rate φI increase, resulting
in an increase of the long-run growth rate γ. An increase in the income gap also leads
to a greater share of R&D activities to be carried out by incumbents.

• (b) Effect of a greater income concentration (corresponding to an increase in β):
the challengers’ innovation rate φC as well as the incumbent’s innovation rate φI
decrease, leading to a decrease of the long-run growth rate γ. An increase in income
concentration also leads to a greater share of R&D activities to be carried out by
challengers.

Proof : cf Appendix D. �

(a) Let us first comment the effects of a larger income gap, i.e. of a decrease in d.
So as to obtain intuitions regarding the variations in the R&D investment rates following

a variation in the income gap, we consider the impact of such a shock on the expected gains
associated to successfully innovating for the first and the second time. One can first notice
that since we keep both β and the quantities produced fixed (the quality-differentiated
industries face unit consumption), there can be no variation in the market size following
an increase in the income gap: profit variations will derive from price adjustments.

We first comment the variation of φI , i.e. of the amount invested in R&D by the current
incumbent operating in a (SC)-state industry. For this non-differentiated leader, the critical
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income when choosing how much to invest in R&D is the one of rich households, since the
incremental gain from innovating for a second time stems from the higher price charged
to the upper end of the market. The income of rich households increases following the
considered shock: hence, at a given level of wealth Ω, a decrease in d (i.e. a redistribution
of wealth from the poor to the rich) has a positive price effect on the profits of a successful
incumbent. The incentives to invest in R&D for an incumbent have hence become greater:
φI increases.

The variation in φC is somewhat more difficult to rationalize a priori, since the exact
counterpart of the above reasoning points to a negative price effect on the profits of a
successful challenger: indeed, following a decrease in d, a successful challenger entering a
given industry with only one quality at its disposal has to charge a lower price so as to
capture the impoverished lower end of the market. This negative price effect is however (at
least partly) counteracted by a less obvious positive price effect, linked to the variation in
the share of industries θSI being in the (SI) state. θSI indeed increases following the increase
in φI commented above. In sectors being in the (SI) state, poor consumers are being sold
quality n−1, that is one rung away from the industry frontier. As a consequence, they tend
to value more the fewer industries in which they are being sold the highest available quality,
i.e. the decreased share of sectors being in the (SC) state. Successful challengers benefit
from this greater appeal. This positive price effect is being captured by the ratio Q/QP ,
present in the free-entry R&D condition (22) and increasing along θSI .28 One should also
note that part of the expected profits considered by the challengers when entering their
first innovation race pertains to the possibility to price-discriminate if they innovate for a
second time. The increase of those potential second-round profits (cf above the comments
regarding the increase in φI), along with the identified positive price effect, finally lead
the R&D free-entry conditions to pin down the challengers’ innovation rate φC at a higher
level than before the shock on d.

(b) We now move to commenting the effects of an increase in β when we have a
monopoly price regime in the (SC) state. I first note that a rise in the share of the
population being poor β while keeping d constant corresponds to a higher concentration of
wealth among a smaller group of rich people. Indeed, it implies an increase in the relative
income of a rich consumer (∂dR∂β = 1−d

(1−β)2
> 0): there are more poor with the same income,

and fewer rich with more income. As we can see in Proposition 2, this type of variation in
the inequality level is unequivocally detrimental for economic growth. We now comment
the intuitions pertaining to the variations of the different variables.

Once again, we first comment the impact of an increase of wealth concentration on the
R&D investment of incumbents φI . Following an increase in β (and unlike a shock on d
which generates only variations in prices), we have both a market size and a price effect on
the expected profits of a successful incumbent. Indeed, price-discriminating monopolists
operating in (SI)-state industries can now charge a higher price, but to a smaller part of

28More precisely, we have Q/QP = k
kθSC+θSI

, which can be transformed into Q/QP = k
k−(k−1)θSI

using
the property θSC + θSI = 1.
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the population. Contrarily to what happens in the horizontal differentiation case (Foellmi
and Zweimuller, 2006), the negative market size effect systematically dominates here, and
the incumbents’ investment in R&D φI decreases. This difference between horizontal-
and vertical-differentiation models can be rationalized through the fact that in the case of
vertical differentiation, the price effect is limited by the presence of a competitive fringe,
which is not present in the case of horizontal differentiation.

Regarding variations of φC following a shock on β, we first notice that the market size
of a successful challenger is not altered by such a shock. The decrease in φC following an
increase of the wealth concentration then stems from (i) the negative price effect resulting
from a decrease in the ratio Q/QP following the decrease in φI , and (ii) the decrease of
the potential profits realized if the successful challenger innovates for a second time.

Several conclusions can be derived from the results presented in this section.

First, when asking “How does inequality affect investment in R&D and growth in a
quality-ladder set-up?”, the answer depends crucially on whether higher levels of inequality
result from a larger income gap or from a higher income concentration. In the case of
a larger income gap, only price effects are at play, leading to an increase in the R&D
investment of both types of actors, and ultimately to a higher economy’s growth rate. In
the case of an increased wealth concentration on the other hand, the positive price effect
is more than counterbalanced by a negative market size effect, leading to a decrease in the
R&D investments of both types of actors. The two different shocks also lead to different
predictions in terms of reallocation of the overall R&D bulk from one type of actor to
another: while a greater income gap leads to a greater share of the overall R&D being
carried out by incumbents, the reverse is true in the case of a higher wealth concentration.

Second, when comparing those predictions to the ones obtained in the case of expanding-
variety growth models (Foellmi and Zweimuller, 2006; Foellmi et al., 2014), we see that the
nature of the differentiation considered (i.e. horizontal vs vertical) is crucial in order to
predict the impact of varying inequality on R&D investment and growth. Indeed, Foellmi
and Zweimuller (2006) have shown that in an horizontal differentiation framework, higher
levels of inequality are systematically positive for an economy’s rate of growth. The intu-
ition pertains to a product’s life-cycle: lower levels of inequality induce a positive market
size effect (the market for a new good develops faster into a mass market), but a negative
price effect (the willingness to pay for a new product decreases with a less wealthy rich
class). The latter always dominates the former, since profit flows early in the product’s
life cycle matter more, and are lowered by a decrease in inequality. Foellmi et al. (2014)
show that even when the monopolist can engage in process innovation so as to transform
its luxury good into a product of mass consumption (hence engaging in a form of price
discrimination), higher inequality levels still have a positive impact on growth provided the
technological spillovers stemming from the introduction of mass production are not too
important.

The mechanisms present in those two models however rely on the crucial assumption
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that a firm keeps permanent monopoly rights over a given good, without running the risk
of being leapfrogged. In the case of a vertical-differentiation model where the introduction
of new products pushes the older ones further from the frontier, the predictions are altered.
As it was possible to demonstrate in this section, higher levels of wealth concentration are
detrimental for growth in a quality-ladder framework: the positive price effect is dominated
by the negative market size effect. Also in the case of a higher income gap, the mechanisms
leading to a higher growth rate are fundamentally different in the two frameworks: in a
quality-ladder model, the positive impact on economic growth is obtained despite a negative
price effect on a new entrant’s profits, and mainly through a reallocation of R&D activities
from challengers to incumbents.

Finally, those results show how decisive it is to take into account the behavior of
incumbents when analyzing the interactions of aggregate demand and long-run growth in
a quality-ladder model. Indeed, including incumbents in the analysis leads us to totally
overturn the conclusions obtained in Zweimuller and Brunner (2005). More precisely, in
the case we have a monopoly in the (SC) state, the model presented here yields opposite
predictions regarding the impact on the overall growth rate of a decrease in d, and predicts
a negative impact of an increase in β while their model finds none.29 This framework also
makes it possible to further characterize the evolution of the allocation of overall R&D
expenditures between challengers and incumbents.

6 Conclusion

This paper contributes to the analysis of the interactions between income distribution
and long-term growth operating through the demand side. It first demonstrates that
disparities in purchasing power justify investment in R&D by both leaders and challengers,
providing a demand-driven rationale for innovation by incumbents. Indeed, the strictly
positive innovation rate of the incumbent is here obtained with constant returns to R&D
efforts and without any advantage of the incumbent in the R&D field (supply side), by
allowing for income inequality to generate different quality valuation of poor and rich
consumers (demand side). The paper then also provides a significant contribution to the
literature investigating the impact of income inequality on growth, showing that while an
increase in the income gap can be beneficial for growth, a greater wealth concentration is
systematically detrimental for the economy.

Some lines of further work can be quickly sketched. An obvious extension to this model
would be to treat the more general case of more than two types of consumers, in order for
the incumbent to keep investing in R&D after the second successful race. A model such as
this one can also be applied to a two-country framework, in order to contribute to the de-
veloping literature studying the determinants and impact of vertical, intra-industrial trade
(Fajgelbaum et al., 2011). Indeed, while the impact on growth of inter-industrial quality

29Indeed, in the case of a monopoly price regime, the size of the rich population does not matter at all,
since successful challengers can never correctly price-discriminate them.
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trade has already been extensively studied (product life-cycle), we believe the framework
presented in this paper would be a good starting point for the elaboration of a dynamic
model of intra-industrial quality trade (quality life-cycle). Finally, one could also take the
model to the data so as to test its predictions. A possible identification strategy would
be to test whether income distribution variations within a target market have a significant
impact on product vertical innovation of firms, while none on process innovation.
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A - Computation of the price indices PR and PP

Poor consumers pay pSC(s) for goods being produced in (SC)-state industries, and
pPSI(s) for goods being produced in (SI)-state industries. We hence have PP =

∫
θSC

pSC(s)ds+∫
θSI

pPSI(s)ds. Rich consumers also pay pSC(s) in industries being in the (SC) state, and
pRSI(s) in industries being in the (SI) state: we have PR =

∫
θSC

pSC(s)ds +
∫
θSI

pRSI(s)ds.
Using (11), (13) and (14), we then obtain the following expressions for the two economy-
wide indices:

PP =

∫
θSC

kn(s)
(
k − 1

k

)
(yP − PP )

QP
ds+

∫
θSI

kn(s)−1

(
k − 1

k

)
(yP − PP )

QP
ds

PR =

∫
θSC

kn(s)
(
k − 1

k

)
(yP − PP )

QP
ds+

∫
θSI

(
kn(s)

(
k − 1

k

)
yR − PR
QR

+ kn(s)−1

(
k − 1

k

)
yP − PP
QP

)
ds

Considering the fact that along (16) we have QP =
∫
θSC

kn(s)ds +
∫
θSI

kn(s)−1ds, it is
straightforward to simplify the first expression into PP =

(
k−1
k

)
(yP − PP ), which itself

yields:

PP =
(k − 1)yP + kwa

2k − 1

Since QR =
∫ 1

0 k
n(s)ds, the above expression for PR simplifies to:

PR =

(
k − 1

k

)
(yP − PP ) +

(
k − 1

k

)
(yR − PR)

∫
θSI

kn(s)ds∫ 1
0 k

n(s)ds︸ ︷︷ ︸
=(∗)

+wa

Proposition 3: Along the BGP (i.e. for t big enough), the number of quality jumps
per unit of time n(s,t)

t can be approximated by the same constant ν in every industry s.

Proof: We focus on one sector s which has just jumped back from state (SI) to state
(SC). The operating firm on the market is hence a former challenger. There will then be a
certain number M − 1 (with M ∈ [1,+∞[) of “investment races” for which the considered
sector remains in the state (SC), i.e. for which the winner of the race is a challenger. At
some point though, the winner of the Mth race ends up to be an incumbent: the sector
switches to state (SI). Since incumbents stop investing in R&D once having fully price-
discriminated, the next jump will necessarily bring the sector back to state (SC), and a
new cycle begins. We denote the number of innovations having occurred in this cycle as
Wc = M + 1, where c is the index of the cycle. Wc can be viewed as a “reward”, with Sc
being the holding time until this reward is reached. The couples (S1,W1), (S2,W2),... are
i.i.d. random variables. The total number of innovations at a given time t for which Xt

cycles have already occurred is Yt =
∑Xt

c=1Wc. Yt is a “renewal-reward process”: it depends
on the holding times S1, S2,... between two cycles, and on the rewards corresponding to
each cycle W1, W2,... Along the BGP, we can then apply the strong law of large numbers
for renewal-reward processes, which states that limt→∞

Yt
t = E[W1]

E[S1] . Since every industry
s ∈ [0, 1] displays exactly the same immediate innovation probabilities for incumbents (φI)
and challengers (φC), the number of innovations n(s, t) in every sector s can be described
by a renewal-reward process identical to the one described above. We then have that the
number of quality jumps per unit of time n(s,t)

t is equal to the same constant ν in every
industry s for t big enough, with ν = E[W1]

E[S1] . This ends the proof. �
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Using Proposition 3, we have (∗) =
kνT

∫
θSI

ds

kνT
∫ 1
0 ds

= θSI , which leads to finally obtaining
the following expression for PR:

PR =
(2k − 1)(k − 1)θSIyR + (k − 1)kyP + k2wa

(2k − 1)(k + θSI(k − 1))

B Exposition of the duopoly case

In the main text, we have limited ourselves to detailing the exposition of the economy in
the case we have a monopoly in the (SC) state, i.e. in the case a challenger who innovates
finds it optimal to charge a price which will ensure that the highest quality is attractive
for both consumer groups. We will now present the main equilibrium equations in the case
we have a duopoly in the (SC) state. For the sake of notation brevity, the time and sector
subscripts are dropped in this Appendix section; one should simply keep in mind that the
variable n is sector-specific, and designates the number of innovations having occurred so
far within a particular sector. We will also only present the model building blocks which
differ from the monopoly case; the consumer problem, the pricing problem of firms in the
(SI) state as well as the equilibrium on the labor market remain unchanged, and are hence
not developed again in this Appendix section.

Prices and profits in the (SC) state

First, note that a further assumption needs to be made so as to ensure that a duopoly
can indeed be a possible equilibrium price regime. Indeed, as argued by Zweimuller and
Brunner (2005), the pricing problem faced by firms in a given sector being in the (SC)
state can be considered as an infinitely repeated game between the quality leader and the
producer of the second-best quality. The monopoly pricing strategy as we have described it
in the main text is a Nash equilibrium of the stage game. On the other hand, if we assume
that both the leader and the follower have positive market shares (i.e. if we want to define a
pricing strategy compatible with a duopoly), no pair of prices (pn, pn−1) represents a Nash
equilibrium of the stage game: given the price charged by the other, at least one of the two
firms always has an incentive to deviate. It is however possible to guarantee the existence
of a duopoly equilibrium, under the further condition on the punishment strategies that
no firm is punished if it changes its price without affecting the other firm’s profit (Proof:
cf Zweimuller and Brunner (2005), p. 242).

In the case of such an equilibrium, the new quality leader chooses to charge the highest
possible price enabling him to capture the group of rich consumers pT{n−1,n}(R), given the
expected strategy of the producer of the second-best quality. The former quality leader
charges the highest possible price enabling him to capture the poor group of consumers
pT{n−2,n−1}(P ), given that the producer of quality qn−2 engages in marginal cost pricing
(i.e. pn−2 = wa). Those two prices actually correspond to pPSI and pRSI as defined by (13)

and (14). Hence, when the market structure is a duopoly in the (SC) state, both types of
consumers pay systematically the same price for the consumed quality, whether the industry
is in state (SC) or (SI). We define the profits πL(n) and πF (n) accruing to the producers of
the first-best and the second-best qualities in the (SC) state, as well as the profits πDSI(n)
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of the discriminating monopolist in the (SI) state:30

πL(n) = (1− β)L

(
k − 1

k

)[
kn−1 cP

QDP
+ kn

cR

QDR

]
(31)

πF (n) = βLkn−1

(
k − 1

k

)
cP

QDP
(32)

πDSI(n) = L

(
k − 1

k

)[
kn−1 cP

QDP
+ (1− β)kn

cR

QDR

]
(33)

with the “quality consumption indices” for both income groups QDP and QDR taking the
following form in the case we have a duopoly in the (SC) state:

QDP =

∫ 1

0
kn(s)−1ds; QDR =

∫ 1

0
kn(s)ds (34)

R&D sector

In the case we have a duopoly in the (SC) state, the main modification is that the
value of a “leapfrogged” quality leader vF (n+ 1) does not fall to zero: since the new leader
abandons the lower part of the market so as to be able to charge a higher price to the rich
consumers, the former leader still makes positive profits πF (n + 1). We hence now have
three Hamilton-Jacobi-Bellman equations. In industries being in the (SC) state, both the
incumbent and the former leader face the two following HJB equations:

rvDSC(n) = max
φI≥0

{
πL(n)− wF k

n+1

Q
φI

+ φI
(
vDSI(n+ 1)− vDSC(n)

)
+ φC

(
vF (n+ 1)− vDSC(n)

)}
(35)

rvF (n) = max
φF≥0

{
πF (n)− wF k

n+1

Q
φF

+ φF
(
vDSC(n+ 1)− vF (n)

)
+ (φC + φI)

(
vC − vF (n)

)}
(36)

In industries being in the (SI) state, the incumbent faces the following HJB equation:

rvDSI(n) = max
φDI≥0

{
πDSI(n)− wF k

n+1

Q
φDI

+ φDI
(
vDSI(n+ 1)− vDSI(n)

)
+ φC

(
vF (n+ 1)− vDSI(n)

)}
(37)

30Even though the pricing strategy of a “fully differentiated” monopolist in the (SI) state does not differ
from the monopoly case, we still need to differentiate πSI from πDSI since, as shown below, the “quality
consumption index” of the poor group does not take the same form in both cases.

33



The three corresponding first-order conditions are of the following form:

(−wF k
n+1

Q
+ vDSI(n+ 1)− vDSC(n))φI = 0, φI ≥ 0 (38)

(−wF k
n+1

Q
+ vDSC(n+ 1)− vF (n))φF = 0, φF ≥ 0 (39)

(−wF k
n+1

Q
+ vDSI(n+ 1)− vDSI(n))φDI = 0, φDI ≥ 0 (40)

As in the monopoly case, we have that combined with (38), (40) entails either φDI = 0 or
vDSC(n) = vDSI(n). The second possibility cannot be true, since πDSI(n) > πL(n): we hence
necessarily have that φDI = 0. Combined with the free-entry condition (17), (39) entails
either φF = 0 or vF (n) = 0. The second possibility cannot be true, since the follower’s
profits πF (n) are strictly positive: we hence necessarily have that φF = 0. Plugging this
value back into (36), we obtain that vF (n) = πF (n)

ρ+φC+φI
. Plugging the free-entry condition

(17) and the first-order condition (38) in the HJB equations (35) and (37), substituting
for the profit values obtained in (31), (32) and (33), and noticing that in the duopoly case
we simply have QDP = (1/k)Q, it is possible to obtain the 2 following expressions, equating
incurred R&D costs and expected profits in both possible states:

wF =
(1− β)

(
k−1
k

)
L(cP + cR) + φC

βL(k−1)cP
r+φC+φI

r + φC
(41)(

k + 1

k

)
wF =

(
k−1
k

)
L [(1− β)cR + cP ] + φC

βL(k−1)cP
r+φC+φI

r + φC
(42)

Definition of the equilibrium and the BGP

Definition 2 In the case we have a duopoly market structure in the (SC) state, an
equilibrium is defined by a time path for consumption of the homogenous good for both
types of consumers {ci(t)}∞i=(R,P ),t=0 that satisfies (6), a time path for the “quality index”
for both types of consumers {Qi(t)}∞i=(R,P ),t=0 that satisfies (7), time paths for innovation
probabilities (and corresponding sector-specific R&D expenditures) by incumbents and chal-
lengers {φC(t), φI(t)}∞t=0 that satisfy (17) and (38), time paths for sector-specific prices and
profits {pPSI(s, t), pRSI(s, t), πL

(
n(s, t)

)
, πF

(
n(s, t)

)
, πSI

(
n(s, t)

)
}∞s∈(0,1),t=0 that satisfy (13),

(14), (31), (32) and (33), and a time path of the interest rate {r(t)}∞t=0 which satisfies (8).

Once again, we define a BGP as an equilibrium along which every variable grows at
a constant rate, either null or positive. The computation of the values of the shares θSC
and θSI is exactly similar to the one carried out in the monopoly case. On the other hand,
the pricing strategy of a successful challenger in the (SC) state leads to economy-wide
price indices that differ from the ones obtained in the monopoly case. More precisely, we
have PDP =

∫ 1
0 p

P
SIds and PDR =

∫ 1
0 p

R
SIds. Using (13) and (14) and keeping in mind that
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QDP =
∫ 1

0 k
n(s)−1ds = (1/k)QDR , it is straightforward to obtain:

PDP =
(k − 1)yP + kwa

2k − 1
(43)

PDR =
k − 1

2k − 1
yR +

k(k − 1)

(2k − 1)2
yP +

k2wa

(2k − 1)2
(44)

Using (43) and (44), it is finally possible to obtain the following expression of the homoge-
nous good consumption of both consumer groups cDP and cDR in the duopoly case:

cDP =

(
k

2k − 1

)
(yP − wa) (45)

cDR =
k(2k − 1)yR − k(k − 1)yP − k2wa

(2k − 1)2
(46)

Proposition 5 (Existence and uniqueness of a steady state equilibrium in
the duopoly case): Under the parametric conditions (∗)− (∗∗) (cf. Appendix E) and for
low enough values of d and F , there exists a unique BGP along which we necessarily have
a duopoly in the (SC) state and in which both incumbents and challengers invest strictly
positive amounts in R&D φI and φC .

Proof: cf. Appendix E. Note that while the existence of a unique positive solution for
the BGP as defined in Definition 2 can be proved analytically, the absence of closed-form
solutions makes it necessary to resort to numerical simulations so as to define parametric
intervals in which the defined equilibrium is robust and unique. �

C Existence and uniqueness of the BGP in the monopoly case

Along the BGP, (8) implies that we have r = ρ. Using Proposition 3 (cf Appendix A)
as well as (29), we also have Q

QP
= k(φI+φC)

kφC+φI
along the BGP. Using (22) so as to substitute

for cP in (23) and keeping in mind that yR and yP are linear in Ω along (3), characterizing
the BPG then boils down to solving the following 5 equations for values of φC , φI , cR, cP
and overall wealth Ω:

wF (ρ+ φC) = L

(
k − 1

k

)
cP
k(φI + φC)

kφC + φI
(47)

wF (ρ+ φC) = L(1− β)

(
k − 1

k

)
cR (48)

wL = wFkφC +
wFkφIφC
φI + φC

+ awL+ L [βcP + (1− β)cR] (49)

cP =

(
k

2k − 1

)
(yP − wa) (50)

cR =
k(φI + φC)

(
(2k − 1)yR − (k − 1)yP − kwa

)
(2k − 1)(kφC + (2k − 1)φI)

(51)

We first notice that since a < 1 and yR > yP , positive values of φC , φI and of the overall
wealth Ω necessarily entail positive values for cP and cR along (50) and (51). Using (47)

and (48) so as to substitute for cP and cR, (49) then yields the following expression for φI
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as a function of φC :

φI = φC
Fk(ρ(1 + β) + (k + β)φC)− (1− a)(k − 1)L

(1− a)(k − 1)L− F (k(ρ− φC) + 2k2φC + β(ρ+ φC))
(52)

Equating the right-hand sides of (47) and (48) and using (50) and (51) to substitute for
cP and cR, it is also possible to express Ω as a function of φC and φI :

Ω =
w (F (ρ+ φC)(2k − 1)(kφC + φI)− k(k − 1)(1− a)L(φI + φC))

d(k − 1)kρ(φC + φI)
(53)

Substituting for Ω and φI using (52) and (53), it is finally possible to transform (47) into
a second-degree polynomial in φC , which when solved yields:

φC =
A±
√
B +A2

D

with A, B and D having the following analytical expressions:

A = (1− a)(k − 1)L
(

(1− d)(k2 − 1) + k(2− β)
)
− Fkρ

(
4k2 − 1 + d(k(2 + 3β) + 1− 2k2(1 + β))

)
(54)

B = 8Fk2ρ
(
2k − 1− d(k − 1)(1 + β)

)(
(1− a)(k − 1)L(d+ k(2− β)− 1)− Fkρ(2k + d(1 + βk)− 1)

)
(55)

D = 4Fk2(2k − 1− d(k − 1)(1 + β)) > 0 (56)

We now define several expressions, that will prove useful for identifying the conditions
ensuring positive values for φC , φI and Ω.

(a) =

(
k

k − 1

)
(ρ(1 + β) + φC(k + β))

(b) = (1− a)L/F

(c) =
ρ(k + β) + φC(k(2k − 1) + β)

k − 1

(d) = (ρ+ φC)

(
2k − 1

k(k − 1)

)(
kφC + φI
φC + φI

)
(e) = ρ

(
k

k − 1

)
2k − 1 + d(1 + βk)

2k − 1 + (1− β)d

(b) > (e) is sufficient (but not necessary) so as to ensure that we obtain a unique positive
solution for φC , since it entails B > 0, which itself implies

√
A2 +B > A regardless of the

sign of A. We then have φC1 = A−
√
A2+B
D < 0, and:

φC2 =
A+
√
A2 +B

D
> 0 (57)

We can then see from (52) that a positive solution for φI is obtained provided that we
have φC > 0 and (a) > (b) > (c). Finally, for positive values of φC and φI , the condition
(d) > (b) is sufficient for (53) to yield a positive value for the overall wealth Ω. We need
to ensure that those different inequalities are compatible. So as to guarantee a unique
positive solution for φC , φI and Ω, the following conditions are hence sufficient (but not
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necessary):

(a) > (b) > (e) > (c) (∗)
(d) > (b) (∗∗)

We will now determine the conditions on the parameters of the model for conditions (∗)−
(∗∗) to be respected.

First, since none of the parameters appearing in (b) are present in (e), it is always
possible to choose values of a, F and L such that (b) > (e), ensuring φC > 0.

We can reformulate (e) = ρk
(

1 + βd(1+k)
2k−1+(1−β)d

)
. Determining the sign of (a) > (e) is

then equivalent to determining the sign of the following 2nd-degree polynomial in k:

(a) > (e) ⇔ 2φCk
2 +

(
ρβ(2− d) + φC(2β − 1− (1− β)d)

)
k− (ρ+ φC)β(1− (1− β)d)− ρβd > 0

Provided we have φC > 0 and β > 1+d
2+d , the coefficients of the second- and first-degree

terms are positive, ensuring the inequality for k big enough. We hence have (a)>(e)
for sufficiently high values of k and β. Again, since those two conditions do not put
any structure on the parameters present in (b), it is then always possible to choose
values of a, F and L such that (a) > (b) > (e).

(e) > (c) can be rewritten as ρk β(1+d)k
2k−1−βk+d > ρβ + φC(k(2k − 1) + β). Provided we

have β(1+d)k
2k−1−βk+d > 1 (which is the case for β > 2k−(1−d)

k(2+d) ), (e) > (c) is then guaranteed
under the condition (ρ− 2φC)k2 + φCk − ρβ > 0. Noticing that φC → 0 when k → ∞,31

we necessarily have φC < ρ/2 for k big enough, which ensures that the condition identified
above is respected. We hence have (e)>(c) for sufficiently high values of k.

Finally, dividing both the numerator and the denominator of φI as given in (52)

by φCk
2, we obtain φI = φC

E
G with E = F + Fρ(1+β)

kφC
+ Fβ

k −
(1−a)(k−1)L

k2φC
and G =

(1−a)(k−1)L
k2φC

− F
(

2 + ρ
kφC
− 1/k + βρ

k2φC
+ β

k2

)
. Noticing that limk→+∞(kφC) = +∞, we

have limk→+∞
(
E
G

)
= −(1/2)F , entailing limk→+∞(φI) = 0. We then notice that (d) > (b)

can be rewritten as (ρ + φC)
(

2k−1
k−1

)
(1 + (1/k)EG) > (1 − a)L/F (1 + E

G): as k → +∞,
the left-hand side of this inequality tends to 2ρ > 0, while the right-hand side tends to
(1− a)L/F (−1/2F + 1) < 0. This entails that we necessarily have (d)>(b) for suffi-
ciently high values of k.

The intuitions concerning those conditions on the parameter values are commented in
the main text of this paper.

The set of parametric conditions (∗)−(∗∗), respected for sufficiently high enough values
of k and β, are hence sufficient so as to guarantee that there exists systematically
necessarily one (and no more than one) positive solution for φC , φI and Ω, entailing
positive solutions for cP and cR respectively given by (50) and (51).

31More precisely, we have limk→∞ φC =
(1−a)(1−d)L−2Fρ(2−d(1+β))+

√
((1−a)(1−d)L−2Fρ(2−d(1+β)))2

4F (2−(1+β)d)
, which

is equal to zero provided we have 4 > (b), which is itself guaranteed by (a) > (b) for sufficiently high values
of k.
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Robustness of the monopoly price regime in the (SC) state

Proving that the system of five equations (47)-(51) admits a unique and positive solution
in (φI , φC ,Ω, cP , cR) is however not sufficient so as to demonstrate the existence and the
uniqueness of the defined BGP. Indeed, we have assumed from the beginning that the
equilibrium market structure chosen by the new leader in the (SC) state is a monopoly.
We now need to check that for the obtained values for cP , cR, φC , φI and Ω, this specific
price regime indeed represents a robust equilibrium, i.e. the new leader does not
prefer the alternative regime when comparing expected profits. More formally,
the condition for a monopoly to occur is of the form (we drop the sector dependence for
the sake of notation brevity):

πSC(n) + φMI πSI(n+ 1)︸ ︷︷ ︸
(M)

≥ πL(n) + φMI π
D
SI(n+ 1) +

φMC
ρ+ φMC + φMI

(
πF (n+ 1) + φMI πF (n+ 2)

)
︸ ︷︷ ︸

(D)

(58)

with the supercript M referring to the fact we compute the different profits for the
values of ΩM , φMC and φMI obtained when solving for an equilibrium with a monopoly
market structure. Expressions for πM , πSI , πL, πF and πDSI are given by equations (12),
(15), (31), (32) and (33). Substituting for those and multiplying both sides of the inequality
by Q

knL(k−1) , we are left to compare (M) and (D) taking the following form:

(M) = cP

(
φI + φC
φI + kφC

)
+ φI

[
cP

(
φI + φC
φI + kφC

)
+ (1− β)cR

]
(D) = (1− β)

(
cDR + cP

k

)
+ φI

[
cP + (1− β)cDR

]
+
φC(1 + kφI)

ρ+ φC + φI
βcP

with cP , cR and cDR given by (27), (28) and (46). Intuitively, it is straightforward to
conjecture that the monopoly state should have higher chances to dominate for high values
of β, since it entails a larger size of the group of “poor” consumers. For β close to 1, (M)

and (D) can be approximated in the following way:

(M) = cP

(
φI + φC

φI + kφC

)
︸ ︷︷ ︸

(1)M

+φI

[
cP

(
φI + φC

φI + kφC

)
+ (1− d)Ωρ

(
kφI(φI + φC)

kφC + (2k − 1)φI

)]
︸ ︷︷ ︸

(2)M

(D) = (1− d)Ωρ

(
1

2k − 1

)
︸ ︷︷ ︸

(1)D

+
φC

ρ+ φI + φC
cP︸ ︷︷ ︸

(1′)D

+φI

[
cP

(
1 +

kφC

ρ+ φI + φC

)
+ (1− d)Ωρ

(
k

2k − 1

)]
︸ ︷︷ ︸

(2)D

The terms labelled (1)M and (1)D are an approximation of the immediate profits ac-
cruing to a successful challenger when β gets close to 1.32 The terms labelled (1′)D, (2)M

and (2)D are subsequent profits, that are only being reaped when a further innovation race
32One might be surprised that there are still positive profits in the “duopoly case” when β is close to 1.

The term (1)D expresses the fact that for higher values of β (and provided we keep d fixed), the people
belonging to the wealthy group are fewer but richer (since there is a higher concentration of wealth in
their hands): hence, there are still positive profits to be reaped from specifically targeting this group in
the “duopoly case”.
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is won (either by the incumbent or by another challenger), and that are hence weighted
by the innovation probabilities φC and/or φI . For high values of k, those terms become
negligible in regard of the immediate, first-round profits (1)M and (1)D. Demonstrating
the robustness of a “monopoly” equilibrium is then equivalent to proving (1)M > (1)D.
Using (27) so as to substitute for cP , this inequality can be reformulated in the following
way:

(1)M > (1)D ⇔ d

(
1

2k − 1

)
Ωρ

(
k(φI + φC)

kφC + φI

)
︸ ︷︷ ︸

>1

+
wk(1− a)

2k − 1
> (1− d)

(
1

2k − 1

)
Ωρ

It is clear from the expression above that for high enough values of β (which were already
requested so as to guarantee conditions (*) and (**)), the condition d > 1/2 (***) is
sufficient so as to guarantee (1)M > (1)D, ensuring the robustness of the “monopoly”
equilibrium.

Hence, under the parametric conditions (*)-(***), the positive equilibrium de-
scribed by (47)− (51) defines a unique BGP where the market structure in the
(SC) case is necessarily a monopoly. This ends the proof. �

D Demonstration of the comparative statics

Comparative statics in the case of a variation in d

We first consider the variation of φC = A+
√
B+A2

D (the values of A, B and D being
defined by (54), (55) and (56) in Appendix C) following a shock on d:

∂φC
∂d

=


(

1 +
A√
∆

)
∂A

∂d︸ ︷︷ ︸
T1

+
∂B

∂d

1

2
√

∆︸ ︷︷ ︸
T2

D − (A+
√

∆)
∂D

∂d︸ ︷︷ ︸
T3

(59)

with ∆ = B +A2, and the following forms for ∂A
∂d ,

∂B
∂d and ∂D

∂d :

∂A

∂d
= Fkρ

(
2k2(1 + β)− 1− k(2 + 3β)

)
− (1− a)(k − 1)2(k + 1)L (60)

∂B

∂d
= 8Fk2ρ

[
(2k − 1− d(k − 1)(1 + β))((1− a)(k + 1)L− Fkρ(1 + βk))︸ ︷︷ ︸

Bd1

−(k − 1)(1 + β)
(

(1− a)(k − 1)L(d+ k(2− β)− 1)− Fkρ(2k + d(1 + βk)− 1)
)

︸ ︷︷ ︸
Bd2

]
(61)

∂D

∂d
= −4dFk2(k − 1)(1 + β) < 0 (62)

We will now show that under the parametric conditions guaranteeing the existence and
uniqueness of the BGP (cf Appendix C), since we have D > 0, the sign of (59) is ultimately
determined by the sign of ∂B

∂d . So as to proceed to this demonstration, we need to define
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the following expression:

(f) = ρ

(
k

k − 1

)
2(2− d(1 + β))k2 + d(2 + 3β)k − 1 + d

(1− d)(k2 − 1) + k(2− β)

(g) = ρ

(
k

k − 1

)
(1 + βk)

As it can be seen considering (54), the sign of A (that we did not need to establish so
as to prove that φC > 0 as long as B > 0) is given by the sign of (b) − (f). As k →
+∞, we have that (f) → 2(2−d(1+β))

1−d ρ > 2(2−2d)
1−d ρ = 4ρ. On the other hand, we had

established that (d) > (b) (cf condition (**) in Appendix C), with (d) < (ρ + φC)2k−1
k−1 .

Since limk→+∞(ρ+φC)2k−1
k−1 = 2ρ, we necessarily have that (f) > (d) > (b) for high enough

values of k, which entails A < 0. Considering (54) and (55), one can furthermore see that
B is a polynomial of degree 5 in k, while A is a polynomial of degree 3: for high enough
values of k, we have that B becomes negligible in

√
B +A2, which can be approximated

by
√
A2 = |A|. We hence have that as k → +∞, A√

∆
→ 1− and A +

√
∆ → 0+. As a

consequence, the terms T1 and T3 become negligible, and the sign of ∂φC∂d is determined by
the sign of T2, i.e. of ∂B∂d .

We have 2k − 1 − d(k − 1)(1 + β) < 0, and for k sufficiently high we necessarily have
(g) > (b), which ensures that the term Bd1 of (61) is negative. We also have Bd2 < 0 since
(b) > (e) (cf condition (*) in Appendix C). As a consequence, we have ∂B

∂d < 0, which
entails ∂φC

∂d < 0: under the conditions ensuring the existence and uniqueness of
the BGP, φC is decreasing along d.

We then move to determining the variations of φI following a shock on d:

dφI
dd

=
∂φI
∂d

+
∂φI
∂φC

∂φC
∂d

We first notice that ∂φI
∂d = 0. Using (52), we then reformulate φI = φC

H
I with H =

F (k− 1)((a)− (b)) > 0 and I = F (k− 1)((b)− (c)) > 0. Since we have ∂H
∂φC

= Fk(K + β)

and ∂I
∂φC

= −F (k(2k − 1) + β), we obtain the following expression for ∂φI
∂φC

:

∂φI
∂φC

=
HI + φCIFk(k + β) + φCHF (k(2k − 1) + β)

I2
> 0 (63)

(63), along with our above result that ∂φC
∂d < 0, yields dφI

dd < 0: under the conditions
ensuring the existence and uniqueness of the BGP, φI is decreasing along d.

Finally, the variation of θSI can be determined considering the equilibrium condition
(47) (cf. Appendix C), which is a reformulation of the R&D free-entry condition (22) and
in which Q/QP = k

kθSC+θSI
appears in the right-hand side (RHS). Using θSC + θSI = 1,

we have Q/QP = k
k−(k−1)θSI

, and obtain that this ratio is increasing along θSI . Following
an increase in d, cP increases and φC decreases, moving the RHS and the LHS of (47) in
two opposite directions. So as to re-establish the equality, Q/QP needs to decrease: we
necessarily have that θSI has decreased following the positive shock on d.
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Comparative statics in the case of a variation in β

Similarly, we first consider the variation of φC following a shock on β:

∂φC
∂β

=

((
1 +

A√
∆

)
∂A

∂β
+
∂B

∂β

1

2
√

∆

)
D − (A+

√
∆)

∂D

∂β
(64)

with the following forms for ∂A
∂β ,

∂B
∂β and ∂D

∂β :

∂A

∂β
= k(dFk(2k − 3)ρ− (1− a)(k − 1)L) (65)

∂B

∂β
= 8Fk2ρ

[
−k(2k − 1− d(k − 1)(1 + β))((1− a)(k − 1)L+ dFkρ)︸ ︷︷ ︸

Bβ1

−d(k − 1)
(

(1− a)(k − 1)L(d+ k(2− β)− 1)− Fkρ(2k + d(1 + βk)− 1)
)

︸ ︷︷ ︸
Bβ2

]
(66)

∂D

∂β
= −4dF (k − 1)k2 < 0 (67)

The reasoning we presented when analyzing ∂φC
∂d still holds here: under the parametric

conditions guaranteeing the existence and uniqueness of the BGP, the sign of (64) is ulti-
mately determined by the sign of ∂B∂β . We unequivocally have Bβ1 < 0, and since (b) > (e)

we have Bβ2 < 0. As a consequence, we have ∂B
∂β < 0, which entails ∂φC

∂β < 0: under the
conditions ensuring the existence and uniqueness of the BGP, φC is decreasing
along β.

We then move to determining the variations of φI following a shock on β:

dφI
dβ

=
∂φI
∂β

+
∂φI
∂φC

∂φC
∂β

We have already established that ∂φC
∂β < 0 and ∂φI

∂φC
> 0. We finally have the following

partial derivative of φI w.r.t. β:

∂φI
∂β

=
F (k − 1)φC(ρ+ φC)((1− a)(k − 1)L− Fk(ρ+ 2kφC))(
F (k(ρ− φC) + 2k2φC + β(ρ+ φC))− (1− a)(k − 1)L

)2 (68)

Since limk→+∞(kφC) = +∞, for k high enough we necessarily have k
k−1(ρ+ 2kφC) > (b),

which entails ∂B
∂β < 0: under the conditions ensuring the existence and uniqueness

of the BGP, φI is decreasing along β.

Finally, the variation of θSI can again be determined considering the equilibrium con-
dition (47) (cf. Appendix C). Following a positive shock on β, the LHS decreases through
the decrease in φC . So as to re-establish the equality, the RHS needs to decrease identically,
and we necessarily have that θSI has decreased following the shock on β. This ends the
proofs. �

E Existence of the BGP in the duopoly case

Along the BGP, (8) implies that we have r = ρ. Keeping in mind that yR and yP are
linear in Ω along (3), characterizing the BPG then boils down to solving the following 5
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equations for values of φC , φI , cDR , c
D
P and overall wealth Ω:

wF (ρ+ φC) = (1− β)

(
k − 1

k

)
L(cP + cR) + φC

βL(k − 1)cP
ρ+ φC + φI

(69)(
k + 1

k

)
wF (ρ+ φC) =

(
k − 1

k

)
L [(1− β)cR + cP ] + φC

βL(k − 1)cP
ρ+ φC + φI

(70)

wL = wFkφC +
wFkφIφC
φI + φC

+ awL+ L [βcP + (1− β)cR] (71)

cDP =

(
k

2k − 1

)
(yP − wa) (72)

cDR =
k(2k − 1)yR − k(k − 1)yP − k2wa

(2k − 1)2
(73)

We first notice that since a < 1 and yR > yP , positive values of φC , φI and of the overall
wealth Ω necessarily entail positive values for cDP and cDR along (72) and (73). Substracting
(69) from (70) and using the obtained equation to solve for Ω yields the following expression:

Ω = w
F (2k − 1)(ρ+ φC)− (1− a)(k − 1)Lkβ

d(k − 1)kρβ
(74)

Proceeding to the manipulation (69) −
(

k
k+1

)
(70), we obtain the following equilibrium

condition:

(AD(ρ+ φC)−BD)(ρ+ φC + φI) +

(
F

(k − 1)L

)
φC(ρ+ φC) = 0 (75)

with AD and BD being defined the following way:

AD =
F (−2dk2β + k(2− d(2β − 1))− 1 + dβ)

d(k − 1)k(2k − 1)Lβ

BD =
(1− a)(1− d)

d(2k − 1)
> 0 (76)

Substituting for Ω using (74), it is then possible to express φI as a function of φC using
(75). More precisely, it is possible to obtain φI = ψR(φC), with ψR being implicitly defined
by R(φI , φC) = 0:

R(.) =

(
F

(k − 1)L
+AD

)
φ2C +

((
2AD +

F

(k − 1)L

)
ρ−BD

)
φC +ADφCφI + (ADρ−BD)φI + (ADρ−BD)ρ

Proceeding to substitute for Ω in (71), it is also possible to obtain φI = ψL(φC), with ψL
being implicitly defined by L(φI , φC) = 0:

L(.) = −(Fk+CD)φ2C + ((1−a)L−CDρ+DD)φC − (2Fk+CD)φIφC + ((1−a)L−CDρ+DD)φI

with CD and DD being defined the following way:

CD =
F (2k − 1− d(k − 1)(1− β))

d(k − 1)(2k − 1)β
> 0

DD =
(1− a)(1− d)kL

d(2k − 1)
> 0 (77)
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We now proceed to characterizing the curves RR and LL (respectively representing the two
functions ψR and ψL in the (φC , φI) plane). More precisely, we will show that 2 sufficient
conditions for the two curves to intersect once (and only once) in the upper-right quadrant,
i.e. for positive values of φC and φI , are the following:

0 <
(1− a)L− CDρ+DD

2Fk + C
<
B − ρA
A

(∗)

0 < B −
(

2A+
F

(k − 1)L

)
ρ (∗∗)

While we will go back to characterizing and commenting the conditions on the parameters
of the model that guarantee (∗) − (∗∗) once we have proceeded with the demonstration,
note for now that (∗) necessarily entails AD > 0.

We have the following expressions for ψR and ψL:

ψR(φC) =

(
F

(k−1)L +AD

)
φ2C +

((
2AD + F

(k−1)L

)
ρ−BD

)
φC + (ADρ−BD)

AD(ρ+ φC)−BD
(78)

ψL(φC) =
(Fk + CD)φ2C − ((1− a)L− CDρ+DD)φC
−(2Fk + CD)φC + ((1− a)L− CDρ+DD)φI

(79)

We first consider the intercepts of RR and LL with the vertical axis: ψR(0) = −ρ,
and ψL(0) = 0. Considering (78), one can notice that RR displays an asymptote at
φCM = B−ρA

A > 0 under (∗). Similarly, considering (79), one can notice that LL displays
an asymptote at φCm = (1−a)L−CDρ+DD

2Fk+C > 0 under (∗). Finally, since − Fk+CD
2Fk+CD

< 0 and
−1− F

AD(k−1)L < 0 under condition (∗), we have limφC→−∞(ψL) = +∞, limφC→−∞(ψR) =

+∞, limφC→+∞(ψL) = −∞ and limφC→+∞(ψR) = −∞. We then move to considering
the slopes of RR and LL. Using implicit differentiation, we have ∂ψR

∂φC
= −∂R/∂φC

∂R/∂φI
and

∂ψL
∂φC

= −∂L/∂φC
∂L/∂φI

:

∂R

∂φC
= 2

(
AD +

F

(k − 1)L

)
φC +

((
2AD +

F

(k − 1)L

)
−BD

)
+ADφI (80)

∂R

∂φI
= (AD(ρ+ φC)−BD) (81)

∂L

∂φC
= −2(Fk + CD)φC + ((1− a)L− CDρ+DD)− (2Fk + CD)φI (82)

∂L

∂φI
= −(2Fk + CD)φC + ((1− a)L− CD +DD) (83)

We first consider the slope of RR. For φC < φCM , we have ∂R
∂φI

< 0, which entails that
the sign of ∂ψR∂φC

will be the same than the sign of ∂R
∂φC

. The opposite reasoning applies for
φC > φCM . Substituting for φI using (78), one can finally see that solving for ∂R

∂φC
= 0 is

equivalent to solving the following 2nd-degree polynomial in φC :

−AD
(
AD +

F

(k − 1)L

)
︸ ︷︷ ︸

<0 under (∗)

φ2C+2(BD −ADρ)

(
AD +

F

(k − 1)L

)
φC︸ ︷︷ ︸

>0 under (∗)

− (BD −ADρ)

(
ρ− (2AD +

F

(k − 1)L
)ρ+BD

)
︸ ︷︷ ︸

>0 under (∗∗)

= 0

Given the signs of the different terms, this polynomial necessarily admits two positive roots
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(φC1, φC2), which itself entails that RR displays two inflexion points: we have ∂ψR
∂φC

< 0

for φC ∈ [0;φC1] and φC > φC2, while we have ∂ψR
∂φC

> 0 for φC ∈ [φC1, φC2]. Using this
information along the existence of an asymptote, we necessarily have that under (∗)− (∗∗),
RR decreases until φC1, then starts increasing and asymptotically tends to +∞ as φC →
φ−CM . On the right of the asymptote, RR increases until φC2, then starts decreasing and
tends to −∞ as φC → +∞. Furthermore, going back to the equilibrium condition (75),
one can see that we necessarily need AD(ρ+φC)−BD < 0 for this condition to be met for
positive values of both φI and φC : in other words, RR only goes above the horizontal
axis for values of φC < B−Aρ

ρ , and we necessarily have ψR(φC2) < 0. The corresponding
graphical representation of RR can be found below (red curve).

We now move to considering the slope of LL. For φC < φCm, we have ∂L
∂φI

> 0,
which entails that the sign of ∂ψL

∂φC
will be the opposite of the sign of ∂L

∂φC
. The opposite

reasoning applies for φC > φCm. We also have that there is no real solution to ∂L
∂φC

= 0,
which means that LL is either strictly increasing or strictly decreasing along φC . Since
we have limφC→−∞(ψL) = +∞ and limφC→+∞(ψL) = −∞, we necessarily have that LL
is strictly decreasing. Considering all the gathered information, we necessarily have that
LL intersects the origin point (0, 0), then tends to −∞ as φC → φ−Cm. On the right of the
asymptote, RR tends to +∞ as φC → φ+

Cm, and decreases to −∞ as φC → +∞. In other
words, LL goes above the horizontal axis for values of φC > (1−a)L−CDρ+DD

2Fk+C . The
corresponding graphical representation of LL can be found above (blue curve).

Under the conditions (∗)−(∗∗), which are respected for low enough values of k
and not too low values of β, we hence have that RR and LL necessarily intersect
once (and only once) in the upper-right quadrant, i.e. for positive values of φC
and φI . This intersection necessarily happens for (1−a)L−CDρ+DD

2Fk+C < φC < B−ρA
A .

Conditions (∗)−(∗∗) hence ensure the existence of a unique positive equilibrium
in the duopoly case.
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Robustness of the duopoly price regime in the (SC) state

We have hence proved that under conditions (∗) − (∗∗), there exists a unique and
positive solution to the system of equations defining a BGP with a duopoly price regime in
the (SC) state. As already extensively commented in Appendix C, we however still need
to make sure that the obtained values for φDI , φ

D
C , ΩD, cDR and cDP indeed make it optimal

for the successful challenger to charge a price pDR capturing only the rich. In other terms,
we need the following condition to be respected:

πSC(n) +φDI πSI(n+ 1) ≤ πL(n) +φDI π
D
SI(n+ 1) +

φDC
ρ+ φDC + φDI

(
πF (n+ 1) + φDI πF (n+ 2)

)
(84)

with the supercript D referring to the fact we compute the different profits for the values
of ΩD, φDC and φDI obtained when solving for an equilibrium with a duopoly market
structure. The condition above is the exact contrary of Condition (58), which necessarily
holds in the case of φMC , φMI and ΩM for high enough values of β, k and low enough
values of d (cf. Appendix C). Fixing low enough values of β and high enough values of d
would hence probably imply that Condition (84) is respected, ensuring the existence and
the uniqueness of the BGP with a duopoly price regime. However, conditions (∗) − (∗∗)
hold only for high enough values of β. It is hence a priori not obvious that there exists
parameter values for which the duopoly case is robust, and it will depend on the obtained
values for φDC and φDI . The absence of closed-form solutions however makes it necessary to
resort to simulations so as to determine whether (84) holds for some parameter values.

Carrying out some simulations for a wide array of parametric values, the following
numerical finding emerges:

Numerical finding: Under the parametric conditions (∗) − (∗∗) and for low enough
values of F and d, there exists a unique and robust equilibrium BGP in which we have a
duopoly in the (SC) state, and the incumbents invest a positive amount in R&D φI .

It however appears that the parametric constellations under which the duopoly case is
robust and unique are much narrower than their counterpart ensuring a unique and robust
BGP with a monopoly in the (SC) state. This also justifies the fact that we focus on the
monopoly case in the main text of the paper.
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