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Résumé

The microscopic nature of an insulating state in the vicinity of a superconducting state, in the presence

of disorder, is a hotly debated question. While the simplest scenario proposes that Coulomb interactions

destroy the Cooper pairs at the transition, leading to localization of single electrons, an alternate possibility

supported by experimental observations suggests that Cooper pairs instead directly localize. The question

of the homogeneity, granularity, or possibly glassiness of the material on the verge of this transition is

intimately related to this fundamental issue. Here, by combining macroscopic and nano-scale studies of su-

perconducting ultrathin NbN films, we reveal nanoscopic electronic inhomogeneities that emerge when the

film thickness is reduced. In addition, while thicker films display a purely two-dimensional behaviour in the

superconducting fluctuations, we demonstrate a zero-dimensional regime for the thinner samples precisely

on the scale of the inhomogeneities. Such behavior is somehow intermediate between the Fermi and Bose

insulator paradigms and calls for further investigation to understand the way Cooper pairs continuously

evolve from a bound state of fermionic objects into localized bosonic entities.
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Understanding the microscopic processes occurring at the superconductor-insulator transition

(SIT) in ultrathin films is important not only for fundamental reasons, but also for applicative

purposes [1, 2]. The microstructural properties are known to play a key role and the samples can

then be divided into two groups [3] : granular thin films and homogeneously disordered thin films.

For the former, the SIT is driven by the competition between the intergrain Josephson coupling,

favoring the delocalization of pairs, and the Coulomb charging energy of the grains, which renders

charge fluctuations energetically expensive [4]. In the case of nominally homogeneously disor-

dered films however, which are the object of this Article, several scenarios have been proposed.

On the one hand, what is often referred to as the "fermionic" scenario proposes that the mecha-

nism that drives the transition is the reduced screening of the Coulomb repulsion with increasing

disorder, weakening pairing and reducing the critical temperature TC [5], as observed in [6]. In

this case, the insulating state is composed of localized fermions and, in particular, standard para-

conductive fluctuations are expected due to Gaussian-distributed short-lived Cooper pairs. On the

other hand, pairs may survive the SIT in a "bosonic" scenario, in which the gap persists above TC

despite the loss of phase coherence. In this framework, the bosonic pairs either localize because

disorder-enhanced Coulomb interactions destroy their phase-coherent motion at large scales [7, 8]

or disorder itself can blur the pair phase coherence without any relevant role of the Coulomb re-

pulsion [9–12]. On the experimental side, it has been shown through careful study of Little-Parks

oscillations, that either fermionic [13] or bosonic [14][15] transitions may occur. In the latter case,

it was also proposed that the superconducting state is characterized by an emergent disordered

glassy phase [12] with filamentary superconducting currents [9]. An anomalous distribution of the

superconducting order parameter was proposed by theorists [12, 16], and observed experimentally

[17, 18]. A numerical approach to uniformly disordered superconductors [19] has also suggested

that there is a continuous evolution [20] from the weak disorder limit, were the system has a rather

homogeneous fermionic character, to the strong disorder limit, where marked inhomogeneities ap-

pear in the superconducting order parameter, with an emergent bosonic nature characterized by

a single-particle gap persisting on the insulating side. A great deal of experimental activity has

been devoted to the more disordered part of the SIT [17, 21] while the intermediate region where

fermionic Cooper pairs begin to evolve into bosonic pairs has not been extensively accessed. The

aim of this work is precisely to fill this gap by reporting experiments which shed light on how

Cooper pairs evolve with increasing disorder, giving rise to incipient inhomogeneous bosonic fea-

tures. More specifically, we present here a study on a set of ultrathin NbN films that are nominally
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homogeneous, but where electronic inhomogeneities and pseudogap emerge as the thickness is

reduced, together with experimental indications in favor of fermionic mechanisms. Indeed, while

the thickest films (d > 2.2 nm, TC ≥ 0.3T bulkC ) are found to be rather homogeneous [22] with

two-dimensional (2D) Aslamazov-Larkin (AL) superconducting fluctuations, the thinnest samples

offer a more complex behavior characterized by inhomogeneous superconductivity, indication for

a pseudogap above TC (a seemingly "bosonic" feature), in agreement with the literature [17, 18, 23]

and by the establishment of a zero-dimensional (0D) regime of gaussian superconducting fluctua-

tions (a fermion-like hallmark). We show that for films below this threshold film thickness and

critical temperature, the superconducting fluctuations measured by transport above TC behave in

agreement with a formal 0D limit of the AL theory of paraconductivity, in a substantial range of

reduced temperature ε ≡ log(T/TC). This indicates that these fluctuations are still conventional

and seemingly BCS-like, but somehow confined in a "supergrain" over a lengthscale l. The super-

conducting inhomogeneities as evidenced by scanning tunneling spectroscopy at low temperature

correspond to electronic domains of typical size Li/2 precisely of the order of l ∼ 50nm i.e.,

much larger than any definite structural scale of the system. The paradoxical presence of AL fluc-

tuations together with indications for bosonic features such as the pseudogap, well established in

these systems [17, 18, 23], is one of the most intriguing results of this work. We suggest that these

two features can indeed be reconciled if the pseudogap in our system has a fluctuational origin

[24]. We propose that the pronounced amplitude of the pseudogap observed in the ultrathin films

that are the object of our investigation arises from a slowing down in the diffusion of the fluctua-

ting Cooper pairs, which exhibit a tendency to localize on the typical inhomogeneity scale Li and,

at the same time, give rise to the 0D AL behavior.

Results

Our samples consist of ultrathin NbN films grown ex situ on sapphire substrates. Details of the

fabrication process may be found in [25]. (See also the Appendix). The different samples studied

together with their thickness, critical temperature, and resistance per square at room temperature

may be found in Table 1 of the Appendix.

Transmission Electron Microscopy (TEM) measurements of our NbN films (see Fig.5 in the

Appendix) were able to show that the films are smooth and well crystallized, and can be viewed

as a closely packed assembly of nanocrystallites of different orientations. These contiguous na-

nocrystals have typical lateral dimensions dg of about 2−5 nm. The characteristic film structure
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FIGURE 1. Local inhomogeneities of the superconducting state. (a) Topographic map of the NbN area under

study for sample X0 (TC = 3.8 K). (b) Corresponding map displaying the superconducting gap inhomo-

geneities at 300 mK. Gap inhomogeneities appear on a much larger scale than the size of the nanocrystals

(dg ∼ 2 − 5 nm) constituting the NbN films and seen in the topographic map.(c ) Cross-correlation map

between the topographic and spectroscopic maps revealing the absence of correlation. (d) Autocorrelation

map of the gap map (b). (e) Schematics of the relevant length scales. (f) Radial profile extracted from the

autocorrelation map (d). The correlation length Li is defined as the abscissa of the first peak away from the

center and so is about 100 nm in the present sample. The central peak width, about Li/2 ∼ 50 nm gives an

estimate of the typical domain size.

is also reflected in topographic scanning tunneling microscopy images, as the one presented in

Fig. 1a for a nominally 2.14 nm-thick sample X0 (TC=3.8 K). The film surface is very flat and the

observed nanoscale structures correlate well with the nanocrystals revealed by TEM. At the same

time the landscape of the sample also displays smooth inhomogeneities on a larger scale of a few

tens of nanometers.

Probing the inhomogeneities with STM and STS — In order to get insight into the superconduc-

ting (in)homogeneity of these ultrathin films, we performed scanning tunneling microscopy (STM)

and spectroscopy (STS) experiments. Typical results are displayed in Fig. 1. Fig. 1(a) shows a to-
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pographic map of the area under study for sample X0 (TC = 3.8 K). In Fig. 1(b) we report the

extracted superconducting gap map ∆(X, Y ) at 300 mK i.e. well inside the superconducting state

for the area corresponding to the topographic map of Fig. 1(a). ∆(X, Y ) is defined from the dI/dV

spectra as the peak-to-peak energy (see Fig. 6 in the Appendix for the corresponding representa-

tive dI/dV spectra). In agreement with previous measurements in similar systems [17, 21], we

observe spatial variations of the gap (see Fig. 1(b)) and of the integrated in-gap conductance (see

Appendix). However, we reveal here for the first time that these gap variations are not correlated

to the topography of the surface. Indeed, the cross-correlation map between (a) and (b) reveals the

absence of correlation [see Fig. 1(c)].

In Fig. 1(d) we report the autocorrelation map of the gap map shown in Fig. 1(b). It allows

us to extract both the typical size of domains of constant gap values, hereafter called supergrains,

and the typical distance Li between the centers of such adjacent supergrains. The radial profile

extracted from the center of the autocorrelation map is shown in Fig. 1(f), featuring a correlation

length Li of about 100 nm and a typical domain size of about Li/2. This is more than ten times

larger than the size of the microstructural grains dg ' 2−5 nm (see Fig. 1(e) depicting the relevant

lengths scales). Above the global critical temperature TC these inhomogeneities persist, as well as a

gap-like feature called pseudogap. In addition, our measurements reveal that the energy integrated

in-gap conductance maps at 300 mK and at 4.2 K, performed on the same area of Fig. 1(a) are

correlated (see Fig. 6 in the Appendix). We deduce that at 4.2 K Li remains roughly the same,

whilst the spectroscopic contrast between the regions changes with temperature.

By contrast, similar spectroscopic studies carried out on thicker samples (d ≥ 2.3 nm, TC ≥

0.3T bulkC ) revealed a much more homogeneous superconducting phase [22]. Therefore, some short-

scale inhomogeneity in the superconductive properties emerges for the thinner samples at a scale

Li while the system is structurally homogeneous over the same length scale. This is consistent

with predictions from Monte-Carlo simulations [19].

Analysis of the paraconductivity — In order to probe the influence of these nanoscale inhomo-

geneities on the superconducting thermal fluctuations, we performed transport measurements in

the vicinity of TC and extracted the paraconductance per square ∆σ(T ) = σ(T ) − σN(T ), i.e.,

the excess conductance per square due to superconducting fluctuations in the normal state. Here,

σ(T ) is the square conductance measured under zero magnetic field and σN(T ) is the normal state

square conductance. The resistance per square is displayed on Fig.2 for the different samples, toge-

ther with the extrapolated [(a) solid lines] or measured [(b) full symbols] resistance of the normal
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FIGURE 2. (a) Square resistance under 0 T as a function of temperature for the thicker samples B2 (TC =

7.1 K, +), C1 (TC = 9.4 K, ×), F0 (TC = 9.0 K, ∗), with the corresponding extrapolated normal state

resistance (solid lines, see text). (b) Square resistance under 0 T as a function of temperature for the thinner

samples Y0 (TC = 4.3 K, open circles), X0 (TC = 3.8 K, open squares), A2 (TC = 4.5 K, open diamonds),

and A4 (aged A2, TC = 2.4 K, open triangles). The square resistances under a perpendicular magnetic field

of 14 T are reported with the corresponding full symbols. The solid lines are for the extrapolated normal

state resistances.

state. (See the methods Section for details on the determination of the normal state.)

In Fig. 3(a) the variation of ∆σ with the reduced temperature ε ≡ ln(T/TC) is shown for

samples B2, C1, and F0 : the observed critical exponent −1 is consistent with the Aslamasov-

Larkin prediction for 2D systems (AL 2D) [26] ∆σ = e2/(16~ε) in the range 0.02 6 ε 6 0.2−0.9,

as it was reported previously for these films [25]. Remarkably, the extracted experimental AL

2D prefactor matches the theoretical one, without any adjustable parameter. This suggests that
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the fluctuations in this case are BCS-like, and that Maki-Thomson (MT) fluctuations [27, 28] or

density-of-state (DOS) corrections[4, 29, 30] are absent or negligible.

Proceeding in a similar way, we extracted the paraconductivity of the thinner samples A2, A4

(agedA2),X0 and Y0 (shown as open symbols in Fig. 3(b). The AL 2D prediction is also displayed

in the same Figure (purple solid line). The experimental paraconductance is found to deviate stron-

gly from the AL 2D behavior over a significant temperature range, even when using TC as a free

parameter, and to exhibit over a substantial range of reduced temperature a very specific law,

∆σ ∼ ε−2, corresponding to 0D fluctuations, previously observed in granular materials [31–34].

An empirical fitting function, ∆σ = 0.03e2/(~ε2) for A2 and X0 is plotted for comparison (ma-

roon solid line). Similar behaviors, i.e., ∆σ = 0.02e2/(~ε2) for Y0, and ∆σ = 0.015e2/(~ε2) for

A4, were found to hold for the other samples. The paraconductance data, e.g., for sample A2 also

suggests a 0D-2D crossover [see also the lower inset in Fig. 3(b)] as previously observed in [35]

and discussed in [32]. We point out that the fluctuational critical temperature may differ in the

two regimes, so that the crossover is more evident when the pararesistivity ∆σ−1 is plotted as a

function of T , without making any choice for TC , rather than ε, which depends on TC [see the

upper inset in Fig. 3(b)].

Concerning the absence of MT terms, we stress out that, with pair breaking arising only from

electron-electron interactions, MT paraconductance is less singular than the AL term in 2D [36],

and even less so for 0D AL. On the other hand, the presence of a sizable pseudogap suggests that

DOS corrections should be present. DOS corrections, however, lead to a decrease of the paracon-

ductance. In our case, instead, the paraconductance in the pseudogap regime is found to be even

more singular with ε−2 dependence that can not be explained by DOS contribution. This clearly

indicates that DOS corrections, although expected, are immaterial in this case.

Study of the magnetic field driven transition — The above study near TC was complemented by

the analysis of the transport properties of the thinnest samples at the transition to the normal state

driven by magnetic field, well below TC . We found that the curves R(H) cross at a specific point

{RC ;HC} (see also Fig. 8 in the Appendix for further details). Following Ref. 37, we analyzed

the curves in the vicinity of this point and evidenced a scaling behavior of the type R/RC =

f(|H−HC |T−α) with the critical exponent α ≈ 3/2 (See the data in Fig. 4(a) for sample A2). The

occurrence of such scaling behavior, where T is the only relevant scale, marks the existence of a

quantum critical point (QCP) at zero temperature and for H = HC . Consequently, the exponent

α can be expressed as α = 1/(νz), where ν is the exponent that rules the variation of the spatial
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FIGURE 3. (a) Extracted square paraconductance for the thicker samples B2 (TC = 7.1 K, +), C1 (TC =

9.4 K, ×), and F0 (TC = 9.0 K, ∗) as a function of the reduced temperature ε ≡ ln(T/TC). The agreement

with the Aslamasov-Larkin prediction for a 2D system (purple solid line) is excellent, without any adjustable

parameter. (b) Extracted square paraconductance for the thinner samples Y0 (TC = 4.3 K, open circles), X0

(TC = 3.8K, open squares), A2 (TC = 4.5 K, open diamonds), A4 (TC = 2.4K, open triangles). The

maroon solid line corresponds to ∆σ = 0.03e2/(~ε2). The expected AL 2D square paraconductance is also

shown (purple solid line). The upper inset shows the pararesistance ∆σ−1 as a function of temperature for

the sample A2, emphasizing the 2D [∝ (T − TC)] and 0D [∝ (T − TC)2] behaviours, the crossover form

one to the other, as well as the different fluctuative critical temperatures in the two regimes (T 2D
C = 4.9 K,

T 0D
C = 4.4 K). The lower inset shows the crossover to the 2D AL square paraconductance for the sample

A2 as a function of the reduced temperature. (In this case ε = ln(T/T 2D
C ) was used.)
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correlation length ξ ∼ |H −Hc|−ν and z is the dynamical critical exponent ξz ∼ 1/T .

In order to extract the values of ν and z from α ≈ 3/2, similar measurements were performed

at a fixed temperature, T =1.9 K, for different values of the electric field, i.e., of the bias voltage

across the sample [see the data for sample A2 in Fig. 4(b)]. Here again, the R(H) curves exhibit

a common crossing point corresponding to the QCP (see Fig. 9 in the Appendix). The scaling

analysis in the vicinity of this point, with a scaling function of the formR/RC = g(|H−HC |E−β),

yielded β ≈ 3/4. Following the analysis in Refs. 37–39, we express β as β = 1/ν(z + 1). The

two independent determinations of νz and ν(z + 1) allow us to establish ν = 2/3 and z = 1. The

latter is precisely the result expected, e.g., in systems with (weakly screened) long-range Coulomb

interactions, while the former is consistent with a 3D classical XY model or 2D quantum XY

model (with z=1). A similar analysis, performed on sample F0 under high pulsed magnetic field

allowed to evidence a plateau between 1.5K and 8K for HC = 18.6K and to extract a product of

critical exponents νz ∼ 2/3.

Discussion

As we report in the Appendix, the coherence length exponent that leads to the observation of

an anomalous power law ∆σ ∼ ε−2, is consistent with a formal calculation of AL fluctuations

in a 0D system. ∆σ is converted into the measured paraconductance per square by means of

a suitable length scale l, which represents the size of the 0D fluctuating domains, in the plane

parallel the film, yielding δσD=0 = ( ξ0
l
)2 πe

2

4~ε2 . Deducing for ξ0 a value of 5.5± 0.5 nm from the

value of HC at the QCP, in agreement with extrapolated values in [25], it is possible to extract l

from the paraconductivity data. One finds, e.g., l = 28 nm for samples A2 (TC = 4.5 K) and X0

(TC = 3.8 K), l = 35 nm for sample Y0 (TC = 4.3 K), and l = 40 nm for sample A4. This length l

is in good quantitative agreement with the typical domain size Li/2 ∼ 50nm extracted from STS

data at 300 mK and at 4.2 K for sample X0 (TC = 3.8 K). This means that the length Li/2 ∼ l

and not the real grain size dg � l sets the scale for the 0D fluctuating domains, until ξ becomes

larger than Li. Further theoretical investigation is necessary to understand the physical meaning of

the presence of these 0D domains, that behave like smooth "supergrains". The observed behavior

could actually be interpreted in terms of slower diffusion of the Cooper pairs thus increasing their

lifetime on length scales smaller than l. By contrast, a standard diffusive behavior is recovered

at longer times and larger distances giving way to standard 2D behavior eventually ruling the

transition (see the Appendix for more details).
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FIGURE 4. (a) Normalized resistance R/RC of sample A2 as a function of the scaling variable |H −HC |t

for different temperatures. HC = 10.7 T and RC = 11 kΩ at the crossing point. t ≡ T−1/νz was adjusted

in order to obtain the best collapse of the data. Inset : Log-log plot of the parameter t vs temperature, used

to determine the value of νz = 2/3. (b) Normalized resistance R/RC of sample A2 as a function of the

scaling variable |H − HC |u for different electrical fields, measured at T =1.9 K. u ≡ E−1/ν(z+1) was

adjusted in order to obtain the best collapse of the data. Inset : Log-log plot of the parameter u vs. voltage

used to determine the value of ν(z + 1) = 4/3.
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To our knowledge, the only previous evidence in the literature of a 0D fluctuations regime in

transport is for nominally granular or filamentary systems [31, 33, 34]. The novelty lies here in

the observation of such behavior in a compound where the inhomogeneity arises in a “mild” way :

The films are far from granularity because the 0D behavior does not occur on the small scale of

the crystallites, but rather on the larger typical scale l, comparable to the correlation length Li/2

inferred from STS. The emergent (as opposed to the structural) character of the 0D regions is

also suggested by the lack of any correlation [see Fig. 1(c)] between the inhomogeneous domains

observed with STS [Fig. 1(b)] and the large-scale structural disorder observed in the topography

of the crystallite ensemble [Fig. 1(a)].

For the superconducting transition to be probed in transport, the 0D fluctuations regime has

to finally evolve to higher-dimensional behavior. Close enough to TC a crossover to 2D behavior

must (and does) occur, when the superconducting coherence length becomes larger than Li and

enables to couple different 0D domains, following a scenario analogous to the Lawrence-Doniach

description for lamellar materials [32, 40]. As a matter of fact, the 0D-2D crossover is visible for

sample X0 (d = 2.14 nm), as well as for the sample A2 (d = 2.16 nm). Please see the insets of Fig.

3. However, we propose here a different physical explanation for this crossover. We start with an

expression of the AL paraconductivity in D dimensions (see details in the Appendix) :

δσD(ε) =
πe2

4~D

∫ ∞
0

dγ
ND(γ)

(ε+ γ)3
(1)

with a suitable "density of states" (weighted with current vertices) ND(γ). Setting D = 2, the

standard AL result is found for N2(γ) = γ/π, corresponding to diffusion of fluctuating Cooper

pairs in two dimensions. However, if

N2(γ) =

{
γ/π, for γ ≤ γ̄,

γ̄/π, for γ > γ̄,
(2)

corresponding to a slowing-down of the diffusion of fluctuating Cooper pairs above a threshold γ̄,

a 0D behavior

δσ ≈ e2γ̄

16~ε2
(3)

is found for ε � γ̄. A comparison with the formal extrapolation of AL fluctuations to D = 0

yields γ̄ = 4π(ξ0/l)
2. For ε� γ̄, the standard 2D AL paraconductivity is recovered.

Finally, at even lower temperature (below the 2D AL transition temperature), the system might

be governed by percolation physics or, alternately, by Berezinski-Kosterlitz-Thouless behavior.
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This behavior, if any, should occur on a very restricted range of temperature, because our mea-

surements always display the paraconductivity of standard gaussian fluctuations. If the bosonic

scenario was applicable to our films, the transition should be ruled by dephasing of the pairs and

paraconductivity should mirror the characteristics of the vortex fluctuations in the BKT transition

[41]. So, at first sight, our findings seem at odds with the existence of a pseudogap on the normal

side of the transition as is well established in the literature and can be seen in the conductance maps

and dI/dV spectra in the supplementary material, and which is usually ascribed to the strong loca-

lization of Cooper pairs [18, 23]. Our work suggests a different explanation. The diffusion slowing

down of the fluctuating Cooper pair in the "supergrains" increases their lifetime. This might occur

either because they locally find a more suitable environment, like, e.g., a locally higher TC , or,

conversely, because they display an increased tendency to localize for those wavevectors corres-

ponding to the largest inhomogeneities. This second possibility seems more likely because our fits

suggest that the 0D critical temperature (i.e. the “local” critical temperature) is slightly lower than

the 2D large-scale TC . The incipient localization and diffusion slowing down of the Cooper pairs

seems to have a sizable effect on depressing the density of state at the Fermi level, thus suggesting

the possibility of a substantial fluctuational pseudogap [24] [29].

The magnetic-field driven transition at low temperature can be interpreted as magnetic field-

induced dephasing of the 0D supergrains thereby accounting for the critical exponents ν = 2/3

of an XY model in 2+1 dimensions, the additional "1" coming from the dynamical critical index

z = 1. The value z = 1 is pertinent, e.g., to systems with (weakly screened) long-range Coulomb

interactions [42]. It is also consistent with numerical calculations based on a Boson-Hubbard mo-

del [43]. Similar values for ν were observed in Bi [39] or NbSi [44] amorphous thin films, whereas

a large number of studies of the SIT point towards a different universality class with ν = 4/3

[38, 45–47], a critical exponent consistent with classical percolation. Our findings are therefore

in agreement with a picture of phase fluctuating 0D supergrains coupled à la Josephson, for the

magnetically driven transition.

The question arises of the origin of the electronic inhomogeneities. Indeed, while the structural

small scale inhomogeneity associated to the structural grains (2−5 nm) appears to be irrelevant, we

deal with three larger scales over distances of tens of nanometers (Li ≈ 100 nm) : a) the electronic

inhomogeneity of the pseudogap seen by STS [Fig. 1(b)] ; b) the scale of the 0D AL behavior

seen in transport, and c) the topographic smooth landscape [Fig. 1(a)]. Although the scale b) is

obtained from transport and cannot be easily connected to a spatial structure, it is quite tempting
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to associate the electronic scales of pseudogap and 0D transport to the scale on which Cooper

pairs tend to localize (before they eventually condense on the infinite scale of the 2D transition).

On the other hand, the fact that there is no correlation between the topographical map and the

superconducting gap map proves that the structure is not responsible for the gap inhomogeneities

in a trivial way. i.e. it is not some local parameter variation (for instance thickness or stoichiometry)

that induces a locally-correlated variation of the superconducting properties. This does not mean

that disorder or structural inhomogeneities are irrelevant. They are most probably relevant, but in

a complex manner such as, for instance, disorder is relevant for localization but localization length

is not simply the distance between impurities.

In any case the main result of our work is that a 0D physics is found to spontaneously emerge in

transport measurements on the same length scales as the length scale for the superconducting inho-

mogeneities, much larger than the structural crystallites, indicating that this structural complexity

has an electronic counterpart producing anomalous diffusion of the Cooper pairs.

Conclusion

The emergence of (glassy) inhomogeneous superconducting phases out of homogeneously di-

sordered films has been proposed both theoretically [12, 16, 19] and measured experimentally

[18, 21, 22]. Our STS measurements have evidenced electronic inhomogeneities with typical cor-

relation length (Li ≈ 100 nm) and typical domain size Li/2 in the superconducting state below TC

and in the superconducting fluctuations above TC in NbN ultrathin films. These inhomogeneities,

which are much larger than the structural grains of the film made of nanometer-sized nanocrys-

tals, correspond to simultaneous spatial variations of the energy of the superconducting gap and

of the energy-integrated in-gap conductance, and are found to become dominating for the thinner

samples, where they strongly affect the superconductive thermal fluctuations. Specifically, we have

shown that, for films with nominal thickness d < 2.3 nm or TC < 0.3T bulkC , these inhomogeneities

are associated with specific exponents in the dependence of the gaussian superconducting fluctua-

tions with reduced temperature. These exponents are consistent with AL fluctuations confined into

0D supergrains of size l ∼ Li/2. On the other hand, at low temperature, the analysis of the ma-

gnetic field driven transition is consistent with a 2D quantum XY model, which is also evocative

of 0D supergrains coupled à la Josephson. In this regime, the Cooper pairs are tightly bound and

the transition is ruled by supergrain dephasing, in contrast to the transition at finite temperature

where AL amplitude fluctuations are instead observed.
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We propose that, above TC , diffusion slowing down of the Cooper pairs in the supergrains

increases their lifetime and leads to a depression in the density of states at the Fermi level, yiel-

ding a fluctuational pseudogap. The origin of these inhomogeneities as well as of this anomalous

diffusion process is still to be investigated. In any case, this work appeals for a new theoretical

microscopic description for this peculiar state of matter, with interplay of localization and pairing,

intermediate between the Fermi and the Bose insulators paradigms.

Methods

Scanning tunneling spectroscopy The electronic inhomogeneities in the superconducting state

were probed by using scanning tunneling spectroscopy (STS) at 300 mK or 4.2 K and establishing

full I(V ) STS grids of typically 256×256 resolution over a 300×300 nm2 area. The dI/dV tunne-

ling conductance spectra were obtained by numerical derivation of the I(V ) data. The conductance

maps shown in Fig. 6 of the Appendix were obtained by integrating in energy the individual dI/dV

conductance spectra in an energy range of ±0.9 meV. The radial profile shown in Fig. 1(f), extrac-

ted from the autocorrelation map [Fig. 1(d)] of the gap map [Fig. 1(b)], is the circular average of all

profiles passing through the center of the autocorrelation map. The measurements were performed

with a Pt/Ir tip.

Transport measurements Transport measurements were carried out by means of a standard four-

probe technique in a 14 T Quantum Design PPMS (Physical Properties Measurement System). Re-

sistance data was extracted using either a dc current or an ac current at 17 Hz. Four-probe contacts

were made by directly bonding Al wires to the NbN films. Six different samples were experimen-

tally analyzed corresponding to different thicknesses : 2.10 nm (Y0), 2.14 nm (X0), 2.16 nm (A2,

or A4, after aging), 2.33 nm (B2), 2.5 nm (C1) and 2.9 nm (F0). The resistivity was measured as a

function of temperature with various magnetic field ranging from 0 T to 14 T and for sample A2

with various applied currents in the vicinity of the QCP.

The critical temperature was determined by using the extrapolation to zero resistance of the

tangent at the inflection point of the resistance versus temperature curve. See the values in Table 1

of the Appendix.

High magnetic field measurements were performed at LNCMI (Toulouse) on sample F0, using

pulsed fields up to 55 T. The ac resistance was measured using four probe technique at a frequency

of 50 kHz. This was used to perform scaling analysis on sample F0 at the vicinity of the QCP.

In order to determine the paraconductance contribution, one needs to extract the normal state
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conductance. For samples A2, A4 and Y0, that were close enough to the insulating transition, so

that the normal state was recovered under a perpendicular 14 T magnetic field, we identified σN(T )

with σ14T(T ). For the thicker samples B2, C1 and F0, the normal state was not recovered under

14 T and we extrapolated the normal state from the high-temperature data (typically between 80K

ad 150K) using the same fitting law that worked for the 14 T resistance of the thinner samples, but

with different parameters, namely ρN(T ) = a3L
3
T + a1LT + a0, with LT ≡ ln(1/T ). (For X0,

that was measured in situ inside the STM cryostat, a similar extrapolation was used for the normal

state.) This extrapolation may induce an error on the absolute amplitude of ∆σ, but not on the

exponent governing the temperature dependence of the divergent term in σ(T ) at T = TC , since

no divergence at TC is present in the normal state conductance nor in its fitting law.

ACKNOWLEDGMENTS

This work has been supported by a SESAME grant from Region Ile-de-France. Collaboration

with Università di Roma La Sapienza was supported by CNRS through a PICS program (S2S)

and by a Joliot grant from ESPCI ParisTech. The work at INSP was supported by the Emergence-

UPMC program. We acknowledge the support of the LNCMI-CNRS, member of the European

Magnetic Field Laboratory (EMFL).

16



APPENDIX

SAMPLE FABRICATION AND CHARACTERISATION

The NbN films were grown at Karlsruhe Institute of Micro and Nanoelectronic Systems, on the

optically polished side of sapphire substrates by means of dc reactive magnetron sputtering of a

pure Nb target in an Ar + N2 gas mixture as described in Ref. [25]. The deposition process was

optimized in order to provide the highest transition temperature.

The thickness was evaluated during the deposition of NbN at the Karlsruhe Institute of Mi-

cro and Nanoelectronic Systems, by time of exposure of the substrate and measurement of the

deposition rate. Figure 5 shows a high-resolution transmission electron microscopy image of a

2.33 nm-thick NbN film. The atomic rows of the sapphire substrate and of the NbN layers are

clearly visible. The NbN film consists of nanocrystals of typical size of approximately 2-5 nm,

linked together by crystalline boundaries.

Both the chemical analysis performed across the film and the atomic force microscopy (AFM)

measurements indicated that an oxide layer (presumably Nb2O5) is present on top of the NbN

films. This layer appears within a few minutes after exposing the film to air for the first time. The

thickness of the oxide layer on newly prepared films varies in the range 0.5 to 1 nm. Further oxi-

dation proceeds much slower. The transition temperature of samples with TC . 10 K was actually

found to decrease with time and thermal cycling. Simultaneously, the normal-state resistance was

found to increase. This fact was used experimentally to tune the superconductor/insulator tran-

sition in sample A4 which corresponds to aged A2. We were able to establish that the top oxide

layer is insulating and not conducting. The dependency of the STM tunneling current versus tip-

sample distance shows an exponential decay whose exponent is directly linked to the effective

work function of the sample. For a metallic sample, it is typically around 4eV. When an ultra-

thin (ie few atomic monolayers thick) insulating barrier on top of a metal is present, the effective

work function is lowered (see [48]), typically by a factor of two at least. We have observed that

the dependency of the tunneling current shows such a reduced work function, thus supporting the

existence of an insulating oxide layer. Therefore the existence of a top metallic layer such as NbO

for instance seems unlikely in our case. The effect of this oxide layer on the superconducting

properties of ultra thin NbN films is discussed in more details in [22].
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FIGURE 5. High-resolution transmission electron microscopy (HRTEM) image of a 2.33 nm-thick NbN film

grown on sapphire substrate. The NbN film consists of nanocrystals of typical size of approximately 2-5 nm,

linked together by crystalline boundaries. The presence of a ' 1 nm thick insulating oxide layer (possibly

Nb2O5) on top of the NbN film was inferred from a chemical analysis with scanning TEM measurements

across the layers and from AFM measurements and is not visible on this image.

SCANNING TUNNELING SPECTROSCOPY (STS) DATA

We present in Fig.6a) and b) the representative dI/dV (V ) tunneling spectra measured at

300 mK and 4.2 K on the area of interest shown in Fig. 1a of the main text. The blue spectra are

measured on the lower gap areas (blue areas) of the gap map presented in Fig. 1b of the main text,

while red spectra are measured on larger gap areas of Fig. 1b. It is seen that a spatially varying

pseudogap is measured at 4.2 K, having the characteristic energy scale of the superconducting

gap measured at low temperature. Figs. 6c) and d) present dI/dV conductance maps integrated

in the energy range of the low-temperature superconducting gaps, at 300 mK (c) and at 4.2 K (d).

It is clear from this figure that both superconducting correlations and superconducting inhomo-

geneities persist above TC . In addition, our analysis shows that these two conductance maps c)

and d) measured over the same topographic area are strongly correlated. This result can be seen

in Fig. 6e) where the cross-correlation map between 6c) and 6d) is plotted. This proves that the

inhomogeneities in the energy gap value below TC and in the pseudogap features above TC are
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FIGURE 6. dI/dV tunneling conductance spectra as a function of bias voltage measured by STS on sample

X0 at a) 300 mK, b) 4.2 K. A spatially varying pseudogap is measured at 4.2 K, having the characteristic

energy scale of the superconducting gap. The blue spectra are measured on the lower gap areas (blue areas)

of the gap map shown in Fig. 1b of the main text, while red spectra are measured on larger gap areas of

Fig. 1b. c) dI/dV conductance map integrated in the energy range ±0.9 meV (inside the low-temperature

energy gap region) at 300 mK. The observed inhomogeneities correspond to those seen in the gap map of

the main text shown in panel Fig. 1b. d) Same quantity as in c) but at 4.2 K. This map evidences inho-

mogenities above TC in the pseudogap features. e) Cross-correlation map between c) and d) showing that

the inhomogeneities at 300 mK and at 4.2 K are strongly correlated. f) Radial profile extracted from the

cross-correlation map e). This analysis allows us to conclude that the length scale Li characteristic of the

superconducting inhomogeneities is the same at 300 mK and at 4.2 K.

strongly spatially correlated. Furthermore, the radial profile shown in Fig. 6f), extracted from a cir-

cular average of the cross-correlation map e), allows us to infer that the characteristic correlation

length Li of these inhomogeneities at 4.2 K is comparable to the one seen at 300 mK, of size about

100 nm. We have also performed STS measurements on sample X0 at higher temperature so well

in the 0D regime (around 7K) which show similar results as the one presented in Fig. 6b) and Fig.

6d) at 4.2K. The only difference between the 7K and 4.2K data is that the spectroscopic features
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related to the pseudogap are smaller in amplitude at 7K. But the regions where the pseudogap is

still present (corresponding to the supergrains) have the same characteristic size and spacing as at

300mK or at 4.2K.

ANALYSIS OF THE PARACONDUCTIVITY : FITTING PARAMETERS FOR THE NORMAL

STATE RESISTANCE

For samples A2, A4 and Y0, that were close enough to the insulating transition, so that the

normal state was recovered under a perpendicular 14 T magnetic field, we identified σN(T ) with

σ14T(T ). The resistance of sample X0 was measured in situ inside the STM cryostat up to 30 K,

therefore the measure under 14T magnetic field could not be performed, and we extrapolated the

normal state. For the thicker samples, B2, C1 and F0, superconductivity could not be completely

suppressed by a magnetic field of 14 T. In such cases, the normal-state resistance was fitted by an

expression that worked well for the thinner samples under 14 T,

ρN(T ) = a3L
3
T + a1LT + a0, (4)

with LT ≡ ln(1/T ). We determined the parameters a0,1,3 fitting the high-temperature resis-

tance, typically in the range 80−150 K (except for the sampleX0, for which the range was forcedly

smaller, 10−30 K). The fitting parameters are found in Tab. II.

ANALYSIS OF THE PARACONDUCTIVITY : POSSIBLE OBSERVATION OF A 0D-2D CROS-

SOVER

In Fig. 7 we plot the pararesistance ∆σ−1 as a function of temperature (and not reduced tem-

perature ε) for sample X0. Such plot (similar the right inset of Fig. 3b in the Article for sample

A2) allows to visualize both the 0D AL (quadratic) regime and the 2D (linear) regime closer to

TC . Since the two regimes are characterized by different “fluctuational” critical temperatures, they

cannot be both visualized with a single choice of TC in the reduced temperature ε. Such 0D-2D

crossover was indeed observed in all thinner samples A2, A4, X0 and Y0.
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sample name
thickness

(nm)

TC
(K)

Rsq(300 K)

(kΩ/sq)

T 2D
C

(K)

T 0D
C

(K)

F0 2.90 9.0 1390 8.6 -

C1 2.50 9.4 2370 9.5 -

B2 2.33 7.1 2450 7.1 -

A2 2.16 4.5 3150 4.9 4.4

A4 (aged A2) 2.16 2.4 4570 3.0 2.9

X0 2.14 3.8 3800 3.9 3.6

Y0 2.10 4.3 2350 4.9 4.3

TABLE I. Sample nominal thickness, critical temperature TC (defined as the extrapolation to zero resistance

of the tangent at the inflection point of the resistance curve), resistance per square Rsq at room temperature

for the different samples studied, and “fluctuational” critical temperature for the 2D (T 2D
C ) and 0D (T 0D

C )

AL regime.

sample name a0 (kΩ/sq) a1 (kΩ/sq) a3 (kΩ/sq)

X0 9299 1038 1.370

B2 5804 275.3 10.53

C1 3529 32.32 6.094

F0 2212 4.512 4.381

TABLE II. Fitting parameters of the normal state resistance according to the expression ρN (T ) = a3L
3
T +

a2L
2
T + a1LT + a0, with LT ≡ ln(1/T ). Since the inclusion of the L2

T term did not improve significantly

the fits, to reduce the number of fitting parameters, we fixed a2 = 0.

STUDY OF THE QUANTUM CRITICAL REGION

In Fig. 8 are displayed the isothermal resistance versus magnetic field curves for different tem-

peratures. The curves for temperatures between 1.8 K and 2.6 K exhibit a common crossing point,

at HC = 10.7 T and RC = 11 kΩ, corresponding to the quantum critical point. For these measure-

ments, the current and voltage values across the sample were very low and the curves were found

to be insensitive to amplitude variations of the current bias. In Fig. 9 are displayed the isopoten-

tial resistance versus magnetic field curves for different values of the voltage applied across the

sample, corresponding to different values of the electric field. The measurements were performed
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FIGURE 7. Pararesistance ∆σ−1 for sample X0 as a function of temperature, illustrating the 0D AL be-

havior, where ∆σ−1 ∝ (T − T 0D
C )2, and the crossover to the 2D AL regime close enough to TC , where

∆σ−1 ∝ T −T 2D
C . We point out that the “fluctuational” critical temperatures T 0D

C and T 2D
C need not be the

same, as they enter the expressions of fluctuation contributions living on different length scales.

FIGURE 8. Resistance versus magnetic field data for temperature between 1.8 K (lower curve at low fields)

and 2.6 K (upper curve at low fields).

at 1.9 K. As for the isothermal curves, the isopotential curves are found to cross in a single point.

These curves were then used for scaling analysis as described in the Article.

22



FIGURE 9. Resistance as a function of magnetic field at different electrical fields across the sample at a

temperature of 1.9 K.

THEORETICAL ANALYSIS OF PARACONDUCTIVITY

Zero dimensional Aslamazov-Larkin (AL) fluctuations

To discuss AL paraconductivity, we assume overall isotropy (at least in the average) and start

from the expression [26, 49]

δσD(ε) =
πe2

4~

∫
dDq

(2π)D
1

D
(∇qγq)2

1

(ε+ γq)3
(5)

that reproduces the standard AL result in D dimensions with γq ≡ ξ20 |q|2 ≡ ξ20q
2 being the

relaxation rate for each mode q. ξ0 is the coherence length and ε ≡ log(T/TC), TC being the

critical temperature seen by the fluctuating Cooper pairs (which may differ from the actual critical

temperature, in the presence of crossover phenomena). The above formula is rather general [50],

although the expression of ε may change depending on the microscopic theory, and the expression

ε ≡ α(T − TC)/TC , with a dimensionless prefactor α not necessarily equal to one, might be used.

However, for definiteness, we adopt henceforth the standard definition of ε.

Since γq only depends on q, the angular integration factors out and one obtains

δσD =
πe2ΩD

4~D(2π)D

∫
dq qD−1

(
dγq
dq

)2
1

(ε+ γq)3
, (6)

where ΩD ≡ 2πD/2/Γ(D/2) is the surface of the unitary sphere in D dimensions and Γ(z) is the
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Euler gamma function. Exploiting the expression of γq one obtains

δσD =
πe2ΩDξ

4
0

~D(2π)D

∫ ∞
0

dq
qD+1

(ε+ ξ20q
2)

3 . (7)

When D → 0, ΩD inherits the singularity of Γ(D/2) ≈ 2/D, so that ΩD ≈ D, and

δσD→0 =
πe2ξ20
4~ε2

, (8)

i.e., there exists a well defined limit of the AL paraconductivity asD → 0, that scales with ε−2, and

qualitatively agrees with the behavior observed in the thinnest NbN films. This result is converted

into the measured conductance per square, dividing it by the square of a suitable length scale l,

related with the size of the fluctuating (nano)domains,

δσmeasured =

(
ξ0
l

)2
πe2

4~ε2
. (9)

However, although the supergrains may behave as quantum dots, closer to TC the system is two-

dimensional, the supergrains are coupled, and the paraconductive fluctuations must cross over to

D = 2. The formal limit does not allow for a description of this crossover and the identification

of the relevant length scales. A crucial remark of Ref. [49] is that the AL theory can be cast in an

even more general form, introducing a suitable weighted density of states,

ND(γ) ≡
∫

dDq

(2π)D
(∇qγq)2 δ(γ − γq), (10)

which allows to write the paraconductivity in the form

δσD =
πe2

4~D

∫ ∞
0

dγ
ND(γ)

(ε+ γ)3
. (11)

The standard AL result is recovered with

ND(γ) ≡ 4ξ40ΩD

(2π)D

∫ ∞
0

dq qD+1δ(γ − ξ20q2), (12)

yielding

δσD =
πe2ξ2−D0 ΩD

2~D(2π)D

∫ ∞
0

dγ
γD/2

(ε+ γ)3
. (13)

We argue that the observed 0D-2D crossover stems from a different form ofND(γ), that results

from the supergrains (endowed with an internal structure) being connected in a 2D network. In the

following we thus setD = 2. The standard 2D AL result is found forN2(γ) = γ/π, corresponding

to diffusion of fluctuating Cooper pairs in two dimensions. If instead N2(γ) = γ/π, for γ ≤ γ̄,

24



and N2(γ) = γ̄/π, for γ > γ̄, which describes a slowing-down of the diffusion of fluctuating

Cooper pairs above a threshold γ̄ (e.g., corresponding to trapping of the fluctuations within the

supergrains), the paraconductivity is

δσ =
e2

16~
γ̄

ε(ε+ γ̄)
, (14)

which recovers the 2D behavior for ε� γ̄, while for ε� γ̄

δσ ≈ e2γ̄

16~ε2
, (15)

mimicking the 0D behavior at higher temperature. A comparison with the formal extrapolation

of AL fluctuations for D → 0 yields γ̄ = 4π(ξ0/l)
2. As a matter of fact, the 0D-2D crossover is

clearly visible for sample X0 (d = 2.14 nm) for which a much greater number of points was taken

in the vicinity of the transition, as well as for the sample A2 (d = 2.16 nm), but also for A4 and Y0.

Eventually, at temperatures below the 2D AL regime, the system may be governed by percolation

physics or, alternatively, by Berezinski-Kosterlitz-Thouless behavior.

A rough estimate gives ε ≈ ξ20/ξ
2, where ξ is the temperature dependent correlation length

that diverges at the transition. Then, the 0D-2D crossover takes place at a temperature T̄ such that

ξ(T̄ ) ≈ ξ0
√
γ̄. A comparison with the formal 0D limit of the AL theory allows us to identify

γ̄ ≈ 4π (ξ0/l)
2, hence the size of the supergrains l ≈ ξ0

√
4π/γ̄.
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