
HAL Id: hal-01387137
https://hal.science/hal-01387137

Preprint submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Event-B to Verified C via HLL
Ning Ge, Arnaud Dieumegard, Eric Jenn, Laurent Voisin

To cite this version:
Ning Ge, Arnaud Dieumegard, Eric Jenn, Laurent Voisin. From Event-B to Verified C via HLL. 2016.
�hal-01387137�

https://hal.science/hal-01387137
https://hal.archives-ouvertes.fr

From Event-B to Verified C via HLL

Ning Ge1,a, Arnaud Dieumegard1, Eric Jenn1,b, and Laurent Voisin2

1 IRT-Saint Exupéry, Toulouse, France
ning.ge|arnaud.dieumegard|eric.jenn@irt-saintexupery.fr

2 Systerel, Aix-en-provence, France
laurent.voisin@systerel.fr

Abstract. This work addresses the correct translation of an Event-B model to C
code via an intermediate formal language, HLL. The proof of correctness follows
two main steps. First, the final refinement of the Event-B model, including in-
variants, is translated to HLL. At that point, additional properties (e.g., deadlock-
freeness, liveness properties, etc.) are added to the HLL model. The proof of the
invariants and additional properties at the HLL level guarantees the correctness
of the translation. Second, the C code is automatically generated from the HLL
model for most of the system functions and manually for the remaining ones; in
this case, the HLL model provides formal contracts to the software developer.
An equivalence proof between the C code and the HLL model guarantees the
correctness of the code.

Keywords: Event-B, Code generation, C, HLL, S3, Property proof, Equivalence proof

1 Introduction

Event-B [1] is a formal notation and method for the correct-by-construction develop-
ment of systems. In this method, a system is developed through a sequence of refine-
ments, the consistency of which is formally proved. Event-B is based on first-order
logic, typed set theory and integer arithmetic. As an integrated design environment for
Event-B, the Rodin platform [14] provides support for refinement and mathematical
proof of the consistency between refinements and of system-specific properties such
as safety properties. In this work, we consider that the last refinement developed and
proved with Event-B is the starting point for software development: the Event-B model
is used as a specification for the implementation.

Translating a correct specification to a correct implementation is challenging. Ex-
isting works [30,9,26,20,25,10,21] have identified the following main issues for this
translation, and have proposed partial solutions. (1) It is necessary to restrict the Event-
B model to a well-defined subset in order to generate code for a particular program-
ming language. (2) When multiple events are enabled, then an event is chosen non-
deterministically to be executed. A particular schedule needs to be defined to remove
such non-determinism. (3) The correctness of translation needs to be guaranteed, which

a Seconded from Systerel, Toulouse, France. ning.ge@systerel.fr
b Seconded from Thales Avionics, Toulouse, France. eric.jenn@fr.thalesgroup.com

implies that the translation must preserve the safety properties expressed in the Event-B
model. (4) Event-B does not come with constructs close to programming languages, as
the B method [2] does with B0. Even though such constructs may be “emulated” by
Event-B, the most refined event-B model usually only specifies contracts for software
functions that need to be developed or provided outside Event-B (such as the implemen-
tation of the set theory). This leads to a verification gap between the Event-B contracts
and the external or third-party implementation. (5) At the time of writing, it is still dif-
ficult to verify the deadlock-freeness and liveness properties using Rodin due to the
difficulties of integrating loop variant reasoning in the Event-B model. These properties
may be easier to verify using an intermediate verification language before the code is
implemented. Among the above challenges, (1) and (2) have been addressed by all the
existing works, while (3), (4) and (5) are still open. In this work, our focus is placed
on the three open issues. A detailed discussion about the related works is provided in
Section 2.

Unlike other Event-B to code translation approaches, ours relies on an intermedi-
ate verification language, namely HLL (High Level Language). HLL is a synchronous
declarative language similar to Lustre [23]. It is the modeling language used by the
formal verification toolset S3 (Systerel Smart Solver)3[13], built around a SAT-based
model checker (S3-core). More details about the HLL language and the S3 toolset are
presented in Section 3.2.

The overall translation process from Event-B to C via HLL is depicted in Figure 1.
On this figure, activities performed by existing tools are tagged by a letter while our
contributions are tagged by a number. Activities are briefly explained hereafter.

Event-B Spec Event-B Invariants

HLL Invariants

a. Invariant Proof in Rodin

b. Invariant/Property
Proof in S3

Implemented C Code Generated C Code

2. HLL Invariant Translation1. HLL Spec Translation

3. Code
Generation

d. Code
Implementation

c. Equivalence
Proof in S3

Other HLL Properties

HLL Model
(Contract)

e. Equivalence
Proof in S3

Scheduled
HLL Model
(Machine)

Event-B

HLL

C

Fig. 1: Process and Activities from Event-B to C via HLL

– (a) When the Event-B refinement process is complete, all invariants in the model
are proven in Rodin.

– (1) The Event-B model is translated to HLL models that contain both a scheduled
machine and a set of function con tracts. Thanks to the function contracts, all in-

3 S3 is maintained, developed and distributed by Systerel (http://www.systerel.fr/).

variants and additional properties are verifiable at the HLL level. This contribution
will be detailed in Section 4.

– (2) The invariants in Event-B are translated to HLL invariants. Some properties that
are not verified in the Event-B model (e.g., deadlock-freeness and liveness ones) are
expressed in HLL. This contribution will be detailed in Section 4.

– (b) Compliance of the scheduled HLL model with the invariants and properties is
proved using S3. If all invariants and properties are proven, the correctness of the
HLL model is guaranteed. This activity will be detailed in Section 4.

– (3) + (c) The C code of most system functions is generated from the scheduled HLL
model. An equivalence proof is performed between the HLL model and the code to
guarantee the correctness of the generated code. This contribution will be detailed
in Section 5.

– (d) + (e) Some functions of the C code are manually implemented from the function
contracts in HLL. An equivalence proof is performed between the HLL contracts
and the code to prove the correctness of the manually implemented code. This
activity will be detailed in Section 5.

The organization of the paper is as follows: Section 2 discusses the related works;
Section 3 describes the technological background, including the Event-B modeling lan-
guage, the HLL modeling language and the S3 toolset, and presents our running ex-
ample; Section 4 illustrates the translation from the Event-B model to the HLL model;
Section 5 exposes the translation from the HLL model to the C code; Section 6 gives
the experimental results on a significant use case: an automatic protection system for a
robot; Section 7 gives some concluding remarks and discusses perspectives.

2 Related Works

As identified in Section 1, there are five main challenges for the translation from the
Event-B model to the code. The issues of model restriction and prevention of non-
determinism by scheduling have been solved in the existing works [30,9,26,20,25,10,21].
The correctness of the translation has been addressed in [30,9,26,10]. The author of [26]
intended to verify the generated and implemented code using meta-proof and software
model checking tools such as BLAST [4], which can check temporal safety properties
of C program. As the approach was not yet experimented in their work and the details
on the meta-proof and the checking of properties were not provided, it is difficult to
evaluate the limits of this proposal. The work [25] generates verified C# code in a static
program verification environment, namely the Spec# programming system [3], that is
based on deductive verification of function contracts. For C code, the same idea can be
applied using the Frama-C framework [16]. However, the verification based on function
contracts is restricted to local properties. It is not easy to express and verify the safety
properties concerning the global behavior of a system, as well as the deadlock-freeness
and liveness properties. The work [21] generates correct C code relying on reasoning
about well-definedness, assertions and refinement. It relies on a set of well-definedness
restriction rules for the Event-B model to prevent the occurrence of runtime errors such
as arithmetic overflows. The correctness of the generated C code is informally guar-
anteed by using a refinement step. To verify that the control flow is the same as the

restricted Event-B model, this work adds new variables that represents the program
counter in the scheduled model and adds events that simulate the update of the counter.
This approach is restricted to the verification of control flow invariants. In addition, it
does not yet cover deadlock-freeness and liveness properties.

3 Technological Background

3.1 The Event-B Modeling Language and the Rodin Platform

Event-B is a modeling formalism and method for the development of systems relying on
a correct-by-construction approach. At the time of writing, Event-B focuses on discrete
transition systems. Centered around the notion of events, it is structured around contexts
and machines. A context defines the type of data and models the static properties of the
system including the function contracts. A machine models the dynamic behavior by
means of variables, the values of which are initially determined by the initialization
event and changed by actions of events. Construction invariants and safety properties
are expressed in the machines. An event waits for a set of guard conditions to be verified
to trigger a sequence of actions. A parameter is constrained by appropriate guards and
its chosen value is used to update the machine variables. A witness maps a concrete
parameter with a more abstract one defined in a less refined machine. Details about the
Event-B language and method can be found in [1].

3.2 The HLL Modeling Language and the S3 Toolset

HLL is a synchronous dataflow language used to model a system, its environmental
constraints as well as its properties. To give an overview of the language constructs,
Figure 2 shows the HLL model of a saturated counter and its property about the range
of output value (respectively in the namespaces Counter and Counter_Verif). The

Namespaces:
Counter {
Types: enum {INC, DEC, RESET} Command;
Inputs: Command in;
Constants: int C_MIN := 0; int C_MAX := 100;
Declarations: int unsigned 32 cnt;
Outputs: cnt;
Declarations: int unsigned 32 dec_input;
Blocks: Fun_dec(int pre_v) ­> (int v){v:= dec_input;}
Constraints:
 ALL f: Fun_dec (f.pre_v = C_MIN ­> d.v = C_MIN);
 ALL f: Fun_dec (f.pre_v > C_MIN ­> d.v = f.pre_v­1);
Definitions:
 I(cnt) := 0;
 X(cnt) := if in==RESET then C_MIN
 elif in==DEC then Fun_dec(cnt)
 elif in==INC then

if cnt==C_MAX then C_MAX else cnt + 1
 else cnt;
}

Namespaces:
Counter_Verif
{
Proof Obligations:
 Counter::cnt>=Counter::C_MIN;
 Counter::cnt<=Counter::C_MAX;
}

Fig. 2: An Example of HLL Model

counter reacts to the input command (modelled as an HLL enumeration): incrementa-
tion (INC), decrementation (DEC) or reset (RESET). The saturation range is defined by

HLL constants. The behavior of the counter is initialized by I(cnt) and periodically
updated by X(cnt). The effect of INC and RESET are directly defined in the schedule,
while the effect of DEC is defined as a function contract by using HLL constraints and an
intermediate variable dec_input of the HLL block Fun_dec(), without any concrete
implementation.

HLL is used as the modeling/verification language of the S3 toolset. Design mod-
els specified in SCADE [12]/Lustre [23] or code in C/Ada can be translated to HLL
thanks to translators provided by the toolset. The proof engine of S3 is a SAT-based
[7] model checker, S3-core, that implements Bounded Model Checking (BMC) [6] and
k-induction [29,8] techniques. The input of S3-core is a bit-level Low Level Language
(LLL) that only contains boolean streams and is restricted to three bitwise operators:
negation, implication and equivalence. The toolset provides "expanders" to translate
HLL models into LLL models. More details about HLL and S3 can be found in [22].

S3 supports different activities of a software development process: property proof,
equivalence proof, automatic test case generation, simulation, and provides necessary
elements to comply with the software certification processes. It has been used for the
formal verification of railway signalling systems for years by various industrial compa-
nies in this field.

3.3 A Running Example: A Traffic Light Controller

To make this paper more readable and understandable, we use the case of the traffic light
controller proposed in the Rodin User’s Handbook4 as a running example. In order to
illustrate the role of function contracts, we have slightly modified the original Event-B
model by abstracting an event action into a set of function interface and the contracts of
the function. The requirements of this traffic light controller are the follows:

– REQ-1: A traffic light controller shall be used to control both the pedestrian traffic
lights and car traffic lights of a pedestrian crossing.

– REQ-2: Both traffic lights shall not be green at the same time, to ensure that the
pedestrian crossing is in a safe state.

This example covers most Event-B constructs. The model is provided in the Ap-
pendix A. It is composed of an abstract machine (mac0) without context and a refined
machine (mac1) with a context(ctx1). The specified invariants are related to the data
type, the usage of gluing variables, and the safety property (REQ-2). The contract of
the function that sets the pedestrian light to red color is specified in the context ctx1.

4 Translating Event-B to Verified HLL

4.1 Architecture of the HLL Model

Figure 3 depicts the static architecture of the HLL model. A complete model is com-
posed of three main parts: (i) the specification of the scheduled system (the white

4 https://www3.hhu.de/stups/handbook/rodin/current/html/

blocks), (ii) the specification of the invariants/properties and other verification related
artefacts (the dark grey blocks), and (iii) the function contracts (the light grey blocks).
Code generation requires part (i); the implementation of contracted functions requires
part (iii); and the verification of the HLL model requires all parts. The HLL model of
the system consists of the inputs of system commands, the outputs of the Event-B vari-
ables of the machine, the function contracts for the parameters, external functions and
third-party library (e.g., the implementation of the set theory and HLL quantifiers). The
verification architecture consists of the invariants/properties, the gluing invariants/wit-
nesses in the less refined machine, and the related gluing variables/parameters in the
abstract events.

<MAC>_cycle

<mac>.hll

<MAC>_Inputs

<mac>.hll

<MAC>_Outputs

<mac>.hll

<MAC>_Properties

<mac>_property.hll

<MAC>_Param_Contract

<mac>_para_contract.hll

<MAC>_Invariants

<mac>_inv.hll

<AMAC>
_Gluing_Variable

<amac>.hll

<MAC>_Contracts

<ctx>.hll

<AMAC>_Invariants

<amac>_inv.hll

11

<MAC>_Ext_Funs
_Contract

<ctx>.hll

<AMAC>_Param

<amac>.hll

<AMAC>_<MAC>
_Gluing_Invs_Wit

 <amac>_<mac>_ginv_wit.hll

<MAC>_Variable

<mac>.hll

1..*

<MAC>_Command

<mac>.hll

0..*

Set_Lib_Contract

<ctx>.hll

Fig. 3: Static Architecture of the HLL Model

Concerning the dynamic architecture of the model, the main question concerns the
scheduling of events. When multiple events are enabled, then an event is chosen non-
deterministically to be executed. However, to implement such model with a sequential
programming language, and to ensure the deterministic behavior of the software, a spe-
cific scheduling of events must be chosen. The problem of event scheduling has been
addressed in many existing works. We are not aimed to enumerate the translation of
every possible scheduling algorithms. As an example, we use a simple algorithm where
events are processed in their definition order in the Event-B model.

4.2 Translation Rules from Event-B to HLL

We present the translation rules according to the presentation of the Event-B constructs
in [28], including arithmetic operations, predicates, sets, and relations.

Translating Arithmetic and Predicates The translation rules of arithmetic and predi-
cates are defined in Table 1. These translations are straightforward, thanks to the quan-

tifiers in HLL language. Note that the quantifiers are executable at the HLL level, but
they need to be implemented at the code level.

Table 1: Event-B Arithmetic and Predicates to HLL Model

Arithmetic Event-B HLL
Integers INT int signed N

Natural Number NAT int unsigned N

Interval x = n..m int[n, m] x;
Addition x := a+ b x := a+ b;
Subtraction x := a− b x := a− b;
Multiplication x := a ∗ b x := a ∗ b;
Division x := a÷ b x := a / b;
Modulo x := a mod b x := a % b;
Exponentiation x := aˆb x := aˆb;
Minimum min(S) $min i : [0, N−1](S(i));
Maximum max(S) $max i : [0, N−1](S(i));

Predicate Event-B HLL
Negation ¬x ∼x

True > true

False ⊥ false

Equality a = b a == b

Inequality a 6= b a ! = b

Less a < b a < b

Less or equal a ≤ b a ≤ b

Greater a > b a > b

Greater or equal a ≥ b a ≥ b

Conjunction x ∧ y x & y

Disjunction x ∨ y x # y

Implication x⇒ y x→ y

Equivalence x⇔ y x↔ y
Universal
quantification ∀ ALL

Existential
quantification ∃ SOME

Translating Set Theory The translation rules of sets and set predicates are defined in
Table 2 and Table 3. They are implemented using the characteristic functions in HLL. In
the HLL model, a set S of finite size N with elements ei(i = 0..N−1) is implemented as
a boolean array A of size N such that S[i] is true if and only if element ei is in S. This im-
plementation has strong restrictions. In particular, it imposes that the cardinality of S is
bounded (and “reasonnable”). Many other implementations would have been possible,
nevertheless, we chose this one to leverage the optimized operations on boolean vectors
implemented in S3. Note that the code implementation of the HLL set constraints need
to be provided by a set theory library.

Translating Relations and Functions A relation is a set of ordered pairs. The trans-
lation rules of relations are defined in Table 4. As a set in Event-B is implemented as a
boolean array in HLL, a relation r of two sets S of size N and T of size M is implemented
as a 2-dimensional boolean array R[N][M]. The HLL pre-conditions of a relation r be-
tween elements si of S and tj of T is (i) si are in S (S[i] is true), (ii) tj is in T (T[j] is
true), (iii) r exists between si and tj (R[i][j] is true).

In Event-B, a special case of relations are functions, with the restriction that each
element of the domain is related to a unique element in the range. The translation rules
of functions are defined in Table 5.

Table 2: Event-B Sets to HLL Model

Sets Event-B HLL
Set S := {e1, ..., eN} bool S[N];
Empty set S := ∅ S[i] := false;
Set comprehension E := {z · P | F} E[z] := F[z] & P(z);
Union U := S ∪ T U[i] := S[i] # T[i];
Intersection U := S ∩ T U[i] := S[i] & T[i];
Difference U := S \ T U[i] := S[i] & ∼T[i];
Cartesian product E := S× T E[i][j] := S[i] & T[j];

Powerset P (S)
Declarations : bool P[N];
Constraints :
ALL i : [0, N−1] (∼S[i]→ ∼P[i]);

Non-empty subsets P1 (S)

Declarations : bool P[N];
Constraints :
ALL i : [0, N−1] (∼S[i]→ ∼P[i]);
SOME i : [0, N−1] (S[i]→ ∼P[i]);

Cardinality card(S) card := population(S);
Generalized union union(S) U[i] := SOME j : [0, N−1] (S[i][j]);
Generalized intersection inter(S) U[i] := ALL j : [0, N−1] (S[i][j]);
Quantified union UNION z · P|S U[i] := SOME j : [0, N−1] (P(S[i][j]));
Quantified intersection INTER z · P|S U[i] := ALL j : [0, N−1] (P(S[i][j]));

Table 3: Event-B Set Predicates to HLL Model

Set Predicates Event-B HLL
Set membership s : S S(s) == true;
Set non-membership s / : S S(s) == false;

Subset S ⊆ T ALL i : [0, N−1] (S[i]→ T[i]);

Proper subset S ⊂ T
ALL i : [0, N−1] (S[i]→ T[i]) &

SOME i : [0, N−1] (T[i]→ ∼S[i]);
Finite set finite(S) (All sets in HLL are finite.)
Partition partition(S, s1, ..., sn) S[i] := s1[i] # ... # sn[i];

Translating Event-B Constructs Table 6 presents the mapping between Event-B con-
structs and the HLL elements.

Part of HLL model of the running example is provided in Figure 4, including one
context (ctx1), one machine (mac1), and the invariants in the machine mac1 (mac1_INV).
In the HLL model of machine mac1, for the reason of space limitations, only the variable
peds_colour is defined to explain the schedule. The complete HLL model of the run-
ning example is provided in the Appendix B. As explained in Section 4.1, a sequential
schedule is applied in the HLL model. Firstly, the guards (i.e. GRD_set_peds_green,
GRD_set_peds_red and GRD_set_cars_colours) are defined. Then each variable is
initialized by the definition I(vars), such as I(peds_colour). The update of values
with respect to the schedule of events is defined in the step X(var), such as X(peds_colour).

Table 4: Event-B Relations to HLL Model

Relations Event-B HLL

Relations S↔ T

Declarations : bool r[N][M];
Constraints :
ALL i : [0, N−1], j : [0, M−1]

(
(∼S[i]#∼T[j])→ ∼r[i][j]

)
;

Domain dom(r) dom[i] := SOME j : [0, N−1] (r[i][j]);
Range ran(r) ran[j] := SOME i : [0, N−1] (r[i][j]);

Total relation S←↔ T

Declarations : bool r[N][M];
Constraints :
ALL i : [0, N−1]

(
S[i]→ SOME j : [0, M−1] (T[j] & r[i][j])

)
;

ALL i : [0, N−1]
(
∼S[i]→ ALL j : [0, M−1] (∼r[i][j])

)
;

Surjective
Relation

S↔→ T

Declarations : bool r[N][M];
Constraints :
ALL j : [0, M−1]

(
T[i]→ SOME i : [0, N−1] (S[i] & r[i][j])

)
;

ALL i : [0, M−1]
(
∼T[j]→ ALL i : [0, N−1] (∼r[i][j])

)
;

Total surjective
relation

S←←→→ T

Declarations : bool r[N][M];
Constraints :
ALL i : [0, N−1]

(
S[i]→ SOME j : [0, M−1] (T[j] & r[i][j])

)
;

ALL j : [0, M−1]
(
T[i]→ SOME i : [0, N−1] (S[i] & r[i][j])

)
;

ALL i : [0, N−1]
(
∼S[i]→ ALL j : [0, M−1] (∼r[i][j])

)
;

ALL i : [0, M−1]
(
∼T[j]→ ALL i : [0, N−1] (∼r[i][j])

)
;

Table 5: Event-B Functions to HLL Model

Functions Event-B HLL
Partial function f ∈ S 7→ T ALL s : S, t1, t2 : T

(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

Total function f ∈ S→ T
ALL s : S, t1, t2 : T

(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL s : S
(
SOME t : T (f(s) = t)

)
;

Partial injection f ∈ S 7� T
ALL s : S, t1, t2 : T

(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL s1, s2 : S, t : S
(
t = f(s1) & t = f(s2) → s1 = s2

)
;

Total injection f ∈ S� T

ALL s : S, t1, t2 : T
(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL s1, s2 : S, t : S
(
t = f(s1) & t = f(s2) → s1 = s2

)
;

ALL s : S
(
SOME t : T (f(s) = t)

)
;

Partial surjection f ∈ S 7� T
ALL s : S, t1, t2 : T

(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL t : T
(
SOME s : S (f(s) = t)

)
;

Total surjection f ∈ S� T

ALL s : S, t1, t2 : T
(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL s : S
(
SOME t : T (f(s) = t)

)
;

ALL t : T
(
SOME s : S (f(s) = t)

)
;

Bijection f ∈ S�� T

ALL s : S, t1, t2 : T
(
t1 = f(s) & t2 = f(s)→ t1 = t2

)
;

ALL s1, s2 : S, t : S
(
t = f(s1) & t = f(s2) → s1 = s2

)
;

ALL s : S
(
SOME t : T (f(s) = t)

)
;

ALL t : T
(
SOME s : S (f(s) = t)

)
;

4.3 Proving HLL Invariants and Properties in S3

The invariants in the Event-B models are translated to HLL Proof Obligations (see ex-
ample Mac1_INV in Figure 4). The translation rules are the same as that defined in the

Table 6: Event-B Constructs to HLL Model

Event-B Construct HLL Construct Dependence
CONTEXT ctx.hll
EXTENDS Abstract context HLL abs_ctx.hll
SETS Enum, Array
CONSTANTS Type
AXIOMS Block, Constraint
MACHINE mac.hll
REFINES Abstract machine HLL abs_mac.hll
SEES Abstract context HLL abs_ctx.hll
VARIABLES Inputs, Struct
INVARIANT Types, Proof obligations mac.hll, (abs_)mac_inv.hll
Gluing INVARIANT Constraints mac_absmac_ginv.hll
EVENT mac.hll
REFINES Abstract machine HLL abx_mac.hll
ANY Declarations mac_para_contract.hll
WHERE Predicate(vars) mac_para_contract.hll
WITH Constraints mac_absmac_ginv.hll
THEN Definitions, I(vars), X(vars)

Namespaces:
Ctx1
{ // Context ctx1
Types: // Variable types in ctx1
 enum {red, yellow, green} COLOURS_ELT;
 bool COLOURS[3];// Ordered table: red, yellow, green
Types:
 Struct { // Variables types for function contracts
 Contract_input_fun_set_red : COLOURS_ELT
 } Fun_Contract_Vars;
Declarations: // Variables of function contract
 Fun_Contract_Vars fun_vars;

Blocks: // mac1/set_peds_red/fun_set_red()
fun_set_red() ­> (COLOURS_ELT colour)
{
 colour := fun_vars.Contract_input_fun_set_red;
}
Constraints: // Function contract for set_peds_red()
 ALL f: fun_set_red

 (fun_vars.colour = red);
}

Namespaces:
Mac1 {
Types:
 struct { // VARIABLES in mac1
 peds_colour : Ctx1::COLOURS_ELT,
 cars_colours: Ctx1::COLOURS
 } VARS;
 Struct { // Local PARAMETERS
 set_cars_colours_new_value_colours: Ctx1::COLOURS
 } Param;
Inputs: Param param;
Declarations:
 VARS vars; // VARIABLES in mac1
 Ctx1::COLOURS_ELT peds_colour;
 Ctx1::COLOURS cars_colours;
 bool GRD_set_peds_green; // GUARDS in mac1
 bool GRD_set_peds_red;
 bool GRD_set_cars_colours;
Definitions:
 GRD_set_peds_green := (~vars.cars_colours[2]);
 GRD_set_peds_red := TRUE;
 GRD_set_cars_colours:= TRUE;
 I(peds_colour) := Ctx1::red; // Initialisation
 X(peds_colour) := // Steps
 if GRD_set_peds_green then Ctx1::green
 elif GRD_set_peds_red then Ctx1::fun_set_red()
 elif GRD_set_cars_colours then peds_colour
 else peds_colour;
 vars := {peds_colour, cars_colours};
Outputs: vars; }

Namespaces:
Mac1_INV
{
Proof Obligations:
 // INVARIANTS mac1/inv1
 Mac1::vars.peds_colour = Ctx1::red #
 Mac1::vars.peds_colour = Ctx1::green;
}

Fig. 4: Partial HLL Models of the Running Example

previous sections. Besides the invariants of refinement, usually the other invariants in
Event-B represent safety properties. The deadlock-freeness and liveness properties will
be directly expressed in HLL. The liveness property is handled by using lasso [5,24].
The deadlock-freeness [31] property is expressed using the guards of events. The HLL
expression of the deadlock-freeness property is provided here. Note that a := true, b;
is another written form for I(a) := true; X(a) := b;.

PROP_DLF := true, mac :: GRD_E1 # mac :: GRD_E2 # ... # mac :: GRD_En;

Figure 5 presents the process of property proof using S3. The HLL model, combined
with properties expressed in HLL as well, are expanded to a LLL model that is fed to
the S3-core. If a property is falsifiable, a generated counterexample can be simulated at

the HLL level to help the debug. S3 also provides automatic analysis tools to help the
search of lemmas used by the proof.

Scheduled
HLL Spec

 HLL Invariants
Properties

+ LLL ModelExpand Proof by S3 Invariants/Properties
Valid? Yes/No

Debug

Debug

Fig. 5: Process of Property Proof using S3

5 Translating HLL to HLL-Equivalent C Code

Once the Event-B model is translated into a HLL model, the correctness of which is
proven, the next phase consists of translating the HLL model into C code and prov-
ing that the code is correct. Translation of HLL to C involves two activities: an auto-
matic one where the C code is generated directly from the HLL model, and a manual
one where some functions in the C code are implemented manually from contracts ex-
pressed in HLL. In this section, we define the architecture of generated C code in Sec-
tion 5.1. The code generation/implementation rules from the HLL model to the C code
are respectively defined in Section 5.2 and 5.3. The approach of equivalence proof is
briefly addressed in Section 5.4. Note that, instead of equivalence proof, the correctness
of the code can also be guaranteed by proving the same properties (already expressed
in HLL) in HLL. In order to re-prove the same properties, the C code is translated into
an HLL model, where the HLL properties are combined and proved.

5.1 Architecture of the Generated C Code

The static architecture of the C code is given on Figure 6. It reflects directly the archi-
tecture of the HLL model shown in Fig. 3 for the parts related to implementation (the
white blocks). The dynamic architecture is described as follows:

– The system is first initialized by the function 〈MAC〉_init that calls the function
〈MAC〉_Initialisation,

– Then the system calls periodically the scheduler 〈MAC〉_Schedule. The scheduler
calls each event processing functions 〈MAC〉_Events according to the schedule or-
der. Each event processing function evaluates its guards 〈MAC〉_Guards and, if all
guards are enabled and the event is triggered, call the action realization function
〈MAC〉_Actions. The guards and actions depend on the inputs 〈MAC〉_Inputs, out-
puts 〈MAC〉_Outputs and the functions implemented from the contracts.

<MAC>_cycle

<mac>_main.h

<MAC>_init

<mac>_main.h

<MAC>_Inputs

<mac>_main.h

<MAC>_Outputs

<mac>_main.h

<MAC>_Schedule

<mac>_schedule.h

<MAC>_Initialisation

<mac>_events.h

<MAC>_Event

<mac>_events.h

<MAC>_Command

<mac>_commands.h

<MAC>_Variable

<mac>_variables.h

<MAC>_Guards

<mac>_events.h

<MAC>_Actions

<mac>_events.h

<MAC>_Ext_Funs
(implemented from contract)

<ctx>.h

1

0 .. *0 .. *

0 .. *

1

1

1 1

1

<MAC>_Param_Funs
(implemented from contract)

<mac>_param.h

Set_HLL_Lib
(implemented from contract)

hll_lib.h set_lib.h

Fig. 6: Static Architecture of Generated C Code

5.2 Translation of HLL Model to C code

The C code can be generated either from the HLL model or from the LLL model that
is the expanding result of the HLL model. The alternative is presented and discussed
hereafter.

Code Generation from HLL Generating C code from HLL is in a way similar to that
of the translating Event-B to HLL. Figure 7 shows the generated C code mac1_main.c
and mac1_schedule.c of the running example. They are generated from the HLL
model Mac1 in Fig. 4. The schedule defined in the Mac1 HLL model is extracted in
the code mac1_schedule.c. The main file mac_main.c conforms to the cyclic execu-
tion in the HLL model. A set of global variables is defined as the set of system states
and initialized. They are cyclically updated according to the order defined by the event
scheduler. The guards and actions are defined as functions in the mac1_events.c. Be-
cause of space limitations, the complete C code of the running example is provided in
the Appendix C.

Code Generation from LLL The C code may also be generated directly from the
intermediate LLL model, which is the expanded translation of the HLL model. This
is achieved by the LLL to C translator in S3. We present an example in Figure 8. In
the model ex.lll, all variables are boolean, and only three bitwise operators are used,
therefore the translation is direct. The C code ex.c contains a init function and a
cycle function. The translation is automatic, and the cost of the conversion from LLL
to C is very low. However, as all operations - including arithmetic operations - are
encoded using bit-level C operators, execution performance degrades gradually as the
number of arithmetic operations increases. This solution is interesting for applications
that perform mainly logical operations.

#include "mac1_main.h"
static int init = 1;
static Mac1_VARS global_vars;
void mac1_init(Mac1_VARS* vars) {
 Initialisation(vars);
}
void mac1_step(Mac1_VARS* vars, Mac1_Param param) {
 mac1_schedule(vars, param); // Schedule of events
}
Mac1_VARS mac1_cycle(Mac1_Param params) {
 Mac1_VARS* vars = &global_vars;
 Mac1_VARS out_vars;
 if (init == 1) { // Initialisation

mac1_init(vars);
init = 0;

 }
 else { // schedule of events

mac1_schedule(vars, params);
 }
 out_vars.peds_colour = vars->peds_colour;
 for (int i = 0; i < 3: i++) {

out_vars.cars_colours[i] = vars->cars_colours[i];
 }
 return out_vars;
}

#include "mac1_schedule.h"

bool mac1_schedule(Mac1_VARS* vars,
 Mac1_Local_Param param) {

 // Event set_peds_green
 if (GRD_set_peds_green(*vars)) {
 ACT_set_peds_green(vars);
 return true;
 }

 // Event set_peds_red
 if (GRD_set_peds_red(*vars)) {
 ACT_set_peds_red(vars);
 return true;
 }

 // Event set_cars_colours
 if (GRD_set_cars_colours(*vars)) {
 ACT_set_cars_colours(vars, param);
 return true;
 }

 return false;
} mac1_schedule.cmac1_main.c

Fig. 7: Generated C Code of the Running Example

__init__ := TRUE, ~TRUE;
s5 := s4 -> s3;
s6 := s4 -> ~s5;
s7 := s6 -> ~s3;
s8 := s6 -> ~s4;
s16 := s13 -> s12;
s17 := s13 -> ~s16;

unsigned char s874;
void init(){
 __init__ = TRUE;
 s598 = !TRUE;
void cycle(){
 __init__ = !TRUE;
 s5 = !s4 || s3; ex.cex.lll

Fig. 8: Generated C Code from the LLL Model

5.3 Code Implementation from HLL Contracts

The HLL function contracts require a developer to translate it to C. This is the usual
practice, even though in our case, the software specification is formal. We show a func-
tion implemented under the HLL contract used in the running example in Figure 9.
The function mac1_fun_set_red() is implemented from the contract expressed as
constraint on the block fun_set_red() in the namespace ctx1 in Fig. 4, shown as
follows.

ALL f : fun_set_red (fun_vars.Contract_input_fun_set_red = red);

#include "bool.h"
#ifndef CTX1_H
#define CTX1_H
enum COLOURS_ELT {red, yellow, green};
typedef bool COLOURS[3];
enum COLOURS_ELT mac1_fun_set_red();
#endif

#include "ctx1.h"
enum COLOURS_ELT mac1_fun_set_red()
{
 return red;
}

ctx1.h ctx1.c

Fig. 9: Example of Implementation from HLL Contracts

5.4 Proving Equivalence between HLL Model and C Code

Proving the equivalence of two models (or one program and one model) consists in
proving that the two systems behave identically (in particular, provide the same outputs)
for any input in the input domain. In our case, we rely on the equivalence proof to guar-
antee the correctness of the code. The equivalence proof is concerned with two prob-
lems: the equivalence between HLL model and the generated C code, and the equiv-
alence between HLL contracts and the implemented C code. Figure 10 presents the
process of proving the equivalence between the HLL model and the generated/imple-
mented C code. The C code is translated into another HLL model. Both HLL models
are then respectively expanded to two LLL models using diversified expanders5. To
prove the equivalence of two HLL models, the equivalence models are constructed and
proved at the LLL level.

 LLL Model
 HLL Spec

Expand1

Generated
C Code

Scheduled
HLL Spec

Translation Expand2 LLL Model
 C Code

Equivalence Equivalence proof
of LLL by S3

 HLL Model
 C Code

Fig. 10: Process of Equivalence Proof

The approach is sound for two reasons. First, the correctness of the HLL model of
the system is proven, as shown in Section 4. Second, the verification means (i.e., the S3
toolset) is developed so as to facilitate qualification against certification standards (in
particular, DO-178C [18] and DO-330 [19]). Towards this goal, S3 is organized in a set
of small, independent components, from which the most critical ones - an equivalence
model constructor, and a tool to verify the validity of the proof - are developed according
to the highest integrity levels.

In practice, it shall be noted that some of the Event-B events actually model the
modifications of monitored and commanded variables, i.e., variables that are not modi-
fied by the function under design [27,11]. The actions triggered by these events describe

5 The diversified expanders have been designed and implemented by different teams using dif-
ferent programming languages.

the expected effects of the external environment on these variables. As they do not rep-
resent actions of the system, they shall not be translated to software code. Thus, they
are implemented by simple interface functions performing acquisition of external vari-
ables. As a result, no equivalence checking can be done for those parts of the generated
C code, their verification shall thus be achieved using other means (formal or informal).

6 The Case Study: Automatic Rover Protection

TwIRTee is the small three-wheeled robot (or “rover”) used as the demonstrator of the
INGEQUIP project6. It is used to evaluate new methods and tools in the domain of
hardware/software co-design, virtual integration, and application of formal methods for
the development of equipments. TwIRTee’s architecture, software, and hardware com-
ponents are representative of a significant family of aeronautical, spatial and automotive
systems [15]. A rover performs a sequence of missions (1 on Figure 11). A mission
is defined by a start time and an ordered set of waypoints to be passed-by. Missions
are planned off-line and transmitted to the rover by a supervision station (2). To go
from the first waypoint to the last, the rover moves on a track that is materialized by a
grey line on the ground. In a more abstract way, a complete mission can be modelled
by a path in a graph where nodes represent waypoints, and edges represent parts of the
track joining two waypoints. A rover shares the tracks with several identical rovers. In
order to prevent collisions, each of them embeds a protection function (or ARP) which
purpose is to maintain some specified spatial (3) and temporal separation (4) between
them. On Figure 1, temporal separations are represented by light green and light red
areas superimposed on the map: basically, rover2 (resp. rover1) shall never enter the
light green (resp. light red). In the current implementation, the ARP essentially acts by
reducing the rover speed and, in some specific cases, by performing a simple avoidance
trajectory. To take the appropriate action, the ARP exploit the following pieces of infor-
mation: the map, the position of all other rovers transmitted by a centralized supervision
station (5), and its own position.

For this paper, we rely on a specific model of the ARP function where some ele-
ments have been simplified. We thus only consider specification elements such as rover
position, speed, deceleration, and others as being discrete values (no use of Real or
Floating Point data). The statistics of the Event-B model, translated HLL models, and
generated/implemented C code are provided in Table 7.

7 Conclusion and Perspective

7.1 Conclusion

This work addresses the translation of Event-B into C and the demonstration of the
correctness of translation using formal methods. Our approach relies on an interme-
diate modeling/verification language HLL. The correctness proof follows two steps.

6 The INGEQUIP project is conducted at the Institut de Recherche Technologique of Toulouse
(IRT-Saint Exupéry)

W1

Spatial separation

Mission:
(W1,W4,W5)

W5

W4 W7

W6

Map

W8

Mission:
(W5,W2,W5)

Map

W2Rover1

 Rover2W3

Temporal separation

R4
:
(0.
97,
12.
43)
89
° -
1.2
3m
/s

AC
TIO
N
RE
QU
IRE
D

RT245RT246

P123

R4 R1

Position transmissionSupervision
station

Waypoint

1

2
5

3

4

Fig. 11: ARP System Overview

Table 7: Statistics of the ARP Models (Event-B and HLL) and Code

Event-B model

Events / Actions / Guards 18 / 70 / 74
Axioms / Theorems / Constants / Variables / Invariants 40 / 11 / 27 / 15 / 79
PO (Total / Automatic / Manuel) 634 / 626 / 8
LOC of Event-B model of the final refinement 243

HLL models

Properties (safety / liveness/ deadlock-freeness) 42 / 4 / 1
Time for property proof (invariants + properties) 4s
Contracts (external function / parameter) 5 / 12
LOC of HLL models (system / verification) 800 / 500

C code
LOC of C code(generated / implemented) 1200 / 600
Time for equivalence proof 3s

First, the final refinement of the Event-B model, including invariants from all refined
machines and elements from all extended contexts, are translated to the HLL model.
Additional properties are expressed in HLL. The invariants/properties are proved at the
HLL level to guarantee the correctness of the translation. Second, the C code is auto-
matically generated from the HLL model for most of the system functions and manually
for implemented from the contracts for the remaining ones. The equivalence between
the code and the HLL model is proved to guarantee the correctness of the code. In this
paper, we define the translation rules, and show the experimented results on a significant
use case. More details about the refinement and design can be found in [17].

Compared to the existing approaches to proving the direct translation from the
Event-B model to generated code, our contribution is to address the verification of ad-
ditional properties (i.e., deadlock-freeness and liveness properties) in the HLL model.
For the direct translation approaches [26,25,21], the analysis of these properties needs
to be performed in the final C code. Considering the complexity of analysis, the authors
of these works all mentioned the limits of their approaches and considered it as an open
issue.

Another advantage of our approach is the support of property proof and equivalence
proof of Floating-Point Arithmetic (FPA) in both the HLL model and the code. The S3
toolset provides an HLL library of FPA based on bit-blasting7 [13] that conforms to the
FPA standard IEEE std 2008-754 [32].

7.2 Perspectives

The development of the translation tool is ongoing. As the specification of the HLL
language will be published in a near future, it will soon become possible to integrate
the translator as a plug-in in the Rodin platform.

The antecedent of Event-B, the B method, supports formal refinement until the pro-
gramming language B0, that is translated later to C/ADA code. This method requires
more refinements, but the resulting B0 model is sufficiently close to software code that
code generation becomes straightforward. The correctness of final code still needs to be
proved. As the verification gap between B0 and C code is smaller than the one between
Event-B and C code, the results of this work could be adapted to the translation from
B0 to C via HLL.

Acknowledgments

This work has been funded by the INGEQUIP project. The authors would like to thank
the members in the project, and the colleagues of the Systerel S.A.S company Nicolas
Breton, Mathieu Clabaut and Yoann Fonteneau for their good cooperation. The author
Ning Ge would like to thank Hongyu Liu for his help on this work.

References

1. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cambridge
University Press, 2010.

2. Jean-Raymond Abrial and Jean-Raymond Abrial. The B-book: assigning programs to mean-
ings. Cambridge University Press, 2005.

3. Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The spec# programming system:
An overview. In International Workshop on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 49–69. Springer, 2004.

4. Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The software model
checker blast. International Journal on Software Tools for Technology Transfer, 9(5-6):505–
525, 2007.

5. Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking.
Electronic Notes in Theoretical Computer Science, 66(2):160–177, 2002.

6. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model check-
ing without BDDs. Springer, 1999.

7. Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

7 Bit-blasting is a classic method that translates bit-vector formulas into propositional logic ex-
pressions.

8. Per Bjesse and Koen Claessen. SAT-based verification without state space traversal. In
Formal Methods in Computer-Aided Design, pages 409–426. Springer, 2000.

9. Pontus Boström. Creating sequential programs from event-b models. In International Con-
ference on Integrated Formal Methods, pages 74–88. Springer, 2010.

10. Pontus Boström, Fredrik Degerlund, Kaisa Sere, and Marina Waldén. Derivation of con-
current programs by stepwise scheduling of event-b models. Formal Aspects of Computing,
26(2):281–303, 2014.

11. Michael Butler. Towards a cookbook for modelling and refinement of control problems.
2009.

12. Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and Peter
Niebert. From simulink to scade/lustre to tta: a layered approach for distributed embedded
applications. In ACM Sigplan Notices, volume 38, pages 153–162. ACM, 2003.

13. Mathieu Clabaut, Ning Ge, Nicolas Breton, Eric Jenn, Rémi Delmas, and Yoann Fonteneau.
Industrial grade model checking - use cases, constraints, tools and applications. In Interna-
tional Conference on Embedded Real Time Software and Systems, 2016.

14. Joey Coleman, Cliff Jones, Ian Oliver, Alexander Romanovsky, and Elena Troubitsyna.
Rodin (rigorous open development environment for complex systems). In Fifth European
Dependable Computing Conference: EDCC-5 supplementary volume, pages 23–26, 2005.

15. Philippe Cuenot, Eric Jenn, Eric Faure, Nicolas Broueilh, and Emilie Rouland. An experi-
ment on exploiting virtual platforms for the development of embedded equipments. In Inter-
national Conference on Embedded Real Time Software and Systems, 2016.

16. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c. In International Conference on Software Engineering and
Formal Methods, pages 233–247. Springer, 2012.

17. Arnaud Dieumegard, Ning GE, and Eric Jenn. An Experiment Report on a Process Combin-
ing Formal Refinement and Formal Software verification. working paper or preprint, October
2016.

18. RTCA DO. 178c. Software considerations in airborne systems and equipment certification,
2011.

19. RTCA DO. 330. Software Tool Qualification Considerations, 2011.
20. Andrew Edmunds and Michael Butler. Tasking event-b: An extension to event-b for gener-

ating concurrent code. In PLACES 2011, February 2011.
21. Andreas Fürst, Thai Son Hoang, David Basin, Krishnaji Desai, Naoto Sato, and Kunihiko

Miyazaki. Code generation for event-b. In International Conference on Integrated Formal
Methods, pages 323–338. Springer, 2014.

22. Ning Ge, Eric Jenn, Nicolas Breton, and Yoann Fonteneau. Formal verification of a rover
anti-collision system. In International Workshop on Formal Methods for Industrial Critical
Systems and Automated Verification of Critical Systems, volume 9933, pages 171–188, 2016.

23. Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.

24. Thai Son Hoang and Jean-Raymond Abrial. Reasoning about liveness properties in event-
b. In International Conference on Formal Engineering Methods, pages 456–471. Springer,
2011.

25. Dominique Méry and Rosemary Monahan. Transforming event B models into verified c#
implementations. In First International Workshop on Verification and Program Transforma-
tion, VPT 2013, Saint Petersburg, Russia, July 12-13, 2013, pages 57–73, 2013.

26. Dominique Méry and Neeraj Kumar Singh. Automatic code generation from event-b models.
In Proceedings of the second symposium on information and communication technology,
pages 179–188. ACM, 2011.

27. David Lorge Parnas and Jan Madey. Functional Documentation for Computer Systems En-
gineering: Version 2. McMaster University, Faculty of Engineering, Communications Re-
search Laboratory, 1991.

28. Ken Robinson. A concise summary of the event b mathematical toolkit. http://wiki.
event-b.org/images/EventB-Summary.pdf, 2009.

29. Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using
induction and a SAT-solver. In Formal methods in computer-aided design, pages 127–144.
Springer, 2000.

30. Steve Wright. Automatic generation of c from event-b. In Workshop on integration of model-
based formal methods and tools, page 14. Citeseer, 2009.

31. Faqing Yang and Jean-Pierre Jacquot. An event-b plug-in for creating deadlock-freeness
theorems. In 14th Brazilian Symposium on Formal Methods, 2011.

32. Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey, Steve Bass,
Dileep Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo, et al. Ieee standard for
floating-point arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

Appendix A: Event-B Model of Traffic Light Control

CONTEXT ctx1

SETS

COLOURS

CONSTANTS

red

yellow

green

fun set red

AXIOMS

axm1: partition(COLOURS, {red}, {yellow}, {green})
axm2: fun set red ∈ COLOURS

axm3: fun set red = red

END

MACHINE mac0

VARIABLES

cars go

peds go

INVARIANTS

inv1: cars go ∈ BOOL

inv2: peds go ∈ BOOL

inv3: ¬(cars go = TRUE ∧ peds go = TRUE)

EVENTS

Initialisation

begin
act1: cars go := FALSE

act2: peds go := FALSE

end

Event set peds go 〈ordinary〉 =̂
when

grd1: cars go = FALSE

then
act1: peds go := TRUE

end

Event set peds stop 〈ordinary〉 =̂
begin

act1: peds go := FALSE

end

Event set cars 〈ordinary〉 =̂
any

new value

where
grd1: new value ∈ BOOL

grd2: new value = TRUE⇒ peds go = FALSE

then
act1: cars go := new value

end

END

1

MACHINE mac1

REFINES mac0

SEES ctx1

VARIABLES

peds colour

cars colours

INVARIANTS

inv4: peds colour ∈ {red, green}
inv5: cars colours ⊆ COLOURS

gluing peds: peds go = TRUE⇔ peds colour = green

gluing cars: cars go = TRUE⇔ green ∈ cars colours

EVENTS

Initialisation

begin
act1: peds colour := red

act2: cars colours := {red}
end

Event set peds green 〈ordinary〉 =̂
refines set peds go

when
grd1: green /∈ cars colours

then
act1: peds colour := green

end

Event set peds red 〈ordinary〉 =̂
refines set peds stop

begin
act1: peds colour := fun set red

end

Event set cars colours 〈ordinary〉 =̂
refines set cars

any
new value colours

where
grd1: new value colours ⊆ COLOURS

grd2: green ∈ new value colours⇒ peds colour = red

grd3: cars colours = {yellow}⇒ new value colours = {red}
grd4: cars colours = {red}⇒ new value colours = {red, yellow}
grd5: cars colours = {red, yellow}⇒ new value colours = {green}
grd6: cars colours = {green}⇒ new value colours = {yellow}

with
new value: new value = TRUE⇔ green ∈ new value colours

then
act1: cars colours := new value colours

end

END

2

Appendix B: HLL Models of Traffic Light Control

Namespaces :
Ctx1 {
Types :

enum { red , ye l low , g r e e n } COLOURS_ELT ;
boo l COLOURS [3] ; /∗ Ordered a r r a y : 0−red , 1−yel low , 2−g r e e n ∗ /

Types :
s t r u c t { /∗ V a r i a b l e s f o r s p e c i f y i n g f u n c t i o n c o n t r a c t s ∗ /

C o n t r a c t _ i n p u t _ f u n _ s e t _ r e d : COLOURS_ELT
} F u n _ C o n t r a c t _ V a r s ;

D e c l a r a t i o n s : /∗ V a r i a b l e s o f f u n c t i o n c o n t r a c t ∗ /
F u n _ C o n t r a c t _ V a r s f u n _ v a r s ;

B locks : /∗ mac1 / s e t _ p e d s _ r e d / f u n _ s e t _ r e d () ∗ /
f u n _ s e t _ r e d () −> (COLOURS_ELT c o l o u r) {

c o l o u r := f u n _ v a r s . C o n t r a c t _ i n p u t _ f u n _ s e t _ r e d ;
}
C o n s t r a i n t s : /∗ C o n t r a c t o f f u n c t i o n s e t _ p e d s _ r e d () ∗ /

ALL f : f u n _ s e t _ r e d (f . c o l o u r = r e d) ;
}

Mac0 {
Types :

s t r u c t { /∗ PARAMETERS ∗ /
s e t _ c a r s _ n e w _ v a l u e : bo o l

} Param ;
s t r u c t { /∗ Glu ing VARIABLES i n mac0 ∗ /

c a r s _ g o : bool ,
peds_go : b oo l

} VARS;
I n p u t s : /∗ VARIABLES i n mac0 ∗ /

VARS v a r s ;
Param param ;

}

Mac0_INV {
P r o o f O b l i g a t i o n s :

/∗ INVARIANTS i n mac0 : mac0 / inv 3 ∗ /
~(Mac0 : : v a r s . peds_go & Mac0 : : v a r s . c a r s _ g o) ;

}

Mac1_Mac0_Gluing_INV {
C o n s t r a i n t s :

/∗ Glu ing i n v a r i a n t s ∗ /
Mac0 : : v a r s . peds_go <−> Mac1 : : p e d s _ c o l o u r = Ctx1 : : g r e e n ;
Mac0 : : v a r s . c a r s _ g o <−> Mac1 : : c a r s _ c o l o u r s [2] ;

/∗ Witnes s i n mac1 / s e t _ c a r s _ c o l o u r s ∗ /
Mac0 : : param . s e t _ c a r s _ n e w _ v a l u e <−> Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2] ;

}

Mac1 {
Types :

s t r u c t { /∗ VARIABLES i n mac1 ∗ /
p e d s _ c o l o u r : Ctx1 : : COLOURS_ELT,
c a r s _ c o l o u r s : Ctx1 : : COLOURS

} VARS;
s t r u c t { /∗ PARAMETERS ∗ /

s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s : Ctx1 : : COLOURS
} Param ;

I n p u t s :
Param param ; /∗ P a r a m e t e r s ∗ /

D e c l a r a t i o n s :
/∗ VARIABLES i n mac1 ∗ /
VARS v a r s ;
Ctx1 : : COLOURS_ELT p e d s _ c o l o u r ;
Ctx1 : : COLOURS c a r s _ c o l o u r s ;

/∗ GUARDS i n mac1 ∗ /
boo l GRD_set_peds_green ;
boo l GRD_set_peds_red ;
boo l G R D _ s e t _ c a r s _ c o l o u r s ;

D e f i n i t i o n s :
/∗ D ef in e g u a r d s o f e v e n t s ∗ /
GRD_set_peds_green := (~ v a r s . c a r s _ c o l o u r s [2]) ;
GRD_set_peds_red := TRUE;
G R D _ s e t _ c a r s _ c o l o u r s := TRUE;

/∗ D ef in e a c t i o n s o f e v e n t s ∗ /
/∗ I n i t i a l i s a t i o n ∗ /
I (p e d s _ c o l o u r) := Ctx1 : : r e d ;
I (c a r s _ c o l o u r s) : = {TRUE, FALSE , FALSE } ;

/∗ S c h e d u l e ∗ /
X(p e d s _ c o l o u r) := i f GRD_set_peds_green t h e n Ctx1 : : g r e e n

e l i f GRD_set_peds_red t h e n Ctx1 : : f u n _ s e t _ r e d ()
e l i f G R D _ s e t _ c a r s _ c o l o u r s t h e n p e d s _ c o l o u r
e l s e p e d s _ c o l o u r ;

X(c a r s _ c o l o u r s) : = i f GRD_set_peds_green t h e n c a r s _ c o l o u r s
e l i f GRD_set_peds_red t h e n c a r s _ c o l o u r s
e l i f G R D _ s e t _ c a r s _ c o l o u r s t h e n param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s
e l s e c a r s _ c o l o u r s ;

v a r s := { p e d s _ c o l o u r , c a r s _ c o l o u r s } ;
O u t p u t s : v a r s ;
}

Mac1_INV {
P r o o f O b l i g a t i o n s :

/∗ INVARIANTS i n mac1 : mac1 / inv 1 ∗ /
Mac1 : : v a r s . p e d s _ c o l o u r = Ctx1 : : r e d # Mac1 : : v a r s . p e d s _ c o l o u r = Ctx1 : : g r e e n ;

}

Mac1_Para_Con t r ac t {
C o n s t r a i n t s : /∗ Loca l p a r a m e t e r c o n t r a c t s ∗ /

/∗ Event s e t _ c a r s _ c o l o u r s : g rd2 ∗ /
Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2] −> Mac1 : : p e d s _ c o l o u r = Ctx1 : : r e d ;
/∗ Event s e t _ c a r s _ c o l o u r s : g rd3 ∗ /
(~ Mac1 : : c a r s _ c o l o u r s [0] & Mac1 : : c a r s _ c o l o u r s [1] & ~Mac1 : : c a r s _ c o l o u r s [2])
−> (Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [0]

& ~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [1]
& ~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2]) ;

/∗ Event s e t _ c a r s _ c o l o u r s : g rd4 ∗ /
(Mac1 : : c a r s _ c o l o u r s [0] & ~Mac1 : : c a r s _ c o l o u r s [1] & ~Mac1 : : c a r s _ c o l o u r s [2])
−> (Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [0]

& Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [1]
& ~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2]) ;

/∗ Event s e t _ c a r s _ c o l o u r s : g rd5 ∗ /
(Mac1 : : c a r s _ c o l o u r s [0] & Mac1 : : c a r s _ c o l o u r s [1] & ~Mac1 : : c a r s _ c o l o u r s [2])
−> (~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [0]

& ~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [1]
& Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2]) ;

/∗ Event s e t _ c a r s _ c o l o u r s : g rd6 ∗ /
(~ Mac1 : : c a r s _ c o l o u r s [0] & ~Mac1 : : c a r s _ c o l o u r s [1] & Mac1 : : c a r s _ c o l o u r s [2])
−> (~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [0]

& Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [1]
& ~Mac1 : : param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2]) ;

}

Mac1_PROPS {
D e c l a r a t i o n s : /∗ P r o p e r t y o f d e a d l o c k f r e e n e s s ∗ /

boo l PROP_DLF ;
D e f i n i t i o n s : /∗ Compute p r o p e r t y o f d e a d l o c k f r e e n e s s ∗ /

PROP_DLF := TRUE, Mac1 : : GRD_set_peds_green
Mac1 : : GRD_set_peds_red
Mac1 : : G R D _ s e t _ c a r s _ c o l o u r s ;

P r o o f O b l i g a t i o n s : /∗ P r o p e r t y o f d e a d l o c k f r e e n e s s ∗ /
PROP_DLF ;

}

Appendix C: C Code of Traffic Light Control

ctx1.h
i n c l u d e " boo l . h "

i f n d e f CTX1_H
d e f i n e CTX1_H
enum COLOURS_ELT {

red ,
ye l low ,
g r e e n

} ;
t y p e d e f bo o l COLOURS [3] ;
enum COLOURS_ELT m a c 1 _ f u n _ s e t _ r e d () ;
e n d i f

ctx1.c
i n c l u d e " c t x 1 . h "
enum COLOURS_ELT m a c 1 _ f u n _ s e t _ r e d ()
{

r e t u r n r e d ;
}

mac1_events.h
i n c l u d e " c t x 1 . h "
i n c l u d e " mac1_param . h "
i n c l u d e " m a c 1 _ v a r i a b l e s . h "

i f n d e f MAC1_EVENTS_H
d e f i n e MAC1_EVENTS_H

/∗ Guards i n mac1 ∗ /
boo l GRD_set_peds_green (Mac1_VARS) ;
boo l GRD_set_peds_red (Mac1_VARS) ;
boo l G R D _ s e t _ c a r s _ c o l o u r s (Mac1_VARS) ;

/∗ A c t i o n s i n mac1 ∗ /
vo id I n i t i a l i s a t i o n (Mac1_VARS∗) ;
vo id ACT_se t_peds_green (Mac1_VARS∗) ;
vo id ACT_set_peds_red (Mac1_VARS∗) ;
vo id A C T _ s e t _ c a r s _ c o l o u r s (Mac1_VARS∗ , Mac1_Param) ;
e n d i f

mac1_events.c
i n c l u d e " mac1_even ts . h "
/∗ Guards i n mac1 ∗ /
boo l GRD_set_peds_green (Mac1_VARS v a r s) {

r e t u r n (v a r s . c a r s _ c o l o u r s [2] == f a l s e) ;
}

boo l GRD_set_peds_red (Mac1_VARS v a r s) {
r e t u r n t r u e ;

}

boo l G R D _ s e t _ c a r s _ c o l o u r s (Mac1_VARS v a r s) {
r e t u r n t r u e ;

}

/∗ A c t i o n s i n mac1 ∗ /
vo id I n i t i a l i s a t i o n (Mac1_VARS∗ v a r s) {

va r s−>p e d s _ c o l o u r = r e d ;
va r s−>c a r s _ c o l o u r s [0] = t r u e ;
va r s−>c a r s _ c o l o u r s [1] = f a l s e ;
va r s−>c a r s _ c o l o u r s [2] = f a l s e ;

}

vo id ACT_se t_peds_green (Mac1_VARS∗ v a r s) {
Mac1_VARS p r e _ v a r s = ∗ v a r s ;
va r s−>p e d s _ c o l o u r = g r e e n ;

va r s−>c a r s _ c o l o u r s [0] = p r e _ v a r s . c a r s _ c o l o u r s [0] ;
va r s−>c a r s _ c o l o u r s [1] = p r e _ v a r s . c a r s _ c o l o u r s [1] ;
va r s−>c a r s _ c o l o u r s [2] = p r e _ v a r s . c a r s _ c o l o u r s [2] ;

}

vo id ACT_set_peds_red (Mac1_VARS∗ v a r s) {
Mac1_VARS p r e _ v a r s = ∗ v a r s ;
va r s−>p e d s _ c o l o u r = m a c 1 _ f u n _ s e t _ r e d () ;
va r s−>c a r s _ c o l o u r s [0] = p r e _ v a r s . c a r s _ c o l o u r s [0] ;
va r s−>c a r s _ c o l o u r s [1] = p r e _ v a r s . c a r s _ c o l o u r s [1] ;
va r s−>c a r s _ c o l o u r s [2] = p r e _ v a r s . c a r s _ c o l o u r s [2] ;

}

vo id A C T _ s e t _ c a r s _ c o l o u r s (Mac1_VARS∗ va r s , Mac1_Param param) {
Mac1_VARS p r e _ v a r s = ∗ v a r s ;
va r s−>p e d s _ c o l o u r = p r e _ v a r s . p e d s _ c o l o u r ;
va r s−>c a r s _ c o l o u r s [0] = param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [0] ;
va r s−>c a r s _ c o l o u r s [1] = param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [1] ;
va r s−>c a r s _ c o l o u r s [2] = param . s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s [2] ;

}

mac1_param.h
i n c l u d e " c t x 1 . h "

i f n d e f MAC1_PARAM_H
d e f i n e MAC1_PARAM_H
t y p e d e f s t r u c t {

COLOURS s e t _ c a r s _ c o l o u r s _ n e w _ v a l u e _ c o l o u r s ;
} Mac1_Param ;
e n d i f

mac1_variables.h
i n c l u d e " c t x 1 . h "

i f n d e f MAC1_VARIABLES_H
d e f i n e MAC1_VARIABLES_H
/∗ VARIABLES i n mac1 ∗ /
t y p e d e f s t r u c t {

enum COLOURS_ELT p e d s _ c o l o u r ;
COLOURS c a r s _ c o l o u r s ;

} Mac1_VARS ;
e n d i f

mac1_schedule.h
i n c l u d e " mac1_even ts . h "
i n c l u d e " mac1_param . h "
i n c l u d e " m a c 1 _ v a r i a b l e s . h "

i f n d e f MAC1_SCHEDULE_H
d e f i n e MAC1_SCHEDULE_H
boo l mac1_schedu le (Mac1_VARS∗ , Mac1_Param) ;
e n d i f

mac1_schedule.c
i n c l u d e " mac1_schedu le . h "
boo l mac1_schedu le (Mac1_VARS∗ va r s , Mac1_Param param) {

/ / Event s e t _ p e d s _ g r e e n
i f (GRD_set_peds_green (∗ v a r s))
{

ACT_se t_peds_green (v a r s) ;
r e t u r n t r u e ;

}

/ / Event s e t _ p e d s _ r e d
i f (GRD_set_peds_red (∗ v a r s))
{

ACT_set_peds_red (v a r s) ;
r e t u r n t r u e ;

}

/ / Event s e t _ c a r s _ c o l o u r s
i f (G R D _ s e t _ c a r s _ c o l o u r s (∗ v a r s))
{

A C T _ s e t _ c a r s _ c o l o u r s (va r s , param) ;
r e t u r n t r u e ;

}

r e t u r n f a l s e ;
}

mac1_main.h
i n c l u d e " c t x 1 . h "
i n c l u d e " mac1_param . h "
i n c l u d e " m a c 1 _ v a r i a b l e s . h "
i n c l u d e " mac1_even ts . h "
i n c l u d e " mac1_schedu le . h "

i f n d e f MAC1_MAIN_H
d e f i n e MAC1_MAIN_H
t y p e d e f s t r u c t {

Mac1_Param mac1_param ;
} Mac1_Inputs ;

t y p e d e f s t r u c t {
Mac1_VARS mac1_vars ;

} Mac1_Outputs ;

vo id m a c 1 _ i n i t (Mac1_VARS∗) ;
vo id mac1_s tep (Mac1_VARS∗ , Mac1_Param) ;
Mac1_VARS mac1_cycle (Mac1_Param) ;
e n d i f

mac1_main.c
i n c l u d e " mac1_main . h "
s t a t i c i n t i n i t = 1 ;
s t a t i c Mac1_VARS g l o b a l _ v a r s ;

vo id m a c 1 _ i n i t (Mac1_VARS∗ v a r s) {
I n i t i a l i s a t i o n (v a r s) ;

}

vo id mac1_s tep (Mac1_VARS∗ va r s , Mac1_Param param) {
mac1_schedu le (va r s , param) ;

}

Mac1_VARS mac1_cycle (Mac1_Param params) {
Mac1_VARS∗ v a r s = &g l o b a l _ v a r s ;
Mac1_VARS o u t _ v a r s ;

i f (i n i t == 1) {
m a c 1 _ i n i t (v a r s) ;
i n i t = 0 ;

}
e l s e {

mac1_s tep (va r s , params) ;
}

o u t _ v a r s . p e d s _ c o l o u r = va r s−>p e d s _ c o l o u r ;
f o r (i n t i = 0 ; i < 3 : i ++) {

o u t _ v a r s . c a r s _ c o l o u r s [i] = va r s−>c a r s _ c o l o u r s [i] ;
}

r e t u r n o u t _ v a r s ;
}

