Ning Ge
email: .ning.ge@systerel.fr

Arnaud Dieumegard

Eric Jenn
email: eric.jenn@fr.thalesgroup.com

Laurent Voisin
email: laurent.voisin@systerel.fr

Laurent Voisin From

From Event-B to Verified C via HLL

Keywords: Event-B, Code generation, C, HLL, S3, Property proof, Equivalence proof

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Event-B [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF] is a formal notation and method for the correct-by-construction development of systems. In this method, a system is developed through a sequence of refinements, the consistency of which is formally proved. Event-B is based on first-order logic, typed set theory and integer arithmetic. As an integrated design environment for Event-B, the Rodin platform [START_REF] Coleman | Rodin (rigorous open development environment for complex systems)[END_REF] provides support for refinement and mathematical proof of the consistency between refinements and of system-specific properties such as safety properties. In this work, we consider that the last refinement developed and proved with Event-B is the starting point for software development: the Event-B model is used as a specification for the implementation.

Translating a correct specification to a correct implementation is challenging. Existing works [START_REF] Wright | Automatic generation of c from event-b[END_REF][START_REF] Boström | Creating sequential programs from event-b models[END_REF][START_REF] Méry | Automatic code generation from event-b models[END_REF][START_REF] Edmunds | Tasking event-b: An extension to event-b for generating concurrent code[END_REF][START_REF] Méry | Transforming event B models into verified c# implementations[END_REF][START_REF] Boström | Derivation of concurrent programs by stepwise scheduling of event-b models[END_REF][START_REF] Fürst | Code generation for event-b[END_REF] have identified the following main issues for this translation, and have proposed partial solutions. [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF] It is necessary to restrict the Event-B model to a well-defined subset in order to generate code for a particular programming language. (2) When multiple events are enabled, then an event is chosen nondeterministically to be executed. A particular schedule needs to be defined to remove such non-determinism. [START_REF] Barnett | The spec# programming system: An overview[END_REF] The correctness of translation needs to be guaranteed, which implies that the translation must preserve the safety properties expressed in the Event-B model. (4) Event-B does not come with constructs close to programming languages, as the B method [START_REF] Abrial | The B-book: assigning programs to meanings[END_REF] does with B0. Even though such constructs may be "emulated" by Event-B, the most refined event-B model usually only specifies contracts for software functions that need to be developed or provided outside Event-B (such as the implementation of the set theory). This leads to a verification gap between the Event-B contracts and the external or third-party implementation. [START_REF] Biere | Liveness checking as safety checking[END_REF] At the time of writing, it is still difficult to verify the deadlock-freeness and liveness properties using Rodin due to the difficulties of integrating loop variant reasoning in the Event-B model. These properties may be easier to verify using an intermediate verification language before the code is implemented. Among the above challenges, (1) and (2) have been addressed by all the existing works, while (3), (4) and (5) are still open. In this work, our focus is placed on the three open issues. A detailed discussion about the related works is provided in Section 2.

Unlike other Event-B to code translation approaches, ours relies on an intermediate verification language, namely HLL (High Level Language). HLL is a synchronous declarative language similar to Lustre [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF]. It is the modeling language used by the formal verification toolset S3 (Systerel Smart Solver) 3 [START_REF] Clabaut | Industrial grade model checking -use cases, constraints, tools and applications[END_REF], built around a SAT-based model checker (S3-core). More details about the HLL language and the S3 toolset are presented in Section 3.2.

The overall translation process from Event-B to C via HLL is depicted in Figure 1. On this figure, activities performed by existing tools are tagged by a letter while our contributions are tagged by a number. Activities are briefly explained hereafter. model. An equivalence proof is performed between the HLL model and the code to guarantee the correctness of the generated code. This contribution will be detailed in Section 5. -(d) + (e) Some functions of the C code are manually implemented from the function contracts in HLL. An equivalence proof is performed between the HLL contracts and the code to prove the correctness of the manually implemented code. This activity will be detailed in Section 5.

The organization of the paper is as follows: Section 2 discusses the related works; Section 3 describes the technological background, including the Event-B modeling language, the HLL modeling language and the S3 toolset, and presents our running example; Section 4 illustrates the translation from the Event-B model to the HLL model; Section 5 exposes the translation from the HLL model to the C code; Section 6 gives the experimental results on a significant use case: an automatic protection system for a robot; Section 7 gives some concluding remarks and discusses perspectives.

Related Works

As identified in Section 1, there are five main challenges for the translation from the Event-B model to the code. The issues of model restriction and prevention of nondeterminism by scheduling have been solved in the existing works [START_REF] Wright | Automatic generation of c from event-b[END_REF][START_REF] Boström | Creating sequential programs from event-b models[END_REF][START_REF] Méry | Automatic code generation from event-b models[END_REF][START_REF] Edmunds | Tasking event-b: An extension to event-b for generating concurrent code[END_REF][START_REF] Méry | Transforming event B models into verified c# implementations[END_REF][START_REF] Boström | Derivation of concurrent programs by stepwise scheduling of event-b models[END_REF][START_REF] Fürst | Code generation for event-b[END_REF]. The correctness of the translation has been addressed in [START_REF] Wright | Automatic generation of c from event-b[END_REF][START_REF] Boström | Creating sequential programs from event-b models[END_REF][START_REF] Méry | Automatic code generation from event-b models[END_REF][START_REF] Boström | Derivation of concurrent programs by stepwise scheduling of event-b models[END_REF]. The author of [START_REF] Méry | Automatic code generation from event-b models[END_REF] intended to verify the generated and implemented code using meta-proof and software model checking tools such as BLAST [START_REF] Beyer | The software model checker blast[END_REF], which can check temporal safety properties of C program. As the approach was not yet experimented in their work and the details on the meta-proof and the checking of properties were not provided, it is difficult to evaluate the limits of this proposal. The work [START_REF] Méry | Transforming event B models into verified c# implementations[END_REF] generates verified C# code in a static program verification environment, namely the Spec# programming system [START_REF] Barnett | The spec# programming system: An overview[END_REF], that is based on deductive verification of function contracts. For C code, the same idea can be applied using the Frama-C framework [START_REF] Cuoq | Frama-c[END_REF]. However, the verification based on function contracts is restricted to local properties. It is not easy to express and verify the safety properties concerning the global behavior of a system, as well as the deadlock-freeness and liveness properties. The work [START_REF] Fürst | Code generation for event-b[END_REF] generates correct C code relying on reasoning about well-definedness, assertions and refinement. It relies on a set of well-definedness restriction rules for the Event-B model to prevent the occurrence of runtime errors such as arithmetic overflows. The correctness of the generated C code is informally guaranteed by using a refinement step. To verify that the control flow is the same as the restricted Event-B model, this work adds new variables that represents the program counter in the scheduled model and adds events that simulate the update of the counter. This approach is restricted to the verification of control flow invariants. In addition, it does not yet cover deadlock-freeness and liveness properties. Event-B is a modeling formalism and method for the development of systems relying on a correct-by-construction approach. At the time of writing, Event-B focuses on discrete transition systems. Centered around the notion of events, it is structured around contexts and machines. A context defines the type of data and models the static properties of the system including the function contracts. A machine models the dynamic behavior by means of variables, the values of which are initially determined by the initialization event and changed by actions of events. Construction invariants and safety properties are expressed in the machines. An event waits for a set of guard conditions to be verified to trigger a sequence of actions. A parameter is constrained by appropriate guards and its chosen value is used to update the machine variables. A witness maps a concrete parameter with a more abstract one defined in a less refined machine. Details about the Event-B language and method can be found in [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF].

The HLL Modeling Language and the S3 Toolset

HLL is a synchronous dataflow language used to model a system, its environmental constraints as well as its properties. To give an overview of the language constructs, Figure 2 shows the HLL model of a saturated counter and its property about the range of output value (respectively in the namespaces Counter and Counter_Verif). HLL constants. The behavior of the counter is initialized by I(cnt) and periodically updated by X(cnt). The effect of INC and RESET are directly defined in the schedule, while the effect of DEC is defined as a function contract by using HLL constraints and an intermediate variable dec_input of the HLL block Fun_dec(), without any concrete implementation.

HLL is used as the modeling/verification language of the S3 toolset. Design models specified in SCADE [START_REF] Caspi | From simulink to scade/lustre to tta: a layered approach for distributed embedded applications[END_REF]/Lustre [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF] or code in C/Ada can be translated to HLL thanks to translators provided by the toolset. The proof engine of S3 is a SAT-based [START_REF] Biere | Handbook of satisfiability[END_REF] model checker, S3-core, that implements Bounded Model Checking (BMC) [START_REF] Biere | Symbolic model checking without BDDs[END_REF] and k-induction [START_REF] Sheeran | Checking safety properties using induction and a SAT-solver[END_REF][START_REF] Bjesse | SAT-based verification without state space traversal[END_REF] techniques. The input of S3-core is a bit-level Low Level Language (LLL) that only contains boolean streams and is restricted to three bitwise operators: negation, implication and equivalence. The toolset provides "expanders" to translate HLL models into LLL models. More details about HLL and S3 can be found in [START_REF] Ning Ge | Formal verification of a rover anti-collision system[END_REF].

S3 supports different activities of a software development process: property proof, equivalence proof, automatic test case generation, simulation, and provides necessary elements to comply with the software certification processes. It has been used for the formal verification of railway signalling systems for years by various industrial companies in this field.

A Running Example: A Traffic Light Controller

To make this paper more readable and understandable, we use the case of the traffic light controller proposed in the Rodin User's Handbook 4 as a running example. In order to illustrate the role of function contracts, we have slightly modified the original Event-B model by abstracting an event action into a set of function interface and the contracts of the function. The requirements of this traffic light controller are the follows:

-REQ-1: A traffic light controller shall be used to control both the pedestrian traffic lights and car traffic lights of a pedestrian crossing. -REQ-2: Both traffic lights shall not be green at the same time, to ensure that the pedestrian crossing is in a safe state.

This example covers most Event-B constructs. The model is provided in the Appendix A. It is composed of an abstract machine (mac0) without context and a refined machine (mac1) with a context(ctx1). The specified invariants are related to the data type, the usage of gluing variables, and the safety property (REQ-2). The contract of the function that sets the pedestrian light to red color is specified in the context ctx1.

4 Translating Event-B to Verified HLL 4.1 Architecture of the HLL Model Figure 3 depicts the static architecture of the HLL model. A complete model is composed of three main parts: (i) the specification of the scheduled system (the white blocks), (ii) the specification of the invariants/properties and other verification related artefacts (the dark grey blocks), and (iii) the function contracts (the light grey blocks). Code generation requires part (i); the implementation of contracted functions requires part (iii); and the verification of the HLL model requires all parts. The HLL model of the system consists of the inputs of system commands, the outputs of the Event-B variables of the machine, the function contracts for the parameters, external functions and third-party library (e.g., the implementation of the set theory and HLL quantifiers). The verification architecture consists of the invariants/properties, the gluing invariants/witnesses in the less refined machine, and the related gluing variables/parameters in the abstract events. Concerning the dynamic architecture of the model, the main question concerns the scheduling of events. When multiple events are enabled, then an event is chosen nondeterministically to be executed. However, to implement such model with a sequential programming language, and to ensure the deterministic behavior of the software, a specific scheduling of events must be chosen. The problem of event scheduling has been addressed in many existing works. We are not aimed to enumerate the translation of every possible scheduling algorithms. As an example, we use a simple algorithm where events are processed in their definition order in the Event-B model.

Translation Rules from Event-B to HLL

We present the translation rules according to the presentation of the Event-B constructs in [START_REF] Robinson | A concise summary of the event b mathematical toolkit[END_REF], including arithmetic operations, predicates, sets, and relations.

Translating Arithmetic and Predicates

The translation rules of arithmetic and predicates are defined in Table 1. These translations are straightforward, thanks to the quan-tifiers in HLL language. Note that the quantifiers are executable at the HLL level, but they need to be implemented at the code level.

$min i : [0, N-1](S(i)); Maximum max(S) $max i : [0, N-1](S(i)); Predicate Event-B HLL Negation ¬x ∼x True true False ⊥ false Equality a = b a == b Inequality a = b a ! = b Less a < b a < b Less or equal a ≤ b a ≤ b Greater a > b a > b Greater or equal a ≥ b a ≥ b Conjunction x ∧ y x & y Disjunction x ∨ y x # y Implication x ⇒ y x → y Equivalence x ⇔ y x ↔ y Universal quantification ∀ ALL Existential quantification ∃ SOME
Translating Set Theory The translation rules of sets and set predicates are defined in Table 2 and Table 3. They are implemented using the characteristic functions in HLL. In the HLL model, a set S of finite size N with elements e i (i = 0..N-1) is implemented as a boolean array A of size N such that S[i] is true if and only if element e i is in S. This implementation has strong restrictions. In particular, it imposes that the cardinality of S is bounded (and "reasonnable"). Many other implementations would have been possible, nevertheless, we chose this one to leverage the optimized operations on boolean vectors implemented in S3. Note that the code implementation of the HLL set constraints need to be provided by a set theory library.

Translating Relations and Functions A relation is a set of ordered pairs. The translation rules of relations are defined in Table 4. As a set in Event-B is implemented as a boolean array in HLL, a relation r of two sets S of size N and T of size M is implemented as a 2-dimensional boolean array R[N][M]. The HLL pre-conditions of a relation r between elements s i of S and t j of T is (i)

s i are in S (S[i] is true), (ii) t j is in T (T[j] is true), (iii) r exists between s i and t j (R[i][j] is true).
In Event-B, a special case of relations are functions, with the restriction that each element of the domain is related to a unique element in the range. The translation rules of functions are defined in Table 5.

E := {z • P | F} E[z] := F[z] & P(z); Union U := S ∪ T U[i] := S[i] # T[i]; Intersection U := S ∩ T U[i] := S[i] & T[i]; Difference U := S \ T U[i] := S[i] & ∼T[i]; Cartesian product E := S × T E[i][j] := S[i] & T[j];
Powerset P (S)

Declarations : bool P[N]; Constraints : ALL i : [0, N-1] (∼S[i] → ∼P[i]);
Non-empty subsets P1 (S) Translating Event-B Constructs Table 6 presents the mapping between Event-B constructs and the HLL elements. Part of HLL model of the running example is provided in Figure 4, including one context (ctx1), one machine (mac1), and the invariants in the machine mac1 (mac1_INV). In the HLL model of machine mac1, for the reason of space limitations, only the variable peds_colour is defined to explain the schedule. The complete HLL model of the running example is provided in the Appendix B. As explained in Section 4.1, a sequential schedule is applied in the HLL model. Firstly, the guards (i.e. GRD_set_peds_green, GRD_set_peds_red and GRD_set_cars_colours) are defined. Then each variable is initialized by the definition I(vars), such as I(peds_colour). The update of values with respect to the schedule of events is defined in the step X(var), such as X(peds_colour). Total surjection f ∈ S T ALL s : S, t1, t2 :

Declarations : bool P[N]; Constraints : ALL i : [0, N-1] (∼S[i] → ∼P[i]); SOME i : [0, N-1] (S[i] → ∼P[i]); Cardinality card(S) card := population(S); Generalized union union(S) U[i] := SOME j : [0, N-1] (S[i][j]); Generalized intersection inter(S) U[i] := ALL j : [0, N-1] (S[i][j]); Quantified union UNION z • P|S U[i] := SOME j : [0, N-1] (P(S[i][j])); Quantified intersection INTER z • P|S U[i] := ALL j : [0, N-1] (P(S[i][j]));
i : [0, N-1] (S[i] → T[i]); Proper subset S ⊂ T ALL i : [0, N-1] (S[i] → T[i]) & SOME i : [0, N-1] (T[i] → ∼S[i]);
i : [0, N-1], j : [0, M-1] (∼S[i]#∼T[j]) → ∼r[i][j] ; Domain dom(r) dom[i] := SOME j : [0, N-1] (r[i][j]); Range ran(r) ran[j] := SOME i : [0, N-1] (r[i][j]); Total relation S ← ↔ T Declarations : bool r[N][M]; Constraints : ALL i : [0, N-1] S[i] → SOME j : [0, M-1] (T[j] & r[i][j]) ; ALL i : [0, N-1] ∼S[i] → ALL j : [0, M-1] (∼r[i][j]) ; Surjective Relation S ↔ → T Declarations : bool r[N][M]; Constraints : ALL j : [0, M-1] T[i] → SOME i : [0, N-1] (S[i] & r[i][j]) ; ALL i : [0, M-1] ∼T[j] → ALL i : [0, N-1] (∼r[i][j]) ; Total surjective relation S ← ← → → T Declarations : bool r[N][M]; Constraints : ALL i : [0, N-1] S[i] → SOME j : [0, M-1] (T[j] & r[i][j]) ; ALL j : [0, M-1] T[i] → SOME i : [0, N-1] (S[i] & r[i][j]) ; ALL i : [0, N-1] ∼S[i] → ALL j : [0, M-1] (∼r[i][j]) ; ALL i : [0, M-1] ∼T[j] → ALL i : [0, N-1] (∼r[i][j]) ;
T t1 = f(s) & t2 = f(s) → t1 = t2 ; ALL s : S SOME t : T (f(s) = t) ; ALL t : T SOME s : S (f(s) = t) ; Bijection f ∈ S T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ; ALL s1, s2 : S, t : S t = f(s1) & t = f(s2) → s1 = s2 ; ALL s : S SOME t : T (f(s) = t) ; ALL t : T SOME s : S (f(s) = t) ;

Proving HLL Invariants and Properties in S3

The invariants in the Event-B models are translated to HLL Proof Obligations (see example Mac1_INV in Figure 4). The translation rules are the same as that defined in the GRD_set_peds_green := (~vars.cars_colours The deadlock-freeness and liveness properties will be directly expressed in HLL. The liveness property is handled by using lasso [START_REF] Biere | Liveness checking as safety checking[END_REF][START_REF] Thai | Reasoning about liveness properties in eventb[END_REF]. The deadlock-freeness [START_REF] Yang | An event-b plug-in for creating deadlock-freeness theorems[END_REF] property is expressed using the guards of events. The HLL expression of the deadlock-freeness property is provided here. Note that a := true, b; is another written form for I(a) := true; X(a) := b;. PROP_DLF := true, mac :: GRD_E 1 # mac :: GRD_E 2 # ... # mac :: GRD_E n ; Figure 5 presents the process of property proof using S3. The HLL model, combined with properties expressed in HLL as well, are expanded to a LLL model that is fed to the S3-core. If a property is falsifiable, a generated counterexample can be simulated at the HLL level to help the debug. S3 also provides automatic analysis tools to help the search of lemmas used by the proof. 5 Translating HLL to HLL-Equivalent C Code

Once the Event-B model is translated into a HLL model, the correctness of which is proven, the next phase consists of translating the HLL model into C code and proving that the code is correct. Translation of HLL to C involves two activities: an automatic one where the C code is generated directly from the HLL model, and a manual one where some functions in the C code are implemented manually from contracts expressed in HLL. In this section, we define the architecture of generated C code in Section 5.1. The code generation/implementation rules from the HLL model to the C code are respectively defined in Section 5.2 and 5.3. The approach of equivalence proof is briefly addressed in Section 5.4. Note that, instead of equivalence proof, the correctness of the code can also be guaranteed by proving the same properties (already expressed in HLL) in HLL. In order to re-prove the same properties, the C code is translated into an HLL model, where the HLL properties are combined and proved.

Architecture of the Generated C Code

The static architecture of the C code is given on Figure 6. It reflects directly the architecture of the HLL model shown in Fig. 3 for the parts related to implementation (the white blocks). The dynamic architecture is described as follows:

-The system is first initialized by the function MAC _init that calls the function MAC _Initialisation, -Then the system calls periodically the scheduler MAC _Schedule. The scheduler calls each event processing functions MAC _Events according to the schedule order. Each event processing function evaluates its guards MAC _Guards and, if all guards are enabled and the event is triggered, call the action realization function MAC _Actions. The guards and actions depend on the inputs MAC _Inputs, outputs MAC _Outputs and the functions implemented from the contracts.

Translation of HLL Model to C code

The C code can be generated either from the HLL model or from the LLL model that is the expanding result of the HLL model. The alternative is presented and discussed hereafter.

Code Generation from HLL Generating C code from HLL is in a way similar to that of the translating Event-B to HLL. Figure 7 shows the generated C code mac1_main.c and mac1_schedule.c of the running example. They are generated from the HLL model Mac1 in Fig. 4. The schedule defined in the Mac1 HLL model is extracted in the code mac1_schedule.c. The main file mac_main.c conforms to the cyclic execution in the HLL model. A set of global variables is defined as the set of system states and initialized. They are cyclically updated according to the order defined by the event scheduler. The guards and actions are defined as functions in the mac1_events.c. Because of space limitations, the complete C code of the running example is provided in the Appendix C.

Code Generation from LLL The C code may also be generated directly from the intermediate LLL model, which is the expanded translation of the HLL model. This is achieved by the LLL to C translator in S3. We present an example in Figure 8. In the model ex.lll, all variables are boolean, and only three bitwise operators are used, therefore the translation is direct. The C code ex.c contains a init function and a cycle function. The translation is automatic, and the cost of the conversion from LLL to C is very low. However, as all operations -including arithmetic operations -are encoded using bit-level C operators, execution performance degrades gradually as the number of arithmetic operations increases. This solution is interesting for applications that perform mainly logical operations. Proving the equivalence of two models (or one program and one model) consists in proving that the two systems behave identically (in particular, provide the same outputs) for any input in the input domain. In our case, we rely on the equivalence proof to guarantee the correctness the code. The equivalence proof is concerned with two problems: the equivalence between HLL model and the generated C code, and the equivalence between HLL contracts and the implemented C code. Figure 10 presents the process of proving the equivalence between the HLL model and the generated/implemented C code. The C code is translated into another HLL model. Both HLL models are then respectively expanded to two LLL models using diversified expanders 5 . To prove the equivalence of two HLL models, the equivalence models are constructed and proved at the LLL level. The approach is sound for two reasons. First, the correctness of the HLL model of the system is proven, as shown in Section 4. Second, the verification means (i.e., the S3 toolset) is developed so as to facilitate qualification against certification standards (in particular, DO-178C [START_REF] Do | Software considerations in airborne systems and equipment certification[END_REF] and DO-330 [START_REF]Software Tool Qualification Considerations[END_REF]). Towards this goal, S3 is organized in a set of small, independent components, from which the most critical ones -an equivalence model constructor, and a tool to verify the validity of the proof -are developed according to the highest integrity levels.

In practice, it shall be noted that some of the Event-B events actually model the modifications of monitored and commanded variables, i.e., variables that are not modified by the function under design [START_REF] Lorge | Functional Documentation for Computer Systems Engineering: Version 2[END_REF][START_REF] Butler | Towards a cookbook for modelling and refinement of control problems[END_REF]. The actions triggered by these events describe the expected effects of the external environment on these variables. As they do not represent actions of the system, they shall not be translated to software code. Thus, they are implemented by simple interface functions performing acquisition of external variables. As a result, no equivalence checking can be done for those parts of the generated C code, their verification shall thus be achieved using other means (formal or informal). [START_REF] Biere | Symbolic model checking without BDDs[END_REF] The Case Study: Automatic Rover Protection TwIRTee is the small three-wheeled robot (or "rover") used as the demonstrator of the INGEQUIP project 6 . It is used to evaluate new methods and tools in the domain of hardware/software co-design, virtual integration, and application of formal methods for the development of equipments. TwIRTee's architecture, software, and hardware components are representative of a significant family of aeronautical, spatial and automotive systems [START_REF] Cuenot | An experiment on exploiting virtual platforms for the development of embedded equipments[END_REF]. A rover performs a sequence of missions (1 on Figure 11). A mission is defined by a start time and an ordered set of waypoints to be passed-by. Missions are planned off-line and transmitted to the rover by a supervision station (2). To go from the first waypoint to the last, the rover moves on a track that is materialized by a grey line on the ground. In a more abstract way, a complete mission can be modelled by a path in a graph where nodes represent waypoints, and edges represent parts of the track joining two waypoints. A rover shares the tracks with several identical rovers. In order to prevent collisions, each of them embeds a protection function (or ARP) which purpose is to maintain some specified spatial (3) and temporal separation (4) between them. On Figure 1, temporal separations are represented by light green and light red areas superimposed on the map: basically, rover 2 (resp. rover 1) shall never enter the light green (resp. light red). In the current implementation, the ARP essentially acts by reducing the rover speed and, in some specific cases, by performing a simple avoidance trajectory. To take the appropriate action, the ARP exploit the following pieces of information: the map, the position of all other rovers transmitted by a centralized supervision station (5), and its own position.

For this paper, we rely on a specific model of the ARP function where some elements have been simplified. We thus only consider specification elements such as rover position, speed, deceleration, and others as being discrete values (no use of Real or Floating Point data). The statistics of the Event-B model, translated HLL models, and generated/implemented C code are provided in Table 7.

Conclusion and Perspective

Conclusion

This work addresses the translation of Event-B into C and the demonstration of the correctness of translation using formal methods. Our approach relies on an intermediate modeling/verification language HLL. The correctness proof follows two steps. 6 The INGEQUIP project is conducted at the Institut de Recherche Technologique of Toulouse (IRT-Saint Exupéry) First, the final refinement of the Event-B model, including invariants from all refined machines and elements from all extended contexts, are translated to the HLL model. Additional properties are expressed in HLL. The invariants/properties are proved at the HLL level to guarantee the correctness of the translation. Second, the C code is automatically generated from the HLL model for most of the system functions and manually for implemented from the contracts for the remaining ones. The equivalence between the code and the HLL model is proved to guarantee the correctness of the code. In this paper, we define the translation rules, and show the experimented results on a significant use case. More details about the refinement and design can be found in [START_REF] Dieumegard | An Experiment Report on a Process Combining Formal Refinement and Formal Software verification[END_REF].

Compared to the existing approaches to proving the direct translation from the Event-B model to generated code, our contribution is to address the verification of additional properties (i.e., deadlock-freeness and liveness properties) in the HLL model. For the direct translation approaches [START_REF] Méry | Automatic code generation from event-b models[END_REF][START_REF] Méry | Transforming event B models into verified c# implementations[END_REF][START_REF] Fürst | Code generation for event-b[END_REF], the analysis of these properties needs to be performed in the final C code. Considering the complexity of analysis, the authors of these works all mentioned the limits of their approaches and considered it as an open issue.

Another advantage of our approach is the support of property proof and equivalence proof of Floating-Point Arithmetic (FPA) in both the HLL model and the code. The S3 toolset provides an HLL library of FPA based on bit-blasting 7 [13] that conforms to the FPA standard IEEE std 2008-754 [START_REF] Zuras | Ieee standard for floating-point arithmetic[END_REF].

Perspectives

The development of the translation tool is ongoing. As the specification of the HLL language will be published in a near future, it will soon become possible to integrate the translator as a plug-in in the Rodin platform.

The antecedent of Event-B, the B method, supports formal refinement until the programming language B0, that is translated later to C/ADA code. This method requires more refinements, but the resulting B0 model is sufficiently close to software code that code generation becomes straightforward. The correctness of final code still needs to be proved. As the verification gap between B0 and C code is smaller than the one between Event-B and C code, the results of this work could be adapted to the translation from B0 to C via HLL.

Fig. 1 :

 1 Fig. 1: Process and Activities from Event-B to C via HLL

 Event-B Modeling Language and the Rodin Platform

Fig. 2 :

 2 Fig. 2: An Example of HLL Model counter reacts to the input command (modelled as an HLL enumeration): incrementation (INC), decrementation (DEC) or reset (RESET). The saturation range is defined by

Fig. 3 :

 3 Fig. 3: Static Architecture of the HLL Model

 Natural Number NAT int unsigned N Interval x = n..m int[n, m] x; Addition x := a + b x := a + b; Subtraction x := ab x := ab; Multiplication x := a * b x := a * b; Division x := a ÷ b x := a / b; Modulo x := a mod b x := a % b; Exponentiation x := aˆb x := aˆb; Minimum min(S)

 Finite set finite(S) (All sets in HLL are finite.) Partition partition(S, s1, ..., sn) S[i] := s1[i] # ... # sn[i];

Functions

 Event-B HLL Partial function f ∈ S → T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ; Total function f ∈ S → T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ;ALL s : S SOME t : T (f(s) = t) ; Partial injection f ∈ S T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ; ALL s1, s2 : S, t : S t = f(s1) & t = f(s2) → s1 = s2 ; Total injection f ∈ S T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ; ALL s1, s2 : S, t : S t = f(s1) & t = f(s2) → s1 = s2 ; ALL s : S SOME t : T (f(s) = t) ; Partial surjection f ∈ S T ALL s : S, t1, t2 : T t1 = f(s) & t2 = f(s) → t1 = t2 ; ALL t : T SOME s : S (f(s) = t) ;

Fig. 4 :

 4 Fig.4: Partial HLL Models of the Running Example previous sections. Besides the invariants of refinement, usually the other invariants in Event-B represent safety properties. The deadlock-freeness and liveness properties will be directly expressed in HLL. The liveness property is handled by using lasso[START_REF] Biere | Liveness checking as safety checking[END_REF][START_REF] Thai | Reasoning about liveness properties in eventb[END_REF]. The deadlock-freeness[START_REF] Yang | An event-b plug-in for creating deadlock-freeness theorems[END_REF] property is expressed using the guards of events. The HLL expression of the deadlock-freeness property is provided here. Note that a := true, b; is another written form for I(a) := true; X(a) := b;.

Fig. 5 :

 5 Fig. 5: Process of Property Proof using S3

Fig. 6 :

 6 Fig. 6: Static Architecture of Generated C Code

Fig. 9 :

 9 Fig. 9: Example of Implementation from HLL Contracts

Fig. 10 :

 10 Fig. 10: Process of Equivalence Proof

Fig. 11 :

 11 Fig. 11: ARP System Overview

end

 Event set peds go ordinary = when grd1: cars go = F ALSE then act1: peds go := T RU E end Event set peds stop ordinary = begin act1: peds go := F ALSE end Event set cars ordinary = any new value where grd1: new value ∈ BOOL grd2: new value = T RU E ⇒ peds go = F ALSE then act1: cars go := new value peds colour ∈ {red, green} inv5: cars colours ⊆ COLOU RS gluing peds: peds go = T RU E ⇔ peds colour = green gluing cars: cars go = T RU E ⇔ green ∈ cars colours EVENTS Initialisation begin act1: peds colour := red act2: cars colours := {red} end Event set peds green ordinary = refines set peds go when grd1: green / ∈ cars colours then act1: peds colour := green end Event set peds red ordinary = refines set peds stop begin act1: peds colour := f un set red end Event set cars colours ordinary = refines set cars any new value colours where grd1: new value colours ⊆ COLOU RS grd2: green ∈ new value colours ⇒ peds colour = red grd3: cars colours = {yellow} ⇒ new value colours = {red} grd4: cars colours = {red} ⇒ new value colours = {red, yellow} grd5: cars colours = {red, yellow} ⇒ new value colours = {green} grd6: cars colours = {green} ⇒ new value colours = {yellow} with new value: new value = T RU E ⇔ green ∈ new value colours then act1: cars colours := new value colours end END

Command; Inputs: Command in; Constants: int C_MIN := 0; int C_MAX := 100; Declarations: int unsigned 32 cnt; Outputs: cnt; Declarations: int unsigned 32 dec_input; Blocks:

				The
	Namespaces: Counter { Types:	enum {INC, DEC, RESET} Fun_dec(int pre_v) > (int v){v:= dec_input;}	Namespaces: Counter_Verif { Proof Obligations: Counter::cnt>=Counter::C_MIN; Counter::cnt<=Counter::C_MAX; }
	Constraints:		
	ALL f: Fun_dec (f.pre_v = C_MIN > d.v = C_MIN);
	ALL f: Fun_dec (f.pre_v > C_MIN > d.v = f.pre_v1);
	Definitions:		
	I(cnt) := 0;		
	X(cnt) := if	in==RESET then C_MIN
	elif in==DEC	then Fun_dec(cnt)
	elif in==INC	then
		if cnt==C_MAX then C_MAX else cnt + 1
	else cnt;	
	}		

Table 1 :

 1 Event-B Arithmetic and Predicates to HLL Model

Table 2 :

 2 Event-B Sets to HLL Model

	Sets	Event-B	HLL
	Set Empty set	S := {e1, ..., eN} bool S[N]; S := ∅ S[i] := false;
	Set comprehension		

Table 3 :

 3 Event-B Set Predicates to HLL Model

	Set Predicates	Event-B	HLL
	Set membership	s : S	S(s) == true;
	Set non-membership s / : S	S(s) == false;
	Subset	S ⊆ T	ALL

Table 4 :

 4 Event-B Relations to HLL Model

	Relations	Event-B HLL
			Declarations : bool r[N][M];
	Relations	S ↔ T	Constraints : ALL

Table 5 :

 5 Event-B Functions to HLL Model

Table 6 :

 6 Event-B Constructs to HLL Model

		Event-B Construct HLL Construct	Dependence
		CONTEXT	ctx.hll
		EXTENDS	Abstract context HLL	abs_ctx.hll
		SETS	Enum, Array
		CONSTANTS	Type
		AXIOMS	Block, Constraint
		MACHINE	mac.hll
		REFINES	Abstract machine HLL	abs_mac.hll
		SEES	Abstract context HLL	abs_ctx.hll
		VARIABLES	Inputs, Struct
		INVARIANT	Types, Proof obligations	mac.hll, (abs_)mac_inv.hll
		Gluing INVARIANT Constraints	mac_absmac_ginv.hll
		EVENT	mac.hll
		REFINES	Abstract machine HLL	abx_mac.hll
		ANY	Declarations	mac_para_contract.hll
		WHERE	Predicate(vars)	mac_para_contract.hll
		WITH	Constraints	mac_absmac_ginv.hll
		THEN	Definitions, I(vars), X(vars)
	Namespaces: Ctx1 { Types: enum {red, yellow, green} COLOURS_ELT; // Context ctx1 // Variable types in ctx1 bool COLOURS[3];// Ordered table: red, yellow, green Types: Struct { // Variables types for function contracts Contract_input_fun_set_red : COLOURS_ELT } Fun_Contract_Vars;	Namespaces: Mac1 { Types: struct { peds_colour : Ctx1::COLOURS_ELT, // VARIABLES in mac1 cars_colours: Ctx1::COLOURS } VARS; // Local PARAMETERS Struct { set_cars_colours_new_value_colours: Ctx1::COLOURS } Param;
	Declarations: // Variables of function contract Fun_Contract_Vars fun_vars;	Inputs: Param param; Declarations:
	Blocks:	// mac1/set_peds_red/fun_set_red()	VARS vars; // VARIABLES in mac1 Ctx1::COLOURS_ELT peds_colour;
	fun_set_red() > (COLOURS_ELT colour)	Ctx1::COLOURS	cars_colours;
	{			bool GRD_set_peds_green; // GUARDS in mac1
	colour := fun_vars.Contract_input_fun_set_red;	bool GRD_set_peds_red;
	}			bool GRD_set_cars_colours;
	Constraints: // Function contract for set_peds_red()	Definitions:
	ALL f: fun_set_red	
		(fun_vars.colour = red);	
	}		

Table 7 :

 7 Statistics of the ARP Models (Event-B and HLL) and Code

		Events / Actions / Guards	18 / 70 / 74
	Event-B model	Axioms / Theorems / Constants / Variables / Invariants 40 / 11 / 27 / 15 / 79 PO (Total / Automatic / Manuel) 634 / 626 / 8
		LOC of Event-B model of the final refinement	243
		Properties (safety / liveness/ deadlock-freeness)	42 / 4 / 1
	HLL models	Time for property proof (invariants + properties) Contracts (external function / parameter)	4s 5 / 12
		LOC of HLL models (system / verification)	800 / 500
	C code	LOC of C code(generated / implemented) Time for equivalence proof	1200 / 600 3s

S3 is maintained, developed and distributed by Systerel (http://www.systerel.fr/).

The diversified expanders have been designed and implemented by different teams using different programming languages.

Bit-blasting is a classic method that translates bit-vector formulas into propositional logic expressions.

act1: cars go := F ALSE act2: peds go := F ALSE

Acknowledgments

This work has been funded by the INGEQUIP project. The authors would like to thank the members in the project, and the colleagues of the Systerel S.A.S company Nicolas Breton, Mathieu Clabaut and Yoann Fonteneau for their good cooperation. The author Ning Ge would like to thank Hongyu Liu for his help on this work.

Code Implementation from HLL Contracts

The HLL function contracts require a developer to translate it to C. This is the usual practice, even though in our case, the software specification is formal. We show a function implemented under the HLL contract used in the running example in Figure 9. The function mac1_fun_set_red() is implemented from the contract expressed as constraint on the block fun_set_red() in the namespace ctx1 in Fig. 4, shown as follows.