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Interference Mitigation via Pricing in
Time-Varying Cognitive Radio Systems

Alexandre Marcastel, E. Veronica Belmega, Panayotis Mertikopoulos, and Inbar
Fijalkow

Abstract Despite the lure of a considerable increase in spectrum usage efficiency,
the practical implementation of cognitive radio (CR) systems is being obstructed
by the need for efficient and reliable protection mechanisms that can safeguard the
quality of service (QoS) requirements of licensed users. This need becomes partic-
ularly apparent in dynamic wireless networks where channel conditions may vary
unpredictably – thus making the task of guaranteeing the primary users (PUs)’ min-
imum quality of service requirements an even more challenging task. In this paper,
we consider a pricing mechanism that penalizes the secondary users (SUs) for the
interference they inflict on the network’s PUs and then compensates the PUs ac-
cordingly. Drawing on tools from online optimization, we propose an exponential
learning power allocation policy that is provably capable of adapting quickly and
efficiently to the system’s variability, relying only on strictly causal channel state
information (CSI). If the transmission horizon T is known in advance by the SUs,
we prove that the proposed algorithm reaches a “no-regret” state within O(T−1/2)
iterations; otherwise, if the horizon is not known in advance, the algorithm still
reaches a no-regret state within O(T−1/2 log T ) iterations. Moreover, our numerical
results show that the interference created by the SUs can be mitigated effectively by
properly tuning the parameters of the pricing mechanism.
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1 Introduction

Cognitive radio (CR) has been identified as one of the most promising solutions to
face the enormous challenges of future and emerging communication networks in
terms of capacity, quality of experience, and spectrum efficiency [1]. The proposal
to achieve this is to introduce a two-tier hierarchy, based on spectrum licensing:
on the one hand, primary users (PUs) have leased part of the spectrum and must
be sheltered from harmful interference; on the other hand, the network’s secondary
users (SUs) are allowed to free-ride on the licensed part of the spectrum, provided
that they comply with the PUs’ minimum quality of service (QoS) requirements.

This opportunistic spectrum access paradigm gives rise to several major con-
cerns. First, the PUs have no incentive to accept a spectrum lease that leaves them
open to free-riding – even under protection against harmful interference. For in-
stance, one of the most widespread ways to guarantee the PUs’ contractual QoS
guarantees is to impose a so-called interference temperature (IT) constraint [2] at
the SUs transmission level, i.e. to require that the total interference caused to the li-
censed user in a given frequency band remain always below a given, fixed tolerance.
However, ensuring that the SUs respect a rigid constraint at all times is a highly non-
trivial task – e.g. because of channel estimation errors, imperfect SUs coordination
(or total lack thereof), malicious SU behavior, etc. Second, the inherent temporal
variability of multi-user wireless networks – caused by the users’ unpredictable be-
havior coupled with the random dynamics of the wireless environment – poses a
major challenge in protecting the PUs against harmful interference.

To tackle these concerns, we propose a pricing mechanism [3] to a) incentivize
and reward the network’s PUs for allowing SUs to co-exist in the same part of the
spectrum; and b) act as an effective interference mitigator, keeping the interference
created by the SUs at tolerable levels. More precisely, we posit that the system
manager imposes a monetary cost for every IT constraint violation caused by the
SUs as an increasing function of the violation. These sanctions are then used to
reimburse the PUs whose quality of service requirements were violated.

Pricing mechanisms of this type have already been considered as efficient means
of managing the interference in static multi-user networks [4–6]; the major differ-
ence here lies in the temporal variability of the wireless networks which introduces
a vastly different (temporal) dimension in the analysis of said mechanisms. To ac-
count for these difficulties, we take an approach based on online optimization which
provides a suitable framework for studying dynamically varying systems [7]. Build-
ing upon these tools, we propose an adaptive exponential learning policy [8], which
relies only on strictly causal channel state information.

Our first theoretical result is that if a SU knows his transmission horizon T , he
can match the performance of the best fixed a posteriori power allocation policy
within O(T−1/2). In other words, even though the proposed power allocation policy
only requires strictly causal knowledge of past information, it matches asymptoti-
cally the performance of the best fixed policy that can be achieved with non-causal
knowledge of the system’s evolution. This result remains true even if the transmis-
sion horizon T is not known and the algorithm is used with a variable step-size
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parameter; in that case however, the algorithm’s regret (the gap between our algo-
rithm and the best fixed policy) grows slightly to O(T−1/2 log T ). These results are
then validated by our numerical simulations which show that the network’s SUs
reach a no-regret state within a few tens of iterations in realistic wireless conditions.

2 System Model and Problem Formulation

We consider a cognitive radio (CR) network composed of M licensed primary users
(PUs) and K unlicensed secondary users (SUs), transmitting simultaneously to a
common access point (AP) over a shared frequency band of width W. Every PU m ∈
{1, . . . ,M} is assumed to lease a block of S m orthogonal channels and transmits only
over the leased part of the spectrum; by contrast, the network’s SUs are assumed to
free-ride over all available subcarriers. As a result, the Shannon rate of k-th user is
given by the standard expression

Rk(p; t) =

S∑
s=1

log
1 +

pksgks

σ2
ks +

∑
j,k p jsg js + pPU

s gPU
s

 , (1)

where gks = |hks|
2 is the (time-varying) channel gain between the k-th SU and the

AP, σ2
ks = �[w†kswks] is the variance of the noise, pks is the transmit power of the

k-th SU over the s-th subcarrier, and p = (pks)k,s is the power profile of all SUs.
In a power-constrained setting, the total power Pk =

∑
s∈S pks of the k-th SU is

de facto limited by the maximum transmit power P̄k of the user’s wireless device.
As a result, the feasible set of the k-th SU is defined as:

Pk = {pk ∈ �
S : pks ≥ 0 and

∑S
s=1 pks ≤ P̄k}. (2)

In a CR context, the network operator must also shelter the PUs’ contractual QoS
guarantees from harmful interference by the SUs. This requirement often takes the
form of a maximal interference threshold per sub-carrier [2], i.e.

K∑
k=1

pksgks ≤ Is ∀s (3)

where Is denotes the maximal interference tolerated by the PU who has leased sub-
carrier s. This requirement depends on the powers of all SUs in an aggregate way;
however, given that the SUs do not coordinate with one another (and also to induce
fairness among the SUs), we assume here that the network operator also imposes a
user-specific maximal interference requirement of the form

pksgks ≤ Ps, ∀s,∀k, (4)

thus providing an additional safety net to the PUs’ transmissions.
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Of course, both (3) and (4) represent a time-varying requirement from the SUs’
viewpoint because the channel gains gks may vary unpredictably over time. In par-
ticular, given the lack of coordination between SUs and the fact that they do not have
perfect channel state information before the transmission, it is impossible to ensure
that these constraints will be met for all time. In turn, this raises a major concern
for CR paradigm as the PUs have no incentive to pay for spectrum access rights that
can be compromised at any given time.

To overcome this, instead of treating (3) and (4) as physical constraints at the SU
level, we posit that the network operator charges a monetary cost to the SUs for any
violation of the PUs’ requirements, as a function of the severity of the violation;
this cost is then reimbursed (at least partially) to the PUs whose QoS requirement
was violated. More concretely, this pricing mechanism can be expressed by a cost
function of the form

Ck(p; t) =

S∑
s=1

C

 K∑
k=1

pksgks − Is

 +

S∑
s=1

C (pksgks − Ps) , (5)

where C(·) is a non-decreasing, Lipschitz continuous and convex pricing function.
For instance, a standard example of such a pricing function is the piecewise linear
penalty

C(x) =

λx if x ≥ 0,
0 otherwise,

(6)

where λ is the price per dBm of violation.
Putting all this together, the SUs’ utility can be expressed as:

Uk(pk; t) = Rk(p; t) −Ck(p; t), (7)

i.e. as the trade-off between the SU’s achieved throughput and the cost paid to
achieve it. Thus, given the system’s evolution over time, we obtain the online opti-
mization problem:

maximize Uk(pk; t)
subject to pk ∈ Pk

(P)

Given that the objective of each SU depends explicitly on time (via the channel gains
gks(t)), our goal will be to determine a dynamic power allocation policy pk(t) that
remains as close as possible to the (evolving) solution of (P). However, due to the
temporal variability of the channel gains g, the power p∗k(t) that solves (P) at every
given time t cannot be calculated ahead of time with strictly causal information.

On account of that, we will focus on the fixed power allocation policy that is
optimal on average and in hindsight, i.e. the solution of the time-averaged problem:

p∗k ∈ arg max
pk∈Pk

T∑
t=0

Uk(pk; t), (8)
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where Pk is the feasible set of the user k defined in (2). As before, the mean optimal
solution p∗k can only be calculated offline (i.e. it requires knowing the evolution of
the system over the entire transmit horizon), and is only used as a benchmark for a
dynamic power allocation policy pk(t) that relies only on strictly causal information.
To make this comparison precise, we define a user’s (cumulative) regret [7, 9] as:

Regk(T ) =

T∑
t=1

Uk(p∗; t) − Uk(pk; t) (9)

In words, the user’s regret over the transmission horizon T measures the cumu-
lative performance gap between the dynamic power strategy pk(t) and the average
optimum profile p∗k. In particular, if Regk(T ) grows linearly with T , the user is not
able to track changes in the system sufficiently fast. Accordingly, we will say that a
power control policy pk(t) leads to no regret if

lim sup
T→∞

Regk(T )/T ≤ 0 for all k, (10)

irrespectively of how the system evolves over time. If this is the case, it means that
there is no fixed power profile yielding a higher utility in the long run; put differently,
(10) provides an asymptotic guarantee that ensures that p(t) is at least as good as the
mean optimal solution. We will further explore this property in Section 4.

3 Exponential Learning

To devise an online policy pk(t) that leads to no-regret, our starting point will be
as follows: First, each user’s policy tracks the direction of gradient (or subgradient)
ascent of their utility, without taking into account the problem’ constraints as de-
fined in (2). Subsequently, this “aggregated gradient” is mapped back to the feasible
region via a suitably chosen exponential map, and the process repeats.

To be more precise, this procedure can be described by the recursion

yk(t + 1) = yk(t) + δ(t)vk(t),

pks(t + 1) = P̄
exp (yks(t + 1))

1 +
∑S

s′=1 exp (yks′ (t + 1))
,

(DXL)

where vk(t) = ∂kk Uk(p; t) denotes the gradient of the k-th user’s utility function and
δ(t) is a non-decreasing step-size parameter (for an algorithmic implementation, see
Algorithm 1 above).

Our goal in what follows will be to examine the no-regret properties of the online
power allocation policy (DXL). To do so, let V denote an upper bound for vk, i.e.

‖vk‖
2 ≤ V2

k . (11)
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Algorithm 1 Discrete-time exponential learning.
Parameter: step-size δ(t) > 0.
Initialization: yk ← 0; t ← 0.
Repeat

t ← t + 1;
allocate powers: pks ← P̄ exp(yks)

1+
∑S

s′=1 exp(yks′ )
;

get gradient data vk ← ∂pk Uk(pk; t);
update scores: yk ← yk + δ(t) vk;
until termination criterion is reached.

With all this at hand, our first result concerns the case where the transmission hori-
zon is known in advance (for instance, as in a timed call), and (DXL) is employed
with a constant, optimized step-size δ∗ (the proof is omitted due to space limita-
tions):

Theorem 1. Assume that (DXL) is run for a given time horizon T with the optimized
step-size δ∗k = V−1

k

√
log(1 + S )/T. Then, it enjoys the regret bound

Regk(T ) ≤ 2VkP̄
√

T log(1 + S ). (12)

Consequently, the users’ average regret Regk(T )/T vanishes asO(T−1/2), i.e. (DXL)
leads to no regret.

The above result is contingent on the SUs knowning the transmission horizon
T in advance. If this is not the case, it is more advantageous to consider a strictly
decreasing step-size so as to reduce the algorithm’s jitter in fluctuations of unknown
length. We illustrate this in Theorem 2 below (again, we omit the proof due to space
limitations):

Theorem 2. Assume that (DXL) is run for an unknown time horizon T with the
variable step size δ(t) = at−1/2 for some a > 0. Then, it enjoys the regret bound:

Regk(T ) . P̄
(

log(1 + S )
a

+ aV2
k

)
T 1/2 + aP̄V2

k T 1/2 log T. (13)

Consequently, the users’ average regret Regk(T )/T vanishes as O(T−1/2 log T ), i.e.
(DXL) leads to no regret.

This implies that, in both cases (known vs. unknown horizon), the rate of regret
minimization depends on the system parameters. We further remark that the users’
average regret vanishes faster if the transmission horizon T is known in advance, but
the level of this disparity (log T ) is fairly moderate. This disparity can be overcome
completely by means of a more complicated step-size policy known as a “doubling
trick” [7] but, for simplicity, we do not present this approach here.
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Fig. 1 Evolution of the cost function and overall power for SUs 4, 5 and 9 as function of time.
When the channel gains are low (e.g SU 9) the interferences created by the SUs are also small and
their cost function is null, i.e they meet acpPU’ requirement. In contrast, when the interference
created by a SU exceeds the requirements (because of strong channel gains for example) the SU
is immediately penalized by imposing a suitable cost which results in a decrease of the transmit
power at the next iterations (see SUs 4 and 5).

4 Numerical results

To validate our theoretical results we have performed extensive numerical simula-
tions of which we exhibit a representative sample below.

We focus on an uplink cellular network with a fixed AP. Specifically, we con-
sider a wireless system operating over a 10 MHz band centered around the car-
rier frequency fc = 2 GHz. The total bandwidth is divided in 64 sub-carriers. We
consider 1 PU and 9 SUs randomly positioned inside a square cell of side 2 km,
following a Poisson Point Process. The maximum interference temperature in each
sub-carrier in (3) is fixed at Is = −90 dBm for all s and the constraint per sub-carrier
(4) is limited at Ps = −110 dBm for all s and the variance of the noise is set at:
σ2 = −120 dBm. We also assume that the SUs’ have a maximum transmit power of
P̄ = 30 dBm. The channels between the wireless users and the AP are generated ac-
cording to the realistic COST-HATA model for a suburban macro-cellular network
[10] with fast and shadow-fading attributes as in [11]. Each SU is assumed to be
mobile with a speed chosen arbitrarily between 10 and 130 km/h.

In Fig. 1, we plot the cost function defined in (5) and the overall power consump-
tion as function of the time by SU. To reduce graphical clutter, we only illustrate
this data for three representative SUs at various distances from the AP. Specifically,
the initial distance from the AP of each of the three focal users is d4 = 600.1 m
for SU 4, d5 = 943.8 m for SU 5, and d9 = 979.4 m for SU 9; respectively, the
SUs’ speeds are v4 = 50 km/h, v5 = 10 km/h, and v9 = 90km/h. If interfering
channel gains are low, as the 9th SU, the users can transmit at maximum power ( i.e.
at P̄ = 30 dBm) without creating harmful interference to the PUs. At the opposite,
when the channel gains become high, the induced interference also increases. As a
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Fig. 2 Evolution of the SUs average regret as function of time. We see that the SUs’ online power
allocation policy quickly leads to zero average regret; specifically, (DXL) matches the optimal
fixed transmit profile in hindsight within a few tens of iterations.
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Fig. 3 Fraction of time at which the PU’s interference constraint are violated. The higher is λ the
higher is the penalty applied to the SUs in case of QoS requirement violations. This results in less
interferences violations from the SUs. Thus, the operator can control the interference by tuning λ
and can efficiently protect the PU.

result, the SUs transmitting at high powers are penalized via the cost function and
decrease their transmit powers as a result.

In Fig. 2, we plot the evolution of the opportunistic users’ average regret as a
function of time. We see that each SU’s regret quickly drops to zero at a rate which
depends on the user’s individual channels, on the choice of the step parameter α and
on the penalty parameter λ – cf. Eq. (6). As a result, the online power allocation
policy we propose matches the best fixed transmit profile within a few number of
iterations, despite the channels’ significant variability over time for the same SUs.

Finally, in Fig. 3, we plot the fraction of time at which the PU’s interference
constraints are violated. To be precise, we plot the fraction of iterations at which
at least one SU creates interference aboves the maximum tolerated levels. As ex-
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pected, higher λ values leads to fewer constraint violations. Therefore, the exponen-
tial learning policy (DXL) with the cost function defined in (5) and (6) allows the
operator to efficiently use the total bandwidth by allowing SUs to transmit while
protecting the PUs and that despite the unpredictability of the system’s variation
over time.

5 Conclusions and perspectives

We have investigated a dynamic multi-user CR system in which multiple oppor-
tunistic users are allowed to co-exist with the PUs. In order to control the interfer-
ence created by the SUs, the system owner implements a pricing mechanism which
also serves a second purpose, i.e. as a reward incentive for the PUs to accept an open
spectrum license. In this context, we propose an exponential learning algorithm that
allows the SUs to adapt their power allocation policies to the dynamic changes in the
environment in an optimal way regarding the tradeoff between their achievable rate
and the cost for the harmful interference they inflict. Our simulations show that by
tuning the parameters of the cost function, the system owner can efficiently control
the interference created by the SUs - and, hence, protect the PUs’s transmissions -
despite the dynamic and arbitrary variations of the system.
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