
HAL Id: hal-01387031
https://hal.science/hal-01387031v1

Submitted on 22 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pointer Disambiguation via Strict Inequalities
Maroua Maalej, Vitor Paisante, Ramos Pedro, Laure Gonnord, Fernando

Pereira

To cite this version:
Maroua Maalej, Vitor Paisante, Ramos Pedro, Laure Gonnord, Fernando Pereira. Pointer Disam-
biguation via Strict Inequalities. Code Generation and Optimisation , Feb 2017, Austin, United
States. pp.134-147. �hal-01387031�

https://hal.science/hal-01387031v1
https://hal.archives-ouvertes.fr

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Pointer Disambiguation via Strict Inequalities

Maroua Maalej
Univ. Lyon, France & LIP
(UMR CNRS/ENS Lyon/

UCB Lyon1/INRIA)
Maroua.Maalej@ens-lyon.fr

Vitor Paisante
UFMG, Brazil

paisante@dcc.ufmg.br

Pedro Ramos
UFMG, Brazil

pedroramos@dcc.ufmg.br

Laure Gonnord
Univ. Lyon1, France & LIP
(UMR CNRS/ENS Lyon/

UCB Lyon1/INRIA)
Laure.Gonnord@ens-lyon.fr

Fernando Magno Quintão Pereira
UFMG, Brazil

fernando@dcc.ufmg.br

Abstract
The design and implementation of static analyses that dis-
ambiguate pointers has been a focus of research since the
early days of compiler construction. One of the challenges
that arise in this context is the analysis of languages that
support pointer arithmetics, such as C, C++ and assem-
bly dialects. This paper contributes to solve this challenge.
We start from an obvious, yet unexplored, observation: if a
pointer is strictly less than another, they cannot alias. Moti-
vated by this remark, we use abstract interpretation to build
strict less-than relations between pointers. We construct a
program representation that bestows the Static Single Infor-
mation (SSI) property onto our dataflow analysis. SSI gives
us a sparse algorithm, whose correctness is easy to ensure.
We have implemented our static analysis in LLVM. It runs
in time linear on the number of program variables, and, de-
pending on the benchmark, it can be as much as six times
more precise than the pointer disambiguation techniques al-
ready in place in that compiler.

Keywords Alias analysis, range analysis, speed, precision

1. Introduction
Pointer disambiguation consists in determining if two point-
ers, p1 and p2, can refer to the same memory location.
If overlapping happens, then p1 and p2 are said to alias.
Pointer disambiguation has been focus of much research [3,
15, 17, 34], since the debut of the first alias analysis ap-
proaches [6, 33]. Today, state-of-the-art algorithms have ac-
ceptable speed [15, 28], good precision [40] or meet each
other halfway [16, 36]. However, understanding the rela-
tionships between memory references in programming lan-
guages that support pointer arithmetics remains challenging.

Pointer arithmetics come from the ability to associate
pointers with offsets. Much of the work on automatic paral-
lelization consists in the design of techniques to distinguish
offsets from the same base pointer. Michael Wolfe [42, Ch.7]
and Aho et al. [1, Ch.11] have entire chapters devoted to
this issue. State-of-the-art approaches perform such distinc-
tion by solving diophantine equations, be it via the greatest
common divisor test, be it via integer linear programming, as
Rugina and Rinard do [31]. Other techniques try to associate
intervals, numeric or symbolic, with pointers [4, 26, 27, 44],
presenting different ways to build Balakrishnan and Reps’
notion of value sets. And yet, as expressive and powerful as
such approaches are, they fail to disambiguate locations that
are obviously different, as v[i] and v[j], in the loop:

for(i = 0, j = N; i < j; i++, j−−) v[i] = v[j];

In this paper, we present a simple and efficient solution
to this shortcoming. We say that v[i] and v[j] are obviously
different locations because i < j. There are techniques to
compute less-than relations between integer variables in pro-
grams [7, 20, 21, 23]. Nevertheless, so far, they have not been
used to disambiguate pointer locations. The insight that such
techniques are effective and useful to such purpose is the key
contribution of this paper. However, we go beyond: we rely
on recent advances on the construction of sparse dataflow
analyses [38] to design an efficient way to solve less-than in-
equalities. The sparse implementation lets us view this prob-
lem as an instance of the abstract interpretation framework;
hence, we get correctness for free. The end result of our tool
is a less-than analysis that can be augmented to handle dif-
ferent program representations, and that can increase in non-
trivial ways the ability of compilers to distinguish pointers.

To demonstrate this last statement, we have implemented
our static analysis in the LLVM compiler [19]. We show

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

void ins_sort(int* v, int N) {
 int i, j;
 for (i = 0; i < N − 1; i++) {
 for (j = i + 1; j < N; j++) {
 if (v[i] > v[j]) {
 int tmp = v[i];
 v[i] = v[j];
 v[j] = tmp;
 }
 }
 }
}

void partition(int *v, int N) {
 int i, j, p, tmp;
 p = v[N/2];
 for (i = 0, j = N - 1;; i++, j--) {
 while (v[i] < p) i++;
 while (p < v[j]) j--;
 if (i >= j)
 break;
 tmp = v[i];
 v[i] = v[j];
 v[j] = tmp;
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

1
2
3
4
5
6
7
8
9
10
11
12
13

(a)

(b)

Figure 1. Two snippets of C code that challenge typical
pointer disambiguation approaches.

empirically that industrial-quality alias analyses still leave
unresolved pointers which our simple technique can dis-
ambiguate. As an example, we distinguish 11,881 pairs of
pointers in SPEC’s lbm, whereas LLVM’s analyses dis-
tinguish 1,888. Furthermore, by combining our approach
with basic heuristics, we obtain even more impressive re-
sults. For instance, our less-than check increases the success
rate of LLVM’s basic disambiguation heuristic from 48.12%
(1,705,559 queries) to 64.19% (2,274,936) in SPEC’s gobmk.

2. Overview
To motivate the need for a new points-to analysis we show
its application on the programs seen in Figure 1. The fig-
ure displays the C implementation of two sorting routines
that make heavy use of pointers. In both cases, we know
that memory positions v[i] and v[j] can never alias within
the same loop iteration. However, traditional points-to anal-
yses cannot prove this fact. Typical implementations of these
analyses, built on top of the work of Andersen [3] or Steens-
gaard [34], can distinguish pointers that dereference differ-
ent memory blocks; however, they do not say much about
references ranging on the same array.

There are points-to analyses designed specifically to deal
with pointer arithmetics [2, 4, 24, 27, 31, 32, 37, 39, 41].
Still, none of them works satisfactorily for the two exam-
ples seen in Figure 1. The reason for this ineffectiveness lays

on the fact that these analyses use range intervals to disam-
biguate pointers. In our examples, the ranges of integer vari-
ables i and j overlap. Consequently, any conservative range
analysis, à la Cousot [10], once applied on Figure 1 (a), will
conclude that i exists on the interval [0, N − 2], and that j
exists on the interval [1, N − 1]. Because these two intervals
have non-empty intersection, points-to analyses based on the
interval lattice will not be able to disambiguate the memory
accesses at lines 6-8 of Figure 1 (a). The same holds true for
the memory accesses in Figure 1 (b).

The technique that we introduce in this paper can disam-
biguate every use of v[i] and v[j] in both examples. The
key to this success is the observation that i < j at every pro-
gram point where we have an access to v. We conclude that
i < j by means of a “less-than check”. A less-than check
is a relationship between two variables that is true whenever
we can prove – statically – that one holds a value lesser than
the value stored in the other. In Figure 1 (a), we know that
i < j because of the way that j is initialized, within the for
statement at line 4. In Figure 1 (b), we know that i < j due
to the conditional check at line 7.

A more precise alias analysis brings many advantages to
compilers. One of such benefits is optimizations: the extra
precision gives compilers information to carry out more ex-
tensive transformations in programs. Notice that the pointer
analysis that we propose in this paper provides weaker guar-
antees than more traditional approaches. Continuing with
our example, the pointers v[i] and v[j] in Figure 1 (a & b)
do, indeed, alias across the entire loop nest, albeit not at the
same time. As we shall discuss in Section 3.5, if we say
that two pointers do not alias, then they will never alias at
any program point where they are simultaneously alive. This
property is strong enough to support most of the classic com-
piler optimizations: constant propagation, value numbering,
subexpression elimination, scheduling, etc. However, our
technique cannot be used with optimizations that modify the
iteration space of programs, such as loop fission and fusion.

3. The Less-Than Check
This section introduces a dataflow analysis whose goal is
to construct a “less-than” set for each variable x (pointer
or numeric, as we will discuss in Section 3.6). We denote
such an object by LT(x). As we prove in Section 3.5, the
important invariant that this static analysis guarantees is
that if x′ ∈ LT(x), then x′ < x at every program point
where both variables are alive. Our ultimate goal is to use
this invariant to disambiguate pointers, as we explain in
Section 3.6.

3.1 The Core Language
We use a core language to formalize the developments that
we present in this paper. Figure 2 shows the syntax of this
language. Our core language contains only those instruc-
tions that are essential to describe our static analysis. The

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

Integer constants ::= {c1, c2, . . .}
Variables ::= {x1, x2, . . .}
Program (P) ::= {`1 : I1; . . . , `n : In; }
Instructions (I) ::=

– Addition | x0 = x1 + x2

– φ-function | x0 = φ(x1 : `1, . . . , xn : `n)

– Comparison | (x1 < x2) ? goto `t : goto `f

Figure 2. The syntax of our language. Variables have scalar
type, e.g., either integer or pointer.

x0 = [0, 1] x1 = x0 + 1 x2 =ɸ (x1, x3)

x3 = x2 + 1x4 = x2 − 2

(x4 < x1)? x6 =ɸ (x4, x3, x4)true

false

Figure 3. Program written in our core language.

reader can augment it with other assembly instructions, to
make it as expressive as any industrial-strength program rep-
resentation. As a testimony to this fact, the implementation
that we describe in Section 4 comprises the entire LLVM
intermediate representation. Figure 2 describe programs in
Static Single Assignment form [12]; therefore, it contains
φ-functions. Additionally, it contains arithmetic instructions
and conditional branches. These two kinds of instructions
feed our static analysis with new information.

EXAMPLE 3.1. Figure 3 describes a program in our core
language. This is an artificial example, whose semantics
is immaterial. Figure 3 illustrates a few key properties of
the strict SSA representation: (i) the definition point of a
variable dominates all its uses, and (ii) if two variables
interfere, one of them is alive at the definition point of the
other. Such properties will be useful in Section 3.5.

3.2 Program Representation
We want to implement a sparse dataflow analysis. Sparsity
is good for: (i) time and space, as it reduces from cubic
to quadratic (on the number of variables) the amount of
information that needs to be stored; and (ii) correctness, as it
simplifies all the proofs of theorems. A dataflow analysis is
said to be sparse if it runs on a program representation that
ensures the Static Single Information (SSI) Property [38].
To keep this paper self-contained, we quote Tavares et al.’s
notion of single information property:

Instructions (I) ::=

– Addition | x0 = x1 + x2

– Subtraction | x0 = x1 − n ‖ 〈x2 = x1〉
– φ-function | x0 = φ(x1 : `1, . . . , xn : `n)

– Comparison | (x1 < x2)?

{
`t : 〈x1t, x2t〉
`f : 〈x1f , x2f 〉

Figure 4. The syntax of our intermediate language.

DEFINITION 3.2 (Static Single Information Property). A
dataflow analysis bears the static single information prop-
erty if it always associates a variable with the same abstract
state at every program point where that variable is alive.

Following Tavares et al. [38], to ensure the SSI property,
we split the live range of every variable x at each program
point where new information about x can appear. The live
range of a variable v is the collection of program points
where v is alive. To split the live range of x at a point `,
we create a copy x′ = x at `, and rename uses of x at every
program point dominated by `. We shall write ` dom `′ to
indicate that ` dominates `′, meaning that any path from the
beginning of the control flow graph to `′ must cross `. There
are three situations that create new less-than information
about a variable x:

1. x is defined. For instance, if x = x′ + 1, then we know
that x′ < x;

2. x is used in a subtraction, e.g,. x′ = x+n, n < 0. In this
case, we know that x′ < x;

3. x is used in a conditional, e.g., x < x′. In this case, we
know that x < x′ at the true branch, and x′ ≤ x at the
false branch.

The Support of Range Analysis on Integer Intervals. The
SSA representation ensures that a new name is created at
each program point where a variable is defined. To meet the
other two requirements, we split live ranges at subtractions
and after conditionals. Going back to Figure 2, we see that
our core language contains only syntax for arithmetic addi-
tions. However, we can use range analysis to know that one,
or the two, terms of an addition are negative. Range analy-
sis [10] is a static dataflow analysis that associates each vari-
able x to an interval R(x) = [l, u], {l, u} ⊂ N, l ≤ u. The
efficient and precise computation of range analysis has been
researched extensively in the literature, and we shall not dis-
cuss it further. In our experiments, we have used the imple-
mentation of Rodrigues et al., which inserts guards in pro-
grams to track integer overflows [30]. Given x1 = x2 + x3,
where R(x2) = [l2, u2] and R(x3) = [l3, u3], we have a
subtraction if u3 < 0 or u2 < 0. If both variables have posi-
tive ranges, then we have an addition. Otherwise, we have an
unknown instruction, which shall not generate constraints.

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

(x4 < x1)?

⟨x4t = x4⟩
⟨x1t = x1⟩

⟨x4f = x4⟩
⟨x1f = x1⟩

(x4 < x1)?

lt lf lt lf

⟼

x1 = x2 + n�‖⟨x3 = x2⟩x1 = x2 + n ⟼

l' l'

rename x4 to x4t and

rename x1 to x1t at

any block l if lt dom l

ren. x4 to x4f

and ren. x1 to x1f

at l if lf dom l

rename x2 to x3 at l if l' dom l

(a)

(b)

R(n) = [l, u], u < 0

Figure 5. Transformation rules used to convert the syntax
in Figure 2 into the syntax in Figure 4.

Our live range splitting strategy leads to the creation
of a different program representation. Figure 4 shows the
instructions that constitute the new language. Figure 5 shows
the two syntactic transformations that convert a program
written in the syntax of Figure 2 into a program written in
the syntax of Figure 4. We let x0 = x1 − n ‖ 〈x2 = x1〉
denote a composition of two statements, x0 = x1 − n and
x2 = x1. The second instruction splits the live range of x1.
Both statements happen in parallel. Thus, x0 = x1 − n ‖
〈x2 = x1〉 does not represent an actual assembly instruction;
it is only used for notational convenience. Similarly, when
transforming conditional tests, we let 〈x1t = x1, x2t = x2〉
denote two copies that happen in parallel: x1t = x1, and
x2t = x2. Whenever there is no risk of ambiguity, we
write simply 〈x1t, x2t〉, as in Figure 4. Parallel copies and
φ-functions are removed before code generation, after the
analyses that require them have already run. This step is
typically called SSA-Elimination phase.

EXAMPLE 3.3. Figure 6 shows the result of applying the
rules seen in Figure 5 onto the program in Figure 3.

3.3 Constraint Generation
Once we have a suitable program representation, we use the
rules in Figure 7 to generate constraints. These constraints
determine the less-than set of variables. Constraint genera-
tion is O(|V|), where V is the set of variables in the target
program. We have four kinds of constraints:

init: Set the less-than set of a variable to empty: LT(x) = ∅.

x0 = • x1 = x0 + 1 x2 =ɸ (x1, x3)

x3 = x2 + 1x4 = x2 − 2 ‖⟨x5 = x2⟩

(x4 < x1)?

⟨x4t = x4⟩
⟨x1t = x1⟩

⟨x4f = x4⟩
⟨x1f = x1⟩

x6 =ɸ (x4, x3, x4t)

Figure 6. Figure 3 transformed by the rules in Figure 5.

x = • 1 LT(x) = ∅

x1 = x2 + n 2 LT(x1) = {x2} ∪ LT(x2)

x1 = x2 − n ‖ 〈x3 = x2〉 3

{
LT(x3) = {x1} ∪ LT(x2)

LT(x1) = ∅

x = φ(x1, . . . , xn) 4 LT(x) = LT(x1) ∩ . . . ∩ LT(xn)

(x1 < x2)?

{
`t : 〈x1t, x2t〉
`f : 〈x1f , x2f 〉

 5

LT(x2t) = {x1t} ∪
LT(x2) ∪ LT(x1t)

LT(x1t) = LT(x1)

LT(x2f) = LT(x2)

LT(x1f) =

LT(x1) ∪ LT(x2f)

Figure 7. Constraint generation rules. Numbers labelling
each rule are used in the proofs of Section 3.5. If n is
constant, then we assume n > 0. If n is a variable, then
R(n) = [l, u], l > 0.

union: Set the less-than set of a variable to be the union
of another less-than set and a single element: LT(x3) =
{x1} ∪ LT(x2).

inter: Set the less-than set of a variable to be the intersection
of multiple less-than sets: LT(x) = LT(x1) ∩ LT(x2).

copy: Sets the less-than set of a variable to be the less-than
set of another variable: LT(x) = LT(x′).

EXAMPLE 3.4. The rules in Figure 7 produce the follow-
ing constraints for the program in Figure 6: LT(x0) = ∅,
LT(x1) = {x0} ∪ LT(x0), LT(x2) = LT(x1) ∩ LT(x3),
LT(x3) = {x2} ∪ LT(x2), LT(x4) = ∅, LT(x5) = {x4} ∪
LT(x2), LT(x1t) = {x4t} ∪ LT(x4t) ∪ LT(x1), LT(x1f) =
LT(x1), LT(x4f) = LT(x1f) ∩ LT(x4), LT(x4t) = LT(x4),
LT(x6) = LT(x3) ∩ LT(x4t) ∩ LT(x4).

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

3.4 Constraint Solving
Constraints are solved via a worklist algorithm. We initialize
LT(x) to V , for every variable x. During the resolution pro-
cess, elements are removed from each LT, until a fixed point
is achieved. Theorem 3.7, in Section 3.5, guarantees that this
process terminates. Constraint solving is equivalent to find-
ing transitive closures; thus, it is O(|V|3). In practice, we
have observed an O(|V|) behavior, as we show in Section 4.

EXAMPLE 3.5. To solve the constraints in Example 3.4, we
initialize every LT set to {x0, x1, x2, x3, x4, x5, x6, x1f , x1t,
x4f , x4t}, i.e., the set of program variables. The follow-
ing sets are a fixed-point solution of this system: LT(x0) =
LT(x4) = LT(x4t) = LT(x6) = ∅; LT(x1) = LT(x2) =
LT(x4f) = LT(x1f) = {x0}; LT(x3) = {x0, x2}; LT(x5) =
{x0, x4}; and LT(x1t) = {x0, x4t}.

3.5 Properties
There are a number of properties that we can prove about
our dataflow analysis. In this section we focus on two core
properties: termination and adequacy. Termination ensures
that the constraint solving approach of Section 3.4 always
reaches a fixed point. Adequacy ensures that our analysis
conforms to the semantics of programs. To show termina-
tion, we start by proving Lemma 3.6.

LEMMA 3.6 (Decreasing). If constraint resolution starts
with LT(x) = V for every x, then LT(x) is monotonically
decreasing or stationary.

Proof: The proof follows from a case analysis on each con-
straint produced in Figure 7, plus induction on the number
of elements in LT. Figure 7 reveals that we have only three
kinds of constraints:
• LT(x) = ∅: in this case, LT(x) is stationary;
• LT(x) = {x′} ∪ LT(x′′): by induction, LT(x′′) is de-

creasing or stationary, and LT(x) always contains {x′};
• LT(x) = LT(x1) ∩ . . . ∩ LT(xn): we apply induction

on each LT(xi), 1 ≤ i ≤ n.

To prove Theorem 3.7, which states termination, we need
to recall PV , the semi-lattice that underlines our less-than
analysis. PV = {V,∩,⊥ = ∅,> = V,⊆} is the lattice
formed by the partially ordered set of program variables.
Ordering is given by subset inclusion ⊆. The meet opera-
tor (greatest lower bound) is set intersection ∩. The lowest
element in this lattice is the empty set, and the highest is V .

THEOREM 3.7 (Termination). The constraint resolution pro-
cess terminates.

Proof: The proof of this theorem is the conjunction of
two facts: (i) Constraint sets are monotonically decreasing;
and (ii) they range on a finite lattice. Fact (i) follows from
Lemma 3.6. Fact (ii) follows from the definition of PV .

We followed the framework of Tavares et al. [38] to
build our intermediate program representation. Thus, we

get correctness for free, as we are splitting live ranges at
every program point where new information can appear.
Lemma 3.8 formalizes this notion.

LEMMA 3.8 (Sparcity). LT(x) is invariant along the live
range of x.

Proof: The proof follows from case analysis on the con-
straint generation rules in Figure 7. By matching constraints
with the syntax that produce them, we find that the abstract
state of a variable can only change at its definition point.
This property is ensured by the live range splitting strategy
that produces the program representation that we use.

We close this section showing adequacy. In a nutshell, we
want to show that if our constraint system determines that
a variable x belongs into the less-than set of another vari-
able x′, then we know that x < x′. This is a static notion: we
consider the values of x and x′ that exist at the same moment
during the execution of a program. Theorem 3.9 formalizes
this observation. The proof of that theorem requires the se-
mantics of the transformed language, whose syntax appears
in Figure 4. However, for the sake of space, we omit this se-
mantics. We assume the existence of a small-step transition
rule→, which receives an instruction ι, plus a store environ-
ment Σ, and produces a new environment Σ′. The store maps
variables to integer values. Analogously, the constraints of
Figure 7 show how instructions change the abstract state LT.
We write ι ` LT B LT′ to denote an abstract transition. We
let |= model the following relation: if x′ ∈ LT(x), then
Σ(x′) < Σ(x). If this relation is true for every element in
the domain of Σ, then we write LT |= Σ.

THEOREM 3.9 (Adequacy). If LT1 |= Σ1 ∧ ι ` Σ1 →
Σ2 ∧ ι ` LT1 B LT2, then LT2 |= Σ2.

Proof: The proof happens by case analysis on the five
instructions in Figure 7. For brevity, we show two cases:
First case: ι is x1 = x2 + n. Notice that n > 0 be-
cause otherwise our range analysis would have led us to
transform that instruction into a subtraction, or would have
produced no constraint at all. Henceforth, we shall write
“f \ a 7→ b” to denote function update, i.e.: “λx.if x =
a then b else f(x)” We have that x1 = x2 + n ` Σ1 →
(Σ1 \ x1 7→ Σ1(x2) + n), and x1 = x2 + n ` LT1 B
(LT1 \ x1 7→ LT1(x2)∪ {x2}). We look into possible vari-
ables x ∈ LT1 \ x1 7→ LT1(x2) ∪ {x2}:
• x = x2: the theorem is true because Σ1(x2) + n >

Σ1(x2);
• x ∈ LT(x2): From the hypothesis LT1 |= Σ1, we

have that x < x2. We know that x2 < x1; thus, by
transitivity, x < x1.

Second case: ι is a φ-function. Then, x = φ(x1, . . . , xn) `
Σ1 → Σ1 \x 7→ Σ1(xi), for some i, 1 ≤ i ≤ n, depending
on the program’s dynamic control flow. From Figure 7, we
have that LT2 = LT1 \ x 7→ LT1(x1) ∩ . . . ∩ LT1(xn).
Thus, any x′ ∈ LT2(x) is such that x′ ∈ LT1(xi). By

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

the hypothesis, x′ < xi. By the semantics of φ-functions,
x = xi; hence, x′ < x.

COROLLARY 3.10 (Invariance). Let xi and xj be two vari-
ables simultaneously alive. If xi ∈ LT(xj), then xi < xj .

Proof: In a SSA-form program, if two variables interfere,
then one is alive at the definition point of the other [8, 14,
46]. From Lemma 3.8, we know that LT(x) is constant
along the live range of x. Theorem 3.9 gives us that this
property holds at the definition point of the variables.

3.6 Pointer Disambiguation
Pointers, in low-level languages, are used in conjunction
with integer offsets to refer to specific memory locations.
The combination of a base pointer plus an offset produces
what we call a derived pointer. The less-than check that we
have discussed in this paper lets us compare pointers di-
rectly, if they are bound to a less-than relation, or indirectly,
if they are derived from a common base. This observation
lets us state the disambiguation criteria below:

DEFINITION 3.11 (Pointer Disambiguation Criteria). Let p,
p1 and p2 be variables of pointer type, and x1 and x2 be
variables (not constants) of arithmetic type. We consider
two disambiguation criteria:

1. Memory locations p1 and p2 will not alias if p1 ∈ LT(p2)
or p2 ∈ LT(p1).

2. Memory locations p1 = p+ x1 and p2 = p+ x2 will not
alias if x1 ∈ LT(x2) or x2 ∈ LT(x1).

The C standard refers to arithmetic types and pointer
types collectively as scalar types [18]{§6.2.5.21}. Notice
that the less-than analysis that we have discussed thus far
works seamlessly for scalars; thus, it also builds relations
between pointers. For instance, the common idiom “for(int*
pi = p; pi < pe; pi++);” gives us that pi < pe inside
the loop. This fact justifies Definition 3.11(1). Along similar
lines, if p1 = p + x1, we have that p ∈ LT(p1); thus,
Definition 3.11(2) lets us disambiguate a base pointer from
its non-null offsets, e.g., p 6= p+ n, if we know that n 6= 0.

Definition 3.11 provides one, among several criteria,
that can be used to disambiguate pointers. For instance,
the C standard says that pointers of different types cannot
alias. Aliasing is also impossible in well-defined programs
between references derived from non-aliased base point-
ers. Additionally, derived pointers whose offsets have non-
overlapping ranges cannot alias, as discussed in previous
work [4, 27, 31]. Thus, our analysis says nothing about p1
and p2 in scenarios as simple as: p1 = malloc(); p2 =

malloc(), or p1 = p + 1; p2 = p + 2. Previous work
is already able to disambiguate p1 and p2 in both cases. Our
pointer disambiguation criterion does not compete against
these other approaches. Rather, as we further explain in Sec-
tion 5, it complements them.

4. Evaluation
To demonstrate that a “less-than” check can be effective and
useful to disambiguate pointers, we have implemented an
inter-procedural, context insensitive version of the analysis
described in this paper in LLVM version 3.7. We achieve
inter-procedurality by creating pseudo-instructions xf =
φ(x1, . . . , xn) for each formal parameter xf , and each actual
parameter xi, 1 ≤ i ≤ n. Had we used an intra-procedural
analysis, then we would have to assume that every formal
parameter is bound to the range [−∞,+∞]. In this section
we shall answer three research questions to evaluate the pre-
cision, the scalability and the applicability of our approach:

Precision: how effective are strict inequalities to disam-
biguate pairs of pointers?

Scalability: can the analysis described in this paper scale up
to handle very large programs?

Applicability: can our pointer disambiguation method in-
crease the effectiveness of existing program analyses?

In the rest of his section we provide answers to these ques-
tions. Our discussion starts with precision.

4.1 Precision
The precision of an alias analysis method is usually mea-
sured as the capacity of said method to indicate that two
given pairs of pointers do not alias each other. To measure
the precision of our method, we compare it against the tech-
niques already in place in the LLVM compiler. Our metric
is the percentage of pointer queries disambiguated. To gen-
erate queries, we resort to LLVM’s aa-eval pass, which
tries to disambiguate every pair of pointers in the program.
Our main competitor will be LLVM’s basic disambiguation
technique, the basic-aa algorithm. Henceforth, we shall re-
fer to it as BA. This analysis uses several heuristics to dis-
ambiguate pointers, relying mostly on the fact that pointers
derived from different allocation sites cannot alias in well-
formed programs. In addition to the basic algorithm, LLVM
3.7 contains three other alias analyses, whose results we
shall not use, because they have been able to resolve a very
low number of queries in our experiments.

Figure 8 shows the results of the three alias analyses when
applied on the 100 largest benchmarks in the LLVM test
suite. We have removed the benchmark TSVC from this lot,
because its 36 programs were giving us the same numbers.
This fact occurs because they use a common code base. Our
method rarely disambiguates more pairs of pointers than BA.
Such result is expected: most of the queries consist of pairs
of pointers derived from different memory allocation sites,
which BA disambiguates, and we do not analyze. The ISO
C Standard prohibits comparisons between two references
to separately allocated objects [18]{§6.5.8p5}, even though
they are used in practice [22, p.4].

Nevertheless, Figure 8 still lets us draw encouraging con-
clusions. There exist many queries that we can solve, but

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

1.E+07	

1.E+08	

1.E+09	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Total	 LT	 BA	 BA+LT	

McCat's qbsort (Total: 3,351, LT: 73, BA: 713, LT+BA: 747)

MiBench's consumer-typeset
(Total: 295,875,797, LT: 1,708,678, BA: 9,901,270, LT+BA: 10,818,208)

Figure 8. Effectiveness of our alias analysis (LT), when compared to LLVM’s basic alias analysis on the 100 largest
benchmarks in the LLVM test suite. Each point in the X-axis represents one benchmark. The Y-axis represents total number of
queries (one query per pair of pointers), and number of queries in which each algorithm got a “no-alias” response.

Benchmark # Queries BA LT BA + LT
lbm 31,944 5.90% 10.15% 15.74%
mcf 49,133 15.28% 8.95% 16.52%
astar 95,098 45.54% 16.05% 47.66%
libq 146,301 51.64% 3.45% 52.67%
sjeng 428,082 70.64% 2.03% 71.64%
milc 808,471 31.05% 23.90% 43.88%
soplex 1,787,190 21.43% 12.48% 23.53%
bzip2 2,472,234 21.48% 23.09% 26.70%
hmmer 2,574,217 8.79% 4.48% 9.38%
gobmk 3,492,577 48.49% 22.91% 63.33%
namd 3,685,838 22.59% 0.93% 22.76%
omnetpp 12,943,554 18.71% 0.46% 18.81%
h264ref 20,068,605 12.86% 1.29% 13.16%
perl 23,849,576 9.92% 3.87% 10.19%
dealII 37,779,455 75.05% 20.21% 75.46%
gcc 186,008,992 4.26% 1.47% 4.65%

Figure 9. Comparison between three alias analyses in
SPEC 2006. “# Queries” is the total number of queries per-
formed when testing a given benchmark. Percentages show
the ratio of queries that yield“no-alias”, given a certain alias
analysis. The higher the percentage, the more precise is the
pointer disambiguation method. We have highlighted the
cases in which our less-than check has increased by 10%
or higher the precision of LLVM’s basic alias analysis.

BA cannot. For the entire LLVM test suite, our analysis
(referred as LT), increases the precision of BA by 9.49%
(56,192,064 vs 59,184,181 no-alias responses). Yet, in pro-
grams that make heavy use of pointer arithmetics, our results
are even more impressive. For instance, in SPEC’s lbm we
disambiguate 11,881 pairs of pointers, whereas BA provides
precise answers to only 1,888. And, even in situations where
LT falls behind BA, the former can increase the precision of
the latter non-trivially. As an example, in SPEC’s gobmk, LT

returns 852,368 “no-alias” answers and BA 1,705,559. Yet,
these sets are mostly disjoint: the combination of both anal-
yses solves 2,274,936 queries: an increase of 34% over BA.
Figure 9 summarizes these results for SPEC 2006.

How do we compare against Andersen’s analysis? Ander-
sen’s [3] alias analysis is the quintessential pointer disam-
biguation technique. At the time of this writing, the most up-
to-date version of LLVM did not contain an implementation
of such technique. However, there exist algorithms available
for LLVM 4.0, which are not yet part of the official distribu-
tion, such as Sui’s [35] or Chen’s [9]. We have experimented
with the latter. Henceforth, we shall call it CF, because it
uses context free languages (CFL) to model the inclusion-
based resolution of constraints, as proposed by Zheng and
Rugina [47], and by Zhang et al. [45]. A detailed descrip-
tion of Chen’s implementation is publicly available1.

Figure 10 compares our analysis and Andersen’s. Our
numbers have been obtained in LLVM 3.7, whereas CF’s
has been produced via LLVM 4.0. We emphasize that both
versions of this compiler produce exactly the same number
of alias queries, and, more importantly, BA outputs exactly
the same answers in both cases. This experiment reveals
that there is no clear winner in this alias analysis context.
BA+LT is more than 20% more precise than BA+CF in three
benchmarks: lbm, milc and gobmk. BA+CF, in turn, is three
times more precise in omnetpp. The main conclusions that
we draw from this comparison are the following: (i) these
analysis are complementary; and (ii) mainstream compilers
still miss opportunities to disambiguate alias queries.

4.2 Scalability
We claim that the less-than analysis that we introduce in this
paper presents – in practice – linear complexity on the size

1 Available at https://github.com/grievejia/andersen

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

https://github.com/grievejia/andersen

0%	

20%	

40%	

60%	

80%	

100%	

lbm
	

mc
f	

as
tar
	

lib
qu
an
tu
m	

sje
ng
	

mi
lc	

so
ple
x	

bz
ip2
	

hm
me
r	

go
bm
k	

na
md
	

om
ne
tp
p	

h2
64
re
f	

pe
rlb
en
ch
	

de
alI
I	

gc
c	

%BA	 %(BA+LT)	 %(BA+CF)	

Figure 10. How two different alias analysis (LT and CF) increase the capacity of LLVM’s basic alias analysis (BA) to
disambiguate pointers. The Y-axis shows the percentage of no-alias responses. The higher the bar, the better.

of the target program. Size is measured as the number of in-
structions present in the intermediate representation of said
program. In this section we provide evidence that corrobo-
rates this claim. Figure 11 relates the number of constraints
that we produce for a program, using the rules in Figure 7,
with the number of instructions in that program. We show
results for our 50 largest benchmarks, in number of instruc-
tions, taken from SPEC and the LLVM test suite. The strong
linear relation between these two quantities is visually ap-
parent in Figure 11. And, going beyond visual clues, the co-
efficient of determination (R2) between constraints and in-
structions is 0.992. The closer to 1.0 is R2, the stronger the
evidence of a linear behavior.

1.E+03	

1.E+04	

1.E+05	

1.E+06	

0	 10	 20	 30	 40	 50	

Number	of	Constraints	 Number	of	Instruc<ons	

McCat/18-imp, 3,389 instrs, 1,219 constrs

SPEC/403.gcc 918,664 instrs, 313,032 constrs

Figure 11. Comparison between the number of instructions
and the number of constraints that we produce (using rules
in Figure 7) per benchmark. X-axis represents benchmarks,
sorted by number of instructions. The coefficient of determi-
nation (R2) between these two metrics is 0.992, indicating a
strong linear correlation.

As Figure 11 shows, the number of constraints that we
produce is linearly proportional to the number of instructions
that these constraints represent. But, what about the time
to solve such constraints – is it also linear on the number

of instructions? To solve constraints, we compute the tran-
sitive closure of the “less-than” relation between program
variables. We use a cubic algorithm to build the transitive
closure [25]. When fed with our benchmarks, this algorithm
is likely to show linear behavior: the coefficient of determi-
nation between the number of constraints for all our bench-
marks, and the runtime of our analysis is 0.988. This linear-
ity surfaces in practice because most of the constraints enter
the worklist at most twice. For instance, SPEC CPU 2006,
plus the 308 programs that are part of the LLVM test suite
give us 8,392,822 constraints to solve. For this lot, we pop
the worklist 17,800,102 times: a ratio that indicates that each
constraint is visited 2.12 times until a fixed point is achieved.

We emphasize that our implementation still bears the sta-
tus of a research prototype. Its runtime is far from being
competitive, because, currently, it relies heavily on C++’s
standard data-structures, instead of using data-types more
customized to do static analyses. We use std::set to rep-
resent LT sets, std::map to bind LT sets to variables, and
std::vector to implement the worklist. Therefore, our im-
plementation still has much room to improve in terms of run-
time. For instance, we took 340 seconds to solve all the less-
than relations between all the scalar variables found in the 16
programs of SPEC CPU that the LLVM’s C frontend com-
piles on an 2.4GHz Intel Core i7. We have already observed
that most of the LT sets end up empty, and that the vast ma-
jority of them, over 95%, contain only two or less elements.
We intend to use such observations to improve the runtime
of our analysis as future work.

4.3 Applicability
One way to measure the applicability of an alias analysis is
to probe how it improves the quality of some compiler op-
timization, or the precision of other static analyses. In this
work, we have opted to follow the second road, and show
how our new alias analysis improves the construction of the
Program Dependence Graph (PDG), a classic data structure

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

1	

20	

400	

0	 20	 40	 60	 80	 100	 120	

Sta+c	Loca+ons	 BA	 BA+LT	

Figure 12. Precision of dependence graph. The X-axis
shows benchmarks, sorted by number of static memory ref-
erences in the source code. Y-axis shows number of memory
nodes in the Program Dependence Graph. The more memory
nodes the PDG contains, the more precise it is.

introduced by Ferrante et al. [13]. We use the implemen-
tation of PDGs available in the FlowTracker system [29],
which has a distribution for LLVM 3.7. The PDG is a graph
whose vertices represent program variables and memory lo-
cations, and the edges represent dependences between these
entities. An instruction such as a[i] = b creates a data de-
pendence edge from b to the memory node a[i]. The more
memory nodes the PDG contains, the more precise it is, be-
cause if two locations alias, they fall into the same node. In
the absence of any alias information, the PDG contains at
most one memory node; perfect alias information yields one
memory node for each independent location in the program.

It is not straightforward to compare LLVM’s basic alias
analysis against our less-than-based analysis, because the
former is intra-procedural, whereas the latter is inter-proce-
dural. Therefore, BA ends up creating at least one mem-
ory node per function that contains a load or store opera-
tion present in the target program. LT, on the contrary, joins
nodes that exist in the scope of different functions if it cannot
prove that they do not overlap. In order to circumvent this
shortcoming, we decided to use Csmith [43]. Csmith pro-
duces random C programs that conform to the C99 standard,
using an assortment of techniques, with the goal to find bugs
in compilers. Csmith has one important advantage to us: we
can tune it to produce programs with a single function, in
addition to the ever present main routine. By varying the
seed of its random number generator, we obtain programs
of various sizes, and by varying the maximum nesting depth
of pointers, we obtain a rich diversity of dependence graphs.
Figure 12 shows the results that we got in this experiment.

Our alias analysis improves substantially the precision
of LLVM’s BA. We have produced 120 random programs,

whose size vary from 50 to 4,030 lines. In total, the 120
PDGs produced with BA contain 1,299 memory nodes.
When combined, BA and LT yield 8,114 nodes, an increase
of 6.23x. We are much more precise than BA because the
programs that Csmith produces do not read input values:
they use constants instead. Because almost every memory
indexing expression is formed by constants known at compi-
lation time, LT can distinguish most of them. Although arti-
ficial, this experiment reveals a striking inability of LLVM’s
current alias analyses to deal with pointer arithmetics. None
of the other alias analyses available in LLVM 3.7 are able
to increase the precision of BA – not even marginally. Al-
though we have not used CF in this experiment – it is not
available for LLVM 3.7 – we speculate, from reading its
source code, that it will not be able to change this scenario.

Notice that our results do not depend on the nesting depth
of pointers. Our 120 benchmarks contain 6 categories of pro-
grams, which we produced by varying the nesting depth of
pointers from 2 to 7 levels. Thus, we had 20 programs in
each category. A pointer to int of nesting depth 3, for in-
stance, is declared as int***. All these programs, regardless
of their category, present an average of six static memory al-
location sites. On average, BA produces PDGs with 11 mem-
ory nodes, independent on the bucket, and BA+LT produce
PDGs with 68. The greater the number of static memory al-
location sites, the better the results of both BA and LT. The
largest PDG observed with BA only has 52 memory nodes
(and 88 nodes if we augment BA with LT). The largest graph
produced by the combination of BA and LT has 342 nodes
(and only 15 nodes if we use BA without LT).

5. Related Work
The insight of using a less-than dataflow analysis to dis-
ambiguate pointers is an original contribution of this pa-
per. However, such a static analysis is not new, having been
used before to eliminate array bound checks. We know of
two different approaches to build less-than relations: Lo-
gozzo’s [20, 21] and Bodik’s [7]. Additionally, there exist
non-relational analyses that produce enough information to
solve less-than equations [11, 23]. In the rest of this section
we discuss the differences between such work and ours.

The ABCD Algorithm. The work that most closely resem-
bles ours is Bodik et al.’s ABCD (short for Array Bounds
Checks on Demand) algorithm [7]. Similarities stem from
the fact that Bodik et al. also build a new program represen-
tation to achieve a sparse less-than analysis. However, there
are five key differences between that approach and ours. The
first difference is a matter of presentation: Bodik et al. pro-
vide a geometric interpretation to the problem of building
less-than relations, whereas we adopt an algebraic formal-
ization. Bodik et al. keep track of such relations via a data-
structure called the inequality graph. This graph is implicit
in our approach: it appears if we create a vertex vi to rep-
resent each program variable xi, and add a weighted edge

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

from v1 to v2 if, and only if, v1 ∈ LT(v2). The weight of an
edge is the difference v2 − v1, whenever known statically.
The other four differences are more fundamental.

Bodik et al. use a different algorithm to prove that a vari-
able is less than another. In the absence of cycles in the in-
equality graph, their approach works like ours: a positive
path between vi to vj indicates that xi < xj . This path is
implicit in the transitive closure that we produce after solv-
ing constraints. However, they use an extra step to handle
cycles, which, in our opinion, makes their algorithm diffi-
cult to reason about. Upon finding a cycle in the inequal-
ity graph, Bodik et al. try to mark this cycle as increasing
or decreasing. Cycles always exist due to φ-functions. De-
creasing cycles cause φ-functions to be abstractly evaluated
with the minimum operator applied on the weights of in-
coming edges; increasing cycles invoke maximum instead.
Third, Bodik et al. do not use range analysis. This is under-
standable, because ABCD has been designed for just-in-time
compilers, where runtime is an issue. Nevertheless, this lim-
itation prevents ABCD from handling instructions such as
x1 = x2 + x3 if neither x2 nor x3 are constants. Fourth,
Bodik et al.’s program representation does not split the live
range of x3 at an instruction such as x1 = x2 − x3, x3 > 0.
This implementation detail lets us know that x2 > x1. Fi-
nally, we chose to compute a transitive closure of less-than
relations, whereas ABCD works on demand.

The Pentagon Lattice. Logozzo and Fähndrich have pro-
posed the Pentagon Lattice to eliminate array bound checks
in type safe languages such as C#. This algebraic object is
the combination of the lattice of integer intervals and the
less-than lattice. Pentagons, like the ABCD algorithm, could
be used to disambiguate pointers like we do. Nevertheless,
there are differences between our algorithm and Logozzo’s.
First, the original work on Pentagons describe a dense anal-
ysis, whereas we use a different program representation to
achieve sparsity. Contrary to ABCD, the Pentagon analysis
infers that x2 > x1 given x1 = x2 − x3, x3 > 0 like we do,
albeit on a dense fashion. Second, Logozzo and Fähndrich
build less-than and range relations together, whereas our
analysis first builds range information, then uses it to com-
pute less-than relations. We have not found thus far examples
in which one approach yields better results than the other;
however, we believe that, from an engineering point of view,
decoupling both analyses leads to simpler implementations.

Fully-Relational Analyses. Our less-than analysis, ABCD
and Pentagons are said to be semi-relational, meaning that
they associate single program variables with sets of other
variables. Fully-relational analysis, such as Octogons [23]
or Polyhedrons [11], associate tuples of variables with ab-
stract information. For instance, Miné’s Octogons build re-
lations such as x1 + x2 ≤ 1, where x1 and x2 are vari-
ables in the target program. As an example, Polly-LLVM2

2 Available at http://polly.llvm.org/

uses fully-relational techniques to analyze loops. Polly’s de-
pendence analysis is able to distinguish v[i] and v[j] in
Figure 1 (a), given that j− i ≥ 1; however, it cannot analyze
v[i] and v[j] in Figure 1 (b). These analyses are very pow-
erful; however, they face scalability problems when dealing
with large programs. Whereas a semi-relational sparse anal-
ysis generates O(|V|) constraints, |V| being the number of
program variables, a relational one might produce O(|V|k),
k being the number of variables used in relations.

Range-Based Alias Analyses There exist several different
pointer disambiguation strategies that associate ranges with
pointers [2, 4, 5, 24, 27, 31, 32, 37, 39, 41]. They all share
a common idea: two memory addresses p1 + [l1, u1] and
p2 + [l2, u2] do not alias if the intervals [p1 + l1, p1 + u1]
and [p2 + l2, p2 + u2] do not overlap. These analyses differ
in the way they represent intervals, e.g., with holes [4, 37] or
contiguously [2, 32]; with symbolic bounds [24, 27, 31] or
with numeric bounds [4, 5, 37], etc. None of these previous
work is strictly better than ours. For instance, none of them
can disambiguate v[i] and v[j] in Figure 1 (b), because
these locations cover regions that overlap, albeit not at the
same time. Nevertheless, range based disambiguation meth-
ods can solve queries that our less-than approach cannot. As
an example, we are unable to disambiguate p1 and p2, given
these definitions: p1 = p+ 1 and p2 = p+ 2. We know that
p < p1 and p < p2, but we do not relate p1 and p2.

6. Conclusion
This paper has introduced a new technique to disambiguate
pointers, which relies on a less-than analysis. Our new alias
analysis uses the observation that if p1 and p2 are two point-
ers, such that p1 < p2, then they cannot alias. Even though
this observation is obvious, it has not been used before as
the cornerstone of an alias analysis. Testimony of this state-
ment is the fact that our analysis has been able to improve the
precision of LLVM’s standard suite of pointer disambigua-
tion techniques by a large factor in some benchmarks. There
are several ways in which our idea can be further developed.
One future avenue that is particularly appealing to us con-
cerns speed. Currently, our research prototype can handle
large programs, but its runtime is not practical: it takes sev-
eral minutes to produce the transitive closure of the less-than
relation for our largest benchmarks. We believe that better al-
gorithms can improve this scenario substantially. The design
of such algorithms is a problem that we leave open.

Acknowledgment
This project is supported by CNPq, Intel (The eCoSoC
grant), FAPEMIG (The Prospiel project), and by the French
National Research Agency – ANR (LABEX MILYON of
Université de Lyon, within the program “Investissement
d’Avenir” (ANR-11-IDEX-0007)). We thank the CGO ref-
erees for the very insightful comments and suggestions.

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

http://polly.llvm.org/

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, 2006.

[2] P. Alves, F. Gruber, J. Doerfert, A. Lamprineas, T. Grosser,
F. Rastello, and F. M. Q. a. Pereira. Runtime pointer disam-
biguation. In OOPSLA, pages 589–606. ACM, 2015.

[3] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in
x86 executables. In CC, pages 5–23. Springer, 2004.

[5] G. Balatsouras and Y. Smaragdakis. Structure-sensitive
points-to analysis for C and C++. In SAS, pages 84–104.
Springer, 2016.

[6] J. P. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. In POPL, pages
29–41. ACM, 1979.

[7] R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array
bounds checks on demand. In PLDI, pages 321–333. ACM,
2000.

[8] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S.
Oberg, and S. W. Reeves. Fast copy coalescing and live-range
identification. In PLDI, pages 25–32. ACM, 2002.

[9] J. Chen. CFL alias analysis, 2016. Google’s Summer of Code
Report.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252. ACM,
1977.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, pages 84–
96. ACM, 1978.

[12] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck.
Efficiently computing static single assignment form and the
control dependence graph. TOPLAS, 13(4):451–490, 1991.

[13] J. Ferrante, J. Ottenstein, and D. Warren. The program de-
pendence graph and its use in optimization. TOPLAS, 9(3):
319–349, 1987.

[14] S. Hack, D. Grund, and G. Goos. Register allocation for
programs in SSA-form. In CC, pages 247–262. Springer-
Verlag, 2006.

[15] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In
PLDI, pages 290–299. ACM, 2007.

[16] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for
millions of lines of code. In CGO, pages 265–280, 2011.

[17] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In PASTE, pages 54–61. ACM, 2001.

[18] ISO-Standard. 9899 - The C programming language, 2011.

[19] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO,
pages 75–88. IEEE, 2004.

[20] F. Logozzo and M. Fahndrich. Pentagons: a weakly relational
abstract domain for the efficient validation of array accesses.
In SAC, pages 184–188. ACM, 2008.

[21] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses.
Sci. Comput. Program., 75(9):796–807, 2010.

[22] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chis-
nall, R. N. M. Watson, and P. Sewell. Into the depths of C:
Elaborating the de facto standards. In PLDI, pages 1–15.
ACM, 2016.

[23] A. Miné. The octagon abstract domain. Higher Order Symbol.
Comput., 19:31–100, 2006.

[24] H. Nazaré, I. Maffra, W. Santos, L. Barbosa, L. Gonnord, and
F. M. Q. Pereira. Validation of memory accesses through
symbolic analyses. In OOPSLA, pages 791–809. ACM, 2014.

[25] E. Nuutila. Efficient transitive closure computation in large
digraphs. Acta Polytechnica Scandinavia: Math. Comput.
Eng., 74:1–124, 1995.

[26] H. Oh, W. Lee, K. Heo, H. Yang, and K. Yi. Selective context-
sensitivity guided by impact pre-analysis. In PLDI, pages
475–484. ACM, 2014.

[27] V. Paisante, M. Maalej, L. Barbosa, L. Gonnord, and F. M.
Quintão Pereira. Symbolic range analysis of pointers. In
CGO, pages 171–181. ACM, 2016.

[28] F. M. Q. Pereira and D. Berlin. Wave propagation and deep
propagation for pointer analysis. In CGO, pages 126–135.
IEEE, 2009.

[29] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha. Sparse
representation of implicit flows with applications to side-
channel detection. In CC, pages 110–120. ACM, 2016.

[30] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira. A
fast and low overhead technique to secure programs against
integer overflows. In CGO. ACM, 2013.

[31] R. Rugina and M. C. Rinard. Symbolic bounds analysis
of pointers, array indices, and accessed memory regions.
TOPLAS, 27(2):185–235, 2005.

[32] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis:
Static and dynamic memory reference analysis. In ICS, pages
251–283. IEEE, 2002.

[33] T. C. Spillman. Exposing side-effects in a PL/I optimizing
compiler. In IFIP, pages 376–381. Springer, 1971.

[34] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, pages 32–41. ACM, 1996.

[35] Y. Sui and J. Xue. SVF: Interprocedural static value-flow
analysis in llvm. In CC, pages 265–266. ACM, 2016.

[36] Y. Sui, P. Di, and J. Xue. Sparse flow-sensitive pointer analysis
for multithreaded programs. In CGO, pages 160–170. ACM,
2016.

[37] Y. Sui, X. Fan, H. Zhou, and J. Xue. Loop-oriented array- and
field-sensitive pointer analysis for automatic SIMD vectoriza-
tion. In LCTES, pages 41–51. ACM, 2016.

[38] A. L. C. Tavares, B. Boissinot, F. M. Q. Pereira, and
F. Rastello. Parameterized construction of program represen-
tations for sparse dataflow analyses. In Compiler Construc-
tion, pages 2–21. Springer, 2014.

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

[39] R. A. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. A.
Gallivan. A unified framework for nonlinear dependence
testing and symbolic analysis. In ICS, pages 106–115. ACM,
2004.

[40] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI, pages 131–144. ACM, 2004.

[41] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for c programs. In PLDI, pages 1–12. ACM,
1995.

[42] M. Wolfe. High Performance Compilers for Parallel Comput-
ing. Adison-Wesley, 1st edition, 1996.

[43] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In PLDI, pages 283–294.
ACM, 2011.

[44] S. H. Yong and S. Horwitz. Pointer-range analysis. In SAS,
pages 133–148. Springer, 2004.

[45] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su. Fast algorithms for
Dyck-CFL-reachability with applications to alias analysis. In
PLDI, pages 435–446. ACM, 2013.

[46] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formal verification of ssa-based optimizations for llvm. In
PLDI, pages 175–186. ACM, 2013.

[47] X. Zheng and R. Rugina. Demand-driven alias analysis for c.
In POPL, pages 197–208. ACM, 2008.

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

A. Artifact Evaluation
This artifact is in the form of a virtual machine and it
is distributed through the link: http://cuda.dcc.ufmg.
br/CGO17/strict-inequalities/. This virtual machine
contains the code and execution scripts for the work pre-
sented in this paper. In the desktop folder, you will find
ways to run our analysis on any source code you choose, or
on the benchmarks used in this paper’s evaluation.

A.1 The Code
The code from this work can be found inside LLVM’s build
directory inside the virtual machine. The LLVM source and
build directory is at /llvm/, and the code for the analyses
are in /llvm/lib/Transforms/. In total we have used 4
passes in this paper:

• /llvm/lib/Transforms/sraa
The main pointer alias analysis presented in this paper.
• /llvm/lib/Transforms/vSSA

A pass that transforms the program to the e-SSA form,
needed in order to use the Strict Relations Alias Analysis.
• /llvm/lib/Transforms/RangeAnalysis

A symbolic Range Analysis also used in the Strict Rela-
tions Alias Analysis.
• /llvm/lib/Transforms/DepGraph

A pass that builds the program dependence graph. This
pass is used in one of our tests, to show the effectiveness
of our new alias analysis when comparing the number of
memory nodes yielded by the DepGraph when running
it coupled with the Strict Relations Alias Analysis. We
developed our work on LLVM 3.7.

A.2 Getting Started
The artifact is provided as a Virtual Machine image. To
use the artifact, you need to download and install the Vir-
tualBox VM player at https://www.virtualbox.org/

wiki/Downloads. After downloading and installing Virtu-
alBox, to run the VM image, you must perform the following
steps:

1. Download and decompress the VM image.

2. OpenVirtualBox.

3. Create a new virtual machine, by clicking in “Machine”,
“New...”.

4. Give a name to the new VM, by filling the “Name” field.

5. In “Type”, select “Linux”.

6. In “Version”, select “Ubuntu (64 bit)”.

7. Click “continue”, select the desired amount of RAM
memory, then click “continue” again.

8. In the hard drive selection screen, select the option “Use
an existing virtual hard drive file”, then select the .vdi

file containing the VM image that you just downloaded.

9. Your Virtual Machine is ready to use! To start, simply
double-click it in the VirtualBox VM list

If the VM prompts for a username and password, you
may use the following combination:

• login: cgoartifact
• password: artifact

A.3 Running the Examples
Inside the folder ExecuteExamples you may find a script
to compile any C code and run our analysis. If you wish to
compile a program, you may use the script compile.sh and
pass as first parameter the name of the program you wish to
compile. For example, say you want to compile the program
test.c:

$ bash compile.sh test

You may omit the file extension (.c) when passing the
name of the program as a parameter. After the compilation,
if you wish to run our Strict Relations Alias Analysis evalua-
tion, you can run the script sraa.sh. The output will be the
LLVM’s default alias analysis evaluation, with a thorough
list of alias information on the program.

$ bash sraa.sh test

If you wish to compare it with the LLVM’s basic alias
analysis alone, you can also run the script basicaa.sh

on any program you wish. You may also use the script
random.sh to generate a random C program with the tool
Csmith:

$ bash random.sh random

The clean.sh script will remove all files created by the
other scripts.

A.4 Running the Benchmarks
We have executed 3 main evaluation tests in our paper: Preci-
sion, Scalability and Applicability. These tests are described
in Section 4 of this paper. In the folder Benchmarks you
will find the scripts to run the benchmarks used in the pa-
per. You will find two folders: aaeval and memnodes. In
the folder aaeval there is a script called run.sh that runs
two of the 3 evaluation tests we ran in our paper, the tests
of Precision and Scalability. Both tests are executed on the
LLVM’s test-suite and on the SpecCPU2006. The test of Pre-
cision evaluates how better our alias analysis is compared to
the Basic Alias Analysis provided by LLVM. So it runs the
basicaa, the sraa and both together on the entire test-suite.
The test of Scalability evaluates the growth of the number of
constraints generated during the Strict Relations Alias Anal-
ysis compared to the size of the programs being analyzed.
The script run.sh will basically run the tests on the entire
test-suite and copy the .csv files containing the statistics to
the folder aaeval. At the end of the execution you may find

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

http://cuda.dcc.ufmg.br/CGO17/strict-inequalities/
http://cuda.dcc.ufmg.br/CGO17/strict-inequalities/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

the .csv files in the folder. Warning: Bear in mind that the
tests may take a while (up to 4 hours), mainly because they
are running on a virtual machine.

In the folder memnodes you may find another script called
run.sh that executes the third test in our paper, the test
of Applicability. The test of Applicability runs a Depen-
dence Graph pass that generates a PDG (Program Depen-
dence Graph) and counts the number of memory nodes in
it. Our aim is to show that our new alias analysis yields
more memory nodes in these graphs, because it is more pre-
cise. We also run this test in the entire test-suite plus SPEC-
Cpu2006. In order to do improve our evaluation, we used the
tool Csmith to generate 120 random C programs and then
we ran the Dependence Graph coupled with our Strict Rela-
tions Alias Analysis in all of them. We showed that the PDG
generated without our analysis has less memory nodes than
the PDG generated with our alias analysis. The random gen-
erated C programs are in the folder SingleSource, inside
the LLVM’s test-suite root, so this test already evaluates the
entire test-suite and the random generated programs as well.

To use csmith to generate a random program, use the script
random.sh in the folder ExecuteExamples.

A.5 The Output
The output for our analysis is very simple. We use the
aa-eval pass to compare, within the same function, all
possible pairs of pointers and then we return how many
comparisons issued a NoAlias, MayAlias or a MustAlias
response. Regarding the Dependence Graph, we basically
count the number of Memory Nodes yielded. The output for
this analysis is formatted in CSV files. When you run the
tests with the script run.sh, the CSV files will be copied to
your working directory.

Reviewing Methodology
This artifact has been reviewed according to the guide-
lines established by the Artifact Evaluation Committee of
CGO and PPoPP. The reviewing methodology is described
in http://cTuning.org/ae/submission-20161020.

html.

Author Version of «Pointer Disambiguation via Strict Inequalities » Published in Code
Generation and Optimization, Austin, Texas, Feb. 2017. Maroua Maalej et al.

http://cTuning.org/ae/submission-20161020.html
http://cTuning.org/ae/submission-20161020.html

	Introduction
	Overview
	The Less-Than Check
	The Core Language
	Program Representation
	Constraint Generation
	Constraint Solving
	Properties
	Pointer Disambiguation

	Evaluation
	Precision
	Scalability
	Applicability

	Related Work
	Conclusion
	Artifact Evaluation
	The Code
	Getting Started
	Running the Examples
	Running the Benchmarks
	The Output

