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ABSTRACT 

 

Purpose: Quantification of tumour heterogeneity in PET images has recently gained interest, 

but has been shown to be dependent on image reconstruction. This study aimed to evaluate 

the impact of the EANM/EARL accreditation program on selected 18F-FDG heterogeneity 

metrics. 

Methods: Seventy-one tumours in sixty biopsy-proven lung cancer patients acquisitions 

reconstructed with unfiltered PSF PET images (optimized for diagnostic purposes), PSF-

reconstructed images with a 7mm Gaussian filter (PSF7) chosen to meet EANM 1.0 

harmonizing standards, and EARL-compliant OSEM images were prospectively included. 

Delineation was performed with FLAB algorithm on PSF images and reported on PSF7 and 

OSEM ones, and with a 50% SUVmax threshold applied independently to each image. Robust 

and reproducible heterogeneity metrics including 1st-order [area under the curve of the 

cumulative histogram (CHAUC)], 2d-order (entropy, correlation and dissimilarity) and 3rd-order 

[high intensity larger area emphasis (HILAE) and zone percentage (ZP)] textural features 

(TF) were statistically compared.   

Results: Volumes obtained with 50% SUVmax threshold were significantly smaller than 

FLAB-derived ones, and were significantly smaller in PSF images compared to OSEM and 

PSF7 ones. PSF-reconstructed images showed significantly higher SUVmax and SUVmean 

values, as well as heterogeneity for CHAUC, dissimilarity, correlation and HILAE, and a wider 

range of heterogeneity values than OSEM images for most of the metrics considered, 

especially when analysing larger tumours. Histological subtypes had no impact on TF 

distribution.  

No significant difference was observed between any of the metrics considered (SUV or 

heterogeneity features) extracted from OSEM and PSF7 reconstructions. Furthermore, the 

distributions of TF for OSEM and PSF7 reconstructions according to tumour volumes were 

similar for all ranges of volumes.  

Conclusion: PSF reconstruction with Gaussian filtering chosen to meet harmonizing 

standards resulted in similar SUV values and heterogeneity information, compared to OSEM 

images, which validates its use within the harmonization strategy context. However, 

unfiltered PSF-reconstructed images also showed higher heterogeneity according to some 

metrics, as well as a wider range of heterogeneity values than OSEM images, for most of the 

metrics considered, especially when analysing larger tumours. This suggests that, whenever 
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available, unfiltered PSF images should also be exploited to obtain the most discriminative 

quantitative heterogeneity features. 

 

Keywords: FDG PET/CT; quantification; heterogeneity; harmonization; EARL accreditation 

program; lung cancer 
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Introduction 

 

Using quantitative parameters extracted from the Positron Emission Tomography (PET) 

component of PET/Computed Tomography (CT) images, such as Standardized Uptake Values 

(SUV), as biomarkers in multicentre trials or in sites equipped with multiple PET/CT scanners 

requires that these parameters be comparable among patients, regardless of the PET/CT 

system used. This can be achieved by harmonizing patient preparation, as well as data 

acquisition, reconstruction and processing, including the image analysis and parameters 

extraction steps [1-3]. The American college of Radiology (ACR) program [4], the 

EANM/EARL accreditation program [5] and the SNM clinical trials network (SNM-CTN) [6] 

have set up harmonization programs based on the use of phantoms acquisitions. These are 

used as standardized objects in order to harmonize data acquisition, processing and analysis 

so that the physical, technical and biological sources of error [1, 7] in SUV measurements can 

be limited.  

A specific issue is related to reconstruction-dependent variations encountered with recently 

introduced advanced image reconstruction algorithms such as those incorporating the point 

spread function (PSF) in the system matrix [8], or Bayesian penalised likelihood (BPL) 

reconstruction [9]. These new image reconstruction schemes have been shown to produce 

SUV metrics significantly higher than conventional ordered subset expectation maximization 

(OSEM) algorithms [10]. Consequently, an additional filtering step can be used in order to 

meet harmonizing standards [11-13]. With regards to the EANM/EARL program [5], a set of 

PET images with NEMA NU-2 anthropomorphic phantom-based filtering is mandatory to 

harmonize SUVs to the EANM standards. Given that centres running PET systems with 

advanced reconstruction algorithms are often willing to use them with parameters chosen in 

order to achieve optimal lesion detection, EARL-accredited centres tend to use two PET 
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datasets when participating in multicentre trials: one for optimal lesion detection and image 

interpretation, and the filtered one for harmonized quantification [12].  

However, it is important to emphasize that all these previous efforts have been focused on 

usual SUV metrics, as they are commonly used in oncology for therapy assessment and risk 

stratification. However, there is growing interest in using alternative measurements, for 

instance metabolically active tumour volume (MATV) and heterogeneity metrics, in order to 

provide a more comprehensive quantitative assessment of lesions from PET images [14, 15]. 

One of the most promising approaches for heterogeneity quantification is textural features 

analysis, introduced for image processing applications in the 70’s, used in MRI and CT since 

the early 90’s and more recently in PET [16]. As PSF reconstruction improves resolution and 

therefore provides higher definition of structures within a lesion, it is reasonable to expect 

improved evaluation of tumour heterogeneity as compared to OSEM algorithms. This raises 

the question of which reconstruction should be used for assessing tumour heterogeneity 

within a program using a smoothed dataset to reach harmonizing standards. Two studies have 

already reported on the impact of the type of reconstruction algorithm or variation of 

reconstruction parameters on the textural features values [17, 18]. However, they have mostly 

been focused on reporting the quantitative impact only, and have neither explored the issue 

within the context of harmonization programs nor the relationship between heterogeneity and 

volume, an important aspect recently demonstrated [19]. 

This study focused on lung cancer, a tumour type for which standard SUV metrics have been 

proved to be clinically useful [20-23] and for which quantification of tumour heterogeneity in 

PET images has recently gained interest [24, 25] and aimed at evaluating the potential impact 

of the EARL accreditation program [5] on selected 18F-FDG heterogeneity metrics. The 

primary aim was to compare several heterogeneity features previously identified as reliable 

(robust and repeatable) in lung cancer patients, in PSF-reconstructed images, PSF-
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reconstructed images with a filter chosen to meet harmonizing standards and in EARL 

compliant OSEM images, later referred as to OSEM images. This comparison was performed 

not only in terms of absolute values but also in terms of their distributions with respect to 

tumour volume, which was not considered in previous studies. A secondary aim was to study 

whether potential differences in heterogeneity features amongst these three reconstructions 

would be similar in adenocarcinomas (ADC), squamous cell carcinomas (SqCC), and large 

cell lung cancer (LCC), the main histological types encountered in non-small cell lung 

cancers  
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Materials and methods 

 

Patients’ selection 

Over a 3-month period, 60 consecutive biopsy proven lung cancer patients (4 small-cell lung 

cancer and 56 NSCLC) were prospectively included. Informed consent was waived for this 

type of study by the local ethics committees (Ref A12-D24-VOL13, Comité de protection des 

personnes Nord-Ouest III) since the scans were performed for clinical indications and the 

study procedures were performed independently of usual clinical reporting.   

 

PET calibration and cross calibration 

The calibration of the PET system was performed daily with a 68Ge cylinder with a known 

radioactive concentration.  

The cross-calibration procedure was performed twice during the present study, as per the 

EANM guidelines [11]. Details regarding this cross-calibration can be found elsewhere [12]. 

The cross-calibration factors were found to be 0.99 and 1.00.  

 

PET/CT examinations 

After a 15-min rest in a warm room, patients who had been fasting for 6 h were injected with 

18F-FDG. The injected activity and the exact delay between injection and the start of the 

acquisition were recorded for each patient. 

All PET imaging studies were performed on a Biograph TrueV (Siemens Medical Solutions) 

with a 6-slice spiral CT component. For additional technical details regarding this system we 

refer to a previous publication [26]. CT acquisition was performed first, with the following 

parameters: 60 mAs, 130 kVp, pitch 1 and 6 × 2 mm collimation. Subsequently, the PET 
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emission acquisition was performed in 3-D mode. Patients were scanned from the skull base 

to the mid-thighs. 

 

PET reconstruction 

The standard reconstruction in the department where patients were recruited is a PSF 

reconstruction algorithm (HD; TrueX, Siemens Medical Solutions; 3 iterations and 21 

subsets) without filtering. For the purpose of the present study, raw data were also 

reconstructed with the OSEM reconstruction algorithm (4 iterations and 8 subsets) and a PSF 

reconstruction algorithm (HD; TrueX, Siemens Medical Solutions; 3 iterations and 21 

subsets) with a 7 mm Gaussian filter (PSF7). As shown in a previous study, this latter 

reconstruction leads to protocol-specific images with NEMA NU-2 phantom-based filtering 

that meet EANM quantitative harmonizing standards, therefore reducing reconstruction-

dependent variation in SUVs [12]. The OSEM reconstruction parameters met the EANM 

requirements regarding activity recovery. 

For all reconstructions, matrix size was 168 × 168 voxels, resulting in isotropic voxels of 

4.07 × 4.07 × 4.07 mm3. Scatter and attenuation (using the associated CT) corrections were 

applied.  

 

 

PET tumour delineation 

All lesions were first automatically delineated in the PSF PET image using the Fuzzy Locally 

Adaptive Bayesian (FLAB) algorithm, and resulting segmentations were reported on the two 

other images (OSEM and PSF7). This process avoided any variability in the tumour volumes 

definition and number of voxels involved in the calculations when comparing features across 

the three images. FLAB has been developed specifically for PET image segmentation [27] 
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and has been thoroughly validated for reproducibility, robustness and repeatability [28, 29], as 

well as for accuracy on simulated and clinical images [30]. Tumours were first located and 

isolated in a volume of interest (VOI) well enclosing the tumour and its surrounding 

background, without including nearby pathological uptake. This was performed using in-

house software in which points are placed by the user around the tumour (see supplemental 

Fig. 1). The FLAB algorithm was then applied to this VOI in fully automated mode, in 

contrast to a semi-supervised approach considered in a previous work on FLT images during 

radiotherapy, in which the contrast and signal-to-noise ratio were lower [31]. 

However, in order to be more representative of a current multicentric clinical setting, tumour 

volumes were also defined using a fixed threshold at 50% of SUVmax (T50) applied 

independently to each of the three images. Furthermore, for the most discordant volumes 

between PSF7/OSEM and PSF (outliers located above the 90th percentile) when using T50, 

tumours were also segmented independently with FLAB on each image.  

Features were then extracted from each of the three volumes and compared. 

 

Tumour characterization and quantification 

From the FLAB-delineated volumes, all “standard” metrics were extracted: SUVmax, SUVmean 

and metabolically active tumour volume. To characterize uptake heterogeneity, several 

metrics were considered: on the one hand, a first-order metric based on the intensity 

histogram (IH) [16] denoted area under the curve of the cumulative histogram (CHAUC) [32]. 

On the other hand, second- and third-order textural features (TF). The metric CHAUC is based 

on intensity histogram only and does not incorporate spatial information. TF have been 

defined to quantify patterns of spatial arrangements and/or intensity variations. There exist 

dozens of TFs based on different computational frameworks. In the present work, we used 

only a few selected TFs. This selection was based on several previous studies showing that 
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most of the features (including first-order metrics such as skewness), especially third-order 

metrics focusing on small areas and/or low intensities, are unreliable due to poor robustness 

vs. reconstruction [17, 18] or partial volume effects and segmentation [33], and low 

reproducibility on test-retest images [34]. The remaining features are either calculated from 

co-occurrence (2nd order, entropy, correlation and dissimilarity) or size-zone matrices [3rd 

order, high intensity larger area emphasis (HILAE) and zone percentage (ZP)]. Before 

building these matrices, images are first discretized into a chosen number of bins (B) with a 

quantization step. It has been shown that the choice of the quantization value (usually 

between 8 and 256) has an important impact on the resulting TF value, but also 

reproducibility [34] or complementary value with the tumour volume in which it is calculated 

[19]. Based on these previous results, a value of B=64 was used in the present work, and the 

quantization was performed using equation 1 in which I(x) is the original SUV of the voxel of 

interest and SUVmin and SUVmax are the minimal and maximal SUV value within the tumour 

volume. 

𝐼𝐵(𝑥) = 𝐵 ×
𝐼(𝑥) − 𝑆𝑈𝑉𝑚𝑖𝑛

𝑆𝑈𝑉𝑚𝑎𝑥 − 𝑆𝑈𝑉𝑚𝑖𝑛
 

 

For co-occurrence matrices, it has been shown that less redundant features are obtained when 

calculated using a single co-occurrence matrix taking into account all 13 spatial directions 

simultaneously, rather than computing a matrix for each direction followed by averaging [19, 

35]. A single co-occurrence matrix was thus adopted in the present work.  

 

Noise analysis in PET images 

In order to evaluate noise characteristics of each of the three reconstructions, signal-to-noise 

ratio (SNR, defined as 20 × log10 (
𝜇

𝜎
)𝐷𝐵 [36] where µ and σ are the mean and standard 
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deviation of intensities) was measured in circular regions of interest placed in homogeneous 

regions of the liver and automatically reported in each reconstruction. 

 

Statistical analysis  

Quantitative data are presented as mean (standard deviation), as well as the median when not 

normally distributed. Bland-Altman analyses were used to compare the SUV metrics obtained 

in the three images. The features obtained on each of the three sets of PET images were first 

compared globally using Friedman tests. Graphical plots of each feature depending on tumour 

volume were also used to estimate the impact of PSF reconstruction compared to OSEM and 

PSF7 images, and the features were then compared by categories of volumes using Friedman 

tests. MATV, SUVmax and TFs extracted from the three sets of data were compared according 

to the histological type of the tumour (ADC, ScCC and LCC) using Kruskal-Wallis tests. For 

all tests, a two-tailed P value of less than 0.05 was considered statistically significant. Graphs 

and analyses were carried out using Prism (GraphPad Software, La Jolla, CA).  
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Results:  

 

Population characteristics and compliance to guidelines for tumour imaging 

Population characteristics are displayed in table 1. Overall, 58 (96.7%) patient examinations 

fulfilled the EANM 2.0 guidelines for PET tumour imaging. The mean (SD) injected dose of 

18F-FDG was 4.02 (0.16) MBq/kg. The mean (SD) delay between the injection and the start of 

the PET acquisition was 60.43 (3.38) min. The mean (SD) blood glucose level was 1.04 

(0.23) mmol/L. 

 

Validation of the use of an additional harmonized PET dataset to overcome reconstruction-

dependency of SUVs 

Overall, 71 pulmonary lesions were delineated. The mean (SD, median) FLAB-derived 

MATV was 31.7 (46.4, 9.7) cm3. The mean (SD) SUVmax for OSEM, PSF and PSF7 

reconstructions were 10.50 (5.85), 15.42 (9.56) and 10.56 (5.88) respectively. The mean (SD) 

SUVmean for OSEM, PSF and PSF7 reconstructions were 6.14 (2.99), 7.37 (4.03) and 6.25 

(2.98) respectively. 

As shown in the supplemental Fig. 2, Bland-Altman analysis demonstrated that the mean ratio 

of PSF and OSEM reconstructions for SUVmax and SUVmean were 1.46 (95%CI = 0.86 – 2.08) 

and 1.19 (95%CI = 0.71 – 1.67) respectively. When using the PSF7 harmonized 

reconstruction, the mean ratio between PSF7 and OSEM reconstructions were 1.01 (95%CI = 

0.93 – 1.09) and 1.02 (95%CI = 0.95 – 1.09) for SUVmax and SUVmean respectively. 

Compared to OSEM, SNR in the liver was lower in PSF images (-25.8 ± 3.9 %) whereas it 

was very similar in PSF7 images (1.2 ± 2.9 %). 

 

Impact of newest reconstruction algorithms on textural features 
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In a first step we used FLAB to delineate lesions in PSF images and we reported this 

segmentation on OSEM images. For the first-order metric CHAUC based on the intensity 

histogram, most tumours were quantified as significantly more heterogeneous in PSF images 

compared to OSEM images, as PSF values were significantly lower than OSEM ones (a lower 

area under the curve indicating higher heterogeneity). Regarding second-order metrics 

calculated on the co-occurrence matrix (entropy, correlation and dissimilarity), on the one 

hand, PSF values were significantly lower for correlation and significantly higher for 

dissimilarity (in both cases indicating higher heterogeneity), compared to OSEM 

reconstruction. On the other hand, no significant difference between PSF and OSEM images 

was observed for entropy. Regarding third-order metrics calculated on size-zone matrices 

(HILAE and ZP), there was a significant difference between PSF and OSEM images only for 

HILAE values, which were lower, indicating higher heterogeneity. Fig. 1 displays TFs for the 

three reconstructions used. 

Heterogeneity features were also analysed depending on the range of tumour volumes. As 

shown in Fig. 2, the dispersion of the values (represented by the interquartile range) was 

larger and calculated values were significantly smaller for PSF reconstruction as compared to 

OSEM reconstruction, for tumour volumes larger than 1 cm3 in the case of CHAUC. For 

HILAE, calculated values were also significantly smaller for tumour volumes larger than 1 

cm3 but the dispersion of values was narrower for PSF compared to OSEM. Dissimilarity 

values were significantly higher in PSF for volumes > 50 cm3 and the dispersion of these 

values was larger in PSF images for tumour volumes larger than 1 cm3, compared to OSEM 

reconstruction. Distributions for all metrics can be seen in details in the supplemental Fig. 3 

and Fig. 4. 

When defining volumes using T50 applied independently to OSEM and PSF images, mean 

(median, SD) MATV were significantly smaller on PSF images 9.0 (12.4, 3.3) cm3 as 
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compared to OSEM ones 18.8 (24.2, 7.3) cm3 (p<0.0001). There were significant 

differences between PSF and OSEM images for first-order, second-order and third-order 

metrics with the same trends above detailed (Fig. 3). Fig.  4 displays representative examples 

of tumour delineation using the FLAB algorithm and a 50% of SUVmax threshold, as well as 

the related SUV and TF metrics. 

When comparing volumes obtained with T50 on PSF to OSEM and PSF7 ones, 8 outliers 

(above the 90th percentiles) were observed and re-processed by independently contouring with 

FLAB. There was no significant difference between PSF and OSEM mean (median, SD) 

MATV 12.8 (12.2, 4.8) cm3 and 13.4 (13.0, 4.8), respectively (+5.3±4.6%). There were 

significant differences between PSF and OSEM images for first-order, second-order and 

third-order metrics as previously described, except for dissimilarity and ZP for which there 

were only trends (Supplemental Fig. 5). 

 

Effect of the harmonization strategy on textural features 

In the previous section, using the FLAB algorithm to delineate lesions, we found that data 

extracted from OSEM reconstruction were different from those extracted from PSF 

reconstruction for several TFs but also for CHAUC. When comparing these metrics extracted 

from OSEM and PSF7 reconstructions, none exhibited significant differences (Fig. 1). 

Furthermore, the distributions of their values according to MATV were much more similar for 

all ranges of volumes (Fig. 2) with no significant difference whatever range of tumour 

volumes was considered (except for HILAE in volumes larger than 50 cm3), highlighting that 

the quantifiable heterogeneity content of the PSF7 images was very close to the one contained 

in OSEM images. 

We also defined tumour volumes using T50 applied independently to OSEM and PSF7 

images. When using this methodology, no significant difference was observed between 
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MATV, CHAUC and all TFs extracted from OSEM and PSF7 reconstructions (Fig. 3). Mean 

(SD, median) MATV were 18.8 (24.2, 7.3) cm3 and 19.5 (25.5, 7.7) cm3 for OSEM and PSF7 

reconstruction respectively (ns).  

Analyzing the 8 outliers described above for which FLAB was used independently on the 

three sets of images, there was no difference between OSEM and PSF7 mean (median, SD) 

MATV 13.4 (13.0, 4.8) cm3 and 13.6 (13.2, 5.11) respectively, +1.0±3.4% and between 

textural features extracted from OSEM and PSF7 images (Supplemental Fig. 5). 

 

SUV metrics and heterogeneity features amongst the histological subtypes 

Standard metrics exhibited significant differences amongst the three NSCLC histological 

subtypes. In particular, there was a trend towards smaller volumes in ADC. SUVmax values 

were also different in the three subtypes, with however large overlaps between the three 

distributions. SUVmax values obtained in PSF reconstructed images were higher for all three 

subtypes, resulting however in a similar and unchanged differentiation between them: ADC 

had significantly lower SUVmax than SqCC and LCC in all three reconstructions (Fig. 5). 

Although the heterogeneity metrics were differently distributed with the three different 

reconstruction schemes, none of them were significantly different among the three 

histological subtypes, whatever reconstructed image set was considered (Fig.  6). 
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Discussion: 

 

Heterogeneity metrics, especially textural features, have gained interest in the past few years 

to quantify intratumour heterogeneity in PET images. There have been several studies 

highlighting the dependency of these metrics to various factors, including the image analysis 

workflow (such as tumour delineation or partial volume effects correction) [33], the image 

reconstruction schemes or parameters [17, 18], and basic stochastic effects occurring in the 

PET acquisition process [37]. 

Our results confirm some of these previous results regarding the impact of the reconstruction 

choices on these metrics values [18]. Compared to OSEM images, unfiltered PSF-

reconstructed images showed lower signal-to-noise ratio in the liver, higher heterogeneity and 

higher range of heterogeneity values in the tumour, for most of the metrics when using FLAB 

(independently on the three sets of images or not) and for all of the metrics considered in the 

present work when using T50, to be more representative of a current multicentric clinical 

setting. This difference was logically especially observed when analysing larger tumours. Our 

study indeed sheds light on the impact of reconstruction algorithms on the distributions of 

heterogeneity features with respect to tumour volume, which had not been considered in these 

previous studies. Regarding the differences observed in the case of T50, it should be 

emphasized that part of these can be directly attributed to the fact that this segmentation 

method applied to PSF images led to significantly smaller volumes than on OSEM and PSF7 

images, with sometimes drastically reduced volumes not covering the tumour uptake spatial 

extent (see Fig. 4c and 4d and supplemental Fig. 6). This method which has been evaluated 

previously mostly on standard non-PSF images is thus clearly not appropriate to extract 

tumour volume and associated metrics from PSF-reconstructed images because of their higher 

contrast. This also strengthens our approach of using a single volume for more accurate and 
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rigorous comparison of the three images content in terms of textural patterns, to avoid any 

bias in the calculation of TF due to different volumes. 

Thus, the impact of reconstruction for comparable tumour volumes was found to be 

significant for some metrics (CHAUC, correlation, dissimilarity, HILAE) and only an 

observable trend for others (entropy, ZP), and the differences increased with larger tumour 

volumes (for instance in the case of ZP, differences were significant only for tumours larger 

than 50 cm3). This suggests that PSF-based reconstruction may provide more quantifiable 

heterogeneity-related information in larger tumours than OSEM images, as the interval 

between smallest and highest values increases, thereby providing more potential for 

differentiating different levels of heterogeneity in these tumours. Our results also highlight the 

fact that some TFs seem more sensitive than others to the changes in PSF-reconstructed 

images compared to OSEM images when analysing similar volumes determined with FLAB: 

CHAUC, correlation and HILAE showed higher sensitivity with larger differences in both 

overall and volume-related distributions than entropy, dissimilarity and ZP. 

The present study was conducted within the overall harmonization strategy context and 

focused on the EARL accreditation program, which is why unfiltered PSF images (optimized 

for diagnostic purposes) and OSEM images were compared to PSF images filtered with a 7 

mm Gaussian filter chosen to meet the EANM 1.0 guidelines (PSF7). As previously published 

[12], the use of PSF7 resulted in signal-to-noise ratio in the liver and SUVmax values in the 

tumour very close to OSEM, and the same pattern was observed for heterogeneity metrics. All 

metrics considered in the present study were very close with no significant differences when 

extracted from OSEM and PSF7 images, whatever the delineation technique used. This 

suggests that OSEM and PSF7 EARL compliant images present a similar quantifiable 

heterogeneity content, and validates the use of TFs extracted from PSF-filtered images for 

multicentre studies. However, as stated above, our results also suggest that using unfiltered 
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PSF-based reconstructions could provide potentially more discriminative image features 

allowing for higher differentiation amongst patients, for studies aiming to quantify tumour 

heterogeneity using TFs and exploit these metrics for a clinical endpoint, such as patient 

stratification according to survival or response to therapy. Of note, these studies have been 

mostly performed in single sites, but future validation studies will likely require pooling data 

from several centres in order to obtain larger cohorts with enough statistical power. This 

raises the issue of using filtered-harmonized PSF images so that they can be pooled with 

OSEM data from other centres (potentially losing some discriminative power from TFs), or 

pooling data only from centres using PSF reconstruction with no post-filtering. This issue is 

problematic, as the EARL accreditation program is not meant to exclude images from centres 

running PET systems not equipped with PSF reconstruction or other advanced algorithms. 

Also, the sensitivity of TFs to reconstruction parameters needs to be interpreted in the context 

of an important reconstruction disparity within PET centres, even in centres running the same 

PET system, as recently reported by the Clinical Trials Network of the SNMMI [38]. Taken 

together, these findings suggest that PSF reconstruction with a Gaussian filtering chosen to 

meet harmonizing standards could be used within the harmonization strategy context for 

studies aiming to quantify intra-tumour heterogeneity to stratify, rank or classify patients with 

respect to a given clinical endpoint. In addition, we recommend that whenever available, 

unfiltered PSF images should also be analysed, especially for large, single-centre series since 

quantitative metrics obtained from these could potentially offer higher discriminative power. 

This of course requires additional studies in larger cohorts to be demonstrated.  

One limitation of our study is the inclusion of a single system where the underlying 

reconstruction was identical apart from the use of the PSF modeling. Differences in image 

reconstruction methods between several vendors may give rise to additional variability that 

needs to be evaluated before texture analysis could be reliably used in the context of 
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multicentric studies, despite the demonstrated repeatability and robustness of several features 

versus changes in image properties [17, 18, 39]. 

Finally, we sought to identify differences in heterogeneity features within NSCLC 

histological subtypes. Although we showed that the ADC presented much lower volumes as 

well as lower SUVmax values than the SqCC and LCC subtypes, none of the heterogeneity 

metrics showed any discriminative power in differentiating these subtypes, in either 

reconstruction method used, which is in line with recent results obtained in breast cancer [40]. 

On the other hand, it contradicts another recent study that suggested textural features could 

differentiate between ADC and SqCC in a cohort of 30 NSCLC Asian patients [41]. These 

results were obtained on 2D-slice –not 3D volume analysis only, and required the 

combination of numerous parameters through machine learning (automated clustering) in 

order to differentiate the two subtypes. The derived model was not validated in an external 

cohort. This possibly led to overfitting and the results might not be generalizable to other 

series of patients, especially European ones. Our results suggest that heterogeneity features 

could be used in a multicentre setting regardless of the histology in series of European 

patients. Indeed, results in term of heterogeneity in Asian patients may not be applicable to 

European patients, as not only the ratio between ADC and SqCC is inverted in these 

populations, but also the rate of EGFR mutation is higher in Asian patients (20-40%) 

compared to European patients (around 10%) [42]. One could therefore postulate different 

TFs in ADC depending on the mutation status. Studies with a larger ADC population, 

focusing on the differences in heterogeneity features between mutated and non-mutated ADC 

are therefore required to complement recent data on standard SUV metrics [43, 44]. 
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Conclusion: 

 

The use of PSF reconstruction with Gaussian filtering chosen to meet harmonizing standards 

produced comparable SUV values, as well as similar levels of heterogeneity information, 

compared to OSEM images, which validates its use within the harmonization strategy context 

for studies aiming to quantify intra-tumour heterogeneity to stratify, rank or classify patients. 

However, unfiltered PSF-reconstructed images showed significantly higher heterogeneity for 

CHAUC, correlation and HILAE, as well as a wider range of heterogeneity values than OSEM 

ones, for most of the metrics considered, especially when analysing larger tumours. This 

suggests that, whenever available, unfiltered PSF images should also be analysed because 

resulting quantitative heterogeneity features could be more discriminative in stratifying or 

ranking patients, which remains to be demonstrated. Finally, the main NSCLC histological 

subtypes in this cohort did not show any differences in terms of intra-tumour heterogeneity, 

despite some notable differences in metabolically active tumour volume and levels of uptake 

(SUVmax). This may facilitate the potential multicentre use of heterogeneity features 

regardless of the histology in series of European patients. 
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Table 1: Patient demographics 
 

Characteristic 
 

Sex ratio (M/F) 3.13 

Age (years)  

     Range 37 – 90 

     Mean (SD) 64 (10.7) 

Body habitus, n (%)  

     BMI≤25 38 (63.3) 

     BMI>25 22 (36.7) 

Histological diagnosis, n (%)  

     Small cell lung cancer 4 (6.7) 

     Non-small cell lung cancer 56 (93.3) 

          Squamous cell carcinoma  28 (50.0) 

          Adenocarcinoma  21 (37.5) 

          Large cell lung cancer  7 (12.5) 

Per patient lesions, mean (SD) 1.18 (0.46) 
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Figure legends 

 

Fig.  1: Impact of the EARL harmonization strategy on textural features using the 

FLAB algorithm to delineate lesions 

Textural features for the three reconstructions used. CHAUC: area under the curve of the 

cumulative histogram; high intensity larger area emphasis (HILAE); ZP: zone percentage. 

Data is shown as Tukey boxplots (lines displaying median, 25th and 75th percentiles; cross 

represents the mean value).*, **, and *** indicate two-tailed P < .05, P < .01, and P < .001, 

respectively. ns : non significant 

 

Fig.  2: Impact of tumour volume on textural features 

Textural features used for the three reconstructions, depending on tumour volume. CHAUC: 

area under the curve of the cumulative histogram; high intensity larger area emphasis 

(HILAE); ZP: zone percentage. Data is shown as Tukey boxplots (lines displaying median, 

25th and 75th percentiles; cross represents the mean value).*, **, and *** indicate two-tailed 

P < .05, P < .01, and P < .001, respectively. ns: non significant 

 

Fig.  3: Impact of the EARL harmonization strategy on textural features using a 50% of 

SUVmax threshold to delineate lesions 

Textural features for the three reconstructions used. CHAUC: area under the curve of the 

cumulative histogram; high intensity larger area emphasis (HILAE); ZP: zone percentage. 

Data is shown as Tukey boxplots (lines displaying median, 25th and 75th percentiles; cross 

represents the mean value).*, **, and *** indicate two-tailed P < .05, P < .01, and P < .001, 

respectively. 
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Fig.  4: Representative examples of lung tumours. 

OSEM, PSF and PSF7 images and textural features are displayed for a 67-year old male 

patient with a squamous cell carcinoma (panels a and c) and for a 44-year old female patient 

with an adenocarcinoma (panels b and d). Images have been scaled on the same maximum 

value. Note the improvement in tumour apparent activity and contrast in PSF images 

compared to OSEM images, and the similarity between OSEM and PSF7 images. This can 

also be observed quantitatively in the extracted SUV and TF metrics. Green contours (panels 

a and b) denote the tumour delineation using the automatic Fuzzy Locally Adaptive Bayesian 

(FLAB) algorithm on the PSF image and reported on the two other datasets. Red contours 

(panels c and d) denote the delineation using the 50% of SUVmax threshold applied 

independently to each image. CHAUC: area under the curve of the cumulative histogram; 

high intensity larger area emphasis (HILAE); ZP: zone percentage. 

 

Fig.  5: Standard quantification metrics 

FLAB-derived metabolically active tumour volume (MATV) and standardized uptake values 

(SUVs) according to the histological subtypes (adenocarcinoma:ADC; squamous cell 

carcinoma:SqCC; large cell carcinoma:LCC) in non-small cell lung cancer patients for the 

three reconstructions used. Data is shown as Tukey boxplots (lines displaying median, 25th 

and 75th percentiles; cross represents the mean value). * and ** indicate two-tailed P < .05, 

and P < .01, respectively. ns: non significant. 

 

Fig.  6: Impact of the histological subtype on textural features in non-small cell lung 

cancer patients 
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FLAB-derived textural features according to the histological subtypes (adenocarcinoma: 

ADC; squamous cell carcinoma: SqCC; large cell carcinoma: LCC) in non-small cell lung 

cancer patients for the three reconstructions used. CHAUC: area under the curve of the 

cumulative histogram; high intensity larger area emphasis (HILAE); ZP: zone percentage. 

Data is shown as Tukey boxplots (lines displaying median, 25th and 75th percentiles; cross 

represents the mean value). 

 

Supplemental Fig. 1 

Illustration of the in-house software used to define a 3D box around the tumor, aiming at 

enclosing the tumor as well as excluding any nearby physiological or undesired uptake. For 

details see the materials and methods section. 

 

Supplemental Fig. 2 

Relationship between quantitative values extracted from PSF or PSF7 and OSEM images, 

assessed using Bland-Altman plots for SUVmax (a) and SUVmean (b) in tumour lesions. 

 

Supplemental Fig. 3 

Plots of TF features (CHAUC: area under the curve of the cumulative histogram; high 

intensity larger area emphasis (HILAE); ZP: zone percentage) against tumours MATV for 

OSEM versus PSF reconstructions. 

 

Supplemental Fig. 4 

Plots of TF features (CHAUC: area under the curve of the cumulative histogram; high 

intensity larger area emphasis (HILAE); ZP: zone percentage) against tumours MATV for 

OSEM versus PSF7 reconstructions. 
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Supplemental Fig. 5: Impact of the EARL harmonization strategy on textural features using 

the FLAB algorithm independently on the three sets of reconstructions to delineate lesions 

Textural features for the three reconstructions used. CHAUC: area under the curve of the 

cumulative histogram; high intensity larger area emphasis (HILAE); ZP: zone percentage. 

Data is shown as Tukey boxplots (lines displaying median, 25th and 75th percentiles; cross 

represents the mean value).*, **, and *** indicate two-tailed P < .05, P < .01, and P < .001, 

respectively. ns : non significant. Data represent the 8 outliers (above the 90th percentiles) 

observed with OSEM-PSF MATV and/or PSF7-PSF MATV when using a 50% of SUVmax 

threshold. 

 

Supplemental Fig. 6 

PET transverse slice of a PSF-reconstructed image showing one of the largest differences in 

MATV (-95%) between FLAB and 50% SUVmax thresholding. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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