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ABSTRACT 
Unplanned disruptions of rail transit networks have been extensively studied. Planned disruptions for 
works are essentially different mainly due to their longer duration that allows passengers to build 
alternative route choice strategies. The literature on this topic remains scarce. We propose a novel 
methodology that enables operators to evaluate different disruption management schemes and to 
obtain explicit estimations of travel times, passenger comfort flows, and levels of service. Statistical 
tools are used for the evaluation of the different strategies. We illustrate the methodology through a 
large-scale application to a real line disruption in Paris, France. The disruption took place in July 2015 
and was due to network maintenance works. It affected the major suburban railway line RER-A which 
counts over 1,000,000 trips on a typical working day. Results indicate that the disruption would have 
significantly increased the generalized cost (GC) of passengers if no action was taken. The operator’s 
disruption management scheme included bus bridging and frequency increase on alternative routes. 
The evaluation of this plan shows that it restored the average GC over the whole network. Passengers 
initially using the disrupted line experienced increased GC by using alternative longer routes. 
Passengers initially using those alternative routes experienced lower GC thanks to the frequency 
increase. Finally, capacity problems are observed on the buses assuring the bridge of the disrupted 
link.  
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INTRODUCTION 
On one hand, urban population is rapidly growing and travel demand is increasing in city centers 
worldwide. On the other hand, urban space is scarce and new road infrastructure becomes costly. As a 
result, urban agglomerations suffer from heavy congestion, long delays, and serious travel time 
variability. Commuters turn to public transit systems that also begin to suffer from capacity 
phenomena. Heavy reliance on mass transit systems and operations at capacity levels make transit 
systems very vulnerable to disturbances. Simple service disruptions lead to undesirable outcomes such 
as delay propagation and passenger inconvenience. Reliability and robustness of transit systems are 
major issues that receive the attention of both researchers and practitioners.  

The link between transportation and city planning is known and well documented. Regarding 
public transport, planning includes a range of problems varying from strategic to operational level: 
network design, line planning, and timetabling (1). Traffic assignment models have long be used for 
planning purposes. These models provide an estimation of individual route choices based on a set of 
network and demand parameters such as origin-destination (OD) pairs, mode availability and capacity. 
We should note, though, that when used for planning purposes, assignment models are mainly static 
and consider only normal operating conditions. Regular maintenance, works and other disruptions are 
not integrated. In many cases, infrastructure capacity is not taken into consideration either.  

However, disruptions occur regularly. Unplanned (or unforeseen) disruptions may be caused 
by natural disasters, terrorist attacks, accidents, medical emergencies, adverse weather, infrastructure 
or rolling stock failures (2). Planned (or foreseen) disruptions occur mainly due to strikes, special 
mega-events, maintenance and upgrade works. Disruptions differ significantly in respect to their 
magnitude and scale, their duration and impact. The impact concerns both demand and supply. In fact, 
behavioral changes (i.e. daily activities, departure time, modal and route choice) are observed during 
disruptions that may even alter mode choices in the long-term (2). On the supply side, operators have 
to assure the static and dynamic resilience of the network by developing and implementing disruption 
management schemes and programs (DRPs). Dynamic resilience refers to the capacity and time to 
recover after a shock and is mainly relevant to unplanned disruptions. Static resilience describes the 
ability of the system to operate under degraded conditions and is most relevant to planned events.   

A key element to sustainable operations is robustness that assures low sensitivity to 
disturbances. Indexes for the network’s robustness evaluation for the case of random failures (‘mean 
indexes’) and intentional attacks (‘worst-case indexes’) can be found in the literature (3). Resilience 
should also be included in economic models. In (4), the authors add at the cost function a term 
representing operator and passenger costs due to unplanned delays. The authors value the GC of non-
scheduled delay more highly than either in-vehicle travel time or scheduled waiting time. Following 
the earlier indication in (5), they take a coefficient of 2.4 times the in-vehicle travel time.  

Nevertheless, most agencies apply DRPs that do not account for user costs and do not assure 
system optimization. Unplanned short-term events are handled real-time with operators trying to 
minimize the disruption impact based on their experience and ad-hoc decision support tools. On the 
contrary, DRPs can be prepared and tested before a planned disruption occurs. DRPs are also relevant 
in the case of unplanned disruptions of long duration. As an example, the I-35W bridge over the 
Mississippi River collapsed in 2007 and interrupted the usual route of 140,000 daily vehicles for 66 
days. The daily cost to users was estimated between $71,000 and $220,000 (2). Despite the numerous 
studies on unplanned disruption management, the literature on planned disruptions of mass transit 
systems remains scarce. Transit assignment tools have rarely been used for this purpose. 

This paper proposes a novel methodology for the evaluation of DRPs using a traffic 
assignment model that accounts for capacity constraints and passenger comfort. This methodology can 
be implemented at all stages of the planning procedure to compare the robustness of different 
alternatives and the system’s sensitivity to disturbances. We, first, adapt the OD matrix to the 
disruption characteristics. Then, we perform assignment under capacity constraints and estimate not 
only delay (due to frequency reduction and/or link removals)but also passenger comfort states (in-
vehicle congestion, on-platform waiting times). Finally, we statistically compare results and 
quantitatively evaluate different DRPs. The proposed methodology is tested on a real transit network, 
the Ile-de-France network, which accommodates 8.3 million trips on a typical day(6). A major 
disruption on the suburban railway was planned for summer 2015 due to maintenance works (7). We 
apply the methodology to evaluate the DRP proposed by the operator.  
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The remainder of this paper is organized as follows. Section 2 reviews the literature, section 3 
explains the proposed methodology, section 4 presents the application to the Ile-de-France network, 
and section 5 discusses the results and draws conclusions.  

 

BACKGROUND 
Many researchers work on road traffic operations during short and long disruptions (8,9). When a road 
link fails, it is usually quite simple to find alternative paths and reroute traffic. Severe delays may 
occur but the connection is assured. The objective is, then, to optimize the assignment procedure by 
minimizing delays. In the case of planned works, the problem becomes even simpler as alternative 
schemes can be tested and evaluated off-line through simulations as in (10).  

In the case of rail transit networks, additional difficulties exist due to limited interconnections 
and overtaking possibilities. Unplanned disturbances may vary from minor incidents and slow-moving 
delays to major incidents that close entire track sections (11). In real-time contexts, operators face two 
main challenges: (i) the incident duration is not known in advance and(ii) the status of the network 
changes quickly (12). In (13), the authors propose a methodology to forecast the duration of 
disturbances and, thus, reduce their impact on the scheduled timetable. This framework can be used by 
operators as a decision aid tool. In (14), the authors propose an advanced decision support system to 
help dispatchers make real-time changes and to limit delay propagation. The network is divided into 
dispatching areas of limited size and various disruption scenarios are tested off-line. Performance is 
evaluated in terms of travel time, waiting times, train delay. 

The optimal strategy also depends on the nature of the unplanned disruption. If a train is 
disabled, operators re-route commuters to the next train or to another mode and balance out the 
frequency of the remaining train service (15). In the case of complete line blockages, the re-routing 
also concerns trains while the frequencies of substitute lines increase. Buses or even taxis are used to 
assure the disrupted links. In (16), an overview of ad-hoc bus bridging services is provided and an 
efficient decision support system is proposed. If reserve buses are strategically located over the 
network, the response to disturbances can be further ameliorated (i.e. shortened). The optimal location 
can be obtained as a function of disruption type likelihood, passenger volumes, travel time to bus 
bridging termini, and so on (17). Another proactive recovery strategy is to optimally locate track 
crossovers as in (18) or to predefine measures in case of certain disruptions that operators can apply 
directly and achieve time savings (19). These techniques provide solutions for short-term disruptions 
or low-demand networks or require space that is not always available in dense urban areas. 

The unplanned disruption management problem can be divided in three sub-problems:  
(i) Timetable adjustment. It is commonly achieved by control strategies such as holding and 

short-turning (20, 21, 22). The objective is either schedule-adherence for long headways or headway-
adherence for high frequencies. Many researchers have proposed optimization-based algorithms for re-
scheduling including various elements in the objective function. In (20), the algorithm performs a 
depth-first search using an evaluation function to prioritize when conflicts arise and then branches 
according to predefined criteria achieving significant time savings. In (21), the objective function 
maximizes the number of recovered trips and guarantees a conflict-free timetable during the 
disruption. Delay is not constrained though. In (22), train delay is not constrained either but the 
objective function minimizes inconvenience to passengers that is defined as the sum of traveling time 
on-board, on-platform waiting time and number of transfers. This formulation may result to prolonged 
dwell times in order for trains to wait for passenger arrivals. Train capacity constraints are considered 
for both interstation segments and station tracks.  

(ii) Evacuation of the ‘blocked’ passengers. Interactions between supply and demand are 
complex and the optimal strategy may be affected by demand conditions (23). An international survey 
across 71 transit agencies suggests that only 20% of the agencies have parallel transit systems that can 
evacuate passengers(24). Bus bridging seems to be the most common response but rarely do agencies 
keep a strategic vehicle reserve for this purpose. Thus, some researchers have expanded rescheduling 
algorithms to include passenger evacuation. In (25), the authors propose a rescheduling algorithm that 
has two interesting features: it accounts for the passengers’ waiting while queuing on platforms and 
the time needed to implement a plan is quantified in the delay estimation. However, the user 
perspective and the in-vehicle comfort state are not taken into account. In (12), the passenger decision 
making is integrated and capacity is considered. Passengers make decisions about itineraries according 
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to a logit model and then try to board a train serving that itinerary. This relaxation allows passengers 
to change their initial decisions and adapt to the changing environment. However, the information 
leading to mind-changes remains limited. On the contrary, traveler perception is shaped by their 
individual prior-knowledge, accumulated experience as well as information availability (26).  

(iii) Rolling stock and crew rescheduling. Many optimization algorithms under availability 
constraints can be found in the literature (see for example 12, 14) but are beyond the scope of this 
paper.   

Planned disruptions differ from unplanned disruptions in many ways. A first ‘chaotic’ phase is 
observed immediately after an unplanned disruption. During this phase, operators and passengers have 
limited or no visibility of the cause, magnitude, and duration of the failure (19). This phase does not 
exist in the case of planned works especially when communication campaigns are in place. When 
unexpected incidents occur, an important segment of the demand is obliged to make en route rerouting 
and real-time decisions with limited information at-hand; whereas, during planned disturbances, the 
route is decided in advance. Information availability changes for the operators as well. Furthermore, 
the time horizon is entirely different and, so, system equilibrium may be possible for planned works 
but not for short disruptions. Also, planned disturbances allow operators to predict and assure the 
availability of necessary resources; both human and technical. Concluding, best strategies and DRPs 
differ significantly from one case to the other.  

Despite the significant research on unplanned disruptions, very few researchers have worked 
on the optimization and evaluation of DRPs for short planned disruptions and even fewer on longer 
planned disruptions. In (23), the authors analyze effects on travel demand of different levels of 
degraded rail services during short disruptions. Their contribution is important as the authors consider 
both supply and demand. In particular, they introduce capacity constraints of rail vehicles and a FIFO 
approach for simulating the sequence of users boarding trains. They argue that mingling is not relevant 
in the case of major incidents on the network due to high crowding. In (27), the authors propose a 
holding control model based on rolling-horizon optimization capturing dynamics of running times and 
demand that can be applied to high-frequency transit disruptions. They consider both foreseen and 
unforeseen events under two control scenarios: naïve and informed control. They test these scenarios 
in a toy instance of a bus route having 20 stops per direction and find important performance 
improvements achieved by the informed control model. This model uses preemptive holding and other 
assumptions that can handle short disruptions but are unsuitable in the case of long disruptions of 
several weeks. In (28) we find a study for longer disruptions. The authors consider planned works in a 
mixed integer programming model that optimizes a production plan with regard to both trains and 
preventive maintenance. Thus, they estimate best traffic flow schemes given a fixed set of planned 
maintenance activities. However, passengers’ point of view is not considered. 

In conclusion, there is a complete absence of studies dedicated to disruption response planning 
and to the application of optimization techniques despite their potential utility to operators 
(1).Furthermore, studies on unplanned disruptions are macroscopic and do not always account for the 
infrastructure capacity and the resulting passenger comfort state. If capacity is not considered, the 
simulated failure effects tend to be calmed more rapidly than in real cases (23). Our contribution with 
respect to the existing literature may be summarized as follows:  

- We study planned rail transit disruptions; 
- We perform re-assignment considering both the supply and demand structure; 
- We account for network capacity and passenger comfort; 
- We propose a statistical evaluation of different strategies; 
- We illustrate our findings for the case of a real disruption of a large-scale network. 
 

METHODOLOGY 
The proposed methodology consists of the following steps: 

1) Supply ‘deformation’: adjusting the network to the planned disruption by removing links,  
     adapting frequencies, adding new links for bus bridging, and so on; 
2) Demand ‘deformation’: estimation of public transport modal share during disruption period; 
3) Scenario building: alternative DRPs to be evaluated;  
4) Assignment for each scenario using the model CapTA; 
5) Statistical comparison of results. 
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In (29) the authors present the case of a disruption at the Washington metro and study its 
impact upon demand. They conclude that a significant shift occurs towards other modes. Re-
assignment is thus necessary in order to estimate delays more accurately. We give below an overview 
of CapTA (Capacitated Transit Assignment), the transit assignment model used in this study for the re-
assignment. The reader can refer to (30) for a detailed description of CapTA, together with an 
application to the greater Paris area on a typical working day of 2010, including a special focus on the 
RER-A line: at the morning peak, the westbound passenger flow in central Paris amounts to more than 
50,000 passengers per hour i.e. the line is equivalent to 25 motorway lanes at capacity load. It is thus 
even more important to model the full set of alternative routes and their own sensitivity to congestion. 

The CapTA model has a three-layered architecture: 
(i) The upper layer represents passenger route choice on a network of pedestrian links and 

transit legs – a leg being a pair of stations for access and egress along a given transit line. Every 
passenger is assigned to its least-cost hyperpath, in the framework of static, frequency-based, optimal 
strategy assignment.  

(ii) The lower layer deals with vehicle runs along the service routes. Each such route is 
addressed on an individual basis, with an average vehicle that has given seat capacity, total in-vehicle 
capacity, and exchange capacity. The flows of boarding and alighting passengers are assigned to the 
vehicle along the stations that it serves, yielding in-vehicle passenger loads and comfort (with sitting 
priority according to chronology of passenger access to the vehicle). Moreover, the station dwell time 
depends on alighting and boarding flows in relation to exchange capacity – hence the run times by trip 
leg. 

(iii) The middle layer addresses specific line issues. First comes the coordination of the 
service routes that make up the line, especially so for the RER-A line that has two eastern branches 
and three western branches grafted in a central trunk: this yields combined frequency and residual 
capacity by line leg. Then, the residual capacity at a given station is faced to the flow of willing-to-
board people, assumedly mingled, in a special bottleneck model that yields average passenger wait 
time and vehicle boarding probability by leg, thereby determining the passenger load of each vehicle 
serving the station. Next, still by station, the occupancy of the vehicle track due to the dwell times 
associated to the routes that serve the station, together with the clearance times of the routes that do 
not stop there and the safety margins between the vehicles, is evaluated for the assignment period on 
the basis of the target frequency assigned to the routes. Whenever the demanded occupancy exceeds 
the period duration, a reduction ratio is applied to the target frequency, yielding a reduced frequency 
which is propagated downstream. Lastly, frequency reduction entails a related delay to subsequent 
trains: this is evaluated on the basis of a bottleneck formula and propagated upstream in a specific 
way. 

To conclude, the CapTA model captures a wide range of traffic phenomena. These are 
integrated in a consistent way, owing to the leg representation. The state vector involves (i) passenger 
flows by link and destination, (ii) service frequency by route and node along it and (iii) vectors of 
strategy assignment by destination and current node. An equilibrium state must exist in theory. In 
practice, about one hundred iterations of a Method of Successive Averages enable one to get a traffic 
state with satisfactory convergence to equilibrium.  

In the following section, we apply step-by-step the proposed methodology to a real disruption 
that took place in summer 2015 (7). 

 

APPLICATION TO THE RER-A PLANNED WORKS 
 

Supply ‘deformation’ 
Greater Paris counts 41 million trips on a typical working day and over 12 million inhabitants that 
spend on average 1.3 hours for transportation every day. The public transport network is extensive and 
absorbs 20% of the total trips made. It consists of 14 metro lines, 4 suburban railway lines, 1,500 bus 
lines, 8 tramway lines, and 8 regional train lines. The most congested line is the suburban railway line 
RER-A that counts over 1,000,000 passengers on a typical working day. It crosses the region in an 
east-west direction and serves the major business center of La Défense. 

RER-A infrastructure is ageing and serious maintenance works must be undertaken. A 
program of works was decided as shown in Figure 1. More information can be retrieved on the 
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operator’s website (7).In 2015, the RER-A closed between July 25
th

 and August 23
rd

. At the same 
time, another less important suburban line, the RER-C, partially closed between the stations Javel and 
Gare d’Austerlitz. The operator used replacement buses for the two closures and increased frequencies 
on substitute modes (i.e. mainly metro line 1) at winter frequency levels and beyond. This was not the 
case for other lines that operated at reduced summer frequencies as usual. The annual capacity 
reduction when passing from winter to summer schedules is generally estimated at 30%. All of these 
supply changes have been integrated in the network building of CapTA.   

 
 

FIGURE 1Planned works on the RER-A. 
 

Demand ‘deformation’ 
The timing of works during French summer school vacation imposes the adjustment of the OD 
‘winter’ matrix downwards. We estimated summer demand using the recent household travel survey 
(EGT 2010) that is publicly available and a series of hypotheses: ‘studies’ were removed from travel 
motives, ‘work’ was reduced by 35%, and tourist levels were upgraded. In total, we found a 40% 
reduction when passing from winter to summer demand. Figure 2 illustrates the origins of all trips to 
‘La Défense’ station after the adjustment of demand. Figure 2 reveals that most incoming flows start 
from the inner city center and will be, thus, affected by the disruption.  
 

 
 

FIGURE 2 Passenger flows to ‘La Défense’ per origin during disruption 
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Scenario Building 
The following scenarios were simulated once without capacity constraints (sub-scenarios-a) and once 
with capacity constraints (sub-scenarios-b): 

-S0: Winter demand, winter supply, without disruption; 
-S1:  Summer demand, summer supply, without disruption; 
-S2: Summer demand, summer supply, with 2015 disruption; 
-S3: Summer demand, with 2015 disruption with winter supply and bus bridging. 
S0 represents the business-as-usual operating plan for wintertime and S1 represents the 

business-as-usual operating plan for summertime when both demand and supply are decreased. The 
supply is decreased mainly by frequency reduction. S2 refers to the 2015 summer disruption if no 
action is taken. S3 represents the official operational plan that has been prepared by the operator (i.e. 
the RATP). This plan includes the maintenance of the winter frequency for Metro Line 1 and the 
operation of a bus bridging line linking Auber to La Défense. 

 

Assignment and Statistical Analysis 
Simulation results provide passenger volume (v)and volume-to-capacity (v/c) ratio per link as well as 
the GG per OD-pair. In CapTA, the GC is calculated as the sum of travel time (including transfer), 
waiting time, and comfort state. Waiting time estimates are a function of frequencies and vehicle 
capacities. Two in-vehicle comfort states are considered: seated vs. standing. In total, 3,048,317 OD-
pairs were analyzed with 62,728 network arcs. Figure3 shows the frequency distributions of the GC 
and the flows for S0a. Table1 presents some descriptive statistics for the datasets obtained. We first 
observe that the sample is not normally distributed but very skewed. Let us now compare between the 
a- and b-variants of each scenario. Table 1 reveals that if link capacity is not considered (a-variants) 
the v/c ratio largely exceeds the 100% which is unrealistic. The latter is mainly the case when the 
disruption takes place (under S2 and S3) where we obtain a v/c ratio of 721%. Consequently, ignoring 
capacity when performing transit assignment leads to erroneous results, especially when we have line 
closures. This is also illustrated in Figure4 where we plot the GC of the a-variants over the GC of the 
b-variants. As a result, in the remainder of this paper we only consider the b-variants of the four 
scenarios. 
 

 
FIGURE 3 Frequency distribution for (a) passenger flows per arc and (b) GC per OD. 
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TABLE 1Descriptive Statistics for Simulation Results per Scenario. 
Scenario V/C per link GC per OD 

 average SD average SD 
S0a 153,7% 8,4% 2,30 1,15 
S0b 108,1% 8,0% 2,24 1,43 
S1a 645,2% 33,7% 2,11 1,04 
S1b 132,5% 8,1% 2,21 1,43 
S2a 721,2% 39,3% 2,08 1,02 
S2b 134,9% 9,1% 2,48 1,75 
S3a 115,0% 6,7% 2,08 1,02 
S3b 94,0% 6,3% 2,17 1,41 

 

 

 

 

 
FIGURE 4 Comparison of the GC of the a- over the b-variants for S0, S1, S2, S3. 
 
Focusing to the analysis of the capacitated assignments, we obtain Figure5 that gives the 

frequency distributions of the GC. Under normal operating conditions (S0,S1), the GC is higher during 
wintertime versus summertime but the two distributions have a similar form. This can be intuitively 
explained by the lower level of service and the congestion phenomena due to increased demand. If the 
line closure happens and no action is taken (S2), the GC takes its maximal value. It is not only higher 
than the summer GC (S1) but even higher than the winter GC (S0). It also shows a significantly 
greater variance as many OD pairs exist that have a GC of around 10. We can reasonably assume that 
these OD-pairs correspond to the affected routes. This variance disappears under S3 when the DRP is 
implemented and the average GC becomes even lower than the one of normal operating conditions. 
The mean percentage GC error for S2b versus S3b is of 10.23%, for S2b versus S1b of 9.52%, and of 
S1b versus S3b of only 0.49%. The difference between S2 and S3 can be easily visualized in Figure6 
that was produced with the TransCAD software. In Table 2, pairs of scenarios are compared in term of 
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GC using two statistical indicators: MPE (mean relative prediction error) and RMSE (root mean 
squared relative prediction error). 

 

 
FIGURE 5Frequency distributions of GC for S0b, S1b, S2b, S3b. 

 

 

      
 

FIGURE 6Passenger (v/c) for S2b and S3b. 

 
Focus on selected itineraries 
In this section, we focus on the OD-pairs that are expected to be mostly affected by the disruption and 
we explore the efficiency of the planned management scheme (S3). Table 2 gives the GC for selected 
origins and destinations: La Défense (Paris major business district), Nanterre Université (important 
attraction pole), Les Halles (the major transit hub of Paris), and the 8

th
arrondissement (where the 

disruption is located). Comparing S2 to S3, we observe that, indeed, the planned scheme seems to 
alleviate the problem for all itineraries. Nevertheless, it becomes obvious that the passengers using the 
links that are directly affected by the disruption will experience increased GC compared to the normal 
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operating conditions under summer (S1) or even wintertime (S0). They will opt for alternative longer 
routes as a second best choice given that public transport demand has a low elasticity and that travel 
time differences (between RER and metro) are not very high. However, the capacity of the links 
serving alternate routes will not be exceeded as previously. The fact that the average GC over the 
network is equal to the GC under normal operating conditions (see previous section) implies that the 
GC of some other passengers will decrease. These passengers are the ones who were initially using the 
alternative routes whose frequency will increase according to the management disruption scheme. 
Their travel time decreases (increased frequency) without significant loss of level of service as 
capacity is not exceeded. 
 

TABLE 2 Generalized cost (GC) per scenario for selected itineraries. 

 Destination: 
La Défense 

Origin:  
La Défense 

Destination:  
8

th
 

arrondissement 

Destination: 
Nanterre Univ 

Destination: 
Les Halles 

Origin: 
Les 
Halles 

S0b 1.24 0.80 1.17 1.67 1.10 0.69 
S1b 1.20 0.78 1.14 1.63 1.08 0.67 
S2b 1.44 0.90 1.24 1.85 1.17 0.76 
S3b 1.29 0.83 1.13 1.69 1.07 0.71 
 

CONCLUSIONS  
Planned disruptions of railway transit systems occur frequently and are costly to both users and 
operators. Despite the numerous studies on unplanned railway disruptions, few are the studies 
investigating planned railway disruptions. In this paper, we propose a novel methodology that enables 
operators to evaluate different disruption management schemes and to obtain explicit estimations of 
travel times, passenger comfort flows, and levels of service. We apply this methodology to a real 
large-scale disruption. Results indicate that the operator’s plan will indeed restore the network’s 
performance on average. However, when looking closer, we find that some passengers will experience 
higher GC and some others lower. 
 The added value of this paper is manifold. We provide quantitative evidence of the necessity 
of performing re-assignment when elaborating a DRP. Otherwise, important network effects may be 
neglected. Also, we prove that, if capacity constraints are ignored, results are entirely unrealistic. 
Furthermore, we show that all macroscopic analyses at the network should be combined with 
microscopic analyses at the level of the affected routes. Moreover, we show the inefficiency of bus 
bridging strategies in the case of large-scale and long disruptions when passengers can plan in advance 
their routes. Besides, bus capacities remain marginal compared to the metro and cannot accommodate 
demand. Bridging buses are interesting options for passengers that are not familiar to the network 
(such as tourists) or in cases where the landscape does not allow for any other alternative (such as for a 
major water crossing).  
 Finally, our research suffers from some shortcomings. Modal choice was not considered even 
if shifts towards private cars could occur. The role of information campaigns was not discussed and its 
impact upon the assignment was not investigated. At this point of time, we ignore the real-time 
guidance that the operator will choose to provide (itinerary calculators and so on). On the modeling 
side, we cannot be sure that the assignment is exact as the system’s equilibrium will not necessarily be 
attained during the first days of the disruption. We intend to explore these issues and, also, compare 
our simulation results to what actually happened during the disruption using smart card validation data 
and other measurements.  
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