
HAL Id: hal-01386725
https://hal.science/hal-01386725v1

Submitted on 24 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trace analysis from ERTMS engineering
Antoine Ferlin, Simon Collart-Dutilleul, Philippe Bon, Virginie Wiels

To cite this version:
Antoine Ferlin, Simon Collart-Dutilleul, Philippe Bon, Virginie Wiels. Trace analysis from ERTMS
engineering. COMPRAIL, Jul 2016, MADRID, Spain. �hal-01386725�

https://hal.science/hal-01386725v1
https://hal.archives-ouvertes.fr

COMMUNICATION A CONGRES

Trace analysis from ERTMS
engineering

A. Ferlin, S. Collart-Dutilleul, P. Bon, V. Wiels (ONERA)

COMPRAIL

Madrid, Espagne

19-21 juillet 2016

 TP 2016-525

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Trace analysis from ERTMS engineering

Antoine Ferlin, Simon Collart-Dutilleul, Philippe Bon, Virginie
Wiels
Univ Nord de France, IFSTTAR/COSYS-ESTAS

20 rue Élisée Reclus, BP 70317
59666 Villeneuve d’Ascq, France
Onéra,
BP74025
2 avenue Edouard Belin
31055 TOULOUSE CEDEX 4, France

Abstract

Interoperability of railway systems is a major concern in the European
Union. Therefore, ERTMS (European Railway Train Management System)
has been defined. Nevertheless, ERTMS has to be paired with national track
rules. The Perfect project studies the implementation of ERTMS on the
French territory. We use an ERTMS 3D Simulator framework which is able
to simulate trains, track and communication between the trains and the
RBC. The simulator records all events that occur in a sequence of states
called trace. Each event is timestamped, so the sequence of events can be
temporally analysed. We propose a methodology to analyse the results of a
scenario performed on this platform, using temporal properties. One of the
strengths of this method is the computation of statistical information on
the trace during its analysis, according to a dedicated pattern of property.
An automatic analysis of a trace can be used in several domains. In safety,
verification of critical temporal property makes sense in ensuring that a
program is compliant with its specification. An analysis of an accident or

near accident using temporal properties can provide a safety problem detec-
tion and a first level diagnosis. It can also be a interesting tool to evaluate
the efficiency of an operator according to several criteria such as tiredness,
expertise, repetitiveness of an event.
Keywords: Dynamic Analysis, Runtime Verification, trace, Linear Tem-

poral Logic, statistical information, pattern.

1 Introduction

When a border is crossed by a train, the modification of the embedded
signalling system generates an additional cost which is not desirable. Inter-
operability is vital for the competitiveness of the European railway field,
and aims to provide a safe and coutinious railway system. Any rupture of
train charge is allowed to ensure the performence of the railway lines. This
ability is based on the fact that the train system is compliant with the es-
sential requirements. This paper provides a feedback about the Perfect 1

project. It aims to contribute to the validation and the implementation of
the interoperable railway signalling systems, and in particular ERTMS, the
European Rail Trafic Management System.

The signalling system is managed according to national rules which are
proper to each European country. Therefore, the evaluation of the safety
requirements is difficult. In the Perfect project, we provide tools and
methodologies based on Runtime Verification 2 to evaluate the global con-
sistency of the specification and the operating rules from the safety point
of view. Even if this problem is critical for industries, the academic world
does not concentrate too much attention on it.

The project is composed of three steps. In the first one, a formal model of
a part of the railway rules has been proposed. This model allows the study
of the merger of national rules and European specification, in particular
in a scenario of a movement authority (MA). The second one provides a
methodology using existing formal tools to ensure the complience of the
scenario with the specification.

This paper focuses on the last part of the project. It consists in end-
ding the study throughout the use of the ERTMS simulator 3. After this
intruction, some related works are presented in order to position our works
according to the specification language and the proposed analysis method.
Then, the ERTMS simulator used by the Perfect project is described. The

1http://perfect.ifsttar.fr/Site
2http://www.runtime-verification.org/
3http://www.ersa-france.com

http://perfect.ifsttar.fr/Site
http://www.runtime-verification.org/
http://www.ersa-france.com

following section focuses on the proposed methodology. Finally, we conclude
and propose some future works.

2 Related works

Runtime Verification works are classifiable in two main categories : On-line
and a posteriori methods.

On-line verification consists either in adding assertions to the programme
to express the properties to be monitored during the execution, or in execut-
ing, in parallel to the programme, an automaton representing the property
and taking as inputs data from the programme execution. A lot of work
exists for on-line verification, especially for Java programmes and in the
aspect-oriented programming community [15, 17, 14, 13, 7].

We work on a proprietary railway platform which records events on a
database. Because it is not possible to interface an on-line monitoring sys-
tem, we are restricted to the a posteriori verification method. In addition,
because the platform can be used in a certification context, it is preferable to
use an a posteriori method to replay a verification scenario as a justification.
Existing works can be ordered using several criteria.

The first one is the choice of the specification language used to express
the properties. It depends on the application domain, on the complexity of
the properties and on the user-friendliness of the langage. Even if several
porposals already exist, we defined a language tuned to the industrial needs
inspired by existing works. Indeed, language such as SALT [4] and PSL [1]
are complex because they multiply the different temporal operators. Other
languages such as LogScope [2] are specialised to a specific context and
are not compatible with our requirements. Eagle [3] and its HAWK System
extension [5] propose a means to handle finite traces but are not sufficient
in term of expressiveness.

The second criterion is the nature of the considered execution traces. In
several existing works, complete execution traces can be obtained by lis-
tening to all the variables of the programme [16, 3]. In our case, traces are
automatically generated by the simulator without any possible customiza-
tion. The size of the trace depends on the scenario duration and on the
number of events that occur. A way to limit the size of the handled trace is
to filter the relevant information. Actually, if the property is about a type
of message, the limitation of the trace to all messages with that type is a
good slicing method.i

The third issue is the implementation of an efficient verification technique
on the traces obtained that can be very large. Existing works are based on

rewriting techniques [13] or specific techniques, such as translation of LTL
formula into state machines [12] [6]. We propose to use an existing tool called
Ltl2Ba to transform LTL properties into Büchi automaton and propose
specific techniques to handle sequence properties using regular expression.
Then the Büchi automaton is executed to perform the analysis.

3 The ERTMS simulator

The ERTMS simulator allows the replay of a given scenario. A scenario
is an illustration of a real situation. The framework is able to reproduce
the railway track including the signalling systems, the Radio Block Centres
(RBC), the trains and the communications between the RBC and the trains.
In addition, it is possible to command one of the simulated trains as a real
driver.

Figure 1b is a screen of the simulated DMI. The driver is able to switch
on/off the machine, to define the identifier of the train, the phone number
of the RBC, to select the ERTMS level, to receive the movement authority
. . . as in a real train. The simulator is able to automatically manage up to 10
trains during a simulation. Each automated train is piloted using a specific
interface presented in figure 1a. The Route Map Controller simulator is able
to open a train section, define a journey on a map which synthetizes the
network. This map is displayed on the screen as in figure 2.

(a) for automated trains (b) for the driver

Figure 1: The DMI

The strength of this simulator is to provide a real time 3D simulation of
what a driver sees in the cabin. This ability of the simulator is useful to
consider scenario which may be irreleant or relevant for the human factor
point of view. Indeed the different systems (RBC and driver cabin) can be
spread over several machines and the dialogues between the driver and the
authority can be reproduced as exactly as possible, as shown in figure 3.

Figure 2: The Route Map Controller

Finally, one of the needs of this project is to simulate the limit of the au-
thority of two RBCs. The solution consists in pairing two simulators across
the Network. This system is still under developpment and should be used
to treat scenario on a boarder between two European countries.

When a scenario is played, all events are timestamped and recorded in
a database as a sequence of states. The goal is to automatically verify a
temporal property on this trace. Therefore, we propose a methodology based
on Runtime Verification to achieve this goal.

4 A methodology to analyse traces

The methodology used, synthesised in figure 4, is composed of three steps
detailed in the next sections: definition of properties on a given scenario,
generation of trace during the execution of the scenario and the automated
trace analysis. The process coloured in grey is not managed by the pro-
posed methodology. Indeed, the proprietary simulator receives as input the
scenario defined for the methodology and gives the execution traces to be
verified.

Figure 3: The 3D rendering

Scenario

Temporal
Property

Execution
trace

Result

Simulation
framework

Trace
Verification

Figure 4: Overview of the methodology

4.1 Definition of the property to be verified

Propositional logic is well adapted to verify a property at a given state
of a program or at a given instant. When a property has to be verified
over several instants, then a temporal logic has to be used. Because we
handle a sequence of states, the natural logic to use to formalise a tempo-
ral specification is a linear logic. An extended version of LTL was chosen
for different reasons [10]. Indeed, the methodology was initially defined for

verifying avionics softwares. A non-publishable analysis of several avionics
softwares led to the gathering of temporal properties to be verified. The ap-
proach of this analysis consisted of gathering complex properties, classifying
them according to the Dwyer [8] classification, and defining the best logic to
express them. During our investigation, Dwyer classification was extended
to take into account specific temporal properties. Actually, some properties
belonged to frequency class, duration class or a merge with Dwyer classes.
Because it is possible to handle numeric variable by defining a boolean op-
erator using numeric comparator, LTL was chosen. In addition, because
definition of a sequence properties is a complex task, a regular language
was aggregated with LTL. Hence, the syntax of our language is:

property ::= φ|reg

The syntax of a LTL property follows:

φ ::=2 φ|φ1Uφ2|φ1 ∧ φ2| ¬ φ|⊥|>|p

where φ, φi are temporal properties and p is a boolean variable or a compar-
ison of numeric variables, 2 is the global operator and U the until operator.
When the property is written in regular expression, the syntax will be:

reg ::=seq|seq ∗ |seq + |seq(b) (1)

seq ::= (p)list|list (2)

list ::= [list of p] (3)

|(list of p) (4)

A regular expression is a sequence of p (1). This sequence can be unique,
repeated as much as possible or repeated until a condition is reached. A
sequence can begin immediately at the beginning of the trace or after an
event (2). A sequence can be stuttered (3) or not (4).

4.2 Generation of the trace to be analysed

The next step consists in executing the scenario to be analysed and gathering
the information required to verify the temporal properties. The difficulty of
this step is to define the data to be collected. Indeed, gathering every state
of the execution is not desirable, because it can slow down the simulation
and endanger temporal results. The impact of the gathering method has to
be limited as much as possible to preserve the realism of the scenario in

comparison with reality. In addition, the gathering of every state during the
execution of the scenario can overflow the memory capacity of a computer.
Actually, there are several variables in a state and the size of the trace
depends on the duration of the scenario. An execution trace can go over more
than several billion of states. Therefore, a strategy has to be established
to be sure that necessary states are collected. A state is necessary when
an operand of the property to be verified is modified. The modification of
a variable which does not depend on the property has no impact on the
property.

In our case, because the ERTMS simulator is proprietary, we can express
properties only on variables which are collected. As a hypothesis, the mod-
ification of each variable collected by the simulator is recorded. In previous
works, the simulator was parametrisable. In other words, it collected only
the required variables in defined programme point. In this case, the solu-
tion consists in using static analysis to collect all points of the programme
where a variable is modified. The interested reader can find more informa-
tion about this method in [9] . The impact of the trace recording on the
chronology of the events is presumed to be limited for both platforms.

4.3 Automated analysis of the trace

The next step consists in verifying the properties on the generated finite exe-
cution trace. The approach is implemented in a prototype called AnTarES.
In order to verify a temporal property φ on an execution trace σ, we use
two main transformations. Firstly, the temporal formula is translated into
a Büchi automaton Bφ. Secondly, because temporal properties have a se-
mantics on infinite traces, the finite trace σ is transformed into an infinite
one σ∞ by looping over the last element. The transformation of the LTL
properties into a Büchi automaton is ensured by [11], whereas the transfor-
mation of the regular expression is provided in [10]. We focus in this section
on the way to handle infinite traces. We firstly recall the classic algorithm
to analyse the main part of the trace. Then, we provide the end of trace
algorithm. Finally, we use a pragmatic approach to handle border effect
caused by the transformation of the finite trace.

4.3.1 Büchi automaton execution
Execution of the Büchi automaton is performed in two steps: nominal case
and end of trace. The nominal case consists in computing the set of next
current states by evaluating the formulas for each possible transition. The
nominal case is composed of 6 steps:

1. The next state of the trace is loaded, if there is one.
2. If the next state does not exist, then the nominal case algorithm ends

and the end-of-trace algorithm starts.
3. The formula of each transition for all states of the Büchi automaton

in the set of current states is evaluated. If the formula is true, then
the state following the transition is added to the new set of current
states.

4. The new set of current states becomes the set of current states. In this
set, each state only occurs once to avoid combinatorial explosion.

5. If the current state is empty, then the property is false. The nominal
case algorithm ends.

6. Loop to the first step.
σ is an execution trace. EA(i) is the set of current states of the Büchi

automaton A at state i of σ. The initial state of A is singleton IA. For a
given state ε, Tε is the set of transitions with ε as origin. ν(σi, Tε) returns the
set of next states pointed by the transition where the formula is evaluated
to true.

The formalized algorithm is, for all n in J0, |σ| − 1K:

EA(0) = IA;EA(n) =
⋃

ε∈EA(n−1)

ν(σi, Tε)

When there is no next state in the trace, we switch to the end of trace
algorithm, defined to handle the execution of the Büchi automaton at the
end of the trace. This algorithm answers the following question: is there an
infinitely often accessible final state? This algorithm performs:

1. Computing the strongly connected components of the Büchi automa-
ton, by only taking into account transitions where the formula is true.

2. Defining a direct acyclic graph (dag), equivalent to the Büchi automa-
ton, from the strongly connected components computation.

3. Browsing the direct acyclic graph for each element of the current state.
4. Determining for each state of the dag accessed from an element of the

current state if it is a final state of the Büchi automaton.
Because of the looping over the last state of the trace, the Büchi automa-

ton is equivalent to a graph. Then verifying a property on this end of trace
is equivalent to looking for a cycle in the graph with acceptant states. And
finally, looking for a cycle with accepting states is equivalent to browsing
the associated direct acyclic graph and to finding an equivalent accepting
state during this process. Consequently, the algorithm is validated.

Pattern 23 (P) 2 (P ⇒ Q) 2 (P ⇒3 Q)

Metric Number of P Number of P Number of P, Number of Q,
min/max Number of P before an
occurrence of Q

Table 1: Statistical information computed with the three patterns.

4.3.2 Computation of additional statistical information
This method allows the treatment of big traces and gives a result of an
analysis depending on a temporal property. However, the expected result is
only true or false. When the property is false, this result is not enough,
because the origin of the problem is not always obvious. Therefore, we pro-
pose to compute additional statistical information to target the origin of
the property invalidation. These metrics can be used to detect if the prop-
erty is false because of a border effect. We propose two kins of statistical
information:
• for each kind of properties, providing the number of the state and the

timestamps where the error occurs,
• for some pattern of properties, providing specific metrics

In the previous non-publishable analysis, three kinds of pattern of prop-
erties were often used :
• 23 (P) which means that propositional property P often occurs on a

trace ;
• 2 (P ⇒ Q) which means that when propositional property P occurs

then propositional property Q occurs at the same time ;
• 2 (P ⇒3 Q) which means that when propositional property P occurs,

propositional property Q will occur.
The interest of this approach is to provide to the verifier a quantitative

aspect related to the trace and the property. Indeed, this kind of information
is helpful to detect an anomaly even if the property is true. For instance,
the fact that 2 (P ⇒ Q) is true does not mean that P occurs several times.
Perhaps P never occurs. The statistical information ensures that P will
occur a reasonable number of times. Table 1 defines the different statistical
information computed, when a pattern is recognized.

5 Conclusion and future works

This position paper is focused on the last part of the Perfect project
which aims to study the ERTMS implementation on the French territory
troughouth the LGV-Est line. In this last part is studied the collaboration
between the formal validation and tests in an integrated approach. Tests
are performed on an ERTMS railway 3D simulator which records all events
of the scenario played into a trace. In this paper, we define a method to au-
tomatically analyse the execution traces. The method consists in verifying
temporal properties throughout the formalism of Büchi automata. Tempo-
ral properties are expressed using LTL or regular expression for sequence
properties. In addition, this approach provides a method to compute metrics
about the verified trace according to a specific pattern of properties.

Experiments have to be performed on the platform to provide trace to
be analysed. Firstly, we hope to analyse trace coming from a scenario that
simulates a normal journey. Secondly we will focus on an accident scenario.
As a future work, we propose to couple the system of metric computation
to a study related to the human factors. Indeed, it is possible to study the
behaviours of a driver using the 3D simulator. In addition, computation
of statistical information could be performed using a specific automaton
instead of a “hard encoding solution”.

Acknowledgement

The work is funded by the French national research agency (ANR) in the
context of the Perfect project and Re(H)STRAIN project. Perfect is
also supported by the French I-TRANS competitive pole.

References

[1] Accellera. The accelera psl language reference manual. Technical re-
port, Accellera, 2004.

[2] H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis
of log files. Journal of aerospace computing, information, and commu-
nication, 7(11), 2010.

[3] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen.
Eagle does space efficient ltl monitoring. Technical report, Nasa, 2003.

[4] A. Bauer, M. Leucker, and J. Streit. Salt—structured assertion lan-
guage for temporal logic. In Formal Methods and Software Engineering,
volume 4260 of LNCS. Springer, 2006.

[5] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verifi-
cation of java programs. SIGSOFT Softw. Eng. Notes, 30(4):1–7, May
2005.

[6] Marcelo d’Amorim and Grigore Rosu. Efficient monitoring of omega-
languages. In CAV’05, pages 364–378, 2005.

[7] Doron Drusinsky. The temporal rover and the atg rover. In
K. Havelund, J. Penix, and W. Visser, editors, SPIN Model Checking
and Software Verification, volume 1885 of Lecture Notes in Computer
Science. Springer, 2000.

[8] M. Dwyer, G. Avrunin, and J. Corbett. Property specification patterns
for finite-state verification. In Proceedings of the second workshop on
Formal methods in software practice, FMSP ’98. ACM, 1998.

[9] A. Ferlin and V. Wiels. Combination of static and dynamic analyses for
the certification of avionics software. In Software Reliability Engineer-
ing Workshops (ISSREW), 2012 IEEE 23rd International Symposium
on, pages 331–336, Nov.

[10] Antoine Ferlin. Vérification de propriétés temporelles sur des logi-
ciels avioniques par analyse dynamique formelle. PhD thesis, 2013. In
French, Thèse de doctorat,Univ. Toulouse, ISAE.

[11] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS. Springer, 2001.

[12] D. Giannakopoulou and K. Havelund. Automata-based verification of
temporal properties on running programs. In Automated Software En-
gineering, 2001.

[13] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
Automated Software Engineering, pages 135 – 143, 2001.

[14] Klaus Havelund and Kestrel Technology. A rewriting-based approach
to trace analysis. Automated Software Engineering, 12:2005, 2002.

[15] PatrickO’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and
Grigore Roşu. An overview of the mop runtime verification frame-
work. International Journal on Software Tools for Technology Transfer,
14:249–289, 2012.

[16] A. Pnueli and A. Zaks. Psl model checking and run-time verification via
testers. In FM 2006: Formal Methods, volume 4085 of LNCS. Springer,
2006.

[17] Volker Stolz and Eric Bodden. Temporal assertions using aspectj. Elec-
tronic Notes in Theoretical Computer Science, 144(4):109 – 124, 2006.
Proceedings of the Fifth Workshop on Runtime Verification (RV 2005).

Office National d'Études et de Recherches Aérospatiales
2 avenue Edouard Belin - BP 74025

31055 TOULOUSE Cedex 4
Tél. : +33 5 62 25 25 25

http://www.onera.fr

	Introduction
	Related works
	The ERTMS simulator
	A methodology to analyse traces
	Definition of the property to be verified
	Generation of the trace to be analysed
	Automated analysis of the trace

	Conclusion and future works

