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Abstract—The class of robot convergence tasks has been shown
to capture fundamental aspects of fault-tolerant computability. A
set of asynchronous robots that may fail by crashing, start from
unknown places in some given space, and have to move towards
positions close to each other. In this article, we study the case
where the space is uni-dimensional, modeled as a graph G. In
graph convergence, robots have to end up on one or two vertices of
the same edge. We consider also a variant of robot convergence on
graphs, edge covering, where additionally it is required that not all
robots end up on the same vertex. Remarkably, these two similar
problems have very different computability properties, related
to orthogonal fundamental issues of distributed computations:
agreement and symmetry breaking. We characterize the graphs
on which each of these problems is solvable, and give optimal
time algorithms for the solvable cases. Although the results can be
derived from known general topology theorems, the presentation
serves as a self-contained introduction to the topology approach
to distributed computing, and yields concrete algorithms and
impossibility results.

I. INTRODUCTION

The family of robot convergence tasks plays a fundamental
role in the theory of fault-tolerant distributed computing [18].
It is used to prove the wait-free computability theorem [22]
that characterizes the tasks that are wait-free solvable in
a read/write shared memory environment, and is intimately
related to the simplicial approximate agreement theorem of
topology. Roughly speaking, asynchronous communicating
robots cannot coordinate to converge to a single point because
consensus is impossible in the presence of even a single crash
failure [14], but robots can move towards points which are
arbitrarily close to each other, using a solution to approximate
agreement [13]. Robots can also converge in Euclidean space;
see [25] for a recent treatment of a basic multi-dimensional
robot convergence task tolerating Byzantine faults, including
a discussion of applications to robots, distributed voting and
optimization problems, as well as further related references.
Various other applications and specific robot convergence tasks
appear in e.g. [6], [19], [20], [24], [26].

In a robot convergence problem, a collection of n robots
are placed in points of a given space, K, which can be of
any shape and dimension. The robots know K, but they do
not know on which point of K each robot is initially placed.
The goal for the robots is to move to points which are close
to each other. The difficulty is that although the robots can
communicate reliably with each other, and can jump from one
point to any other point of K, the robots are asynchronous and
may crash. The combination of asynchrony and failures means
that it is impossible to distinguish between a faulty robot that
has halted and a robot subject to slow computation [3]. Thus,

a robot must continue running its algorithm and decide where
to move, independently of which robots it hears from at any
given moment (robots do not observe each other positions
directly, but only through communication). In particular, in a
solo run, where a robot does not hear at all from other robots,
the algorithm has to drive the robot to its final position based
only on its initial position.

A specific robot convergence task is defined by the space
K, and rules ∆ stating restrictions on the regions on which
the robot should converge. For instance, the space K could be
the d-dimensional Euclidean space as in [25], and robots may
be required to converge on regions spanned by the convex hull
of their initial positions; if all start on the same point, they
should remain there, and if all start in 2 points, they should
converge to points close to each other along the line connecting
the 2 points. Another example is the loop agreement task [20],
where there is a given loop in the space K, and three given
points v1, v2, v3 on the loop. The robots are placed on any of
these three points. If the robots start on the same point vi, they
should remain there, if they start on two points, they should
converge on the loop segment connecting these two points.
If they start on the three different points, they can converge
anywhere in K, as long as they end up being close to each
other. Whether a specific robot convergence task is solvable
depends on the space K and the convergence rules ∆. Arguably,
the most basic (wait-free) unsolvable convergence task is 2-set
agreement for three processes [11], which is an instance of loop
agreement where K is a cycle of three edges [20]. Stated using
this terminology, 2-set agreement for 3 processes corresponds
to robots starting in any of the corresponding three vertices,
and having to decide on at most two of the initial vertices.

A. Robot Convergence Problems on Graphs

We are interested in studying robot convergence problems
in the case the space K is 1-dimensional. As usual in
combinatorial topology, we consider a discretization of the
space, and represent it by a graph G, where two vertices are
defined to be close to each other if and only if they belong
to the same edge (the corresponding points can be as close
as desired, by considering a subdivision of the space as fine
as needed). In the graph convergence problem, robots may
start on any of the vertices of the graph, and must end up on
vertices of the same edge. If they all start in close enough
positions, they should stay there: if they start on vertices of
an edge, they should decide vertices of this edge. Otherwise
they can decide on vertices of any edge.



We introduce a related problem, edge covering, where the
robots have to end in positions close to each other, but not
all on top of each other. Thus, while both problems require to
reach a form of agreement, edge covering additionally requires
symmetry breaking, as robots cannot all decide the same vertex.

Coordination problems in distributed computing can be about
reaching agreement, often referred to as colorless problems [6]
such as consensus, loop agreement, set agreement, graph
convergence, or more generally robot convergence, or they
can deal with reaching disagreement, which is usually much
more difficult [16] as in weak symmetry breaking [9], [16],
[22], renaming [2], [10] or committee decision [8]. Regarding
the two problems addressed in this work, notice that graph
convergence is a colorless problem, while edge covering is not.

B. Summary of Results

The first aim of the paper is to study two basic robot
convergence problems in a graph, and to expose differences
between reaching agreement and symmetry breaking. We
formally define and study the graph convergence and edge
covering problems. We give a full characterization of the graphs
on which these problems can be solved, and provide algorithms
where the robots gradually move until they solve the problem.

a) Graph Convergence: For the case of 2 robots, graph
convergence can be solved iff G is connected. If the number
of robots is n ≥ 3, then graph convergence is solvable iff G
is a tree.

b) Edge Covering: For the case of 2 robots, edge covering
can be solved iff G is connected and contains an odd-length
cycle. If the number of robots is n ≥ 3, then edge covering is
unsolvable, whatever the graph G.

The second aim of the paper is to provide a self-contained
introduction to the topological approach to distributed comput-
ing [18]. The characterization of graph convergence solvability
can in principle be derived from existing theorems (e.g.,
Theorem 4.3.1 of the book [18]) which, roughly speaking, imply
that graph convergence has a solution iff there is a continuous
map from a given space to G (more details in Section V-A).
Our algorithm explains how such a map is constructed, and our
impossibility results explain why there is no such map when G
is not connected or is not acyclic. Similarly, our edge covering
results can in principle be derived from the Asynchronous
Computability Theorem [22] that requires additionally the
continuous map to preserve identifiers of participants (because
edge covering is not colorless). The topological approach to
distributed computing is useful to prove time complexity results,
in addition to computability results [23], and we also illustrate
this aspect of the theory here. We hope our algorithms and
impossibility results provide intuition and shed light on these
topological theorems, illustrating why topological properties
are so intimately related to distributed algorithms, and why
symmetry breaking is more difficult than agreement.

C. Related Work

Distributed algorithms for robots is a very active research
area (see e.g. [12] for a recent work and further references), and

in particular problems about robot convergence, gathering at a
single location, and scattering to different locations have been
widely studied. Less work has been devoted to fault-tolerant
algorithms, and mostly in the plane. Gathering algorithms
for the case where at most one robot may crash, or behave
in a Byzantine way, were proposed in [1], and for multiple
crash failures in [7]. However, we are not aware of the use
of algebraic topology techniques in the style of [18] (work
about computing topological properties of a space is of a
different nature e.g. [4]). In our setting gathering is impossible
(Section IV) because, in contrast to the previous papers, robots
cannot observe directly the positions of other robots, they need
to communicate with each other to find them. Notice that
our two-robot graph convergence algorithms can be extended
for any number of robots tolerating one failure using BG
simulation [6].

D. Outline of the Paper

Algorithms for graph convergence are in Section II and for
edge covering in Section III. The impossibility results and
solvability characterizations are in Section IV. A topological
perspective of our results is in Section V. Some proofs and
additional material appear in the Appendix.

II. THE GRAPH CONVERGENCE PROBLEM

We assume a standard distributed computing model where
n robots, p1, . . . , pn, are sequential processes (state machines),
that run at arbitrary speed, independent from each other, and
any number of them may fail by crashing at any time (and
cannot recover). We use the terms interchangeably robots or
processes. They communicate by writing and reading single-
writer/multi-reader registers. We describe our algorithms using
operations that can be implemented wait-free from registers,
such as snapshot operations by which a process can read
the whole shared memory in a single atomic step, or even
immediate snapshots (see Appendix A), by which a process
can write to a register and take a snapshot in a single step.
We remark that this model is equivalent to a model where the
processes communicate by message passing with each other, if
a majority of them do not crash. See e.g. [3], [18] for additional
details of these models.

After introducing the graph convergence problem, we present
two optimal-time solutions to it: an algorithm that solves graph
convergence on trees, for any number of processes, and an
algorithm that solves graph convergence on any connected
graph, for two processes. As we shall see in Section IV, these
are the only situations where graph convergence is solvable,
and it is impossible to solve gathering to a single vertex in
this context.

We assume robots know the graph, and can communicate
with each other their current vertex positions using the shared
memory.

In the graph convergence problem on a graph G, each robot
starts with an input vertex of G and, after communicating with
other robots, has to eventually decide a vertex such that the
following two properties are satisfied:



• Agreement: The collection of decided vertices belong to
a single edge of G.

• Validity: If the input vertices are equal, then each process
must decide this vertex; if the input vertices span an edge,
then each process must decide a vertex of that edge.

Notice that this is exactly the definition of a robot conver-
gence task [18] specialized to the case of graphs1, while in the
graph gathering problem, the agreement property is replaced
by requiring that the decided vertices are equal. The optimality
of the two algorithms in the next two sections follows from
arguments similar to those in [23].

A. Graph Convergence on Trees

Recall that the eccentricity of a vertex v is defined as the
greatest distance from v to any other vertex. A center of a
graph is a vertex with minimal eccentricity. The radius of G
is the minimum eccentricity among the vertices of G and the
diameter of G is the maximum eccentricity among the vertices
of G. Denoting the centers of a graph G by center(G), a tree T
has |center(T )| = 1 or |center(T )| = 2. If |center(T )| = 1,
the tree is called central. If |center(T )| = 2, the tree is called
bicentral. For any graph G, the diameter is at least the radius
and at most twice the radius. Trees have the following property,
which we will exploit in our graph convergence solution.

Remark 1: For a tree T , diam(T ) = 2× rad(T )− 1, if T
is bicentral, and diam(T ) = 2× rad(T ), if T is central.

Algorithm 1 T = (V,E) is an arbitrary tree. Code for robot pi.

Function GraphConvergenceTree(vi, T )
1: for ri ← 1 to ddiam(T )e+ 1 do
2: si ← ImmediateSnapshot(ri, vi)
3: ti ← smallest tree of T containing all vertices in si
4: vi ← a center of ti
5: end for
6: return vi

The algorithm GraphConvergenceTree (Algorithm 1)
solves graph convergence on trees for any number of processes.
The idea is very simple: robots proceed in a sequence of rounds,
and in every round, each robot pi communicate to the others
its current vertex vi (its input vertex in the case of the first
round) and using the vertices in its snapshot si (which does not
necessarily contain all vertices of the corresponding round, due
to asynchrony), pi computes a subtree ti of T and “moves” to
a center of ti. Thus, processes converge by gradually moving
to the center of the trees they see during the computation.
In the algorithm, shared memory is organized in layers, and
every round has a fixed associated a fresh shared memory
layer. Figure 1 depicts three possible trees robots might see in
a single round (notice that trees are ordered by containment,
as induced by the ImmediateSnapshot primitive).

Clearly, every non-crashed robot terminates in GraphCon-
vergenceTree as the number of rounds is fixed. If all the initial
vertices already span a vertex, then each non-crashed robot pi
returns its initial vertex as in every round ti contains a single

1In the case where the space is an arbitrary complex K, the validity condition
states that if the robots initial positions span a simplex, they have to decide
vertices on that simplex.
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Fig. 1. Optimal graph convergence on a tree

vertex. Similarly, if all initial vertices span an edge e, then pi
returns a vertex of e because in every round ti is either e or a
vertex of e.

The correctness of the algorithms follows from the following
lemma showing that every round roughly halves the distance
between any two vertices. For simplicity, in what follows we
only consider executions in which all robots return a final
vertex. Observe that there is no loss of generality by assuming
this as any execution in which every non-crashed robot returns
a vertex can be extended to an execution in which every robot
returns a vertex.

Lemma 1: For j = 1, . . . , ddiam(T )e + 1, let vji be the
value of vi at the beginning of the j-th iteration, and let
Tj be the smallest subtree of T containing vj1, . . . , v

j
n. Then,

diam(Tj+1) ≤ (diam(Tj) + 1)/2.
Proof. The snapshots of the robots in the j-th round are
ordered by containment, and hence there are sets S1 ⊂
S2 ⊂ . . . ⊂ Sk = {vj1, . . . , vjn}, for some k ≥ 1, such
that, for each robot pi, its snapshot in the j-th round is
equal to some Sl. Moreover, every robot whose vertex is
in Sl has its snapshot equal to Sl (see Appendix A). For
each Sl, let Rl be the smallest subtree of Tj containing
every vertex in Sl. Thus, we have that R1 ⊂ R2 ⊂ . . . ⊂
Rk = Tj , and consequently, vj+1

1 , . . . , vj+1
n are nothing else

than the centers of these trees, center(R1), . . . , center(Rk)
(see Figure 1). Hence, Tj+1 is the smallest subtree of
Tj containing center(R1), . . . , center(Rk). Let R′m be the
smallest subtree of Tj containing the first m centers,
center(R1), . . . , center(Rm) (thus R′k = Tj+1). By induction
of l, one can show that diam(R′l) ≤ rad(Rl). The base case
l = 1 is obvious as R′1 is a single vertex. Once we have
assumed the claim holds for l, to show it holds for l + 1,
it is enough to observe that the distance between any pair
center(Rs) and center(Rt), distinct both from center(Rk),
is at most rad(Rl), by induction hypothesis, which is at most
rad(Rj+1), by definition; and the distance from center(Rl+1)
to any other center(Rs) is at most rad(Rl+1) by definition.



Thus, when l = k, we have that diam(Tj+1) ≤ rad(Tj). By
Remark 1, it follows that rad(Tj) ≤ (diam(Tj) + 1)/2, and
hence diam(Tj+1) ≤ (diam(Tj) + 1)/2. �

Lemma 1 directly implies that after O(log(diam(T )))
rounds, all robots end up spanning a vertex or an edge of
T .

Theorem 1: For any tree T , algorithm GraphConvergence-
Tree solves graph convergence on T for n ≥ 2 robots.

B. Graph Convergence for Two Robots on Connected Graphs

Let us now focus on two robots solving graph convergence on
a connected graph. In the following we describe a modification
of GraphConvergenceTree, tailored for this case.

Algorithm 2 G = (V,E) is a connected graph. Code for pi.

Preprocessing: ∀(u, v) ∈ V 2 pre-compute a shortest path from u to v

Function GraphConvergenceTwoRobots(vi, G)
1: si ← ImmediateSnapshot(1, vi)
2: Pi ← ⊥
3: if |si| = 2 then
4: Pi ← precomputed path between vertices in si
5: end if
6: for ri ← 2 to ddiam(G)e+ 1 do
7: si ← ImmediateSnapshot(ri, 〈vi, Pi〉)
8: if |si| = 2 then
9: if Pi = ⊥ then

10: Pi ← other robot path in si
11: end if
12: ti ← smallest subpath of Pi containing si
13: vi ← a center of ti
14: end if
15: end for
16: return vi

In GraphConvergenceTwoRobots (Algorithm 2), we as-
sume the robots know (or compute) a pre-defined shortest path
in G between any pair of vertices; thus if the two vertices are
the same, the path is the vertex itself, and if the vertices are
adjacent, the path is the edge between them. The two robots first
take a snapshot to communicate their input vertex. If a robot
pi sees the input of the other, it sets Pi to the corresponding
precomputed path. Due to the view containment property of
snapshots, it cannot be that both Pi and Pj are equal to ⊥. Then,
the robots proceed similarly as in GraphConvergenceTree:
they move to the center of the subpath between their current
vertices.

Theorem 2: For any connected graph G, algorithm Graph-
ConvergenceTwoRobots solves graph convergence on G for
two robots.

III. THE EDGE COVERING PROBLEM

This section introduces the edge covering problem and
then presents an algorithm that solves it for two processes
on any connected graph G that has a simple cycle of
odd length. Our edge covering solution, EdgeCoveringT-
woRobots (Algorithm 3), is an adaptation of the Graph-
ConvergenceTwoRobots algorithm in the previous section.
Surprisingly, the algorithm cannot be generalized for more
than two robots; as we shall see, edge covering for three or
more processes is impossible on any graph.

In the edge covering problem on a given graph G, each
robot starts with an input vertex of G and has to eventually
decide a vertex such that:

• Agreement: The collection of decided vertices belong to
a single edge, and not all decided vertices are equal.

• Validity: If the initial input vertices span an edge, then
each robot must decide a vertex of that edge. If a robot
runs alone, it should decide its input vertex.

A. Edge Covering for Two Robots on Connected Graphs with
Odd Length Cycles

Algorithm EdgeCoveringTwoRobots needs a deterministic
preprocessing phase that, for any pair of vertices vi and vj
(possibly equal), computes a simple odd length path from
vi to vj . First, if (vi, vj) is an edge, then the path from vi
to vj is this edge. Otherwise, consider a simple cycle C =
w1, w2, . . . , wx, w1 of G of odd length. Since G is connected,
there are paths Pi and Pj from vi to w1 and from w1 to vj ,
respectively. If the length of the composed path Pi−Pj is odd,
we are done, otherwise, the length of the path Pi − C − Pj

must be odd. In any case, for every vi and vj , there is a odd
length simple path between them. The cycle C and paths P1

and P2 can be efficiently computed with a classical Breadth
First Search.

Now, as in GraphConvergenceTwoRobots, the two robots
first take a snapshot to communicate its input vertex to the
other and if a robot pi sees the input of the other, it sets Pi to
the corresponding precomputed path (at least one of P1 and
P2 is distinct from ⊥). Then, the robots move to a center of
the subpath between its current vertices but each of them picks
a center that guarantees that the new current vertices are at
odd distance (see Figure 2).

Algorithm 3 G = (V,E) contains an odd length simple cycle.

Preprocessing: ∀(u, v) ∈ V 2, compute a simple and shortest odd length path of G
from u to v

Function EdgeCoveringTwoRobots(vi, G)
1: si ← ImmediateSnapshot(1, vi)
2: Pi ← ⊥
3: if |si| = 2 then
4: Pi ← precomputed path between the vertices in si
5: end if
6: for ri ← 2 to ddiam(G)e+ 1 do
7: si ← ImmediateSnapshot(ri, 〈vi, Pi〉)
8: if |si| = 2 then
9: if Pi = ⊥ then

10: Pi ← other robot path in si
11: end if
12: vj ← vertex of the other robot in si
13: ti ← smallest subpath of Pi containing vi and vj
14: vi ← center of ti such that the length of the subpath of ti from that center

to vj is odd
15: end if
16: end for
17: return vi

Lemma 2: Let P be the precomputed path between the initial
vertices v1 and v2. For j = 1, . . . , ddiam(G)e+ 1, let vj1 and
vj2 be the values of v1 and v2 at the beginning of the j-th
iteration, and let Pj be the smallest subpath of P containing
them. Then, |Pj+1| odd and less or equal to (|Pj |+ 1)/2.



Fig. 2. Edge Covering for two robots.

Proof. First, observe that P1 = P , hence, by construction, |P1|
is odd. Thus, we assume |Pj | is odd. Note that Pj is a bicentral
tree. Let (u, v) be the edge containing its two centers. Let s1
and s2 be the snapshots of p1 and p2 in the j-th iteration. We
have three cases:
• |s1| = |s2| = 2. In this case both s1 and s2 contain vj1

and vj2. Then both robots p1 and p2 have t1 and t2 equal
to Tj . Observe that if the length of subpath of Tj from u
to vj1 is odd (resp. even), then the length of the subpath
from u to vj2 is even (resp. odd). It similarly happens with
v (see Figure 2). Then, it must be that either vj+1

1 = u
and vj+1

2 = v, or vj+1
1 = v and vj+1

2 = u. In either case
Tj+1 = (u, v).

• |s1| = 1 and |s2| = 2. In this case s1 only contains vj1
while s2 contains vj1 and vj2. Then vj+1

1 = vj1 and vj+1
2

is the center of Pj such that the length of the subpath Q
from that center to vj1 is odd (as explained in the previous
case, only one center has that property). Thus, Tj+1 = Q.
Remark 1 implies that Q = (|Tj |+ 1)/2.

• |s1| = 2 and |s2| = 1. This case is symmetric to the
previous case.

�

Lemma 2 shows that at the end of EdgeCoveringT-
woRobots, the two robots end up on vertices that span an
edge of G, hence we have the following.

Theorem 3: For any connected graph G containing a simple
cycle of odd length, algorithm EdgeCoveringTwoRobots
solves the edge covering problem for two robots.

IV. IMPOSSIBILITY RESULTS

In this section we present a series of impossibility results
that fully characterize the solvability of graph convergence and
edge covering.

We first show that if G is disconnected then graph conver-
gence and edge covering are impossible. The reason is that
a graph convergence or edge covering solution for G can be
used to solve wait-free binary consensus, which is known to
be impossible [3], [17]. The following style of proof is known
since the first (1-resilient) task characterization results [5].

Lemma 3: If G is disconnected, then graph convergence and
edge covering on G is impossible for any number of robots
n ≥ 2.
Proof. Assume, for the sake of contradiction, that there is an
algorithm A that solves graph convergence on G for n ≥ 2
robots (the proof is the same when A solves edge covering).
Using A, we solve binary consensus among n robots, which

is known to be impossible [3], [17]. In the binary consensus
problem, each robot proposes either 0 or 1, and robots are
required to decide proposed values so that all decisions are
equal.

Let v0 and v1 be vertices of G belonging to distinct
connected components. Let C0 be the connected component v0
belongs to. We solve binary consensus as follows. Each robot
pi with proposal j ∈ {0, 1}, invokes A with input vj . Let wi

be the value A outputs to pi. Then pi decides 0 if wi belongs
to C0 and 1 otherwise.

If all proposal are equal to j ∈ {0, 1}, then every robot
receives vj from A, since A is a graph convergence solution.
Then, every robot decides j, which solves consensus. If robots
propose distinct values, then they invoke A with distinct inputs,
v0 and v1. Since A solves graph convergence, it outputs vertices
that span a vertex or an edge of G. Note that it cannot be that
some of these vertices belong to C0 and the rest to G \ C0.
Therefore, all robots decides either 0 or 1 and all decisions
are the same, which solves consensus. �

A similar proof shows the following
Lemma 4: If G has at least two vertices, then graph gathering

on G is impossible for any number of robots n ≥ 2.
The following lemma shows that cycles are an obstacle for

solving graph convergence and covering when the number
of robots is greater or equal than three. The structure of the
proof is similar to the previous one: if there is a solution
to a graph with cycles, then one can solve the well-known
set agreement problem [11], which has been proved to be
unsolvable (see [18]).

Lemma 5: If G has a cycle, then graph convergence and
edge covering on G is unsolvable for n ≥ 3 robots.
Proof. By contradiction, suppose that there is an algorithm
A that solves graph convergence on G for n ≥ 3 robots (the
proof when A solves edge covering is the same). We use A
to solve 2-set agreement for three processes hence reaching
a contradiction. In the (n − 1)-set agreement [11] problem
with fixed inputs for n processes, each process pi has as input
its index i, and every correct process is required to decide an
index of a process that participates in the execution such that
at most n− 1 distinct indexes are decided by the processes. It
is well-known that (n− 1)-set agreement is unsolvable. Thus,
A cannot exist because it implies a solution to (n − 1)-set
agreement.

In the proof we use the following remark that directly follows
from the specification of graph convergence and edge covering,
which are adaptive by nature.

Remark 2: Let G be a graph and suppose there is an
algorithm A that solves graph convergence (edge covering) on
G for n ≥ 3 robots. Then, A solves graph convergence (edge
covering) on G for n− 1 robots.

Therefore, this last remark implies that we can assume A
solves graph convergence on G for three robots.

Let C be a simple cycle of G and let v1, v3, v2 be three
distinct and consecutive vertices of C. Let P be the simple
odd path obtained by removing v3 from C (see Figure 3). By



Algorithm 4 Code for process pi.

Function SetAgreement(i)
1: if i = 3 then
2: xi ← v3
3: else
4: xi ← B.GraphConvergence(vi, P )
5: end if
6: yi ← A.GraphConvergence(xi, G)
7: if for some j = 1, 2, 3, yi = vj then
8: return j
9: else

10: return 1
11: end if

v1v1

v2v2

v3v3

PC

1 2

3

. . .

. . .

Fig. 3. Mapping vertices of the cycle C to values for Set Agreement

Theorem 2, let B be an algorithm that solves graph convergence
on P for processes p1 and p2. We use A and B to solve 2-set
agreement for three robots.

Algorithm 4 solves 2-set agreement for three robots, p1, p2
and p3, using algorithms A and B. The idea of the solution
is that robots use A to “agree” on a vertex or an edge of
G, namely, on at most two distinct vertices, and then use
these information to return at most two distinct indexes of
participating processes. Thus, vertices of G are mapped to
indexes of processes: v3 is mapped to 3, v2 is mapped to 2
and the remaining vertices are mapped to 1, as illustrated in
Figure 3. The properties of A make easy to achieve agreement:
at most to distinct indexes are decided since A solves graph
convergence. What is more complicated to achieve is validity:
only indexes from participating processes can be decided. That
is the aim of algorithm B and actually the most complicated
case is when p1 and p2 participate: they use B to cover a
vertex or an edge of P and these vertices are the inputs the
use for A; this step guarantees that none of them gets v3 from
A, so each of them returns either 1 or 2.

We now show that Algorithm 4 is correct.
• Termination. By assumption, A and B terminate in all

invocations, thus in every execution, a nonfaulty robot
returns a value.

• Validity. We identify three cases, according to the number
of robots that participate and decide in a given execution.

– One robot pi participates in an execution. If pi = p3,
then it invokes A with input v3, and consequently
obtains v3 from it, by validity property of edge
convergence. Thus, p3 returns 3.
If pi is either p1 or p2, it invokes B with input vi,
and consequently obtains vi from B, by validity of
graphnconvergence; and hence pi invokes A with vi
and obtains vi as well, for the same reason, therefore
it returns i.

– Two processes pi and pj participate. If pi = p3 and

pj is either p1 or p2, then pj invokes solo B with
input vj , hence it obtains vj . Thus, pi and pj invoke
A with inputs vi and vj , respectively, and thus they
obtains these vertices from A since, by assumption,
A solves graph convergence and, by definition, these
vertices are an edge of G. We conclude that pi returns
i and pj return j.
If pi = p1 and pj = p2, then they obtain from B two
vertices xi and xj , respectively, that cover a vertex
or an edge of P , since B solves graph convergence
on P . Then, pi and pj get the very same vertices
from A since it solves graph convergence on G, by
assumption. Thus, each of pi and pj returns either 1
or 2 because the only way a process returns 3 is if it
gets v3 from G, but v3 /∈ V (P ).

– The three robots participate. From the pseudocode,
it is easy to see that a robot can only decide 1, 2 or
3. If all processes participate, any of these decisions
satisfy validity.

• Agreement. The only interesting case is when the three
processes return a value. Since A solves graph convergence
on G, the values it returns y1, y2 and y3 to p1, p2 and
p3, respectively, cover a vertex or an edge of G, hence at
most two distinct indexes are decided.

We conclude that Algorithm 4 solves 2-set agreement for
3 processes, which, as already explained, is a contradiction,
from which follows that such an algorithm A cannot exist.

�

Lemmas 3 and 5 together with Theorems 1 and 2 in Section II
completely characterize the solvability of graph convergence.

Theorem 4: For two robots, graph convergence on G is
solvable if and only if G is connected. For three or more
robots, graph convergence on G is solvable if and only if G
is acyclic.

We now fully characterize the solvability of the edge covering
problem. As we will see, the extra requirement of edge covering
that processes always have to cover an edge, precludes edge
covering solutions for three or more robots, for any graph. The
next lemma shows a necessary condition for the solvability of
edge covering for two robots.

Lemma 6: Let G be a graph. If there is an algorithm
that solves edge covering on G for two processes, then G
is connected and has an simple cycle of odd length.
Proof. Let G be any graph and suppose there is an algorithm
A that solves edge covering on G for two processes. Lemma 3
implies that G is connected. To show that G has a simple cycle
of odd length, suppose the contrary, namely, suppose that G
has no simplex cycle of odd length. We will use A to solve
weak symmetry breaking (WSB) for two robots [16]. The WSB
for two robots is an inputless problem in which each robot has
to decide 0 or 1 such that in solo executions, the decision is
the same and if the two robots participate, they decide distinct
values. It is known that WSB for two robots is unsolvable
(see [18]).



Before solving WSB, we observe that G is bipartite since it
has no odd length cycles, hence it has a proper vertex binary
coloring c. To solve WSB, each robot pi invokes A with a
fixed vertex v (the same for both robots), and decides c(w),
where w is the vertex A outputs to pi. Clearly, robots decide
0 or 1, since c is a binary coloring. In a solo execution of
any robot pi, A outputs v to pi, by validity of edge covering,
and hence it decides c(v). Finally, if the two robots participate,
they decide distinct values because c is a binary coloring and
A outputs to the robots vertices of G that span an edge. Thus,
using A, we can solve WSB, which is a contradiction. �

Using the previous lemma, we can show that edge covering
is unsolvable for three or more processes. The proof is that if
there is an algorithm that solves edge covering on a graph G
for three or more processes, then, by the adaptive nature of
edge covering, this algorithm solves edge covering on G for
two processes, and hence G has a cycle, by Lemma 6. But
this contradicts Lemma 5.

Lemma 7: For any graph G, there is no algorithm that solves
edge covering on G for three or more robots.
Proof. Suppose por contradiction that there is an algorithm A
that solves edge covering on G. As observed by Remark 2 in
the proof of Lemma 5, A solves edge covering on G for two
robots. Thus, G has a cycle, by Lemma 6. Lemma 5 implies
that A cannot exist. �

Finally, from Lemmas 6 and 7 and Theorem 3 in Section III,
we derive a full characterization for the solvability of edge
covering.

Theorem 5: For two robots, edge covering on G is solvable
if and only if G is connected and has a simple cycle of odd
length. For three or more robots, edge covering is unsolvable
on any graph G.

V. A TOPOLOGICAL PERSPECTIVE

The topological approach to distributed computing [18] has
been useful to understand the nature of fault-tolerant distributed
computing, to prove impossibility results and to understand
why in some case there exists a distributed algorithm to solve
a problem. In this section we briefly discuss a topological
perspective of graph convergence and edge covering.

A. The Topology of Graph Convergence

Our graph convergence problem is a special case of the robot
convergence task defined in [18], which is specified as follows.
A collection of n robots are placed on the vertices of a graph G.
The robots are asynchronous, communicate through read/write
shared registers and eventually (in a wait-free manner) each
one chooses a final vertex and halts. The final vertices must
belong to the same edge (in the book, to the same simplex of
an arbitrary complex). If they are all placed initially on the
same vertex or edge, then they stay there (although they may
move from one vertex to the other, even they may all move to
the same vertex). If the robots are placed on vertices that do
not belong to the same edge, they can move to any vertices of
G, as long as the vertices belong to an edge. Formally, a robot

convergence task for a graph G is given by a triple (I, G,∆),
where I consists of all the subsets of V of at most n vertices
of G. Such a set I , consisting of a family of sets closed under
containment is called in topology a simplicial complex. An
element σ of I is called a simplex, and its dimension is |σ|−1.
Thus, σ ⊆ V , |σ| ≤ n. For each simplex σ in I, representing
possible simultaneously starting vertices of G, ∆ encodes the
convergence rules. Namely, ∆(σ) is a subgraph of G where
the robots may end up, if their initial positions are in σ. Thus,
∆(σ) = σ if σ is either a vertex or an edge of G, and otherwise,
∆(σ) = G. The following is from the book [18](page 88), see
also [21].

Theorem 6 (4.3.1 [18]): The graph convergence task
(I, G,∆) has a wait-free n-process read/write protocol if and
only if there is a continuous map f : |I| → |G| carried by ∆.

This theorem considers G as a continuous space, denoted by
|G|, as if G was embedded in some sufficiently large Euclidean
space: vertices of G are points of the space, and edges are
lines connecting their corresponding vertex-points. Similarly,
the space |I| consists of the points where the vertices of I are
placed in Euclidean space, and linear subspaces spanned by
vertices belonging to the same simplex σ of I . The continuous
map f respects the input/output specification of the task, ∆,
in the sense that for each simplex σ ∈ I, f(|σ|) is in |∆(σ)|.
In particular, f(v) = v, and f(e) = e for any edge e. But f
may send a simplex σ which is not an edge anywhere in G.

Theorem 6 can be used to derive simple impossibility proofs,
as shown below.

Corollary 1: If G is disconnected, graph convergence on G
is unsolvable for n ≥ 2 robots.

Let u, v be vertices of different connected components,
Gu, Gv. Consider the simplex σ = {u, v} of I. Suppose
there is a solution to the task, let f be its associated map
by Theorem 6. Then f(u) is in connected component Gu

and f(v) is in connected component Gv. It is impossible to
extend f to all of σ, because σ is connected, while Gu ∪Gv

is disconnected, a contradiction.
Corollary 2: If G has a cycle, graph convergence on G is

unsolvable for n ≥ 3 robots.
Let G be a graph with a cycle C = v1, v2, . . . , vp, v1 (see

Figure 4 for an illustration with p = 4). Then, C is a cycle of
I. Once again, suppose there is a solution to the task, let f
be its associated map by Theorem 6. We have that f(C) = C,
where for each vi, f(vi) = vi, and f(vi, vi+1) = (vi, vi+1),
by the validity requirement of graph convergence. Notice that
I is the (n − 1)-skeleton of a simplex with vertices V , i.e.,
the set of all simplexes of dimension at most n− 1. We can
view V as a complex (consisting of the set V and all its faces)
which represents a solid ball of dimension |V | − 1. Hence, any
cycle on I (its n− 1, dimensional skeleton, with n− 1 ≥ 2) is
contractible. Thus, C is contractible in I, but its image, f(C)
is not contractible, because f(C) = C.

The intuition for Theorem 6 becomes clear considering the
colorless immediate snapshot algorithm and subdivision, as
explained in Appendix B. A round of colorless immediate-
snapshots subdivides produces a barycentric subdivision of
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Fig. 4. Impossibility of graph convergence on cycle C = v1, v2, v3, v4, v1
by 3 processes

each simplex, as in Figure 9. As the colorless immediate
snapshot algorithm is repeated more and more times, finer
and finer barycentric subdivisions are obtained, and hence a
better approximation to a continuous map. Figure 5 illustrates
how a solution is obtained for a tree with three processes, first
with a continuous map, which has to then be approximated by
using subdivisions (right-hand side). Notice that a simplicial
map from a subdivision to the output complex represents the
decisions taken in each vertex.

v4
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v2v3
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Fig. 5. Top: Solving a tree by 3 processes. Bottom: Trying to solve a tree in
one round

B. The Topology of Edge Covering

The underlying topological behavior of the edge covering
problem is more complex, because the problem cannot be
described solely by the vertices of G where robots may start
and may end. In addition, it is necessary to specify which robot
starts or ends in which vertex. The colored version of a graph
G for two robots A,B, required to model the edge covering
problem, denoted G̃ = (Ṽ , Ẽ) , consists of all pairs of vertices
of the form 〈id, v〉, where v ∈ V and id ∈ {A,B}. An edge
(x, x′) belongs to Ẽ iff x = 〈id, v〉 x′ = 〈id′, v′〉 such that
(v, v′) ∈ E (v 6= v′), and id 6= id′. A vertex 〈id, v〉 represents
the situation where robot id ends in vertex v.

Recall that robots have to end in adjacent vertices of G̃.
Figure 6 illustrates that robots A and B have to end in vertices
belonging to the same edge of G, but cannot both end in the
same vertex. The two-robot edge covering problem for a graph
G = (V,E) is formally modelled as a colored task 〈Ĩ , G̃, ∆̃〉,
where the input graph Ĩ is the colored version of the complete
graph (including self-loops) on |V | vertices. Thus, for each
pair of vertices of V , (v, v′), not necessarily distinct, there is
an edge (x, x′) ∈ Ẽ with x = 〈A, v〉, x′ = 〈B, v′〉, meaning
that it is possible that A starts in v and B starts in v′. Then

A, v1 B, v1

A, v2 B, v2

A, v3 B, v3

v2

v3

v1

G G̃

A, v1 B, v1

A, v2 B, v2

A, v3 B, v3

Ĩ

A, v1 B, v1

A, v2 B, v2

A, v3 B, v3

X(Ĩ)

Fig. 6. G and colored graph G̃, with input Ĩ and views after one round X(Ĩ),
for robots A,B

the relation ∆̃ is defined as follows. First, if a robot runs solo,
it stays in its initial vertex, ∆̃(〈id, v〉) = {〈id, v〉}, for every
vertex 〈id, v〉. Second, if the robots start in an edge, they stay
there, i.e., ∀(v, v′) ∈ E:

∆̃(〈A, v〉, 〈B, v′〉) = {〈A, v〉, 〈B, v′〉, 〈B, v〉, 〈A, v′〉}

Finally, if they do not start in vertices of the same edge, they
can decide on any vertices belonging to the same edge, i.e.,
∀(v, v′) 6∈ E, ∆̃(〈A, v〉, 〈B, v′〉) = G̃.

The wait-free solvability theorem [22] implies that the edge
covering problem for two robots has a solution if and only
if there is a subdivision X of Ĩ and a simplicial map δ from
X to G̃, such that δ preserves ids and edge adjacencies,
and δ respects ∆̃. It is called a decision map because it
represents the outputs of the distributed algorithm that the
robots execute. Namely, when the robots start in an edge
(x, x′) ∈ Ĩ , x = 〈A, v〉 and x′ = 〈B, v′〉, it is known that
the distributed algorithm induces a subdivision of (x, x′),
essentially creating a path, where each edge of the path
represents the final states of the robots in one of the possible
executions starting in (x, x′). More details in Appendix A.

Theorem 7 (3.1 [22]): A task (I,O,∆) has a wait-free
read/write protocol iff there is a chromatic subdivision X of I
and a color-preserving simplicial map δ : X(I)→ O s.t. for
each σ ∈ X(σ), δ(σ) is carried by ∆(σ).

A consequence is that the task has a solution for A,B iff for
any two vertices of G there is an odd length path, corresponding
to a path in G̃ alternating vertices with id A and B.

Notice that the formal specification of the edge covering
problem as a triple 〈Ĩ , G̃, ∆̃〉, depends on the number of robots,
and indeed we defined it above for A,B. To go beyond two
robots, to three robots, it is necessary to add to triangles to
the graphs, representing positions of three robots A,B,C, and
more generally, simplices of n vertices, labeled with distinct
robot ids. Then the wait-free solvability theorem [22] is about
general dimension combinatorial topology simplicial complexes.
Roughly speaking, edge covering (and in general non-colorless
tasks) is more difficult that graph convergence, because of a
seemingly innocuous, but surprisingly “difficult” requirement:
the simplicial decision map δ is color-preserving. Namely,
while in a colorless task, robots can always adopt each other
outputs (δ can send simplexes to lower dimensional output
simplexes), this is not possible in general tasks (δ sends a final
state’s algorithm simplex to an output simplex of the same
dimension).



VI. CONCLUSION

In this paper we study two robot convergence tasks in an
asynchronous read/write shared memory crash-prone system,
where the base space is a finite graph. The tasks are the
graph convergence (robots decide vertices that belong to
the same edge) and edge covering (robots decide vertices
that cover an edge). For both tasks we show possibility and
impossibility results that fully characterize the graphs on which
these problems can be solved.

In practice, robots have no shared memory to communicate
with each other; typically, they communicate through a weaker
communication medium. However, we believe that our results
will help in understanding the limits of what robots can compute
in an asynchronous crash-prone environment.
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APPENDIX

A. Topology of Colored Computation and Immediate Snapshots

Here we provide more details about the topology perspective
in Section V-B, related to general tasks such as edge covering.
In Section B we discuss how these ideas are simplified, when
the problem is colorless, such as graph convergence.

We have discussed in Section V-B the wait-free computability
theorem [22], that describes when a task (I,O,∆) has a
wait-free read/write protocol. We reproduce here Figure 11.7
from [18] for the reader’s convenience, where the theorem is
illustrated.

s 

Δ(s) 

Carrier map Δ 

Simplicial map δ 

S’ 

I O

OX(I)

Fig. 7. The wait-free computability theorem, Fig 11.7 from [18].



The theorem states that (I,O,∆) has a wait-free read/write
protocol if and only if there is a chromatic subdivision X of
I and a color-preserving simplicial map δ : X(I)→ O such
that for each simplex s′ ∈ X(s), δ(s′) is carried by ∆(s). In
Figure 7 we see an input simplex s in I, at the top, and how
a distributed algorithm subdivides it into X(s), part of the
subdivision X(I). Each vertex of X(s) represents the final
state of a process in one of the executions starting in s. In
the figure, s′ is an example of a set of process’ final states
in one of the possible executions starting in s. The decision
map δ defines the decisions taken by the set of processes in
s′. These decisions are δ(s′) thus, for each s′ ∈ X(s), the
decisions δ(s′) should belong to ∆(s), as the rule ∆ states the
legal outputs when starting in each initial simplex s.

We now describe the recursive immediate snapshot algorithm
of [15], both to illustrate how a distributed algorithm is able
to produce a chromatic subdivision of a complex, and to show
how immediate snapshots are simulated using only read and
write operations. The presentation follows closely that paper,
and is repeated here for the convenience of the reader. Then we
present a colorless version of this algorithm, suited for robot
convergence tasks.

Algorithm 5 Code for robot/process pi with input vi. Initially ri = n

Function RecursiveIS(vi, ri)
1: si ←WriteCollect(〈pi, vi〉)
2: if |si| = ri then
3: return si
4: else
5: RecursiveIS(vi, ri − 1)
6: end if

The algorithm is in Figure 5. Each process pi with input vi,
writes the pair 〈pi, vi〉, to the shared memory, and reads (one-
by-one, in an arbitrary order) the registers of all other processes.
A shorthand for the sequence of operations consisting of
first writing and then collecting the inputs of all processes
is WriteCollect. If the set s of values collected is of size n,
it returns this set as a view and terminates the algorithm; else,
the process calls the algorithm recursively. We stress that in
each recursive call the processes communicate with each other
via a new array of single-writer/multi-reader registers, that is
used only in that recursive call.

1,{1}

1,{1,2} 1,{1,3}

2,{2}

2,{1,2}

2,{2,3}
3,{3}

3,{1,3}

3,{1,2,3}

3,{2,3}

2,{1,2,3}

1,{1,2,3}

Fig. 8. ImmediateSnapshots by three processes starting on 1, 2, 3 respectively.
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Fig. 9. Colorless executions of at least three processes starting on 1, 2, 3.

When three processes invoke the algorithm with inputs 1, 2, 3
respectively, the simplicial complex obtained is in Figure 8.
Each triangle (2-simplex) represents a possible execution, and
the vertices are labeled with the views of each one of the
processes at the end of the execution. The fully concurrent
execution, where all three processes collect the views of each
other, and all terminate the algorithm without a recursive call,
is represented by the triangle at the center. This triangle shares
an edge with three other triangles. These represent executions
where two processes see the inputs of all 3 processes and
terminate without a recursive call, while the first process
executes two recursive calls and ends up seeing only its own
input.

The algorithm guarantees that the views of the processes,
at the end of an execution, satisfy the following properties.
Denoting by smi the view of process pi at the end of the
algorithm, we have: Self-inclusion: ∀i : i ∈ smi. Containment:
∀i, j : smi ⊆ smj ∨ smj ⊆ smi. Immediacy: ∀i, j : i ∈
smj ⇒ smi ⊆ smj .

The immediacy property can be rewritten as ∀i, j :
(
i ∈

smj ∧ j ∈ smi

)
⇒ smi = smj . Thus, concurrent

invocations of the task obtain the same view. A snapshot
task is required to satisfy only the first two properties.

B. Colorless Snapshots

The colorless version of algorithm RecursiveIS simply
discards the ids of the processes. It assumes any of the n ≥ 3
robots can start on any of possible inputs, vi for pi. It executes
the same code, except that when a robot produces an output, it
returns only a set values seen. In Figure 9 the possible triangles
are represented, when the algorithm is executed with input
vertices 1, 2, 3, and any number of processes greater than two.
Each vertex, or edge, or triangle, represents the possible outputs
of the processes. For example, the edge with vertices {1} and
{1, 2, 3} is possible in an execution where the processes with
input 1 see only themselves, and the other processes see all
three inputs. Notice that this figure is obtained from Figure 8
by discarding ids from vertices, and merging vertices which
have the same associated set.


