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Introduction

Let (Ω, F, P) be a probability space and (Y n ) n≥1 be independent and identically distributed random variables on (Ω, F, P) taking values in G := GL d (R), d ≥ 2 (the group of invertible d-dimensional real matrices), with common distribution µ. Denote by Γ µ the closed semi-group generated by the support of µ. Let • be the euclidean norm on R d , and for every g ∈ GL d (R), let g := sup x =1 gx .

In all the paper, we assume that µ is strongly irreducible, i.e. that no proper finite union of subspaces of R d are invariant by Γ µ and that it is proximal, i.e. that there exists a matrix in Γ µ admitting a unique (with multiplicity one) eigenvalue with maximum modulus.

For such a measure µ, it is known that there exists a unique invariant measure ν on the projective space X := P d-1 (R) (see for instance Theorem 3.1 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) in the following sense: for any bounded Borel function h from X to R X h(u)ν(du) = G X h(g • u)µ(dg)ν(du) .

(1.1)

1

Moreover, if G log N (g)µ(dg) < ∞ , where N (g) := max( g , g -1 ), (1.2) then (see for instance Corollary 3.4 page 54 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] or Theorem 3.28 of [START_REF] Benoist | Random walks on reductive groups[END_REF]), for every

x ∈ S d-1 , log Y n • • • Y 1 x n -→ n→+∞ λ µ = G X
σ(g, u)µ(dg)ν(du) almost surely, (1.3) where σ(g, x) = log g • x x for g ∈ GL d (R) and x ∈ R d -{0}, x denoting the class of x in X .

Note that the function σ defined above is a cocycle, in the following sense:

σ(gg ′ , u) = σ(g, g ′ • u) + σ(g ′ , u) for any g, g ′ ∈ G and u ∈ X .

(1.4)

Let A k = Y k • • • Y 1 for k ≥ 1 and A 0 = Id.
In this paper we wish to study the asymptotic behavior of sup

x =1 P max 1≤k≤n |log A k x -kλ µ | > n α y , (1.5) 
when α ∈ (1/2, 1], under stronger moment conditions on log N (Y 1 ) than (1.2). This is a way to study rates of convergence in the strong law (1.3). In the probabilistic terminology, the case α ∈ (1/2, 1) corresponds to the moderate deviation regime, and α = 1 to the large deviation regime.

The case α = 1/2 corresponds to the normalization of the central limit theorem. In that case, the asymptotic behavior of (1.5) is due to Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] as soon as log N (Y 1 ) has a moment of order 2 (note that Benoist and Quint do not deal with the maximum in (1.5), but their method also applies in that case, see also Theorem 1(ii) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]). A previous result is due to Jan [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] under a moment of order 2 + ǫ, ǫ > 0.

In this paper, we shall give precise informations on the rate of convergence to 0 (as n → ∞) of (1.5) when α ∈ (1/2, 1], under various moment conditions on the random variable log N (Y 1 ): sub or superexponential moments in Section 2, weak moments of order p > 1 in Section 3, and strong moments of order p ≥ 1 in Section 4.

In Section 2.2 we shall give a moderate deviation principle for the process

n -α (log A [nt] x -[nt]λ µ ), t ∈ [0, 1]
when log N (Y 1 ) satisfies Arcones's tail condition [START_REF] Arcones | The large deviation principle for stochastic processes. I[END_REF] (which is true under an appropriate sub-exponential moment condition). In Section 4 we obtain some results in the spirit of Baum and Katz [START_REF] Baum | Convergence rates in the law of large numbers[END_REF] which complement the results on complete convergence obtained in [START_REF] Benoist | Central limit theorem for linear groups[END_REF] in the case α = 1. When log N (Y 1 ) has a strong moment of order p ∈ (1, 2) and α = 1/p, this gives the rate n (p-1)/p in the strong law of large numbers, which was proved by another method in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], Theorem 1(i).

All along the paper, the following notations will be used: let F 0 = {∅, Ω} and F k = σ(Y 1 , . . . , Y k ), for any k ≥ 1. For any x ∈ S d-1 , define X 0,x = x and X n,x = σ(Y n , A n-1 x) for n ≥ 1. With these notations, for any x ∈ S d-1 and any positive integer k,

log A k x = k i=1 X i,x .
(1.6)

The equality (1.6) follows easily from the fact that σ is a cocycle (i.e. (1.4) holds). In Section 6 we shall present some extensions of our results to general cocycles, in the spirit of Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

2 The case of (sub/super) exponential moments

Upper bounds for large deviations

Let r > 0. In this subsection, we assume that G e δ(log N (g)) r µ(dg) < ∞ , for some δ > 0.

(2.1)

We first consider the case r ≥ 1. In that case, using the spectral gap property, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] proved the following large deviation principle: there exists a positive constant A such that, for any y ∈ (0, A),

lim n→∞ 1 n log P (|log A n x -nλ µ | > ny) = φ(y) . (2.2) 
Of course, this is the best possible result for y ∈ (0, A). However, it does not give any information for large values of y, and the rate function φ is not explicit (in particular, one cannot easily describe the behavior of φ when r varies in [1, ∞)).

The following result, which is obtained via a completely different method, can be seen as a complementary result of (2.2). It gives an explicit (up to a constant) upper bound for φ when y ∈ (0, A), and this upper bound is valid for any y > 0. In particular, we can see the qualitative change in the behavior of large deviations for large y when r varies in [1, ∞). Theorem 2.1. Assume that (2.1) holds for some r ≥ 1. Then there exists a positive constant C such that, for any y > 0, lim sup

n→∞ 1 n log sup x =1 P max 1≤k≤n |log A k x -kλ µ | > ny ≤ -C y 2 1 y∈(0,1) + y r 1 y≥1 . (2.3)
For r ∈ (0, 1), there is no such result as (2.2). Instead, one can prove:

Theorem 2.2. Assume that (2.1) holds for some r ∈ (0, 1). Then there exists a positive constant C such that, for any y > 0, lim sup n→∞ 1 n r log sup

x =1 P max 1≤k≤n |log A k x -kλ µ | > ny ≤ -Cy r . (2.4)
Proofs of Theorems 2.1 and 2.2. Since (log N (g)) 2 µ(dg) < ∞, we infer from the equality (3.9) in [START_REF] Benoist | Central limit theorem for linear groups[END_REF] that, for any x ∈ S d-1 ,

X k,x -λ µ = D k,x + ψ(A k-1 x) -ψ(A k x) , (2.5) 
where ψ is a bounded function and D k,x is F k -measurable and such that E(D k,x |F k-1 ) = 0. The decomposition (2.5) is called a martingale-coboundary decomposition. Such a decomposition has been used for the first time in the paper [START_REF] Gordin | The central limit theorem for stationary processes, (Russian)[END_REF] by Gordin (see also [START_REF] Gordin | Central limit theorem for stationary Markov processes[END_REF]).

Starting from (1.6) and (2.5), for any x ∈ S d-1 and any positive integer k,

log A k x -kλ µ = M k,x + ψ(x) -ψ(A k x) , (2.6) 
where

M k (x) = D 1,x + • • • + D k,x is a martingale adapted to the filtration F k . Clearly, since |ψ(x) - ψ(A k x)| ≤ 2 ψ ∞ , it is equivalent to prove (2.
3) and (2.4) for M k,x instead of (log A k xkλ µ ).

To do this, we first note that if (2.1) holds, then

E e δ|X k,x | r F k-1 ∞ = e δ|σ(g,A k-1 x)| r µ(dg) ∞ ≤ G e δ(log N (g)) r µ(dg) < ∞ . (2.7)
Using again that ψ is bounded we infer from (2.5) and (2.7) that there exists a constant K such that sup

x =1 E e δ|D k,x | r F k-1 ∞ < K , (2.8) 
for any positive integer k.

Starting from (2.8), it remains to apply known results to the martingale M k (x).

To prove (2.3) (case r ≥ 1), we apply Theorem 1.1 of [START_REF] Liu | Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF], which implies that there exists a positive constant c such that, for any y > 0, sup

x =1 P max 1≤k≤n |M k,x | > ny ≤ 2 exp -nc y 2 1 y∈(0,1) + y r 1 y≥1 .
(2.9)

The upper bound (2.3) follows directly from (2.9). Note that a direct application of Theorem 1.1 of [START_REF] Liu | Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] gives us (2.9) without the maximum over k. However, a careful reading of the proof reveals that one can take the maximum over k. The only argument that should be added to the proof is Doob's maximal inequality for non-negative submartingales, which implies that E e λ max 1≤k≤n M k,x ≤ E e λMn,x , for any λ > 0.

To prove (2.4) (case r ∈ (0, 1)), we apply Theorem 2.1 of [START_REF] Fan | Deviation inequalities for martingales with applications to linear regressions and weak invariance principles[END_REF] (see also the proof of Proposition 3.5 of [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF]) and more precisely the upper bound (13) in [START_REF] Fan | Deviation inequalities for martingales with applications to linear regressions and weak invariance principles[END_REF], which implies that there exist two positive constants c 1 and c 2 such that sup

x =1 P max 1≤k≤n |M k,x | > ny ≤ 4 exp (-c 1 (ny) r ) , for any y > c 2 n -(1-r)/(2-r) .
(2.10)

The upper bound (2.4) follows directly from (2.10). ♦

A moderate deviation principle

Let (b n ) n≥0 be a sequence of positive numbers satisfying the following regularity conditions:

The functions f (n) = For x ∈ S d-1 , let

Z n,x = log A [nt] x -[nt]λ µ b n , t ∈ [0, 1] .
The process Z n,x takes values in the space D([0, 1]) equipped with the usual Skorokhod topology. The following functional moderate deviation principle holds: (2.12)

Then, for any x ∈ S d-1 , n -1 E((log A n x -nλ µ ) 2 ) → V as n → ∞
, where V does not depend on x. Moreover, for any Borel set

Γ ⊂ D([0, 1]), -inf ϕ∈Γ • I V (ϕ) ≤ lim inf n→∞ n b 2 n log inf x =1 P (Z n,x ∈ Γ) ≤ lim sup n→∞ n b 2 n log sup x =1 P (Z n,x ∈ Γ) ≤ -inf ϕ∈ Γ I V (ϕ) , (2.13) 
where

I V (h) = 1 2V 1 0 h ′ (u) 2 du
if simultaneously V > 0, h(0) = 0 and h is absolutely continuous, and I V (h) = +∞ otherwise.

Remark 2.1. Let (b n ) n≥0 be a sequence of positive numbers satisfying (2.11). If (X i ) i≥1 is a sequence of independent and identically distributed random variables, Arcones [START_REF] Arcones | The large deviation principle for stochastic processes. I[END_REF] proved that the functional moderate deviation principle holds provided E(X 2 1 ) < ∞ and lim sup

n→∞ n b 2 n log nP(|X 1 | > b n ) = -∞ . (2.14) 
Moreover, he showed that condition (2.14) is also necessary for the moderate deviation principle. Note that our condition (2.12) is exactly Arcones's tail condition for the random variable log N (Y 1 ). When b n = n α with α ∈ (1/2, 1), the tail condition (2.12) is true if

µ {log N > x} ≤ e -x β a(x) ,
for β = 2 -(1/α) and a function a such that a(x) → ∞ as x → ∞ (note that β ∈ (0, 1), so only a sub-exponential moment is needed for log N (Y 1 )).

Remark 2.2. Applying the contraction principle, Theorem 2.3 implies in particular that, for any Borel

set Γ ⊂ R + , -inf y 2 2V , y ∈ Γ • ≤ lim inf n→∞ n b 2 n log inf x =1 P max 1≤k≤n |log A k x -kλ µ | b n ∈ Γ ≤ lim sup n→∞ n b 2 n log sup x =1 P max 1≤k≤n |log A k x -kλ µ | b n ∈ Γ ≤ -inf y 2 2V , y ∈ Γ .
Note that a partial result in this direction has been obtained in [START_REF] Benoist | Random walks on reductive groups[END_REF], Proposition 11.12. In that Proposition, the authors proved a moderate deviation principle for (log A n xnλ µ ) and the collection of open intervals, under an exponential moment for log N (Y 1 ). However, their result is stated in a more general framework than ours (see Section 6 of the present paper for an extension of Theorem 2.3 to general cocycles).

Proof of Theorem 2.3. Since (log N (g)) 2 µ(dg) < ∞, the decomposition (2.6) holds, and it is equivalent to prove (2.13) for the process

Zn,x = M [nt],x b n , t ∈ [0, 1]
instead of Z n,x . Now, by a standard argument, to get the result uniformly with respect to x ∈ S d-1 in (2.13), it suffices to prove the functional moderate deviation principle for the process Zn,xn , where (x n ) n≥1 is any sequence of points in S d-1 . The result will follow from the next proposition, which is a triangular version of Theorem 1 in [START_REF] Djellout | Moderate deviations for martingale differences and applications to φ-mixing sequences[END_REF]. This proposition is in fact a corollary of a more general result for triangular arrays of martingale differences which can be deduced from Puhalskii's results and Worms's paper (see [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF] and [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF]). We refer to Theorem 5.1 of the Appendix for a complete statement and some elements of proof.

Before giving the statement of this proposition, we need more notations. Assuming (2.11), we can construct the strictly increasing continuous function f (x) that is formed by the line segments from (n, f (n)) to (n + 1, f (n + 1)). Similarly we define g(x) and denote by

c(x) = f -1 (g(x)) .
(2.15)

Proposition 2.4. Let d i,n ) 1≤i≤n be a triangular array of real-valued square-integrable martingale differences, adapted to a triangular array of filtrations (F i,n ) 0≤i≤n . Let (b n ) n≥0 be a sequence of positive numbers satisfying (2.11), and let

Zn = d 1,n + • • • + d [nt],n b n , t ∈ [0, 1] .
Assume that the three following conditions holds 1. There exists a positive number V such that, for any δ > 0 and any t ∈

[0, 1], lim sup n→∞ n b 2 n log P     1 n [nt] i=1 E(d 2 i,n |F i-1,n )   -V t > δ   = -∞ . (2.16) 2. For any ε > 0 and δ > 0, lim sup n→∞ n b 2 n log P 1 n n i=1 E d 2 i,n 1 |d i,n |>εnb -1 n F i-1,n > δ = -∞ .
(2.17)

3. n b 2 n log sup n≤m≤c(n+1) sup 1≤k≤m n P |d k,m | > b n |F k-1,m ∞ → -∞ as n → ∞ , (2.18) 
where c(n) is defined in (2.15).

Then, for any Borel set

Γ ⊂ D([0, 1]), -inf ϕ∈Γ • I V (ϕ) ≤ lim inf n→∞ n b 2 n log P Zn ∈ Γ ≤ lim sup n→∞ n b 2 n log P Zn ∈ Γ ≤ -inf ϕ∈ Γ I V (ϕ) , (2.19) 
where I V is defined as in Theorem 2.3.

Let us conclude the proof of Theorem 2.3. Let (x n ) n≥1 be any sequence of points in S d-1 . We apply Proposition 2.4 to the martingale differences d i,n = D i,xn (recall that D i,x is the martingale difference of the decomposition (2.5)). Condition (2.17) is clearly satisfied thanks to (2.5) and the fact that

E X 2 k,xn 1 |X k,xn |>εnb -1 n F k-1 ∞ = (σ(g, A k-1 x n )) 2 1 |σ(g,A k-1 xn)|>εnb -1 n µ(dg) ∞ ≤ G (log N (g)) 2 1 log N (g)>εnb -1 n µ(dg) .
To check Condition (2.16), we apply Proposition 3.1 in [START_REF] Benoist | Central limit theorem for linear groups[END_REF], which implies that, for any δ > 0 and any t ∈ [0, 1], there exist A > 0 and α > 0 such that, for the variance V defined in Theorem 2.3,

P     1 n [nt] i=1 E(D 2 i,xn |F i-1 )   -V t > δ   ≤ Ae -αn .
Condition (2.16) follows then easily, since n 2 b -2 n → ∞ as n → ∞. It remains to check Condition (2.18). By (2.5) again, it is equivalent to prove the condition for

X k,xm instead of D k,xm . Now E 1 |X k,xm |≥bn F k-1 ∞ = 1 σ(g,A k-1 xm)≥bn µ(dg) ∞ ≤ µ {log N ≥ b n } ,
and the result follows by (2.12). ♦

3 The case of weak moment of order p > 1

In this section, we study the asymptotic behavior of (1.5) when log N (Y 1 ) has only a weak moment of order p > 1.

Theorem 3.1. Let p > 1 and and assume that

sup t>0 t p µ {log N > t} < ∞ . (3.1)
Let α ∈ (1/2, 1] and α ≥ 1/p. Then there exists a positive constant C such that, for any y > 0, lim sup

n→∞ n αp-1 sup x =1 P max 1≤k≤n | log A k x -kλ µ | > n α y ≤ C y p . (3.2)
Proof of Theorem 3.1.

The case p > 2. In that case the decomposition (2.6) holds, and it is equivalent to prove (3.2) for M k,x instead of (log A k xkλ µ ). To do this, we shall apply the following inequality due to Haeusler [START_REF] Haeusler | An exact rate of convergence in the functional central limit theorem for special martingale difference arrays[END_REF]: for all γ, u, v > 0,

P max 1≤k≤n |M k,x | ≥ γ ≤ n i=1 P (|D i,x | ≥ u) + 2P n i=1 E(D 2 i,x |F i-1 ) ≥ v + 2 exp γu -1 1 -log γuv -1 . (3.3) Note that if (3.1) holds for p > 2, then E X 2 k,x |F k-1 ∞ = (σ(g, A k-1 x)) 2 µ(dg) ∞ ≤ G (log N (g)) 2 µ(dg) < ∞ , (3.4) 
and there exists a positive constant C such that

E 1 |X k,x |≥u F k-1 ∞ = 1 σ(g,A k-1 x)≥u µ(dg) ∞ ≤ µ {log N ≥ u} ≤ C u p , (3.5) 
for any u > 0 and any positive integer k. Using again that ψ is bounded we infer from (2.5) and (3.4) that there exist two positive constants c 1 , c 2 such that sup

x =1 E D 2 k,x |F k-1 ∞ ≤ c 1 , (3.6) 
sup u>0 u p sup x =1 P (|D k,x | ≥ u) ≤ sup u>0 u p sup x =1 E 1 |D k,x |≥u |F k-1 ∞ ≤ c 2 , (3.7) 
for any positive integer k. Taking γ = n α y, u = n α y/r with r ∈ (0, ∞), and v = 2nc 1 in (3.3), we get

P max 1≤k≤n |M k,x | ≥ n α y ≤ c 3 1 y p n αp-1 + 1 y 2r n (2α-1)r , (3.8) 
for some positive constant c 3 . Selecting r > (αp -1)/(2α -1), the upper bound (3.2) follows directly from (3.8).

The case p ∈ (1, 2). Let x ∈ S d-1 . We have

log A n x -nλ µ = n k=1 (X k,x -λ µ ) = n k=1 (D k,x + R k,x ) := M n,x + U n,x ,
where

D n,x = σ(Y n , A n-1 x) - G σ(g, A n-1 x)µ(dg), and R n,x = G σ(g, A n-1 x)µ(dg) -λ µ .
Notice that E(D k,x |F k-1 ) = 0. We use now the basic inequality

P max 1≤k≤n | log A k x -kλ µ | ≥ n α y ≤ P max 1≤k≤n |M k,x | ≥ n α y/2 + P max 1≤k≤n |U k,x | ≥ n α y/2 . (3.9)
We first deal with the second term on the right-hand side of (3.9). We shall need the following extension of Theorem 3 in [START_REF] Wu | Moderate deviations for stationary processes[END_REF]. The proof is given in Appendix.

Theorem 3.2. Let p ∈]1, 2[ and (X k ) k∈Z be a sequence of real-valued random variables in L p and adapted to a non-decreasing filtration

(F k ) k∈Z . Let S i = X 1 + • • • + X i and S * n = max 1≤i≤n |S i |.
Then, for any n ≥ 1,

S * n p ≤ (2c p + 1)   n j=1 X j p p   1/p + 2 (p-1)/p (2c p + 1) r-1 j=0   2 r-j k=1 E(S k2 j -S (k-1)2 j |F (k-1)2 j ) p p   1/p , (3.10) 
where c p = 2 1/p p p-1 and r is the unique positive integer such that 2 r-1 ≤ n < 2 r .

For k ≤ 0, set R k,x = R 0,x and F k = F 0 . Observe that |R k,x | ≤ G log N (g)µ(dg) < ∞ for every k ≥ 0.
Hence we may apply Theorem 3.2 with X k := R k,x . With that choice, we have

S k2 j -S (k-1)2 j = 2 j ℓ=1 R (k-1)2 j +ℓ,x ,
and, using independence (twice),

E(R (k-1)2 j +ℓ,x |F (k-1)2 j ) ≤ sup y∈S d-1 G (E (σ(g, A ℓ-1 y)) -λ µ ) µ(dg) = sup y∈S d-1 |E(X ℓ,y ) -λ µ | .
Let n ≥ 1 and r ≥ 1 be such that 2 r-1 ≤ n < 2 r . We infer that there exists C p > 0, such that

max 1≤k≤n |U k,x | p ≤ C p n 1/p + C p r-1 j=0 2 (r-j)/p 2 j ℓ=1 sup y =1 |E(X ℓ,y ) -λ µ | ≤ C p n 1/p + C p 2 1/p 2 1/p -1 n 1/p ℓ≥1 sup y =1 |E(X ℓ,y ) -λ µ | ℓ 1/p . ( 3.11) 
Recall that (3.1) holds for p ∈ (1, 2). Hence, for any r < p, by (6) of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], 

n≥1 n r-2 sup y =1 |E(X n,y ) -λ µ | < ∞ . ( 3 
P max 1≤k≤n |U k,x | ≥ yn α /2 ≤ (2 Cp ) p n y p n pα , (3.14) 
which ends the control of the second term on the right-hand side of (3.9). We now deal with the first term on the right-hand side of (3.9), that is the martingale term. We shall need the following result (to be proved in Appendix). It is a maximal-version of Theorem 2.5 in [START_REF] Gouëzel | Moment bounds and concentration inequalities for slowly mixing dynamical systems[END_REF] (a von Bahr-Esseen inequality for martingales having weak moments of order p ∈ (1, 2)). For a real-valued random variable X, let X p,∞ = sup t>0 t(P(|X| > t)) 1/p . Proposition 3.3. Let (D n ) n∈N be a sequence of (F n ) n∈N -martingale differences in weak-L p , p ∈ (1, 2). Then The case p = 2. We start from (3.9). Note first that the upper bound (3.14) still holds for p = 2, with the same proof. We now deal with the first term on the right-hand side of (3.9). Instead of Proposition (3.3), we shall use the following result of Hao and Liu [START_REF] Hao | Convergence rates in the law of large numbers for arrays of martingale differences[END_REF] (see also Theorem 14 in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]): if

P(|D k,x | > y) ≤ P(X > y)
for any y > 0 and some positive random variable X, then, for every q > 1, every γ ∈ (1, 2] and every L ∈ N, there exists C > 0, such that for every n ≥ 1 and every λ > 0,

P max 1≤k≤n |M k,x | ≥ λ ≤ nP X > λ 4(L + 1) + C (λ) qγ(L+1)/(q+L) E(|D 1,x | γ |F 0 ) + • • • + E(|D n,x | γ |F n-1 ) q(L+1)/(q+L) q . (3.16)
We apply (3.16) with X = log N (Y 1 ) + E(log N (Y 1 )). Since (3.1) holds with p = 2, then X has a weak moment of order 2, and, for every γ ∈ (1, 2), there exists C γ > 0 such that for every n ≥ 1,

E(|D n,x | γ |F n-1 ) ∞ ≤ C γ .
Hence, for every integer L and every q > 1, there exists C > 0 such that

P max 1≤k≤n |M k,x | ≥ n α y/2 ≤ nP X ≥ n α y 8(L + 1)
+ Cn q(L+1)/(q+L) (n α y) qγ(L+1)/(q+L) .

Since α > 1/2 one may find γ ∈ (1, 2), such that γα > 1. For such a choice, taking q = L large enough, we obtain the desired result. ♦ 4 The case of strong moments of order p ≥ 1

In this section, we prove some results in the spirit of Baum and Katz [START_REF] Baum | Convergence rates in the law of large numbers[END_REF] for the quantity (1.5). Let α ∈ (1/2, 1] and α ≥ 1/p. Then for any y > 0

n≥1 n αp-2 sup x =1 P max 1≤k≤n | log A k x -kλ µ | > n α y < ∞ . (4.2) 
Remark 4.1. Theorem 4.1 is due to Benoist-Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] in the case where α = 1 and p > 1.

Remark 4.2. Let us recall a well known consequence of (4.2), when p ∈ [1, 2) and α = 1/p. The sequence max 1≤k≤n | log A k xkλ µ | being non-decreasing, Inequality (4.2) with α = 1/p is equivalent to

N ≥1 sup x =1 P max 1≤k≤2 N | log A k x -kλ µ | > 2 N/p y < ∞ . (4.3) 
This implies that, for any x ∈ S d-1 , the sequence(2 -N/p max 1≤k≤2 N | log A k xkλ µ |) N ≥1 converges completely. It follows easily that, for any x ∈ S d-1 , n -1/p (log A k xkλ µ ) converges to 0 almost surely as n → ∞. Hence (4.2) is a more precise statement than Theorem 1(i) of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF].

Of course, (4.2) does not hold for p = 2 and α = 1/2. Instead, we have the following result, which implies a bounded law of the iterated logarithm. Theorem 4.2. Assume that (log N (g)) 2 µ(dg) < ∞, and let V be defined as in Theorem 2.3. Then for any y > √ V ≥ 0, we have 

n≥1 1 n sup x =1 P max 1≤k≤n | log A k x -kλ µ | > y 2n log log n < ∞ . ( 4 
| log A n x -nλ µ | √ 2n log log n ≤ √ V , almost surely.
Of course, this is a less precise result than the compact law of the iterated logarithm, which also holds provided (log N (g)) 2 µ(dg) < ∞ (for instance, this is a consequence of Theorem 1(iii), case p = 2, of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]). Note however that (4.4) and the compact law of the iterated logarithm are two different results, which cannot be deduced from one another.

Proof of Theorem 4.1. The proof follows the line of that of Theorem 3.1.

The case p ≥ 2. In that case the decomposition (2.6) holds, and it is equivalent to prove (4.2) for M k,x instead of (log A k xkλ µ ).

Starting from (2.5) and (3.5), we see that sup

x =1,k≥1

P (|D k,x | ≥ n α y/r) ≤ µ {log N ≥ n α y/2r} + 1 n α y≤2r(2 ψ ∞ +|λµ|) . (4.5) 
Taking γ = n α y, u = n α y/r with r > 0, and v = 2nc 1 (cf. (3.6) for the definition of c 1 ) in (3.3), we get

P max 1≤k≤n |M k,x | ≥ n α y ≤ nµ {log N ≥ n α y/2r} + n1 n α y≤2r(2 ψ ∞ +|λµ|) + κ 1 y 2r n (2α-1)r , (4.6) 
for some κ 1 > 0. Interverting the sum and the integral, we see that

n>0 n αp-1 µ {log N ≥ n α y/2r} ≤ κ 2 y p (log N (g)) p µ(dg) , (4.7) 
for some positive constant κ 2 depending only on r. Taking r > (αp -1)/(2α -1) in (4.6) and using the upper bound (4.7), the proof of (4.2) is complete for p ≥ 2.

The case p ∈ (1, 2). We start again from (3.9). If (4.1) holds for p ∈ (1, 2) then, by ( 6) of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], (3.12) holds with r = p. Since p + 1/p > 2 and p < 2, there exists q such that p < q < 2 and p + 1/q > 2. Hence, we infer that

n≥1 n -1/q sup x =1 |E(X n ) -λ µ | < ∞ , (4.8) 
and, using (3.11) in L q rather than in L p , we infer that for every n ≥ 1 max

1≤i≤n |U i,x | q ≤ C q n 1/q ,
for some C q > 0. Hence, sup

x =1 P max 1≤k≤n |U k,x | ≥ yn α /2 ≤ (2C q ) q n y q n qα ,
and, since q > p,

n≥1 n αp-2 sup x =1 P max 1≤k≤n |U k,x | > n α y/2 < ∞ . (4.9)
It remains to deal with the first term on the right-hand side of (3.9). Applying (2.5) and (3.5) again, we see that |D k,x | is uniformly (with respect to k and x) stochastically bounded by the random variable log N (Y 1 ) + |λ µ | + 2 ψ ∞ . Following exactly the proof of Theorem 2 of [START_REF] Dedecker | Convergence rates in the law of large numbers for Banach-valued dependent random variables[END_REF], it follows that

n≥1 n αp-2 sup x =1 P max 1≤k≤n |M k,x | > n α y/2 < ∞ , (4.10)
and the proof is complete for p ∈ (1, 2).

The case p = 1. In that case α = 1 also. So, let us start from the inequality (3.9) with α = 1.

The second term on the right-hand side of (3.9) may be handled thanks to a "maximal version" of Proposition 3.1 of [START_REF] Benoist | Central limit theorem for linear groups[END_REF], which implies that: for any y > 0, there exists constants A > 0, α > 0 such that sup

x =1 P max 1≤k≤n |U k,x | ≥ ny/2 ≤ Ae -αn . (4.11)
Note that a direct application of of Proposition 3.1 of [START_REF] Benoist | Central limit theorem for linear groups[END_REF] gives us (4.11) without the maximum over k. To prove (4.11), it is convenient to work on the projective space X := P d-1 (R) rather than on S d-1 . Denote by x the class (in X) of x ∈ R d -{0}. Then, we define U n,x := U n,x . Recall that, by our assumptions, the Markov chain (A n-1 • x) n≥1 with (compact) state space X and transition probability given by P f (x) := G f (g • x)µ(dg) has a unique invariant probability ν. In particular, for every continuous function f on X, the sequence The maximal inequality (4.11) follows then by applying Lemma 23 in [START_REF] Dedecker | Moderate deviations for stationary sequences of bounded random variables[END_REF]. Let us deal with the first term on the right-hand side of (3.9). Let Γ

1 n E n k=1 f A k-1 • x n≥1
n := ∪ n k=1 {log(N (Y k )) ≥ yn} and notice that on Γ c n , σ(Y k , A k-1 x) = σ(Y k , A k-1 x)1 {log(N (Y k ))<yn} . Define Mk,x := k j=1 σ(Y k , A k-1 x)1 {log(N (Y k ))<yn} - G σ(g, A k-1 x)1 {log(N (g))<yn} µ(dg) ,
and note that ( Mk,x ) 1≤k≤n is a martingale. Let

I(n) = G log(N (g))1 {N (g)≥yn} µ(dg) ,
and note that

P max 1≤k≤n |M k,x | ≥ ny/2 ≤ P(Γ n ) + P max 1≤k≤n | Mk,x | ≥ ny/4 + 1 {I(n)≥y/4} .
Using Doob's maximal inequality, we infer that

P max 1≤k≤n |M k,x | ≥ ny/2 ≤ P(Γ n ) + 64 n 2 y 2 E M 2 n,x + 1 {I(n)≥y/4} .
The last term on the right-hand side is equal to 0 for n large enough since (4.1) holds with p = 1. Now, P(Γ n ) ≤ nP(log N (Y 1 ) ≥ yn). Hence it is standard that n≥1 n -1 P(Γ n ) < ∞, since (4.1) holds with p = 1.

On the other hand, sup

x =1 E M 2 n,x ≤ n G (log N (g)) 2 1 {log(N (g))<yn} µ(dg) .
Then, it is also standard that n≥1 n -3 sup x =1 E( M 2 n,x ) < ∞, since (4.1) holds with p = 1. ♦ Proof of Theorem 4.2. In that case the decomposition (2.6) holds, and it is equivalent to prove (4.2) for M k,x instead of (log A k xkλ µ ). Moreover, we have V = E(D 2 1,x ). We shall proceed by truncation. Let y > √ V and set ε := y -√ V . Let n ≥ 1. Let α > 0 be fixed for the moment. For every 1

≤ k ≤ n, define Dk,n,x := D k,x 1 {|D k,x |≤α √ n/ √ log log n} -E D k,x 1 {|D k,x |≤α √ n/ √ log log n} |F k-1
and Mk,n,x = k j=1 Dj,n,x .

Then, using Markov's inequality and stationarity

P max 1≤k≤n |M k,x | > y 2n log log n ≤ P max 1≤k≤n | Mk,n,x | > (y -ε/2) 2n log log n + P max 1≤k≤n |M k,x -Mk,n,x | > y 2n log log n ≤ P max 1≤k≤n | Mk,n,x | > (ε/2) 2n log log n + 2n ε √ 2n log log n E 2|D 1,x |1 {|D 1,x |>α √ n/ √ log log n} .
Now, starting from (2.5) and arguing as in (3.5),

sup x =1,k≥1 E |D 1,x |1 {|D 1,x |>α √ n/ √ log log n} ≤ E (N (Y 1 ) + |λ µ | + 2 ψ ∞ )1 {N (Y 1 )+|λµ|+2 ψ ∞ >α √ n/ √ log log n} . Since (log N (g)) 2 µ(dg) < ∞, it is now standard that n≥1 4 ε √ 2n log log n sup x =1 E |D 1,x |1 {|D 1,x |>α √ n/ √ log log n} < ∞ .
Hence, it remains to prove that

n≥1 1 n sup x =1 P max 1≤k≤n | Mk,n,x | > (y -ε/2) 2n log log n < ∞ . (4.13) 
We shall use the following sharper version of Haeusler's bound (3.3) (see the end of the Proof of Lemma 1 in [START_REF] Haeusler | An exact rate of convergence in the functional central limit theorem for special martingale difference arrays[END_REF]).

P max 1≤k≤n Mk,n,x ≥ γ ≤ n i=1 P | Di,n,x | ≥ u + 2P n i=1 E( D2 i,n,x |F i-1 ) ≥ v + 2 exp γu -1 -(γu -1 + vu -2 ) log(γuv -1 + 1) . (4.14)
Notice that for every 1

≤ k ≤ n, | Dk,n,x | ≤ 2α √ n/ √ log log n and that n i=1 E( D2 i,n,x |F i-1 ) ≤ n i=1 E(D 2 i,x |F i-1 ) . (4.15) By Proposition 3.1 of [4], n≥1 sup x =1 P n i=1 E( D2 i,n,x |F i-1 ) ≥ n( √ V + ε) 2 < ∞ . (4.16) 
We shall apply (4.14) with γ := (yε/2) √ 2n log log n, v := ( √ V + ε) 2 n and u := 4α √ n/ √ log log n. Using that for every t ≥ 0, log(1 + t) ≥ tt 2 /2, we infer that

γu -1 -(γu -1 + vu -2 ) log(γuv -1 + 1) ≤ - γ 2 v -1 2 (1 -γuv -1 ) . Since γ 2 v -1 2 log log n = ( √ V + ε/2) 2 ( √ V + ε/4) 2 > 1 ,
and since γuv

-1 = 4 √ 2α( √ V + ε/2)( √ V + ε/4
) 2 → 0 as α → 0, we can choose α small enough in such a way that there exists δ > 1 for which

exp γu -1 -(γu -1 + vu -2 ) log(γuv -1 + 1) ≤ (log n) -δ . (4.17) 
Combining (4.14), (4.15), (4.16) and (4.17) we conclude that (4.13) holds. ♦ and that for any δ > 0,

n b 2 n log P b -1 n n k=1 |d k |1 |d k |>bn ≥ δ ≤ n b 2 n log P max 1≤k≤n |d k | > b n .
Hence, by taking into account conditions (2.17) and (5.1), we can deduce that the process Z ′′ n has a negligible contribution to the functional moderate deviation principle (see Theorem 4.2.13 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]).

On another hand, note that ( dk ) 1≤k≤n is a triangular sequence of martingale differences such that dk ∞ ≤ 2n/b n . Using conditions (2.16) and (2.17), we can apply the functional moderate deviation principle of Puhalskii [START_REF] Puhalskii | Large deviations of semimartingales via convergence of the predictable characteristics[END_REF] which entails that Zn satisfies (2.19). Therefore to end the proof it remains to show that the process Z ′ n has a negligible contribution to the functional moderate deviation principle; that is: for any δ > 0, lim sup

n→∞ n b 2 n log P sup t∈[0,1] |Z ′ n (t)| > δ = -∞ . (5.3) Observe that b -1 n n j=1 E |d k |1 nb -1 n <|d k |≤bn |F k-1 ≤ 1 n n j=1 E d 2 k 1 |d k |>nb -1 n |F k-1 ,
which by using condition (2.17) implies that (5.3) will hold if we can prove that, for any δ > 0, lim sup

n→∞ n b 2 n log P b -1 n n k=1 |d k |1 nb -1 n <|d k |≤bn > δ = -∞ . (5.4) 
With this aim, we use the arguments developed in the proof of Proposition 1 in [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF]. For the sake of clarity, let us give some details. Take λ a positive number and set Y k,λ := 2λbn n |d k |1 nb -1 n <|d k |≤bn . We have

P b -1 n n k=1 |d k |1 nb -1 n <|d k |≤bn > δ = P n k=1 Y k,λ > 2λδb 2 n n ≤ P n k=1 Y k,λ -log E e Y k,λ |F k-1 > λδb 2 n n + P n k=1 log E e Y k,λ |F k-1 > λδb 2 n n .
Since the Y k,λ are F k -measurable, we have

E n k=1 e Y k,λ n k=1 E(e Y k,λ |F k-1 ) = 1 . Hence lim sup n→∞ n b 2 n log P n k=1 Y k,λ -log E e Y k,λ |F k-1 > λδb 2 n n ≤ -λδ ,
which is going to -∞ by letting λ tend to ∞. Hence, to prove (5.4) (and then (5.3)), it suffices to show that, for any positive λ, δ,

lim sup n→∞ n b 2 n log P n k=1 log E e Y k,λ |F k-1 > λδb 2 n n = -∞ .
This holds under condition (5.2) by taking into account that e x1 A -1 = (e x -1)1 A and also that log(1 + u) ≤ u for any x > 0, u > 0. The proof of Theorem 5.1 is therefore complete. ⋄ End of the proof of Proposition 2.4. We start with some observations. Obviously condition (5.2) holds under the stronger one: for any λ > 0, lim sup

n→∞ n b 2 n n k=1 E e λbn|d k,n | n 1 nb -1 n <|d k,n |≤bn |F k-1,n ∞ = 0 .
Note now that this condition is equivalent to the following one. There is a constant C with the following property: for any λ > 0 there exists a positive integer N (λ) such that for n > N (λ),

n b 2 n n k=1 P |d k,n | > unb -1 n |F k-1,n ∞ ≤ C exp(-λu) for all 1 ≤ u ≤ b 2 n /n . (5.5) 
(The proof of this equivalence can be done by following the proof of Comment 6 in [START_REF] Merlevède | Functional moderate deviations for triangular arrays and applications[END_REF]). To end the proof of the proposition, it remains to show that condition (2.18) implies (5.5) (since it obviously implies condition (5.1)). Under the regularity conditions (2.11), this can be achieved by following the lines of the proof of Corollary 7 in [START_REF] Merlevède | Functional moderate deviations for triangular arrays and applications[END_REF] (by taking s n = √ n, k n = n and a n = n/b 2 n ). ⋄

Proof of Theorem 3.2

Proof. The proof follows the lines of the proof of Theorem 3 in [START_REF] Wu | Moderate deviations for stationary processes[END_REF], but in the non-stationary setting, and is then done by induction. For n = 1, the inequality is clearly true. Assume that the inequality holds up to n -1 for any sequence (X k ) k∈Z of real-valued random variables in L p and adapted to a non-decreasing filtration (F k ) k∈Z , and let us prove it for n. Set a p = 2c p + 1. By the triangle inequality 

S * n ≤ max 1≤k≤n k i=1 [X i -E(X i |F i-1 )] + max 1≤k≤n k i=1 E(X i |F i-1 ) . ( 5 
(X i -E(X i |F i-1 )) p ≤ c p n i=1 X i -E(X i |F i-1 ) p p 1/p ≤ 2c p n i=1 X i p p 1/p . (5.7) 
To estimate the impact of the second term in the right-hand side of (5.6), we start by writing n = 2m, or n = 2m + 1 according to a value odd or even of n. Notice that

max 1≤k≤n k j=1 E(X i |F i-1 ) p ≤ max 1≤k≤m 2k i=1 E(X i |F i-1 ) p + max 0≤k≤m |E(X 2k+1 |F 2k )| p . (5.8) 
The second term in the right hand side of (5.8) is estimated in a trivial way:

max 0≤k≤m |E(X 2k+1 |F 2k )| p ≤ m k=0 E(X 2k+1 |F 2k ) p p 1/p ≤ n i=1 X i p p 1/p , (5.9) 
since m is such that n = 2m or n = 2m + 1. For the first term in the right hand side of (5.8), we set

Y i = E(X 2i-1 |F 2i-2 ) + E(X 2i |F 2i-1 ) , W i = i j=1 Y j and G i = F 2i-1 ,
and we note that

max 1≤k≤m 2k i=1 E(X i |F i-1 ) p = max 1≤k≤m k i=1 Y i p .
In addition, (Y k ) k∈Z is a sequence of real-valued random variables in L p and adapted to the nondecreasing filtration (G k ) k∈Z . By the induction hypothesis, noticing that m < 2 r-1 ≤ n,

max 1≤k≤m k i=1 Y i p ≤ a p   m j=1 Y j p p   1/p + 2 (p-1)/p a p r-2 j=0   2 r-1-j k=1 E(W k2 j -W (k-1)2 j |G (k-1)2 j ) p p   1/p . But E(W k2 j -W (k-1)2 j |G (k-1)2 j ) p ≤ E(S k2 j+1 -S (k-1)2 j+1 |F (k-1)2 j+1 ) p .
On another hand,

m j=1 Y j p p ≤ 2 p-1 m i=1 E(X 2i-1 |F 2i-2 ) p p + E(X 2i |F 2i-1 ) p p ≤ 2 p-1 n i=1 E(X i |F i-1 ) 2 p . Therefore max 1≤k≤m 2k i=1 E(X i |F i-1 ) p ≤ 2 (p-1)/p a p n i=1 E(X i |F i-1 ) p p 1/p + 2 (p-1)/p a p r-1 j=1   2 r-j k=1 E(S k2 j -S (k-1)2 j |F (k-1)2 j ) 2 p   1/2 , which gives since n < 2 r , max 1≤k≤m 2k i=1 E(X i |F i-1 ) p ≤ 2 (p-1)/p a p r-1 j=0   2 r-j k=1 E(S k2 j -S (k-1)2 j |F (k-1)2 j ) 2 p   1/2 .
(5.10) So, overall, starting from (5.6) and taking into account the upper bounds (5.7), (5.8), (5.9) and (5.10), Inequality (3.10) follows proving the induction hypothesis at step n. ♦

Proof of Proposition 3.3

Let M > 0. For every 1 ≤ k ≤ n, define

Dk := D k 1 {|D k |≤y} -E D k 1 {|D k |≤y} |F k-1 ,
so that ( Dk ) 1≤k≤n is a sequence of martingale diferences. We have

P   max 1≤k≤n k j=1 (D j -Dj ) ≥ y/2   ≤ 4 y n k=1 E |D k |1 {|D k |>y} . Now, E |D k |1 {|D k |>y)} = y 0 P(|D k | > y)dt + +∞ y P(|D k | > t)dt ≤ p p -1 D k p p,∞ y 1-p .
Hence,

P   max 1≤k≤n k j=1 (D j -Dj ) ≥ y/2   ≤ 4p y p (p -1) n k=1 D k p p,∞ .
( (5.12)

The result follows from (5.11) and (5.12).

General cocycles

It turns out that all the results obtained under moments greater than 2 made use of a martingalecoboundary decomposition with bounded (in L ∞ ) coboundary and of the fact that we study partial sums associated with a cocycle. Another ingredient of general nature used in the proofs is Proposition 3.1 of Benoist-Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. In particular all the results obtained under moments greater than 2 may be generalized to cocycles admitting such a martingale-coboundary decomposition. Such cocycles are called centerable in [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

We shall also give sufficient conditions under which the results under moments weaker than 2 holds for general cocycles.

Let us describe the situations that should be considered in the sequel.

Let G be a locally compact second countable group. Let X be compact and second countable. Assume that G acts continuously on X and denote that action by g • x.

Let σ : G × X → R be a cocycle, meaning that it satisfies the equality (1.4). We shall only be concerned with continuous cocycles. Given a continuous cocycle, define σ sup (g) := sup u∈X |σ(g, u)| for every g ∈ G.

Let µ be a probability measure on the Borel sets of G.

Assume that there exists a unique µ-invariant probability ν on the Borel sets of X, that is a unique probability satisfying (1.1).

Let (Ω, F, P) be a probability space. Assume that there exists a sequence (Y n ) n≥1 of iid random variables on (Ω, F, P) taking values in G with common law µ. Define A n := Y n • • • Y 1 for every n ≥ 1 and A 0 = e the neutral element of G.

Our goal is to study the sequence defined by

S n,u := σ(A n , u) = n-1 k=0 σ(Y k+1 , A k • u)
∀n ≥ 1, ∀u ∈ X . Definition 6.1. We say that σ is centerable if σ sup ∈ L 1 (µ) and if there exist a cocycle σ 0 and a continuous function ψ on X such that G σ 0 (g, u)µ(dg) = λ µ for every u ∈ X, where λ µ := G×X σ(h, v)µ(dh)ν(dv), and σ(g, u) = σ 0 (g, u) + ψ(u)ψ(g • u) ∀(g, u) ∈ G × X . (6.1) Remark 6.1. A sufficient condition for σ to be centerable is Gordin's condition: • Assume that there exist r > 0 and δ > 0 such that G e δ σ r sup (g) µ(dg) < ∞ .

If σ is centerable, then the conclusions of Theorem 2.1 and Theorem 2.2 hold with S k,u in place of log A k x for the corresponding value of r > 0.

• Assume σ sup ∈ L 2 (µ) and lim sup

n→∞ n b 2 n log nµ {σ sup > b n } = -∞ , (6.2) 
for some sequence (b n ) n≥1 satisfying (2.11). Then, if σ is centerable, the conclusion of Theorem 2.3 holds with S [nt],u in place of log A [nt] x .

In the same way, if σ is centerable, in the case of weak moments of order p > 2 (resp. strong moments of order p ≥ 2), the conclusion of Theorem 3.1 (resp. of Theorem 4.1) holds with S k,u in place of log A k x .

n 2 b 2 n

 2 and g(n) = b 2 n are strictly increasing to infinity, and lim
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  where K = 4p/(p -1) + 8/(2p).Now, since (3.1) holds, then so does (3.7). It follows from Proposition 3.3 that sup x =1 P max 1≤k≤2 n |M k,x | ≥ n α y/2 ≤ C y p n αp-1 , (3.15) for some positive constant C. The upper bound (3.2) follows from (3.9), (3.14) and (3.15).
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  converges uniformly (with respect to x) to ν(f ). Hence, there exists an integer m ≥ 1 such that sup x∈X |E(U m,x )| < my/4 .(4.12)
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  (Y n+1 , A n • u))λ µ | = n≥0 sup u∈X G×G σ(g, g ′ • u)µ(dg)µ * n (dg)λ µ < ∞ .

  .12) Since p + 1/p > 2 one can choose r close enough to p in such a way that -1/p < r -2. In particular, it follows that

	ℓ≥1	ℓ -1/p sup y =1	|E(X ℓ,y ) -λ µ | < ∞ .	(3.13)
	Hence, using (3.11),			
		max 1≤i≤n	|U i,x |	p	≤ Cp n 1/p ,
	and			
	sup			
	x =1			

Appendix

Proof of Proposition 2.4

As we shall see the proposition is a consequence of the following more general result concerning the functional moderate deviation principle of an array of martingale differences.

Theorem 5.1. Let (d i,n ) 1≤i≤n be an array of square-integrable martingale differences, adapted to an array of filtrations (F i,n ) 0≤i≤n . Let (b n ) n≥0 be a sequence of positive numbers such that b n / √ n → ∞ and b n /n → 0 as n → ∞, and let

Suppose the conditions (2.16) and (2.17) satisfied. In addition, assume that

and that, for any λ > 0, δ > 0, lim sup

Then, the functional moderate deviation principle (2.19) holds.

Proof of Theorem 5.1. The proof will be done with the help of a truncature argument, using Puhalskii's functional moderate deviation principle for the main part and proving that the other parts have negligible contributions. First, to soothe the notations, we suppress the index n and we denote d k = d k,n and F k = F k,n . We use a tuncation of the variables d k as follows: for all 1 ≤ k ≤ n, let

With these notations, we clearly have that, for any t ∈ [0, 1]