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In this note, we first attempt to generalize the H 2 optimal interpolation conditions for more general reduced order models. To this aim, we first expose the necessary optimality conditions in the case where the reduced system is of dimension one and have a single state delay structure. This can be viewed as a first step toward the H 2 optimal model approximation where the reduced system correspond to an infinite dimensional system. Finally, we illustrate the results with an academic example.

INTRODUCTION

Let us suppose we are given a stable Single-Input/Single-Output (SISO) linear dynamical system described by its transfer function G(s), which is assumed to be meromorphic with poles in the open left half-plane C -(hence analytic in the open right half-plane C + ). A priori, no particular structure will be imposed for the transfer function, although in practice G(s) should represent either a finite dimensional, but large scale, dynamical systems or an infinite-dimensional one, e.g., time-delay systems and irrational transfer functions.

We assume G(s) to be a function in H 2 , the Hilbert space of complex-valued functions F : C → C that are analytic in the open right-half plane (Re(s) > 0) and such that R F(iω)F(iω)dω < ∞. If s ∈ C, we denote its complex conjugate by s ∈ C. This Hilbert space is equipped with the H 2 -inner product defined as,

H, G H2 = 1 2π ∞ -∞ H(iω)G(iω)dω, for H, G ∈ H 2 with the corresponding induced-norm G H2 = G, G 1 2
H2 . Notice that if G(s) and H(s) represent real dynamical systems then H, G H2 = G, H H2 and G, H H2 is real. In addition, G(s) ∈ H 2 is strictly proper system if lim ω→∞ G(±ωi) = 0.

Firstly, let us consider, for given order r, another model Ĥ ∈ H 2 whose transfer function is given by a finite dimensional descriptor state-space

Ĥ(s) = Ĉ( Ês -Â) -1 B, (1) 
where Â, Ê ∈ R r×r , and B, ĈT ∈ R r×1 . The problem of finding a reduced order system Ĥ which is the best H 2 approximation of G ∈ H 2 , i.e.,

G -Ĥ H2 = min

H ∈ H 2 order(H) = r G -H H2

(2) has been largely investigated, see for example [START_REF] Meier | Approximation of linear constant systems[END_REF], [START_REF] Antoulas | An overview of model reduction methods and a new result[END_REF], [START_REF] Gugercin | H 2 model reduction for large-scale linear dynamical systems[END_REF]. The necessary optimality conditions of this problem where first introduced by [START_REF] Meier | Approximation of linear constant systems[END_REF] as interpolation conditions for the SISO case and then generalized to MIMO systems by [START_REF] Gugercin | H 2 model reduction for large-scale linear dynamical systems[END_REF] and [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF]. These latter can be stated as follows:

Proposition These conditions motivated the development of interpolationbased methods to construct the reduced order model Ĥ and this has been a research topic with a lot of new contributions in the past ten years; see for instance [START_REF] Antoulas | Approximation of Large-Scale Dynamical Systems[END_REF] [START_REF] Mayo | A framework for the solution of the generalized realization problem[END_REF], [START_REF] Gugercin | H 2 model reduction for large-scale linear dynamical systems[END_REF] Here, we are interested in revisiting Proposition 1 in the case where the reduced order model has a different structure. Hence, we should consider a reduced order model having the following coprime structure Ĥd (s) = Ĉ(s) K(s) -1 B(s), which is more general than the finite dimensional state-space representation. Indeed, a great amount of models can be represented by such coprime structures and some interpolation-based model reduction methods were already developed; see [START_REF] Beattie | Interpolatory projection methods for structure-preserving model reduction[END_REF] for structure preserving interpolation; for timedelay systems (e.g., K(s) has a multiple-delay structure) see Scarciotti andAstolfi (2014, 2015b) for matching moments using Sylvester equations and Pontes Duff et al. (2015a), [START_REF] Schulze | Data-driven interpolation of dynamical systems with delay[END_REF] and Scarciotti and Astolfi (2015a) for data-driven framework. In this paper, we will consider the case where the reduced order system is described by a single time-delay equation. Therefore, we have B(s) = φ ∈ R, Ĉ(s) = 1 ∈ R and K(s) -1 = 1 s-αe -τ s , with α ∈ R and τ ∈ R + , and its transfer function is given by

Ĥd (s) = φ s -αe -sτ ∈ H 2 . ( 4 
)
We will consider the delay τ is fixed. We call such model Ĥd a single reduced time-delay model of dimension one.

The word dimension here refers to the minimal number of delay-differential equations necessary to represent the model. The model Ĥd has the following time-domain representation:

Ĥd := ẋ(t) = αx(t -τ ) + φu(t) y(t) = x(t)
Hence, the approximation problem is stated as follows :

Problem 1. Given a stable model G(s) ∈ H 2 and τ ∈ R + , find a model Ĥd = φ s-αe -sτ ∈ H 2 such that G -Ĥd H2 = min ( φ, α)∈R 2 G - φ s -αe -sτ H2 (5) 
Although the reduced order system is defined only by two real parameters, i.e., φ, α ∈ R, its infinite dimensional structure generates some very rich H 2 -optimality conditions. Moreover, the results presented here can be seen as a first step towards the H 2 -optimality conditions for more general reduced models.

Notation. From now on, the model Ĥd will be decomposed as

Ĥd (s) = φP τ (s)
where φ ∈ R is the gain part, and P τ (s) = 1 s-αe -sτ is the transfer function containing the spectral information of Ĥd .

Contribution. The main contribution of this paper is to present the generalization of the H 2 -optimality conditions for single reduced time-delay models of dimension one. Moreover, some new H 2 -inner product formula based on the infinite partial fraction decomposition of a single timedelay model is developed throughout Section 2.

Outline. The paper is organized as follows: Section 2 introduces preliminary results on the H 2 -inner product and on the spectral decomposition of single time-delay models. Section 3 presents the main results of this paper, namely the first order optimality condition from Problem 1. Finally, Section 4 illustrates those conditions through an academic example.

PRELIMINARY RESULTS

In this section we provide some new results about the H 2 inner-product computation based on the pole-residue decomposition and about the spectral decomposition of Ĥd . Those results will be useful to prove the main result stated in the next section.

H 2 inner-product properties

Firstly, here is a list of some important properties of the H 2 inner-product: Proposition 2. (H 2 inner-product properties). Let G, H ∈ H 2 are strictly proper transfer functions. Let us suppose moreover that G , H ∈ H 2 . Then the following properties hold:

(1) If φ ∈ C and λ ∈ C -, then φ s-λ , G H2 = φG(-λ).

(2) The derivative with respect to s is an Hermitian operator, i.e., H , G H2 = H, G H2 .

( 1) is an implication of the Cauchy's residues theorem (see [START_REF] Antoulas | Approximation of Large-Scale Dynamical Systems[END_REF] and [START_REF] Gugercin | H 2 model reduction for large-scale linear dynamical systems[END_REF]). Item ( 2) is obtained using integration by parts as follows. Let H, G ∈ H 2 and let us consider the integral over [-ω, ω]. By applying integration by parts one obtains :

) If φ ∈ C and λ ∈ C -, φ (s-λ) 2 , G H2 = -φG (-λ). Proof Item ( 3 
S ω = ω -ω H (iω)G(iω)dω = 1 i H(iω)G(iω) ω -ω Rω + ω -ω H(iω)G (iω)dω Tω .
Since H and G are strictly proper elements of H 2 , then

H H2 < ∞, G H2 < ∞, and lim ω→±∞ H(iω)G(iω) = 0.
In addition, we can take the limit when w goes to infinity because H, H , G and G ∈ H 2 . Hence, the result follows noticing that S ω → H , G H2 , T ω → H, G H2 and R ω → 0 when ω → ∞. Finally, item (3) is obtained by observing that φ s-λ = -φ (s-λ) 2 and applying (1) and (2).

Spectral decomposition of Ĥd

A characterization of the spectral decomposition of Ĥd can be given in terms of the Lambert function. Let us recall the definition of this function. Definition 1. (Lambert function W k ). The Lambert function W k (s) is a multivalued (except at 0) complex function associating for the k th complex branch, a complex number W k (s) such that :

s = W k (s)e W k (s) , k ∈ Z (6) i.
e., given a s ∈ C, for each complex branch. Equation ( 6) has one solution, namely W k (s) (See [START_REF] Corless | On the lambertw function[END_REF]).

The Lambert function has many applications for the analysis and control of time-delay systems (see [START_REF] Yi | Time-delay systems: Analysis and control using the Lambert W function[END_REF]). With the help of the Lambert function, one is able to determine the poles and the infinite partial fraction decomposition of Ĥd . This is stated in the following proposition.

Proposition 3. Let Ĥd = φ s-αe -sτ . Then, the model Ĥd has infinite poles which can be computed using the Lambert function as follows :

λ k = 1 τ W k (τ α), for k ∈ Z (7)
and Ĥd is stable iff 0 < -α < π 2τ . Moreover, if Ĥd = φP τ , the infinite partial fraction decomposition of P τ = 1 s-αe -sτ is given by

P τ (s) = ∞ k=-∞ φ k 1 s -λ k , (8) 
where

φ k = 1 1 + τ λ k .
Proof The poles of Ĥd (s) are the zeros of d(s) = sαe -sτ . Let us suppose that λ k is the pole on the kth complex branch. Then, applying the Lambert function definition, we have

λ k e λ k τ = α ⇔ λ k = 1 τ W k (τ α).
See Cepeda-Gomez and Michiels (2015) for more details.

In order to obtain the partial fraction decomposition of P τ (s) = 1 s-αe -sτ , one should apply the residues formula. Thus, since all the poles of P τ (s) are simple:

φ k = lim s→λ k P τ (s)(s -λ k ) = 1 lim s→λ k s-αe -sτ s-λ k = 1 (s -αe -sτ ) | s=λ k = 1 1 + τ αe -λ k τ = λ k = αe -λ k τ 1 1 + τ λ k .
See Pontes [START_REF] Duff | Model reduction for norm approximation: An application to large-scale time-delay systems[END_REF] for more details.

One should note that Ĥd has an infinite number of poles and that is why it represents an infinite dimensional model.

We present now the infinite partial fraction decomposition of P 2 τ , which will be useful for the proof of the main result. Proposition 4.

Let P τ = 1 s-αe -sτ ∈ H 2 . Then P 2 τ (s) = ∞ k=-∞ ψ k 1 (s -λ k ) 2 + ρ k 1 s -λ k (9) 
where

ψ k = 1 (1 + τ λ k ) 2 and ρ k = 2τ 2 λ k (1 + τ λ k ) 3 .
Proof A similar procedure is followed here such as in Proposition 3. First, notice that all the poles of P 2 τ have multiplicity two. That is why we need the square term as well. To obtain the coefficients one should use the residues formula taking into account that all the poles have multiplicity two. Thus :

ψ k = lim s→λ k P 2 τ (s)(s -λ k ) 2 = 1 (s-αe -sτ ) | s=λ k 2 = 1 (1 + τ λ k ) 2 ρ k = lim s→λ k d ds P 2 τ (s)(s -λ k ) 2 ) = 2τ 2 λ k (1 + τ λ k ) 3 2.3 H 2 -inner product computation
The following proposition allows to compute the H 2 -inner product using the spectral decomposition of Ĥd . Proposition 5. Spectral H 2 -inner product : Let F ∈ H 2 and P τ = 1 s-αe -sτ . Then :

P τ , F H2 = ∞ k=-∞ φ k F(-λ k ), ( 10 
)
where φ k = 1 1+τ λ k . Proof One can straightforward writes :

P τ , F H2 = φ k 1 s-λ k , F H2 = φ k 1 s-λ k , F H2 = φ k F(-λ k )
where the last step we have applied item (1) from Proposition 2. By noticing that λ k is also pole of P τ whose residue is φ k , one can reorder the serie and the result follows.

In addition, we obtain a similar formula of the H 2 -inner product computation using the partial fraction decomposition of P 2 τ (s). This point is the result presented in Proposition 6. Proposition 6. Spectral H 2 -inner product 2 : Let F ∈ H 2 and P τ = 1 s-αe -sτ . Then

P 2 τ , F H2 = ∞ k=-∞ ρ k F(-λ k ) -ψ k F (-λ k ) (11) 
where

ψ k = 1 (1+τ λ k ) 2 and ρ k = 2τ 2 λ k (1+τ λ k ) 3 . Proof Similar to Proposition 5. Thus P 2 τ , F H2 = ρ k 1 s-λ k , F H2 + ψ k 1 (s-λ k ) 2 , F H2 = ρ k 1 s-λ k , F H2 + ψ k 1 (s-λ k ) 2
, F H2 and now one should apply the inner product properties (1) and (3) from Proposition 2. Then, by noticing that λ k is also pole of P 2 τ , one obtains Equation (11).

Other formulas

The following result will be useful to demonstrate the main theorem in the Section 3. Proposition 7.

Let P τ = 1 s-αe -sτ ∈ H 2 . Then :    P τ (s) = -1-τ αe -sτ (s-αe -sτ ) 2 ∂P τ ∂ α (s) = e -sτ (s-αe -sτ ) 2 .
which, by association, leads to :

∂P τ ∂ α (s) = -1 ατ P τ (s) + P τ 2 (s) . ( 12 
)
We are now ready to state the main result of this paper, namely the H 2 optimality conditions for single reduced time-delay models.

MAIN RESULT: H 2 -OPTIMALITY CONDITIONS

In this section, we state and prove an extension of Proposition 1 in the case the reduced order model is a single time-delay model of dimension one, i.e., Ĥd (s) = φ s-αe -sτ . Firstly, let us write the H 2 -mismatch error E between the full model G and the reduced model Ĥd as follows :

E( φ, α) = G -Ĥd 2 H2 = G -Ĥd , G -Ĥd H2
Following the same reasoning developed in [START_REF] Meier | Approximation of linear constant systems[END_REF], let Θ = { φ, α} be a variable parameter defining Ĥd . Let us take the derivative of E with respect to Θ. Since only Ĥd depends on Θ, the derivative of the H 2 -mismatch error with respect to Θ is given by :

∂E ∂Θ = -2 G -Ĥd , ∂ Ĥd ∂Θ H2 . ( 13 
)
Notice that in order to obtain formally Equation ( 13), one needs to justify that the inner-product commute with the partial derivative. This is possible using the Lebesgue Dominated Convergence Theorem. Hence, by using the propositions from Section 2, the following results can be stated.

Proposition 8. The partial derivative of the H 2 error E with respect to the parameters are given analytically by :

       ∂E ∂ φ = -2 G -Ĥd , P τ H2 ∂E ∂ α = 2 φ ατ G -Ĥd , P τ + P τ 2 H2
Proof One has to apply the formula (13) for each parameter and use ∂ Ĥd ∂ φ = P τ and the formula (12). For the second equation, we use the fact that ∂ ∂ φ commutes with the H 2 inner-product.

Finally, by setting those partial derivatives to zero, one obtains the H 2 -optimality conditions for the Problem 1. Moreover, by applying the inner product computation result (10), one has the generalization of the interpolation conditions from Proposition 1.

Theorem 1. Let Ĥd = φ s-αe -sτ ∈ H 2 and G ∈ H 2 . Let us suppose also that G ∈ H 2 . If Ĥd is the best H 2 approximation of G, then : ∞ k=-∞ G(-λ k )φ k = ∞ k=-∞ Ĥd (-λ k )φ k , (14) 
∞ k=-∞ G (-λ k )(φ k -ψ k ) + ∞ k=-∞ G(-λ k )ρ k = ∞ k=-∞ Ĥ d (-λ k )(φ k -ψ k ) + ∞ k=-∞ Ĥd (-λ k )ρ k (15) 
where λ k , for k ∈ Z, are the poles of

H d , φ k = 1 1+τ λ k , ψ k = 1 (1+τ λ k ) 2 and ρ k = 2τ 2 λ k (1+τ λ k ) 3 .
Proof Equation ( 14) is obtained by setting ∂E ∂ φ = 0 and using the H 2 -inner product computation formula (10). Equation ( 15) is obtained by setting ∂E ∂ α = 0 which means G, P τ + P τ 2 H2 = Ĥd , P τ + P τ 2 H2 . Hence, using the Hermitian property from the H 2 -inner product, G, P τ H2 = G , P τ H2 and the result is obtained using the H 2 -inner product computation formula ( 10) and ( 11). Indeed, Theorem 1 generalizes Proposition 1. Due to the infinite dimensional nature of time-delay systems, the H 2optimality conditions here are no longer interpolation conditions and become interpolation of series depending on both G and Ĥd and the spectral decomposition of Ĥd . If we choose τ = 0, i.e., Ĥd (s) = 1 s-α , we get back the result from Proposition 1, because the sum are over the poles and in this case Ĥd has only one pole. The reader should remark that the conditions presented in Theorem 1 are necessary optimality conditions.

APPLICATION

In this section we find one local optimum to Problem 1 when G is a very simple model. Then, we verify numerically that it satisfies the conditions ( 14) and (15).

Let us consider Problem 1 applied to the following very simple model :

G(s) = 10 s 2 + 11s + 10
.

G and G are clearly elements of H 2 . Let us fix τ = 1. Then, Problem 1 consists in finding φ ∈ R and α ∈ (-π/2, 0) which minimizes :

E( φ, α) = G -H d 2 H2 = E( φ, α) 2

H2

where H d (s) = φ s -αe -s . To find a local minimum we have used the MATLAB function fminunc. The criterion was computed solving delay Lyapunov equations (see [START_REF] Jarlebring | Characterizing and computing the H 2 norm of timedelay systems by solving the delay lyapunov equation[END_REF]). The delay state space realization of E( φ, α) used here was Now, let us verify that G and Ĥd satisfy the conditions stated in Theorem 1. Since this result involves infinite sums, we then rely on a truncation scheme to evaluate them. Let us use the set :

E( φ, α) := ẋ(t) = Ax(t) + A τ x(t -τ ) + Bu(t) y(t) = Cx(t)
D N = {first N dominant poles of P τ (s)} = {λ k = W k (-α), k = -N, -N + 1, . . . , N -2, N -1}
to compute an approximation of the infinite sum. Notice we have chosen the poles λ k to go from -N to N -1 so that D N is closed under complex conjugation, i.e., if λ ∈ D N , λ ∈ D N . In this way, the model constructed by modal truncation is real. Then one should have :

S 1,G,N = N -1 k=-N G(-λ k )φ k ≈ N -1 k=-N Ĥd (-λ k )φ k = S 1, Ĥd ,N and S 2,G,N = N -1 k=-N G (-λ k )(φ k -ψ k ) + N -1 k=-N G(-λ k )ρ k ≈ S 2, Ĥd ,N = N -1 k=-N Ĥ d (-λ k )(φ k -ψ k ) + N -1 k=-N Ĥd (-λ k )ρ k .
The following table shows the truncation results for different number of poles : This approximation shows that the truncation conditions are close to the optimality conditions from Theorem 1.

N S 1,G,N S 1, Ĥd ,N S 2,G,N S 2, Ĥd ,N 2 

CONCLUSION

In this paper, the H 2 -optimality conditions for single reduced time-delay models of dimension one were found as an extension of the interpolation results from the delayfree case (see Proposition 1). In order to prove the main theorem, some results about the spectral decomposition of H d and the H 2 -inner product computation where exposed. In addition, an academic example were presented in order to illustrate these conditions. This results have a great potential to be extended to more complex structured reduced models and an algorithm needs to be developed in order to find reduced order models satisfying these new optimality conditions. 
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  Appendix A. ., . H2 AND ∂ ∂ α COMMUTATION Proposition 9. Let Ĥd = φ s-αe -sτ , where τ ∈ R , α ∈ (-π 2τ , 0) and φ ∈ R. If G ∈ H 2 , then ∂ ∂ α G -Ĥd , G -Ĥd H2 = 2 G -Proposition 3 asserts that Ĥd will be stable for all α ∈ (-π 2τ , 0). Define Hd (s) = φ s -α e -τ s . For any α, α ∈ (-π 2τ , 0), Ĥd , Hd ∈ H 2 andthere is an open neighborhood of α, B α ⊂ (-π 2τ , 0) and a finite M α > 0 such that for all α ∈ B α, | Hd (ıω)| < M α uniformly with respect to α for all ω ∈ R.Now for any fixed α ∈ (e -ıωτ(ıω -α e -ıωτ )(ıω -α e -ıωτ ) = -2 φ e -ıωτ (ıω -α e -ıωτ ) 2 = ∂ ∂ α Ĥd (ıω) for any ω ∈ R. Evidently, ∂ Ĥd ∂α ∈ H 2 so long as α ∈ (-π 2τ , 0). Furthermore, for all α ∈ B α, Ĥd (ıω) -Hd (ıω) the result.