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A Temporal Estimation of Entropy and Its
Comparison With Spatial Estimations

on PolSAR Images
Flora Weissgerber, Elise Colin-Koeniguer, Nicolas Trouvé, and Jean-Marie Nicolas

Abstract—Most of the applications of SAR polarimetry such as
classification are based on estimation of the polarimetric covari-
ance matrix. This estimation is generally done through a boxcar
spatial filtering. This estimation process can induce mixture if dif-
ferent scatterers are present in neighboring pixels. Since the po-
larimetric entropy H is a measure of variability, this mixture can
result in a very uniform entropy map. A nonlocal algorithm can
be used to improve the estimation of the covariance matrices. The
entropy maps are smoothed and contrast is better preserved. We
propose a third estimation of H by using a temporal stack. Pixels
are averaged on the time axis instead of on a spatial basis. On the
datasets we studied, the temporal estimation increases the contrast
of H maps. This contrast allows us to better discriminate targets.
Temporal entropy is very influenced by the degree of coherence.
Nevertheless, Htemporal provides additional information, combining
information about the polarimetric stability of scattering mecha-
nisms over time.

Index Terms—Covariance matrix estimation, entropy, polarime-
try, SAR, time series.

I. INTRODUCTION

POLARIMETRIC SAR images are used in a high variety of
remote sensing applications such as forest or agricultural

parameters retrieval, pollution detection in ocean, or glacier
monitoring. The first step to achieve these tasks is most of
the time the estimation of the polarimetric covariance matrices.
Polarimetric covariance matrices are often computed through
boxcar filtering. This process introduces numerous well-known
biases: the number of pixels used in the estimation is often low,
and the statistical ergodicity and homogeneity hypothesis are
often invalidated. Such misestimation of the covariance matrices
can decrease the precision of the whole algorithmic chain.

Polarimetric entropy H has been developed for characteriza-
tion purpose [1]. It is a measure of the variability in a sample set.
This parameter is very sensitive to the estimation process. For
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example, the mixture will result in a high homogeneous entropy
map, and a small sample set will decrease H . Differences in
entropy estimation can be used as an indicator of the quality of
the covariance matrix estimation.

Multiple spatial speckle filtering have already been
developed in order to increase the size of the sample set without
mixing. They can preserve the structures [2], take into account
the intensity of the pixels [3], or choose pixels according to the
distance between covariance matrices in a local [4] or nonlocal
way [5]. On high-resolution images, it is often not possible to
find a large number of pixels following the same distribution, in
particular in urban areas. Moreover, these algorithms can have
a high computational cost.

In this paper, we propose to take advantage of the increase of
multitemporal PolSAR acquisitions. From these multiple Pol-
SAR images, temporal stack can be created, thanks to fine
coregistration algorithms [6], [7]. Thus it become possible to
develop new methods of estimating the covariance matrices that
take into account the temporal behavior of the scatterers. The
temporal behavior of entropy has already been studied over
agricultural areas [8]. But, in this paper, H is always estimated
spatially. We propose here to perform a temporal averaging of
the pixels to estimate H . In this process, the resolution of the
images is preserved.

The temporal estimation of entropy is then compared with the
spatial estimation, on real data, for different types of scatterers
and different acquisition. This work has been initiated in [9]; it
is extended on more datasets with different acquisition bands
and resolutions. These various datasets enable us to draw more
general conclusions. Moreover, more spatial filters are consid-
ered. Among existing spatial filters, we selected the NL-SAR
algorithm because it shows an improvement in H estimation by
avoiding mixing [10]. The boxcar filter is an interesting com-
parison since its limitations are known and all the pixels are
processed the same way.

To separate effects from the acquisition parameters from ef-
fects induced by the estimation process, the comparison on real
data will be preceded with a theoretical analysis on the influence
of causes of misestimation of H . Monte Carlo methods will be
performed to assess the effect of the number of samples used in
the estimation or the correlation between samples among other
causes of misestimation. This theoretical result will allow us to
clarify the results on real data.

The statistics of the SAR images are described in Section II.
We also present the different covariance matrix estimation
methods. The definition of the entropy and its interpretation are
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also reminded. The causes of misestimation of this parameter
are reviewed in Section III. Section IV presents the compari-
son of the boxcar, the NL-SAR, and the temporal estimation
of H . This comparison is performed on real images at various
resolutions, wavelengths, and over urban and natural areas. Fi-
nally, the information provided by the temporal entropy and the
interferometric degree of coherence are compared in Section V.

II. SAR STATISTICS

The SAR images {Im}, m ∈ [[1 M ]] are M polarimetric
acquisitions over the same location. They are coregistered with
a subpixel precision to form a temporal stack. The images are
acquired in a monostatic full polarization mode. They are thus
composed of N = 3 polarization channels.

In homogeneous areas, pixels k can be considered as the sum
of speckle phenomenon s and a thermal noise n:

k = s + n. (1)

The speckle follows a zero-mean circular Gaussian distribu-
tion of covariance matrix C [11]. The thermal noise follows also
a zero-mean circular Gaussian distribution of covariance matrix
N. The covariance matrix of the pixels is noted Γ.

In this paper, the pixels k will be expressed in the Pauli basis:

k = [kHH + kVV 2kHV kHH − kVV ]T (2)

The estimated covariance matrix Γ̃ can be computed through
the sample covariance matrix estimator:

Γ̃ =
1
L

L∑

l=1

klk
†
l . (3)

In this formula, the pixels {k}l are supposed independent.
If the estimation of the covariance matrix Γ̃ is made through a

boxcar filtering, the pixels k are chosen in the neighborhood of
the pixel of interest, as shown in Fig. 1(a). When Γ̃ is estimated
temporally, the pixels k are located in the same coordinates of
the images contained in the temporal stack, i.e., after coregistra-
tion of the different acquisitions. As we can see in Fig. 1(c), there
are no spatial averaging involved in our temporal estimation of
entropy.

The covariance matrix of a pixel can also be estimated using
a sum of weighted covariance matrices:

Γ̃ =
L∑

l=1

w(l)Tl (4)

where w(l) are the weights associated with each sample. This
is done in the NL-SAR algorithm [5] in which the covariance
matrices that are summed {T}l are not necessarily the covari-
ance matrices of neighboring pixels. The weight w is chosen
according to distances between the patches centered on the
pixels of interest: the more similar matrices of the patches are,
the more the covariance matrices of the pixel is taken into ac-
count in the averaging. This estimation process is illustrated in
Fig. 1(b). An equivalent number of looks (ENL) can be com-

Fig. 1. Different process of estimation of the covariance matrix. (a) Boxcar
estimation. (b) NL-SAR estimation. (c) Temporal estimation.

puted from the weights:

ENL =
(
∑

w(l))2
∑

w(l)2 . (5)

The ENL represents the factor of reduction of the variance
performed by the algorithm. It can be interpreted as an equi-
valent number of independent samples used in the averaging,
without taking into account the effect of the zero-padding. In the
implementation of NL-SAR provided in [5], the ENL is rounded
to the closest integer between 0 and 255.

The covariance matrix can also be constructed using a tem-
poral stack of monochannel images acquired in interferometric
mode. In this case, the vector k contains the different responses
of a resolution cell along the time axis. The extra-diagonal terms
Γ̃i,j i ̸= j are called interferometric coherence between the
images i and j. The degree of coherence ρi,j can be defined by

ρi,j =
|Γ̃i,j |√
Γ̃i,iΓ̃j,j

, i ̸= j (6)

which is an indicator of the phase stability between the acquisi-
tions i and j.

The entropy can be computed from eigenvectors {λi} of the
covariance matrix C through the following equation:

H = −
N∑

i=1

pi logN pi, pi =
λi∑N

j=1 λj

. (7)

With this definition, the entropy lies between 0 and 1. If
only one component is needed to explain the covariance matrix,
H is equal to 0, while it is equal to 1 if the powers of three
uncorrelated channels is equal.

When H is estimated from Γ̃, it becomes a measure of vari-
ability among the pixels that have been used to compute the em-
pirical covariance matrix. Indeed, the eigenvectors/eigenvalues
decomposition of the empirical covariance matrix is the first
step of the PCA. To keep H meaningful, all the pixels in the
sample set have to come from the same homogeneous area.

The entropy is denoted Hboxcar when the covariance matrix
is estimated spatially using a boxcar filtering. If the covariance
matrix is estimated through the NL-SAR algorithm, the resultant
H will be denoted HNL-SAR. The parameter Htemporal corresponds
to a covariance matrix estimated using a temporal stack. A high
Hboxcar or HNL-SAR means that there is a great spatial variability
for a given instant, whereas a high Htemporal means that the
scattering mechanisms change between the acquisitions, for a
given resolution cell.
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TABLE I
EIGHT MATRICES USED TO ILLUSTRATED THE CAUSE OF MISESTIMATION

H ᾱ in ◦ Class

C1 0.1 45.5 Z8: Mechanism with different HH and VV return
C2 0.25 75 Z7: Double bounce mechanism
C3 0.40 20 Z9: Surface scattering
C4 0.6 45 Z5: Dipole scattering with different orientation angle
C5 0.76 30 Z6: Prevailing surface scattering from a rough surface
C6 0.8 65 Z4: Double bounce mixed with other mechanisms
C7 0.94 54 Z2: Multiple mechanisms with no particular orientation
C8 0.92 70 Z1: Double bounce mixed with multiple mechanisms

Their expressions can be found in the Appendix.

III. REVIEW OF THE CAUSES OF MISESTIMATION

OF THE ENTROPY

The value of H is very sensitive to the estimation process. It
can be affected by various causes of misestimation.

Among these causes, a bias can be introduced for small
sample sets. The mix of different pixels population impacts
H as well as the thermal noise in low-signal-to-noise-ratio
(SNR) areas. Finally, the correlation between samples induced
by the zero-padding or the interferometric degree of coherence
can modify the values of H .

These causes have already been studied through a Monte
Carlo process [12], [13]. These articles consider only low mix-
ing proportions and low degrees of coherence. We will complete
the previous studies with different scenarios that are represen-
tative of both spatial and temporal estimation: higher mixing
proportion as well as correlation between samples that are more
representative of the interferometric degree of coherence. These
results will shed new light on the study over real data and avoid
wrong interpretation of the scatterers’ behavior.

This study will be conducted using eight Hermitian
semipositive matrices, randomly generated, representative of
the eight possible classes in the initial Cloude and Pottier clas-
sification [1]. The parameters of these matrices are given in the
Table I, and their expressions can be found in the Appendix.

A. Number of Samples

The number of selected samples has an important impact on
the estimation of H [13]–[16]. In this section, we summarize
these results and illustrate them for the lowest number of pixels
used for the estimation in Section IV. The mean entropy esti-
mated with 3, 6, and 100 pixels has been calculated 100 times
using a Monte Carlo process. Confidence intervals are reported
in Table II. Histograms of the estimation of entropy samples are
shown in Fig. 2.

Entropy is underestimated when a few pixels are used. The
bias increases with the true value of H . More than 100 pixels
can be needed to estimate H without bias. Fig. 2 also illustrates
that the mode of these distributions is below the entropy true
value. Nevertheless, this figure shows that some contrast can
be preserved if H is always estimated with the same number of
samples: if six samples are used, low, medium, and high entropy

TABLE II
CONFIDENCE INTERVAL FOR H

N H ⟨H ⟩ − 3σH ⟨H ⟩ ⟨H ⟩ + 3σH

C3 3 0.40 0.28 0.28 0.29
C3 6 0.40 0.34 0.34 0.35
C3 100 0.40 0.39 0.39 0.39
C4 3 0.60 0.39 0.40 0.40
C4 6 0.60 0.50 0.50 0.50
C4 100 0.60 0.60 0.60 0.60
C8 3 0.92 0.56 0.56 0.56
C8 6 0.92 0.73 0.74 0.74
C8 100 0.92 0.91 0.91 0.91

The mean of H is denoted ⟨H ⟩ and its standard deviation is denoted σH .

Fig. 2. Histograms of the H values for matrices C3 (H = 0.4) C4 (H
= 0.6) and C8 (H = 0.91) . (a) Three samples. (b) Six samples.
(c) Hundred samples.

Fig. 3. H for mixed pixel populations or for a signal mixed with noise. (a) H
for mixed pixel populations. (b) H in presence of thermal noise.

can still be differentiated even if the boundary of these classes
is not the theoretical one found in [1].

B. Mix of Pixels From Different Populations and Influence of
the Thermal Noise

When different homogeneous areas are mixed during the es-
timation, H does not represent the variability of a particular
speckle law but the variability introduced by the estimation.
To our knowledge, there is no theorem on the eigenvalues and
eigenvectors of the sum of Hermitian matrices. In order to illus-
trate the effects of mixing, we compute the entropy of covariance
matrices that are the sum of two different covariance matrices
of Table I with different mixing proportions r. The estimated
entropy can be seen in Fig. 3(a). The entropy of the mixed popu-
lations can reach higher values than the entropies of the original
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covariance matrices. Moreover, this increase in H seems to be
higher if their original ᾱ are very different. For example, the
mix of C1 with C4 that have both an alpha angle near 45◦ has
a maximum entropy of 0.63 which is not much more than the
0.6 inital entropy of C4 . On the other hand, the mix of C2 with
C3 can reach 0.76, while the initial entropy is around 0.45 for
C3 and 0.25 for C2 , but they have an ᾱ angle of 20◦ and 70◦,
respectively.

The influence of the thermal noise on H can be modeled as a
mixing with the matrix of the noise. If the noise is decorrelated
and white, N = σ2Id , where Id is the identity matrix and σ2 the
power of the noise. This matrix has an entropy of 1.

The effect of the noise is quantified by the SNR in dB. In this
experience, we define the SNR as the ratio between the power
of the most energetic channel and the power of the noise. The
result of this simulation can be seen in Fig. 3(b). As expected,
the thermal noise increases the entropy of the whole signal. The
log scale makes the curves begin with a plateau before rising,
eventually reaching H = 1. The rise begins for higher SNR and
the slop is bigger when the original entropy is lower.

C. Correlation Between Samples

A correlation between the samples used in the estimation
can be introduced spatially by the zero-padding. Temporally,
this correlation is expressed by the interferometric degree of
coherence defined in (6).

To illustrate the effect of a constant correlation between sam-
ples on H , we draw one vector from a speckle law of covariance
matrix Υ:

Υ =

⎡

⎢⎢⎢⎢⎣

C R R ... R
R C R ... R
R R C ... R
... ... ... ...
R R R ... C

⎤

⎥⎥⎥⎥⎦
. (8)

The size of Υ is MN × MN , with M being the number of
temporal realizations and N the number of polarization chan-
nels. The matrix R represents the interferometric correlation
and can be defined as

Rn,n ′ =
√

ρnρn ′Cn,n ′ . (9)

The M realizations of the speckle of the polarization channel
n have the same the degree of coherence ρn ∈ [0, 1].

To model the evolution through time of correlation between
the channels, we define Λ as

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎣

C T(1, 2) T(1, 3) ... T(1,M)
T(2, 1) C T(2, 3) ... T(2,M)
T(3, 1) T(3, 2) C ... T(3,M)

... ... ... ...

T(M, 1) T(M, 2) T(M, 3) ... C

⎤

⎥⎥⎥⎥⎥⎥⎦

(10)
where

T(m,m′)n,n ′ =
√

ρnρn ′
|m−m ′|Cn,n ′ (11)

where, for each polarization channel n, ρn ∈ [0, 1].

Fig. 4. Evolution of H with the correlation between samples. (a) H1 for
constant correlated samples. (b) H7 for constant correlated samples. (c) Constant
ρ equal for all the polarizations. (d) H1 for decreasingly correlated samples.
(e) H7 for decreasingly correlated samples. (f) Decreasing ρ equal for all the
polarizations.

To keep the models simple, there is no phase difference
between the acquisition.

We compute a mean entropy through a Monte Carlo process of
100 iterations. At each iteration, we draw a vector of MN = 300
components from Υ or Λ. We decompose the vector in M =
100 scattering vectors of N = 3 components in order to compute
the entropy of the sample set. In this simulation, ρ1 = ρ3 and ρ2
range from 0 to 1. We obtain images of mean entropy that are
represented in Fig. 4 for the matrices C1 and C7 , with a degree
of coherence that can be either constant [see Fig. 4(a) and (b)]
or evolving through time [see Fig. 4(d) and (e)].

The diagonal of these images is the H value when all the
polarization channels have the same degree of coherence. In the
case of a constant degree of coherence, the non independence
between samples decreases drastically the entropy, since the
variability between the samples is lower. The underestimation
is bigger for H closer to 1. The estimated value of an H of 0.9
is 0.5 if the correlation between the samples is 0.8, as shown in
Fig. 4(c). Yet, this value of γ is common in interferometry over
urban areas.

If the degree of coherence differs between the polarimetric
channel, H can increase. The extreme case is when a polariza-
tion channel is completely correlated, while the two other are
completely independent. The extra-diagonal terms of the esti-
mated covariance matrices involving the correlated polarization
channel approach 0, leading to an increase of entropy. The final
value of H depends on the initial covariance matrix. Since the
correlation coefficient between the first and the second channel
is 0.97 for C1 , the decrease of this coefficient due to the corre-
lation of only the first or the second polarimetric channel leads
to the high values that can be seen in Fig. 4(a).

The decrease of degree of coherence modeled by the matrix
Λ limits the decrease in entropy due to the dependence be-
tween samples. The influence of this non dependence becomes
sensitive only for very high degree of coherence, as shown in
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TABLE III
SUMMARY OF THE USED DATASETS

Area Sensor M Band δa δr Campaign

San Francisco UAVSAR 12 L 0.8 m 1.8 m
San Francisco TerraSAR-X 3 X 6 m 2 m
Amsterdam TerraSAR-X 3 X 6 m 2 m
Paracou SETHI 6 P 1.5 m 1.7 m TropiSAR
Remmingstorp SETHI 3 P 0.85m 1m BioSAR-3

Fig. 4(f). The increase of H due to very nonuniform degree of
coherence between polarimetric channels is exacerbated if the
degree of coherence decreases through time.

D. Conclusion

In this section, we have shown that the entropy can be un-
derestimated when too few samples are used in the estimation
of the covariance matrix or when samples are correlated. The
correlation of one polarization channel increases H , as the mix
between two populations or in low-SNR areas. Nevertheless,
these causes of misestimation do not have the same impact even
if they have the same consequences.

1) The lack of samples to estimate H leads to an underes-
timation of H , but with six samples, the contrast seems
mostly preserved. Even though the value of entropy cannot
be trusted when too few samples are used in the estimation
process, a relative classification in high or low entropy can
still be made.

2) The correlation between samples can have two distinct
effects. If the degree of coherence is the same for all
the polarization channels, H decreases with the correla-
tion. This effect is lowered if the degree of coherence
decreases with time. If the degree of coherence between
two polarimetric channels is very dissimilar, H increases.
This augmentation is exacerbated by the diminution of the
correlation through time.

3) The mixing between population increases H . It is not pos-
sible to differentiate homogeneous areas with high entropy
from high entropy due to mixing. Thus, it is really diffi-
cult to differentiate mixing occurring during the acquisi-
tion process from mixing occurring during the estimation
process, leading to potentially wrong interpretation on the
nature of the scatterers present on the scene.

4) The thermal noise increases H . It is a problem especially
for areas with a very low signal and a very low entropy,
such as water.

IV. COMPARISON BETWEEN SPATIAL AND TEMPORAL

ESTIMATION OF THE ENTROPY

After reviewing the cause of misestimation of H , we can
make an informed comparison between the different estimations
of the covariance matrices on real data. The information about
the datasets can be found in Table III. We choose datasets with
various wavelengths and resolution, acquired over urban and
natural areas.

TABLE IV
UAVSAR DATASET FLIGHT LINE HAYWRD_23501

Flight Plan Date Flight Plan Date

1 09006 2009-02-18 7 11071 2011-11-03
2 09092 2009-11-19 8 12017 2012-04-18
3 10008 2010-01-15 9 12126 2012-11-02
4 10024 2010-03-01 10 13088 2013-05-07
5 10031 2010-04-23 11 14088 2014-06-20
6 10080 2010-11-10 12 14165 2014-11-12

A. In Urban Areas

1) UAVSAR Images Over San Francisco: The comparison
between spatial and temporal estimation of the entropy has been
performed on 12 SLC full polarimetric L-band images acquired
by UAVSAR, the JPL airborne system, over the city of San
Francisco between 2009 and 2014. The list of the images can be
found in the Table IV. The azimuth resolution is 0.8 m, while the
range resolution is 1.8 m. The coregistration has been performed
using the eFolki algorithm [6].

Given the large size of the original image, we focus on two
extracts of these images. The first extract is centered on the
SoMa (South of Market) district and highlights the effect of
the building orientation. Indeed, San Francisco is composed of
neighborhoods built following a grid plan with various orien-
tations. In the configuration of these acquisitions, the buildings
of the SoMa district are parallel to the trajectory of the sensor,
which is not the case for the other neighborhoods. On the image
in Pauli color shown in Fig. 5(a), we can see that the orienta-
tion of the buildings changes their polarimetric behavior. The
second extract is over Candlestick Point and shows various types
of targets such as the ocean, a stadium, parking lots, a park, and
some residential areas, as can be seen in Fig. 5(f).

Temporal entropy is computed on the 12 images. The spatial
entropy is computed with a 3 pixels in range and 4 pixels in
azimuth boxcar filter. The number of samples is thus the same
for the two estimation methods. The images of the ENL show
the number of pixels used in the NL-SAR algorithm.

The results are presented in Fig. 5. In this figure, we represent
only Hboxcar and HNL-SAR for the first image of the temporal
stack. This choice is arbitrary since changes can occur in the
temporal stack. In Fig. 6, two extreme Hboxcar are shown, as well
as the corresponding images. The main difference in Hboxcar

occurs over the sea: buildings, parks, and parkings have the
same H level. The Pauli color images show that the images
with the high backscattered signal lead to the lowest entropy.
This increase in Hboxcar over the sea is probably due to the SNR
decrease.

Since there is a temporal change, Htemporal over the sea does
not represent the entropy of a unique kind of scatterers through
the temporal stack but is the result of mixing. Its value is between
the two extremes shown in Fig. 5 and higher than the Hboxcar of
the AIRSAR image [17]. We will thus focus on the other targets
to compare Htemporal, Hboxcar, and HNL-SAR.

The Hboxcar map [see Fig. 5(d) and (i)] is very uniform. The
values of Hboxcar are high, even over buildings. Only bright
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Fig. 5. San Francisco, extract over the SoMa District and Candlestick point, UAVSAR. The results for the boxcar and NL-SAR estimations are represented on
the image acquired on February 18, 2009. (a) NL-SAR Pauli color: SoMa extract. (b) ENL: SoMa extract. (c) Htemporal: SoMa extract. (d) Hboxcar: SoMa extract.
(e) HNL-SAR: SoMa extract. (f) Pauli color NL-SAR: Candlestick extract. (g) ENL: Candlestick extract. (h) Htemporal: Candlestick extract. (i) Hboxcar: Candlestick
extract. (j) HNL-SAR: Candlestick extract.

Fig. 6. Extreme behavior of Hboxcar and the corresponding Pauli color images.
(a) Pauli color 2009-11-19. (b) Pauli color 2010-03-01. (c) Hboxcar 2009-11-19.
(d) Hboxcar 2010-03-01.

point-like scatterers have a low entropy. The uniform Hboxcar can
be explained by the mixing introduced during the estimation.
This mixing should be avoided for HNL-SAR, which is yet very
close to Hboxcar, as we can see in Fig. 5(e) and (j). However, the
aim of the NL-SAR algorithm is denoising. While computing
ΓNL-SAR, the best pixels are chosen, but the algorithm chose
the configuration that maximizes the ENL. The ENL is often
superior to the 12 samples used for Hboxcar since the median
ENL is 25.

The orientation of the targets seems to be the parameter that
influences the most Hboxcar. The Hboxcar of highways winding

through the cities (Highway 80 and Highway 101) changes with
their orientation even if the nature of the target does not change.
Even if the map of HNL-SAR is smoothed, the dependence in the
orientation of the targets remains, as illustrated in Fig. 5(j).

Some classes can be discriminated using Htemporal, as shown
in Fig. 5(c) and (h): buildings have a lower Htemporal than the
bare soil like parking lots. Streets and the parks have the highest
Htemporal and cannot be easily separated. Although the orienta-
tions of the scatterers affect also Htemporal, we can see that the
entropy of highways shows few variations on the image.

The zero padding is approximately of 25% in azimuth and in
range. Using a 3× 4 window leads to 6.75 independent samples.
A 4 × 5 window leads to 11.25 independent pixels and ensures
a fair comparison between Hboxcar and Htemporal. The result can
be seen in Fig. 7(b). The Hboxcar 4 × 5 values are higher, but
their contrast is the same as for Hboxcar 3 × 4 represented in
Fig. 7(a).

Another way to increase the number of pixels could be spa-
tiotemporal averaging. We performed such averaging on the
SoMa extract: for each date, a 3 × 3 boxcar filtering yields co-
variance matrices that are then averaged on the temporal axis.
The result of the spatiotemporal averaging, zoomed at the bor-
der of the SoMa district, can be found in Fig. 7(e). This extract
shows that the advantage of Htemporal, i.e., a low entropy on
buildings independently of their orientation, is lost when a spa-
tial averaging is processed. The Hspatiotemporal map is admittedly
more contrasted that the Hboxcar, but it is less smooth than the
HNL-SAR map and less precise than Htemporal.

This dataset shows a high Hboxcar over urban areas that com-
plicate even a simple urban/non urban classification. The con-
trast provided by the NL-SAR algorithm highlights mostly the
orientation of neighborhood. Even if the value of Htemporal is im-
pacted by the orientation, the nature of the target is predominant
on Htemporal.
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Fig. 7. Comparison between boxcar, NLSAR, temporal, and spatiotemporal
averaging. (a) Hboxcar 3 × 4. (b) Hboxcar 4 × 5. (c) HNL-SAR. (d) Htemporal.
(e) Hspatiotemporal.

Fig. 8. San Francisco, extract over the SoMa district, TerraSAR-X. The result
for the boxcar and the NL-SAR estimations is illustrated on the image acquired
on 2010-04-11. (a) Pauli NL-SAR. (b) ENL. (c) Htemporal. (d) Hboxcar 1 × 3.
(e) Hboxcar 5 × 5. (f) HNL-SAR.

2) TerraSAR-X Quad Pol Images Over San Francisco: For a
closer look at the effects of the resolution on entropy, we com-
pare the temporal, boxcar, and NL-SAR estimation of H over
the SoMa district on TerraSAR-X images. The spatial resolu-
tion is coarser than the UAVSAR resolution: it is around 6 m in
azimuth and 2 m in range. The results are presented in Fig. 8.

Three images, acquired on 2010-04-11, 2010-04-22, and the
2010-04-03, were available. This is not the best configura-
tion since H is drastically underestimated with three samples.
Nevertheless, Htemporal and Hboxcar computed with three samples
follow the same tendencies, as shown in Fig. 8(c) and (d). Con-
trary to H on the UAVSAR images, streets have a lower entropy

Fig. 9. Amsterdam, extract over the city center, TerraSAR-X. The result for
the boxcar and the NL-SAR estimations are illustrated on the image acquired
on 2010-04-21. (a) Pauli color. (b) ENL. (c) Htemporal. (d) Hboxcar 1 × 3.
(e) Hboxcar 5 × 5. (f) HNL-SAR.

than building and H is lower on the SoMa district whose streets
make a 37◦ angle with the trajectory than on other neighbor-
hoods yet aligned with the trajectory. This could be explained
by the presence of high buildings of the SoMa districts, as seen
in Fig. 8(a).

The tendencies of Hboxcar computed with three samples [see
Fig. 8(d)] are confirmed for Hboxcar computed with 25 samples
[see Fig. 8(e)] and for HNL-SAR [see Fig. 8(f)]. The areas with low
or high entropy remain the areas with low or high entropy. The
augmentation of the sample set increases the contrast between
low- and high-entropy areas and sharpens the edge of these areas
when there is no mixing involved.

However, the medium Hboxcar 5 × 5 and the high HNL-SAR

over the buildings outside the SoMa districts is unexpected and
highlights the impact of the resolution on the computation of
H . The AIRSAR [17] or RADARSAT-2 [18] images showed
a low entropy over buildings although H is close to 1 for this
TerraSAR-X dataset or the UAVSAR dataset. The medium and
uniform Hboxcar on the TerraSAR-X San Francisco images seems
induced by mixing during the estimation since streets are nearly
not visible in Fig. 8(e), while they become visible with HNL-SAR

shown in Fig. 8(f).
A difference between mixing during acquisition and during

estimation emerges. If a mechanism becomes dominant during
the acquisition, H on this area will be low. This is the case when
double bounce becomes the dominant scattering mechanism for
buildings in coarse resolution image. On the other hand, mixing
induced during the estimation can lead to a high H , since there
is now variability in the sample set.

3) TerraSAR-X Quad Pol Images Over Amsterdam: The city
of Amsterdam is built in concentric half circles around the
train station, delimited by canals. The variation of the scat-
tering mechanisms due to the variation of the orientation can be
seen on the Pauli color image represented in Fig. 9(a).

We studied three Quad-Pol images acquired by TerraSAR-X
in 2010-04-21, 2010-05-02, and 2010-05-13. The resolution of
these images is 6 m in azimuth and 2 m in range. The results
can be seen in Fig. 9.
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Fig. 10. TropiSAR dataset, Paracou images, extract containing the ground truth plots. The results for the boxcar and the NL-SAR estimations are shown on the
image acquired on 2009-08-12. (a) Pauli color NL-SAR. (b) ENL. (c) Htemporal. (d) Hboxcar 2 × 3. (e) HNL-SAR.

TABLE V
TROPISAR P-BAND TEMPORAL DATASET

ID Date ID Date

1 0104 2009-08-12 4 0402 2009-08-24
2 0208 2009-08-14 5 0506 2009-08-30
3 0305 2009-08-17 6 0603 2009-09-01

The limitations caused by the low number of images in the
temporal stack remain. As expected, Htemporal represented in
Fig. 9(c) is globally very low and shows poor contrast as Hboxcar

computed with three range pixels represented in Fig. 9(d). The
tendencies of Hboxcar remain when 25 pixels are used, as shown
in Fig. 9(e). The contrast is sharper even if the entropy map
is still very noisy. The noise is removed and the contrast is in-
creased when an NL-SAR estimation of the covariance matrices
is performed as we can see in Fig. 9(f).

On these images, the entropy is more influenced by the den-
sity of the neighborhood than by their orientation. The ENL is
represented in Fig. 9(b). It is low in high-entropy areas, showing
that the scattering mechanisms are very different from one pixel
to another.

This dataset shows again the difficulties of characterizing the
urban areas in SAR. Depending on the resolution of the images,
on their orientation and on the density of the neighborhoods,
buildings can show very different scattering behavior and have
a wide range of H .

B. In Natural Areas

1) TropiSAR Dataset: We tested the effects of the temporal
estimation of the entropy on natural areas on images acquired in
French Guiana in 2009. These images belong to the TropiSAR
dataset acquired by ONERA with the airborne system SETHI.
The images are listed in Table V. Their resolution is 1.5 m in
azimuth and 1.7 m in range. We performed the test on an extract
of the Paracou images, acquired at P-band on which ground
truth of the biomass level was available. The information on
these images is summarized in [19].

The covariance matrix is computed spatially using 3 pixels
in azimut and 2 pixels in range. Only the first image is repre-
sented in Fig. 10(d), because the values of Hboxcar did not change
through the temporal stack. The Htemporal map is computed tem-
porally using the six temporal samples of the same pixel and
represented in Fig. 10.

Fig. 11. Link between the entropies and physical parameters. (a) Htemporal.
(b) Hboxcar. (c) HNL-SAR. (d) Biomass (tons). (e) DEM (m).

The image [see Fig. 10(a)] can be divided in three parts: the
first part is the pixels that have a high intensity due to their low
incidence angle. The second part of the image is very hilly. The
HV power is high and the image is very textured by the canopy.
The last part is mostly constituted of flat land.

The values of Hboxcar are really high and show few contrasts:
95% of these values are over 0.5. As we can see in Fig. 10(d),
there is still a spatial organization of these values: in the hilly
parts of the image, Hboxcar is higher than on the flatter parts.
This behavior is kept for HNL-SAR, represented in Fig. 10(e).
Moreover, 95% of these values are over 0.7 even if the ENL
represented in Fig. 10(b) is low compared to the other studied
datasets.

The values of Htemporal are more contrasted than Hboxcar or
HNL-SAR values, but are difficult to explain. The comparison
with the biomass values provided with the images does not give
any correlation. This comparison is done in Fig. 11 for the forest
plot P16. We can notice that the spatial scale of these measures
is very different: the variations of Htemporal are at a pixel level,
while the finest resolution of the biomass cells is 25 m × 25 m.
The local elevation could also explain some Htemporal variations
since the scattering mechanism variability could be increased
by the landscape. To compare the variation of Htemporal with the
landscape, we used the SRTM database. This DEM is repre-
sented for the same forest plot as the biomass and Htemporal in
Fig. 11(e). Since it has a 90-m resolution, it is again very difficult
to compare the elevation variation with the entropy variation,
but Htemporal seems higher when the altitude increases. Never-
theless, a study with a more precise DEM should be conducted
to draw more conclusions.
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Fig. 12. Remningstorp, extract over the lake Acksjön, Västergötland, Sweden. The results for the boxcar and the NL-SAR estimations are represented for the
first image of the temporal stack. (a) Optical image. (b) Pauli color NL-SAR. (c) ENL. (d) Ground Truth. (e) Htemporal. (f) Hboxcar 1 × 3. (g) Hboxcar 5 × 5. (h)
HNL-SAR.

The spatial entropy over tropical forest is homogeneous and
high when the number of looks increases. Indeed, their spatial
organization makes the scattering mechanisms change from a
pixel to another as expressed by the NL-SAR ENL. The temporal
entropy shows a better contrast, but it is not well explained with
the ground information that we have.

2) BioSAR Dataset: It contains three images acquired over
the Remningstorp forest in Sweden. These images were acquired
by ONERA, with the SETHI sensor, at P-band in 2010. The
azimuth resolution is 0.85 m and the range resolution is 1 m.
Various landscapes are present and the boreal forest has a very
different structure than the tropical one.

We produced a ground truth for an extract of the image on
which seven classes were distinguished: water, meadow with
low grass, smooth meadow with high grass, textured meadow
with high grass, meadow scattered with trees, forest, and dense
forest. These classes are represented in Fig. 12(d).

The Htemporal maps in Fig. 12(e) show four classes:
1) water: ⟨Htemporal⟩ ≈ 0.85;
2) meadows with low grass: ⟨Htemporal⟩ ≈ 0.5;
3) forests and dense forests, the textured meadows, meadows

scattered with trees: ⟨Htemporal⟩ ≈ 0.35;
4) smooth meadows with high grass that have the lowest

⟨Htemporal⟩.
Only three classes can be separated with Hboxcar [see

Fig. 12(f)]:
1) water and meadows with low grass: ⟨Hboxcar⟩ ≈ 0.5;
2) smooth meadows: ⟨Hboxcar⟩ ≈ 0.3;
3) all the other areas that have a mean entropy around 0.4.
Increasing the number of pixels in the boxcar estimation or the

NL-SAR algorithm does not increase the separation capacities
of Hboxcar, as we can see in Fig. 12(g) and (h) even if the
map is smoother. On the forest, small spots with low entropy
appear on HNL-SAR. Our hypothesis is that these low-entropy

spots could come from the trunk response. Tree counting may
become possible for boreal forest and long wavelength.

The ENL of the NL-SAR algorithm can be seen in Fig. 12(c).
Homogeneous classes such as water and smooth meadow can be
distinguished by their high ENL. Textured areas such as forest
or meadow scattered with trees present a lower ENL.

Unlike tropical forest, boreal forest shows a contrasted H .
Nevertheless, the discrimination between the different kinds of
meadow or even between forest and meadow is difficult. A
spatial criterion on the texture that can be extrapolated from
the NL-SAR ENL seems more appropriate than a classification
based on the H values.

V. LINK WITH THE INTERFEROMETRIC CORRELATION

As we have seen in Section III-C, the correlation between
samples can decrease the values of H , if all the polarization
have the same correlation. Yet, the datasets that we have used to
compare spatial and temporal entropy are acquired in interfero-
metric conditions and can show a high degree of coherence. To
study the link between the value of Htemporal and the interfero-
metric degree of coherence ρ, we focus on the UAVSAR dataset
and the TropiSAR dataset, for which more than three images
are available.

To compare more closely the link between the value of ρ
and Htemporal, we draw, in Fig. 13, the degree of coherence be-
tween the first image and the other 11 images for six classes
of scatterers that have different temporal behaviors, in the three
polarization channels. These graphics show first that the degree
of coherence is stable in time and has the same value in the three
polarization channels. In this configuration, Htemporal is very im-
pacted by the value of the degree of coherence. When the degree
of coherence is low, Htemporal can take all the possible values.
This is the case for the ocean, the parking lots, and the streets
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Fig. 13. Evolution of the degree of coherence with the first date for different
targets.

Fig. 14. Degree of coherence over the TropiSAR Paracou extract. (a) ρ 2009-
08-12, 2009-08-14. (b) ρ 2009-08-12, 2009-08-17.

that have low, a medium, and a high Htemporal, respectively. If
the degree of coherence increases, as for streets, buildings, and
bright spots, the value of Htemporal decreases.

For the TropiSAR dataset, the values of Htemporal were diffi-
cult to explain. These images have a high degree of coherence
because the acquisitions are separated only by two to six days.
Moreover, the baselines are short to reduce the impact of the
baseline decorrelation. But the degree of coherence evolves in
time. In right upper corner of the image, the degree of coher-
ence drops significantly between the first and the second ac-
quisition and goes up again on the other images, as shown in
Fig. 14. This figure shows a color composition of the degree of
coherence in the three polarization channels. It underlines also
that on high coherency areas, the degree of coherence does not
change with the polarization channel, while there are more vari-
ations in low-coherence areas. Htemporal is thus expected to be
higher in the right upper corner of the image, which is confirmed
by Fig. 10(c).

This behavior is studied more closely over the forest plot
P16 in Fig. 15. The degree of coherence shows variations with
time and with the polarization channels. Nevertheless, the pixels
with high Htemporal are pixels that have always a low degree
of coherence and the pixels with a constant high degree of
coherence have a low entropy. But there is no clear correlation
between the Htemporal and the degree of coherence values because
of the important variation in ρ.

The degree of coherence and Htemporal shares common infor-
mation. Even so they are not redundant. The value of Htemporal

can bring information on the scattering mechanism variation in
low and medium degree of coherence areas. It can help us to

Fig. 15. Evolution of the interferometric degree of coherence for the ground
truth plot 16. (a) Htemporal. (b) ρ 08-12, 08-14. (c) ρ 08-12, 08-17. (d) ρ 08-12,
08-24. (e) ρ 08-12, 08-30. (f) ρ 08-12, 09-01.

understand why the degree of coherence is low. The temporal
entropy can also be seen as an overall degree of polarimetric
coherence along the temporal stack.

VI. CONCLUSION

Entropy is a measure of the randomness of a homogeneous
area. It is close to 0 if the target is deterministic: all the
realizations of the speckle are equal for this target. If the
different realizations of a speckle distribution have various scat-
tering vectors, the entropy increases with the amount of possible
scattering mechanisms.

The estimation entropy on an image depends heavily on the
acquisition conditions. Simulations have enabled us to compare
the effects of four causes of misestimation of H . A low num-
ber of samples leads to an underestimation of H . Although this
underestimation increases with the value of H , the contrast can
be partially preserved, even with only 6 pixels. If increasing the
number of samples leads to the mixing between homogeneous
areas with different H , the entropy will increase and can become
higher than the initial entropies, leading to wrong interpretation
on the nature of the variability: the variability is not in the scat-
tering mechanisms but in the estimation process. The thermal
noise increases also the entropy of areas with a low backscat-
tered signal and low entropy. Underestimation of entropy can
also be caused by correlation between the samples, if the corre-
lation is the same for all the polarization channels. In the case
of polarization channels with a different degree of coherence,
the decrease of entropy is lowered and happens for higher de-
gree of coherence. In the extreme scenario of very correlated
polarization channels while the other channels are very uncor-
related, the entropy can even be increased by the discrepancy
between the degrees of coherence.

The study conducted over real data of various wavelength
and various resolution confirms that, for the studied datasets,
a boxcar estimation yields homogeneous entropy maps due to
the mixing of different scattering mechanisms during the esti-
mation. An increase in the number of pixels leads to a higher
entropy.

To limit the mixing between regions with different speckle
distributions, advanced speckle filtering such as the NL-SAR
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algorithm can be used. The entropy maps are smoothed, but en-
tropy values remain high since the number of pixels used during
the estimation is drastically increased to ensure denoising.

Since numerous temporal stacks of polarimetric images are
now available, we have proposed to estimate temporally H . This
estimation method preserves the resolution of the image and
introduces more contrast between highly depolarizing media
and man-made targets. To exploit temporal entropy, numerous
acquisitions are needed. Three acquisitions are not enough for
Htemporal to provide more information than a spatial estimation.

In urban areas, the spatial entropy is expected to be low,
especially over buildings. With the increase of the resolution,
this statement is no longer true. The impact of the wavelength
is not significant to explain these high values since they are
observed at L and X bands. However, the oritentation of the
buildings have a great impact on entropy. Depending on the
resolution and the type of construction, this effect varies. But on
all our datasets, a contrast is induced by the orientation on the
entropy maps. Temporal entropy is less impacted than spatial
entropy even if the effects are still visible.

On the other hand, the contrast of Htemporal is influenced by
the interferometric degree of coherence or its evolution. If the
degree of coherence is high, Htemporal will be low because the
variability of the sample set decreases. Temporal entropy pro-
vides global information about the temporal stability of the
scattering mechanism. This information cannot be derived only
from the interferometric degree of coherence.

APPENDIX

C1 =

⎡

⎢⎣

0.49 0.48e−i0.92 0.06ei0.31

0.48ei0.92 0.50 0.07ei0.50

0.06ei0.31 0.07e−i0.50 0.01

⎤

⎥⎦

C2 =

⎡

⎢⎣

0.08 0.19e−i0.14 0.02e−i0.50

0.19ei0.14 0.86 0.16

0.02ei0.50 0.16 0.06

⎤

⎥⎦

C3 =

⎡

⎢⎣

0.84 0.08ei1.07 0.10e−i1.06

0.08e−i1.07 0.05 0.06e−i1.56

0.10ei1.06 0.06ei1.56 0.11

⎤

⎥⎦

C4 =

⎡

⎢⎣

0.50 0.19e−i0.68 0.15e−i0.98

0.19ei0.68 0.09 0.10e−i056

0.15ei0.98 0.10ei0.56 0.41

⎤

⎥⎦

C5 =

⎡

⎢⎣

0.68 0.03ei0.76 0.02ei0.05

0.03e−i0.76 0.15 0.01e−i0.81

0.02e−i0.05 0.01ei0.81 0.17

⎤

⎥⎦

C6 =

⎡

⎢⎣

0.19 0.17ei0.81 0.08e−i0.94

0.17e−i0.81 0.42 0.07ei1.19

0.08ei0.94 0.07e−i1.19 0.39

⎤

⎥⎦

C7 =

⎡

⎢⎣

0.37 0.08e−i0.83 0.03ei1.04

0.08ei0.83 0.20 0.04e−i1.50

0.03e−i1.04 0.04ei1.50 0.30

⎤

⎥⎦

C8 =

⎡

⎢⎣

0.18 0.03e−i1.16 0.02ei0.33

0.03ei1.16 0.34 0.07e−i0.90

0.02e−i0.33 0.07ei0.90 0.48

⎤

⎥⎦.

The phases are in radian.
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titemporal polarimetric SAR images for urban areas,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Milano, Italy, 2015, pp. 231–234.

[19] P. Dubois-Fernandez et al., “The TropiSAR airborne campaign in French
Guiana: Objectives, description, and observed temporal behavior of the
backscatter signal,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8,
pp. 3228–3241, Aug. 2012.

Flora Weissgerber received the M.Sc. degree in sig-
nal and image processing from Centrale Marseille
and Aix-Marseille Université, Marseille, France, in
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