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Abstract. Aggregation of nanoparticles of given size R induced by addition of a polymer 

strongly depends on its degree of rigidity. This is shown here on a large variety of silica 

nanoparticle self-assemblies obtained by electrostatic complexation with carefully selected 

oppositely charged bio-polyelectrolytes of different rigidity. The effective rigidity is 

quantified by the total persistence length LT representing the sum of the intrinsic (Lp) and 

electrostatic (Le) polyelectrolyte persistence length, which depends on the screening, i.e., on 

ionic strength due to counterions and external salt concentrations. We experimentally show 

for the first time that the ratio LT/R is the main tuning parameter that controls the fractal 

dimension Df of the nanoparticles self-assemblies, which is determined using small-angle 

neutron scattering: (i) For LT/R<0.3 (obtained with flexible poly-ʟ-lysine in the presence of an 

excess of salt), chain flexibility promotes easy wrapping around nanoparticles in excess hence 

ramified structures with Df~2. (ii) For 0.3<LT/R1 (semiflexible chitosan or hyaluronan 

complexes), chain stiffness promotes the formation of one-dimensional nanorods (in excess of 

nanoparticles), in good agreement with computer simulations. (iii) For LT/R>1, Le is strongly 

increased due to the absence of salt and repulsions between nanoparticles cannot be 

compensated by the polyelectrolyte wrapping, which allow a spacing between nanoparticles 

and the formation of one dimensional pearl necklace complexes. (iv) Finally, electrostatic 
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screening, i.e. ionic strength, turned out to be a reliable way of controlling Df and the phase 

diagram behavior. It finely tunes the short-range interparticle potential, resulting in larger 

fractal dimensions at higher ionic strength. 

 

 

I. INTRODUCTION 

 Self-assembly of nanoparticles (NPs) through physical associations offers the 

possibility of designing bio- and nano-technologically useful supramolecular adaptive 

nanostructures with precise size, shape and functions [1-7]. The past decade has witnessed 

great progress in NP self-assembly, yet the quantitative prediction of the architecture of NP 

ensembles remains a challenge. Hierarchical organizations can be triggered in solution by 

various mechanisms, such as van der Waals attraction [8], polymerization of functionalized 

NPs [9,10], lock-and-key binding, depletion [11], magnetic field [12], and electrostatic 

interactions [13-15] to initiate the self-assembly from the NP level to the mesoscopic one. 

Among them, the association of charged NPs induced by complexation with (bio)-

polyelectrolytes (PELs) of opposite charge is a simple fast, robust, cost-efficient (bio)-process 

that can lead to new nano-objects, also called electrostatic complexes. 

 In spite of this large interest, none systematic work has been undergone considering a 

quite simple aspect as far as chains are concerned: the effect of rigidity of the chain, namely 

its persistence length, which in a sensible approach, can be compared with the NP size. First 

approaches have been published: in a preliminary communication [13], we described the 

complexation between model negatively charged spherical silica NPs with radius R~10 nm  

and chitosan, a natural polyelectrolyte bearing positive charges with a semi-rigid backbone 

characterized by an intrinsic persistence length of Lp~9 nm, using a combination of cryo-

TEM, light, small-angle neutron and X-rays scattering. In contrast to strategies based on 

sophisticated chemical and physical processes (UV photo-reduction [16] or template-directing 

using membranes or mesoporous media [17], among others), this enabled us to obtain, in an 

easy and quickly process, well-defined ~250 nm monodisperse nanorods in the presence of an 

excess of NPs at high ionic strength. Rod-like and fibrous architectures of nano- and 

mesoscopic dimensions comprise a vast array of nanotechnological and biological machinery 

but less linear geometries expected to be obtained with more flexible PELs are also of major 

interest. We, indeed, previously obtained under the same experimental conditions [14] 

branched complexes of silica NPs instead of nanorods by using a flexible PEL, polylysine. 
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This result showed the importance of the persistence length to NP radius characteristic ratio. 

This was, however, a single comparison at high ionic strength; hence the influence of LT/R 

was not really established, where LT=Lp+Le is the total persistence length accounting for the 

effective rigidity of the PEL through the sum of two contributions: the intrinsic persistence 

length Lp of the corresponding uncharged chain and the electrostatic persistence length Le 

depending on the ionic strength, which is due to counterions as well as external salt 

concentration. The aim of the present work is to highlight the pivotal role played by this 

characteristic ratio LT/R in the design of nanomaterials in the desired shape and size. For that 

purpose, we have considered three systems, namely chitosan/NP, hyaluronan/NP and poly-ʟ-

lysine/NP complexes, at different PEL and NP concentrations under different electrostatic 

screening conditions. 

 Theoretical and experimental studies have actually revealed that along with the 

physico-chemical parameters such as charge concentration ratio, pH and ionic strength acting 

on all ionizable species, LT yields an additional original tuning parameter [13-28]. However, 

experiments are missing on the influence of NP surface charge density, shape, and size, as 

well as of the ratio LT/R, the influence of which has been only studied theoretically and by 

simulations [18-25]. The peculiar case of rigid DNA interacting with nanoparticles was more 

studied than other PELs due to its biological interest [26,27]. However, the shape of these 

complexes has been studied only by indirect microscopy methods and not in bulk. 

 In this article, we present the structure of the electrostatic complexes for different 

LT, electrostatic screenings, and polyelectrolytes/NPs pairs so that the influence of the 

ratio LT/R can be established. The NPs we have chosen are spherical silica synthetic NPs 

that are generally considered as very simple model systems, with fixed characteristics (size, 

shape, charge, and surface function), regular shape and homogeneous surface. Under well-

defined conditions a sensible evaluation of the different kinds of interactions (electrostatic, 

hydrogen bonds, hydrophobic) can be made showing that electrostatic interactions dominate 

and can be estimated [13] – in contrast to the more complex case of proteins [28-31]. 

(i) First, we have studied the complexation between semi-rigid chitosan and ~10 nm 

radius negatively charged silica nanoparticles (SiNPs). The intrinsic persistence 

length, Lp, of the positively charged chitosan is ~9 nm [32] giving a characteristic 

ratio LT/R~1 at high ionic strength (in the presence of an excess of salt, the 
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electrostatic additive contribution to the persistence length Le is negligible and 

LT~Lp). 

(ii) In order to vary this ratio, the polyelectrolyte poly-ʟ-lysine (PLL), displaying 

positive charges along its flexible backbone, was chosen; the choice of the second 

partner, 10 nm SiNPs remained unchanged. At high ionic strength (screened 

conditions), LT/R is close to 0.1, with Lp(PLL)~1 nm [14]. 

(iii) In a third system, we have reversed the sign of charges of the two components, 

which means to complex a polyanion with positively charged NPs. In the first 

place, the NPs are still silica NPs but another surface modification was used to 

bring positive charges onto their surface. The chosen partner is hyaluronan, a 

polyelectrolyte polysaccharide displaying a semi-flexible backbone with an 

intrinsic persistence length Lp~5 nm [33-35] that enabled us to get an intermediate 

ratio, LT/R, close to 0.3 in the presence of an excess of salt. Beyond its well-known 

role in articulations, hyaluronan is, on a more general basis, found in the extra-

cellular matrix, in soft connective tissues as cartilage, where it forms complexes 

with proteins, glycoproteins and/or other electrostatically charged species. The 

polymer is assumed to play a role in mitosis and its interaction with extra-cellular 

polysaccharides has been connected with locomotion and cell migration, which 

increases its interest in cancer research. 

(iv) Finally, the influence of electrostatic interactions was also considered by varying 

the ionic strength, I. In the absence of external salt, the electrostatic contribution to 

the persistence length Le depends only on the concentration of the counterions of 

the two species, allowing a wide variation of LT/R, which is controlled by both the 

screening and the nature of the PEL. 

In what follows, we compare original data from the three systems. The phase behavior in the 

PEL-NP-LT/R diagram as well as the structure of the complexes in all characteristic phase 

domains has been determined using small-angle neutron scattering (SANS) experiments in the 

presence and absence of external salt. We show that either an increase of LT/R (equivalent to a 

reduction of I) leads to the formation of lower-dimensional self-assemblies. 
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II. EXPERIMENTAL 

A. SAMPLES CHARACTERISTICS 

Chitosan: Polysaccharide chitosan belongs to a family of linear cationic biopolymers 

obtained from partial alkaline N-deacetylation of chitin, which is the second most 

abundant biopolymer on earth. The chitosan studied here is a commercial polymer (with a 

polydispersity index of around 1.3) from Sigma-Aldrich composed of  14 ᴅ-

glucosamine units with a degree of N-acetylation equal to 12.5% (determined by NMR) 

[32]. The mass and the length of the repeating unit are equal to 166 g/mol and 5 Å, 

respectively. Under acidic conditions, chitosan is water-soluble due to the presence of 

protonated amino groups. The solutions were then investigated in the presence of 0.3 M 

acetic acid (CH3COOH) and of 0.2 M sodium acetate (CH3COONa) at high ionic strength. 

We obtain thus a pH=4.5 buffer where all the amino groups bear a positively charged 

proton. So chitosan exhibits a high polyelectrolyte character with one positive charge 

every 5 Å [13,14,32], which would be reduced to one charge per 7 Å after Manning 

condensation. The intrinsic persistence length of chitosan backbone is roughly equal to 9 

nm, due to which it is placed in the class of the so-called semirigid polyelectrolytes. The 

structural characteristics determined using light scattering, such as the weight average 

molecular mass (MW=313 000 g/mol), size, and polydispersity are collected in Table 1. 

 

Poly-ʟ-lysine (PLL): PLL is a natural flexible homopolymer composed of ʟ-lysine amino 

acids ( (C6H12N2O)n monomer units have a mass of 128 g/mol) and produced by bacterial 

fermentation. Each unit of the chain contains an amino group (NH3
+
) that renders the whole 

chain positively charged (pKa=9). The poly-ʟ-lysine hydrobromide used in our study was 

purchased from Sigma-Aldrich in powder state and was used as received. At high electrostatic 

screening, aqueous solutions were prepared in the presence of 0.2 M of KBr to keep the same 

ionic strength than that of chitosan solutions. Under these experimental conditions, all the 

amino groups are protonated and PLL is fully charged displaying a charge every 3.5 Å (unit 

size); i.e., every 7 Å after Manning correction. The value of its intrinsic persistence length is 

roughly equal to Lp=1 nm, due to which PLL is classified as flexible PEL [14]. The weight 

average molecular weight equal to MW=54 000 g/mol (corresponding to 422 charges per 

chain) was determined in the presence of added salt by static light scattering using a classical 

Zimm analysis (see Table 1). 

http://en.wikipedia.org/wiki/Lysine
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Hyaluronan (HA): HA or poly((1→3)--ᴅ-GlcNAc-(1→4)--ᴅ-GlcA) is a linear semi-

flexible polyelectrolyte (Lp~5 nm [33-35]) made of a single negatively charged disaccharide 

repeating unit. We used bacterial hyaluronan produced and carefully purified under the Na 

salt form by Soliance (Pomacle, France). The monomer mass and length are equal to 401.3 

g/mol and 10.2 Å, respectively (global formula C14H20NO11Na). At high ionic strength, HA 

solutions were prepared in the presence of 0.1 M NaCl to ensure the screening of the 

electrostatic interactions necessary for a chain molecular weight determination using light 

scattering in dilute regime. A Zimm analysis gives MW=9.210
4
 g/mol for the sample 

referenced “Bashyal” by the supplier (corresponding to 230 charges per chain). 

 

Preparation of the mixtures: SiNPs and PELs solutions were prepared separately in either 

distilled water or in the presence of an excess of salt (0.2 M CH3COONa, 0.2 M KBr, or 0.1 

M NaCl for chitosan, PLL, or hyaluronan complexes, respectively, and corresponding to the 

previously used and standard experimental conditions found in the literature [32-35]) and then 

diluted and mixed together at various volume ratios to obtain the desired concentrations, 

ranging over four decades, at constant ionic strength. Mixtures were thoroughly shaken to 

ensure homogenization and then kept at the temperature of observation, here T=20°C, for 

several days before visual examination. When a phase separation is observed, samples are re-

homogenized and kept at rest for a couple of days to confirm the observations. To ensure a 

good stability of the positively charged SiNPs
+
, a buffer at pH=4, obtained by addition of 

HCl, was used to study the hyaluronan/SiNP
+
 complexes. Regarding the chitosan/SiNP

-
 

complexes, chitosan is water-soluble only under acidic conditions. The mixtures were then 

investigated in the presence of 0.3 M acetic acid at pH=4.5 for which both partners are fully 

charged. Unfortunately, this introduced also a large amount of CH3COO
-
 anions in solution, 

making low ionic strength investigations impossible for this system. According to the 

supplier, the SiNPs
-
 have a surface charge density around 1 elementary charge per nm

2
 giving 

approximately 1000 negative charges per particle, a value also found by chemical titration 

[36]. Full characterization of the commercial either negatively or positively charged SiNPs 

(referenced Ludox AM and CL, respectively by the supplier) are presented in the Appendix 

(Figs. A1 and A2). Their characteristics, such as NP radii are summarized in Table 1. In all 

cases, the PEL contour length has been taken larger than the NP circumference in order to 

ensure the complexation with several NPs. 
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Table 1. Polyelectrolytes and NPs characteristics. MW, weight average molecular weight 

determined using static light scattering (SLS); Lc, PEL contour length; R, SiNPs radius 

determined using a hard sphere model (see X-rays data analysis in Appendix section); RG, 

radius of gyration determined either using SLS or small-angle X-ray; RH, hydrodynamic 

radius determined using dynamic light scattering (DLS); k2/k1
2
, polydispersity index obtained 

using the cumulant procedure (see Appendix for details); Lp, intrinsic persistence length. Error 

bar is ~10%. 

PELs and NPs charges Mw 

(g/mol) 

Lc 

(nm) 

R 

(nm) 

RG 

(nm) 

RH 

(nm) 

k2/k1
2
 Lp 

(b)
 

(nm) 

Chitosan in 0.3M 

CH3COOH/0.2M 

CH3COONa 

>0 31320K 943  66.5 44 0.24 9 

Poly-ʟ-lysine in 0.2M 

KBr 

>0 545K 148  -
(a)

 7.9 0.2 1 

Hyaluronan in 0.1M 

NaCl 

<0 925K 235  -
(a)

 14.6 0.2 5 

SiNPs (Ludox AM) in 

0.2M CH3COOH or KBr 

<0 310
6
  9.2 -

(a)
 11.7 0.1  

SiNPs (Ludox CL) in 

0.1M NaCl 

>0 3.3710
7
  17 16 22.2 0.057  

(a)
Too small to be determined using SLS.

 (b)
At high ionic strength; i.e., in the presence of an 

excess of salt (0.1 or 0.2 M), the electrostatic additive contribution to the persistence length Le 

is negligible and the intrinsic persistence length Lp represents the total persistence length LT. 

 

 

 

B. METHODS 

 

Small-angle neutron scattering (SANS): SANS experiments were carried out on the PACE 

spectrometer in the Léon Brillouin Laboratory at Saclay (LLB, France). The chosen incident 

wavelength, , depends on the set of experiments, as follows. For a given wavelength, the 

range of the amplitude of the transfer wave vector q was selected by changing the detector 

distance, D. For poly-ʟ-lysine samples, three sets of sample-to-detector distances and 

wavelengths were chosen (D = 1 m,  = 6  0.5 Å; D = 4.7 m,  = 6 0.5 Å and D = 4.7 m,  
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= 13 0.5 Å) so that the following q-ranges were respectively available: 3.6310
-2 
 q (Å

-1
)  

3.710
-1

, 6.8810
-3 
 q (Å

-1
)  7.3310

-2
, and 3.1810

-3 
 q (Å

-1
)  3.3810

-2
. In a second run 

(hyaluronan complexes) we used D = 1 m,  = 6  0.5 Å; D = 3 m,  = 12 1 Å, and D = 4.5 

m,  = 17 0.5 Å so that the following q-ranges were respectively available: 3.6310
-2 
 q (Å

-

1
)  3.710

-1
, 5.1310

-3 
 q (Å

-1
)  5.4510

-2
, and 2.4310

-3 
 q (Å

-1
)  2.5910

-2
. Finally, in 

a third run (chitosan samples) we used: D = 1 m,  = 10  1 Å and D = 4.7 m,  = 10 1 Å so 

that the following q-ranges were respectively available: 2.210
-2 
 q (Å

-1
)  2.110

-1
 and 

4.1510
-3 
 q (Å

-1
)  4.410

-2
. Measured intensities were calibrated to absolute values (cm

-1
) 

using normalization by the attenuated direct beam classical method. Standard procedures to 

correct the data for the transmission, detector efficiency, and backgrounds (solvent, empty 

cell, electronic, and neutronic background) were carried out. The scattering wave vector, q, is 

defined by eq 1, where   is the scattering angle: 

2
sin

4 




q .  (1) 

The usual equation for absolute neutron scattering combines the intraparticle scattering  S1(q) 

= VP(q) factor (P(q) is the form factor) with the interparticle scattering S2(q) factor 

       )()()()())(( 2

2

21

21 qSqPVqSqScmqI   ,  (2) 

where ()
2
=(solute-solvent)

2
 is a contrast per unit volume between the solute and the solvent 

and was determined from the known chemical composition.  = nibi/(nimiv1.6610
-24

) 

represents the scattering length per unit volume, bi is the neutron scattering length of the 

species i, mi the mass of species i, and v the specific molecular volume of the solute (PEL 

monomer and/or nanoparticle - see Table of the Appendix for contrast and specific volume 

values) or the solvent (i.e., 0.91 cm
3
g

-1
 for D2O). P(q) is the form factor of the scattered 

objects, V=Nvm1.6610
-24

 is the volume of the N sub-units (of mass m) comprising the 

scattered objects and  is their volume fraction. In the high q-range, the scattering is assumed 

to arise from isolated scattered objects; i.e., S2(q) = 0, and thus I(q)  P(q). 

 

Because of the high molecular weight of the SiNPs and concentrations used in this study, the 

SANS signal of the complexes mostly arises from the scattering of the nanoparticles. 

Consequently, the scattered objects may be described as complexes made of several NPs 

linked to each other by polyelectrolyte chains of negligible scattering. 
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All SANS experiments were performed in D2O. 

 

Dynamic and static light scattering experiments: The measurements used a 3D DLS 

spectrometer (LS Instruments, Fribourg, Switzerland) equipped with a 25mW HeNe laser 

(JDS uniphase) operating at =632.8 nm, a two channel multiple tau correlator (1088 

channels in autocorrelation), a variable-angle detection system, and a temperature-controlled 

index matching vat (LS Instruments). The scattering spectrum was measured using two single 

mode fibre detections and two high sensitivity APD detectors (Perkin Elmer, model SPCM-

AQR-13-FC). Solutions were filtered through 0.2 m PTFE Millipore filter into the 

cylindrical scattering cell. Methods used to characterize PELs and NPs using light scattering 

are detailed in the Appendix. 

III. RESULTS 

A. INFLUENCE OF THE RATIO LT/R IN THE PRESENCE OF EXTERNAL 

SALT  

 Phase behavior: First the phase evolution at high ionic strength (electrostatic 

screened conditions with a Debye length 
-1
1 nm obtained by addition of a large excess of 

salt) shows notable similarities between the three investigated PEL/SiNP pairs (see Fig. 1). 

Three characteristic domains are visualized in the PEL-SiNP concentration plane of the phase 

diagram: mixtures are monophasic and transparent in the presence either of an excess of PELs 

(hereinafter called domain I) or of NPs (domain III). A biphasic region (domain II) is 

observed for intermediate concentration ranges, where one rich and turbid phase of coacervate 

coexists with an upper dilute and limpid phase (defined as supernatant). The volume ratio of 

the two phases, separated by a net and sharp interface, depends on the concentration ratio. 

Boundaries between domains may be slightly shifted in deuterated water. 

Such sequence of phase behaviors is reminiscent of “complex coacervation” due to 

electrostatic attraction between PELs and oppositely charged NPs [14,28-31]. The two 

partners can first associate into primary complexes, which are neutral. Above a certain 

concentration they precipitate in rich and poor liquid phases and form fractal aggregates by 

controlled (diffusion limited or reaction limited) aggregation, or solid clusters depending on 

the potential profile. Another aspect is the release of counter-ions of both species, which has 

an entropic contribution on the free energy [30,37]. The stoichiometric threshold 
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corresponding to a charge ratio [+]/[-]=1 cuts the biphasic region in half, which agrees with 

the electrostatic origin of complexation (see continuous lines in Fig. 1). Here we have 

assumed that all counter-ions of both species are released and have ignored Manning 

condensation, if applicable (e.g. for chitosan and PLL). In practice, SANS results indicate that 

the dense lower phase contains the major part of the NPs and PELs, while the upper phase is a 

very dilute solution of complexes. It is noteworthy that the phase separation is observed for 

minute quantities of PEL. 

Interestingly, the boundary between domains II and III is shifted downwards for flexible PLL 

complexes, whereas that between domains I and II seems to remain unchanged within the 

error bars. In other words, region II stretches towards larger NP contents when one diminishes 

the LT/R ratio, and hence when one may change the inner structure and compactness of 

complexes.  It should be remembered here that the electrostatic additive contribution to the 

persistence length Le is negligible in the presence of 0.1 or 0.2 M of excess salt (Debye 

screening length 
-1

<1 nm). As a consequence, the intrinsic persistence length Lp represents 

the total persistence length at high ionic strength. 

 

Fig. 1. (Color on-line) Sequence of phase behaviors in the PEL-SiNP concentration plane at 

T=20°C and high ionic strength. For chitosan, hyaluronan, and PLL systems, mixtures are 

C 
SiNP

 (g/l)

10-3 10-2 10-1 100 101 102 103

C
 P

o
ly

e
le

c
tr

o
ly

te
 (

g
/l
)

10-4

10-3

10-2

10-1

100

101
Chitosan complexes

Hyaluronan complexes

poly-L-lysine complexes

Domain I: Monophasic
Df ~1.5-2

Domain III: Monophasic
Df =f(L

T
/R)

      Domain II:      Biphasic
Df ~2.4-2.7
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prepared in H2O in the presence of 0.2M CH3COONa, 0.1M NaCl, and 0.2M KBr, 

respectively. The continuous grey, red, and blue continuous lines indicate the stoichiometric 

thresholds corresponding to a charge ratio [+]/[-]=1 for chitosan, HA, and PLL complexes, 

respectively. 

  

 Structure of the complexes: To gain insight into the structure of the complexes, 

SANS experiments were performed at LLB (beamline PACE) on mixtures prepared in D2O 

and representing the different parts of the phase diagram. Because the signal is dominated by 

the SiNPs, especially in domains II and III (as checked by contrast matching experiments 

cancelling the polymer signal, not shown), SANS is an appropriate method for determining 

the NPs arrangement over the range of 1-30 nm. In the experimental scattering vector regime 

q>Rg
-1

 (where Rg is the radius of gyration of the objects), the scattered intensity of a fractal 

particle is given as I(q)~q
-Df

. Here Df is the so-called fractal dimension of the particle, which 

determines the scaling of the mass of the clusters with its size M~Rg
Df

. If logI(q) is plotted vs. 

logq, one obtains a linear decay with slope Df, allowing us to directly determine the fractal 

dimension of the complexes, subject to the condition of a linear decay over at least one order 

of magnitude of the experimental q-regime. This is what is observed in most cases: a low-q 

Guinier regime associated to the finite size of the complexes is rarely visible, indicating that 

NP self-assemblies are larger than 30 nm. Among the very many scattering profiles, eighteen 

of them are visualized in Figs 2, 3, and 4. For complexes in domain I (excess of PELs), 

patterns characteristic of ramified or branched structures with Df being between 1.5 

(hyaluronan complexes) and 2 (chitosan and PLL complexes) are observed at high ionic 

strength (see Fig. 2). For the biphasic domain II, the scattering varies as a power law with 

exponent Df ranging from 2.4 and 2.7 depending on the concentration ratio, characteristic of 

rather compact fractal aggregates (Fig. 3) [38]. This behavior, already reported on several 

systems such as protein/PEL [29-31] or NP/polymer complexes [14], among others, is 

observed in the whole biphasic domain for coacervates as well as for supernatant phases as 

long as their scattering level is not negligible suggesting that complexes are formed before 

separation. 
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Fig. 2. (Color on-line) SANS profiles collected in domain I (excess of PELs) at high ionic 

strength (presence of an excess of salt) and 20 °C of the three systems examined. For clarity, 

the HA and the PLL spectra have been shifted by two and three log units along the y-axis, 

respectively. While the 0.5 g/l PLL/1 g/l SiNP sample is biphasic in H2O (close to the 

separation line between domains I and II), it is monophasic and representative of domain I in 

D2O, showing the slight isotopic effect on the position of the phase transition line. 
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Fig.3. (Color on-line) SANS profiles collected in domain II (coacervates) at high ionic 

strength (presence of an excess of salt) and 20 °C of the three systems examined. For clarity, 

spectra have been shifted by one or two log units along the y-axis with respect to each other. 

The arrows indicate the position q* of a characteristic correlation peak (see text, part III.B). 

 

 The most striking result is obtained in domain III (excess of NPs), where the behavior 

is profoundly different from one system to another one and depends on LT/R. Figs. 4a and 4b 

show representative SANS profiles for each of the three systems in the presence of an excess 

of SiNPs. The three spectra are markedly different, showing that morphologically different 

structures are present in solution. For flexible poly-ʟ-lysine complexes, the q
-2

 dependence 

suggests a moderately ramified distribution for the SiNPs inside the complexes or branched 

aggregates. This result profoundly differs from that obtained with semiflexible chitosan 

(LT/R=1) showing a q
-1

 law due to the formation of nanorods under the same experimental 

conditions. Here PLL, a flexible polyelectrolyte, with LT/R~0.1 cannot induce the formation 

of 1D structures. Semiflexible hyaluronan with LT/R=0.3 give rise to intermediate topology 

complexes with Df=1.5. A power law fit (shown as a guide to the eyes in inset of Fig. 4a) 

gives Df~(LT/R)
-0.3 

and shows the major role played by the polyelectrolyte persistence length 
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on the compactness of the NP complexes. Comparing with theory, we see that these trends are 

consistent with Monte Carlo simulations that have been used to examine the complexation of 

linear PEL possessing variable flexibility with several oppositely charged macroions. In 

particular, Jonsson and Linse [24,25] found that in excess of macroions (corresponding here 

to domain III) the polyelectrolyte complexe becomes consistently overcharged due to charge 

reversal and that the macroions (or NPs) might come into molecular contact with each other 

despite their mutual repulsion. When the chain is flexible or nearly flexible the complexed 

macroions form a compact structure, which opens up as the chain becomes stiffer. For the 

most rigid PEL chain, the macroions become nearly linearly arranged with fewer 

polyelectrolyte segments near the NP surface. At even larger amount of NPs, there exist 

uncomplexed NPs separated from the complexes, the number of which has also been 

determined experimentally [13,14]. 

 

Fig. 4a. (Color on-line) SANS profiles collected at high ionic strength, I, and 20°C of the 

three PEL complexes: 0.01g/l chitosan/10g/l SiNP, 0.01g/l HA/2g/l SiNP, and 0.01g/l 

PLL/10g/l SiNP (monophasic and representative of domain III in D2O) solutions are prepared 

in the presence of 0.2M CH3COONa, 0.1M NaCl, and 0.2M KBr, respectively. For clarity, 

hyaluronan and chitosan complexes spectra have been shifted by two and three log units along 

the y-axis with respect to that of PLL complexes, respectively. All curves exhibit the first 

oscillation associated to the form factor of the SiNPs cross-section occurring around 6.510
-2
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Å
-1

 (9.2 nm SiNP
-
) or 3.510

-2
 Å

-1
 (17 nm SiNP

+
) for chitosan and PLL or hyaluronan 

complexes, respectively (see dashed lines and appendix). The inset represents the variation of 

Df with the characteristic ratio LT/R (in the presence of 0.1 or 0.2 M external salt, LT=Lp). 

 

Fig. 4b. Same as (a), but for other PEL and NP concentrations (domain III, excess of NPs). 

For clarity, the hyaluronan data have been shifted by one log unit along the y-axis with 

respect to those of PLL. 

 

 Interestingly, as in domains I and II (Figs. 2 and 3, respectively), experiments 

performed at different CPEL/CNP ratios in domain III of the phase diagram show the same 

structure for the complexes (same Df). 

 

B. SALT-FREE MIXTURES AND INFLUENCE OF IONIC STRENGTH 

 Ionic strength, I, is proving to be also a reliable means of controlling the ratio LT/R and 

compactness of NPs self-assemblies. We will see that it controls as well the extent of the 

phase diagram regions. In the absence of external salt, we find the same sequence of phase 

behaviors as that reported in the former section: monophasic domains in the presence of either 

a PEL or a NP excess, and a two-phase region for intermediate NP contents. An example is 

provided in Fig. 5, which shows these domains for hyaluronan complexes with and without 
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addition of salt. The main difference comes from the boundary between domains II and III, 

which is shifted to lower SiNP concentrations at low I. Obviously charges screening reduces 

electrostatic repulsion in favour of van der Waals attraction, hence an easier complexation 

causing the extent of the coacervate region at high I. Such behavior is independent on the 

nature of the PEL and on the sign of charge. 

 

Fig. 5. (Color on-line) Sequence of phase behaviors in the HA-SiNP concentration plane at 

high (presence of external salt) and low (salt-free systems) ionic strength, I. The red dashed 

lines represent boundaries between characteristic domains at high I, whereas gray dashed lines 

represent boundaries at low I. The shaded area corresponds to the coacervate region 

expansion when I is increased (diagram obtained in H2O). 

 

 The effect of salt addition on the phase diagram, showing the importance of 

electrostatic screening is confirmed by SANS: more compact structures are obtained in 

coacervates as well as in monophasic domains at high ionic strength as shown by the larger 

fractal exponents, Df, determined in the presence of an excess of salt. SANS spectra obtained 

for all investigated systems show the same trend and can be visualized in Figs. 6 and 7: Lower 

Df are obtained in the absence of external salt in all domains of the phase diagram (in salt-free 

C 
SiNP

 (g/l)

10-2 10-1 100 101 102

C
 H

y
a

lu
ro

n
a

n
 (

g
/l
)

10-3

10-2

10-1

100

101

Complexes at high I (excess salt)

Complexes at low I (salt-free)

Domain I: Monophasic
Df ~1.5

Domain II: Biphasic
Df ~2 - 2.2 (low I)

or ~2.4 -2.5 (high I)

Domain III: Monophasic
Df =1 (low I) or 1.5 (high I)



17 
 

mixtures the Debye screening length depends only on the counterions concentrations and is 

ranging between 5 and 23 nm depending on the samples). For clarity, the many results are 

also summarized in Table 2. Other examples are given in Fig. 8, which shows the scattering 

profiles collected for representative HA samples in domains II and III in the presence and 

absence of excess salt. 

 

Fig. 6. (Color on-line) SANS patterns collected in domain II (coacervates) at low ionic 

strength (salt-free mixtures) and 20 °C of the two systems examined. For clarity, the PLL data 

have been shifted by one log unit along the y-axis with respect to those of HA. 
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Fig. 7. (Color on-line) SANS patterns collected in domain III (excess of NPs) at low ionic 

strength (salt-free mixtures) and 20 °C of the two systems examined. For clarity, the spectra 

have been shifted by one log unit along the y-axis with respect to each other. While the 

Chyaluronan=0.1 g/l; CSiNP=2 g/l sample is biphasic in H2O (close to the separation line between 

domains II and III), it is monophasic and representative of domain III in D2O, showing the 

slight isotopic effect on the position of the phase transition line. 
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Fig. 8. (Color on-line) SANS profiles collected at high (0.1 M NaCl) and low ionic strength 

(salt-free mixtures) for HA complexes in domains II and III. Concentrations are CHA=1.5 g/l 

and CSiNP=10 g/l for coacervates (filled symbols), whereas concentrations are equal to CSiNP=2 

g/l and CHA=0.01g/l (at high I) or 0.05 g/l (at low I) for mixtures in domain III (open 

symbols). For clarity, the spectra have been shifted by one or two log units along the y-axis 

with respect to each other. q* indicates the position of the characteristic correlation peak. 

 

 Also, the phase separation kinetics is always much faster in the presence of an excess 

of salt. The opaque coacervate falls down instantaneously and is very viscous, even gel-like, 

whereas the supernatant is very clear, fluid, and diluted [39]. This increase of separation rate 

is accompanied by larger fractal exponent values for coacervates as is for example the case for 

HA complexes for which Df~2.5, a value definitively larger than 2 determined for salt-free 

mixtures. Coacervates are also more viscous at high I. Additionally, we observe the 

emergence of a correlation peak, which has an abscissa q*=0.018 Å
-1

, corresponding to the 

distance, d=2/q*=350 Å~2RSiNP+, between positively charged SiNPs in close contact (HA 

complexes, see Figs. 3 and 8). For chitosan and PLL coacervates, this peak is observed at 

0.035 Å
-1

 and matches with the characteristic distance d=180 Å~2RSiNP- between negatively 

charged silica nanoparticles in close contact (see Fig. 3). 
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Table 2. Fractal exponents, Df, obtained in the low-q regime (considered samples are shown 

in Figs. 2, 3, 4, 6, 7, and 8). LT is the PEL total persistence length and R the real NPs radius 

determined by fitting the data by means of the form factor expression derived for hard spheres 

(see appendix). 

 Chitosan/SiNP
-
 PLL/SiNP

-
 HA/SiNP

+
 

 LT/R 
 

Df LT/R 
 

Df LT/R 
 

Df 

Domain (I): 
 
Excess salt 
Salt-free 
 
 

 
 
1 
- 

 
 

2(ramified) 
- 

 
 

0.1 
3 

 
 
2 

1 
(a)

 
 

 
 

0.3 
1 

 
 

1.5 
1 

(a)
 

 

Coacervate (II): 
 
Excess salt 
Salt-free 

 
 
1 
- 

 
 

2.7 (compact) 
- 

 
 

0.1 
1 

 
 

2.4-2.7 
2 

 
 

0.3 
1 LT/R0.7 

 

 
 

2.4 
2 

Domain (III): 
 
Excess salt 
Salt-free 

 
 
1 
- 

 
 

1 (nanorods) 
- 

 
 

0.1 
19 

 
 
2 

1 (pearl 
necklaces) 

 
 

0.3 
6 LT/R3 

 

 
 

1.5 
1 (pearl 

necklaces) 

(a)
 Too poor statistics due to low NPs and PELs concentration. 

  

 

IV. DISCUSSION 

 

A. EFFECT OF I ON THE STRUCTURE OF THE COMPLEXES: AN EFFECT OF 

THE PERSISTENCE LENGTH? 

 

 Two effects are quite clear from results above: the one of persistence length, and the 

one of ionic strength. We want now to discuss more in detail how these two quantities can be 

combined in a single one, the total persistence length LT. 

  

 The ingredients for the total persistence length: we first need to discuss the values 

for the persistence length. When electrostatic repulsions between the charges along the chain 

are not screened, they will tend to make even larger the local rigidity and increase the global 

size of the polyelectrolyte. An additional electrostatic persistence length, Le, due to 
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electrostatic repulsions increases the effective persistence length, Lp. Then, following the 

simplest model, the total persistence length represents the sum of these two contributions: the 

intrinsic persistence length Lp of the corresponding uncharged chain and the electrostatic 

persistence length Le, which depends on the screening, i.e., on counterions amount as well as 

on external salt concentration [40]: 

𝐿𝑇 = 𝐿𝑝 + 𝐿𝑒 , with 𝐿𝑇 ≫ 1  (3) 

This model was first proposed for polyelectrolytes near the rod limit, hence for Lp large 

enough, but extended to the case where Lp+Le is large enough. Assuming a Debye-Hückel 

potential and under the condition that counterions condensation occurs when necessary, Odijk 

[40] and Skolnick and Fixman [41] found: 

𝐿𝑒 =
𝜉2

4𝜅2𝑙𝐵
 for 𝜉 < 1, and 𝐿𝑒 =

1

4𝜅2𝑙𝐵
  for 𝜉 > 1   (4) 

where lB=7.13 Å in water is the Bjerrum length, κ
−1

 is the Debye-Hückel screening length 

related to the concentration of the counterions, and ξ=lB/a is the structural charge parameter, 

where a is the distance between two ionic sites. For ξ>1, Manning’s counterions condensation 

is expected to bring the distance between the charges along the chain down to lB. In dilute 

solutions κ
2
=4πlBcf, where cf is the concentration of free monovalent ions. If ξ<1, cf=c+2cs, 

where c is the concentration of PELs and SiNPs counterions and cs the excess salt 

concentration. If ξ>1, part of the PEL counterions are condensed and cf=c/ξ +2cs. 

For hyaluronan (HA), Manning’s counterions condensation is not expected, since the distance 

between two ionic sites a=10.2 Å is larger than lB (ξ=0.7 <1). Also, Lp = 5 nm, which does not 

correspond to the rigid rod limit, but agrees with eqs. 3 and 4, since absolute values of Le and 

the variation Le ~cf
-1

 have been validated previously on HA solutions [34,35]. In domain III, 

the corresponding values for Le, which depend on the concentration of both partners, range 

between 45 and 175 nm (
-1

 is ranging between ~16 and 23 nm), hence the condition .LT >1 

is fulfilled. 

For chitosan and PLL, ξ>1 and Manning’s condensation brings the distance between charges, 

a, down to lB. Although, we do not have data for chitosan at low I, we have data for PLL. The 

value Lp=1 nm corresponds to a flexible PEL, but we will still apply eq. 4: indeed the 

condition .LT >1 is still fulfilled because LT is large enough due to the contribution of Le. 

Finally, for salt-free mixtures (low I) in domain III, due to the contribution of Le, the ratio 

LT/R could be as large as ~6 for hyaluronan (R=17 nm for positively charged Ludox CL), and 
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~19 for PLL complexes (since R is smaller, 9.2 nm for negatively charged Ludox AM). At 

low I, it decreases to a value comprised between 1 and 3 in domain I, and between 0.7 and 1 

in domain II (Le ranging between 6.6 and 11 nm with 5
-1
8 nm). 

At larger I, i.e. with the quantities of added salt used here, 
-1

<1 nm, so that Le becomes 

negligible and LT~Lp. 

 

 Elongated complexes in domain III. Ionic strength I has a strong influence: while 

HA and PLL complexes form elongated (Df=1.5) or ramified objects (Df=2) in domain III at 

large I (0.1 or 0.2 M added salt), they adopt a rodlike structure with Df=1 at low I (Figs. 7 and 

8). The q
-1

 variation is then fitted satisfactorily by means of the form factor derived for rigid 

rod particles, /qL, where L is the length of the rod, [14] in order to determine the linear mass 

density of the aligned SiNPs in the HA complexes, ML. Considering that the scattered 

intensity, I=()
2
VP(q), arises only from the NPs – the signal of PELs is negligible 

here –  we obtain ML=(Iq)/(1.6610
-24
()

2
)=19305 g/mol/Å for all HA and 

SiNP concentrations in domain III (see Figs. 7 and 8), a value five times lower than that 

calculated for straight monolayer wires of NPs in close contact (given by the NPs mass to 

their diameter ratio equal to 3.3810
7
/340=99411 g/mol/Å). This shows that, in the absence 

of excess salt, these NP complexes adopt a rodlike structure with some non-covered chain 

parts, which we can call “holes” or also pearl necklaces (see drawing in Fig. 8). An 

explanation for these “holes” comes from the increase of the HA chain stiffness at low I due 

to electrostatic repulsion between monomers that gives rise to a more stretched chain with 

fewer PEL segments near the NP surface. It has been previously proposed by theorists [22,24] 

that if the charge of a NP is not completely compensated by the PEL wrapping, the net charge 

of the NP is still positive, and the neighboring NPs repeal each other and can form nanorods 

with holes. Although NPs are not in close contact on average, stretched PELs ensure their 

linking within the rodlike assemblies. 

 

 LT: a unique parameter. In the sake of generality, we can check whether the 

influence of I is accounted by a general dependence over a unique parameter, the total 

persistence length LT.  In Fig. 9, we have regrouped all Df values for the different PELs and 

the different ionic strengths for domain III. We observe a simple behavior. First Df =1 for 

LT/R≥1; this comprises low I data (right hand side), but also the (more rigid) chitosan at large 

I for which LT/R is just equal to 1. Second, for LT/R <1, Df values for HA as well as PLL 
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increase up to 2. Hence a general, clear and systematic account of I through LT, is obtained 

here. We detail it just below. 

For LT/R1, the PEL wrapping compensates the charge of the NP that might come in 

molecular contact with each other. Therefore, the complexed NPs form a compact structure, 

which opens up as the chain becomes stiffer. For LT/R=1, the NPs become linearly arranged 

with fewer segments near the NP surface. For LT/R>1, repulsions between NPs along the rigid 

chain cannot thus be compensated by the wrapping of the PEL, which enables a spacing 

between NPs and the formation of pearl necklace-like structures with Df=1. This is obtained 

for HA/SiNP complexation, but such effect also accounts for the formation of elongated PLL 

complexes with Df~1 at low I in the same domain III, although this PEL on its own displayed 

a very flexible backbone. Interestingly, the linear mass density of the PLL rodlike complexes, 

ML=3500 g/mol/Å, is also about five times lower than that of SiNPs aligned in close contact 

(310
6
/2RSiNP-=16300 g/mol/Å), like for HA/NP complexes. 

 

Fig. 9. (Color on-line) Influence of the ratio LT/R on the fractal exponent Df of the self-

assemblies in domain III. The LT/R range is obtained by varying the nature of the PEL as well 

as the ionic strength I, which depends on the external salt, PELs, and NPs concentration. Low 

I data are on the right hand side of the vertical dotted line. Error bars depend on both the 

quality of the fit of the data and of the number of samples (different runs and concentrations, 

see Figs. 4a, 4b, 7, and 8). 
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 Results obtained in domains I and II (see Table 2) corroborate these observations and 

indicate that the complexation is weaker in any case at low I and that salt-free complexes with 

larger LT/R adopt a looser structure. In domain I, the PEL excess may balance the NPs charge 

and the NPs might come in molecular contact with each other. However, the scattering signal 

being too low at these NPs concentrations, it is difficult to confirm this assumption with a 

good accuracy. 

 

B. BIPHASIC DOMAIN 

 Biphasic domain: Figs. 1 and 5 indicate that biphasic domains are not limited to the 

stoichiometry line [+]/[-]=1 (grey, blue and red lines), but on the contrary are quite wide, 

showing that mixtures phase separate before the neutralization point. Besides polydispersity, 

the reason behind this may be that primary complexes do not have the same charge ratio [+]/[-

], but instead show a “disproportionation” of charge distribution [42]. This view of 

coexistence of neutral and more charged complexes is consistent with the observation of 

complexes, very likely to be still overcharged, of smaller size with same Df in some 

supernatants (not shown here). A wider biphasic domain, with a boundary between domains II 

and III located at larger NP contents, is observed in two cases: 

- For the different PELs, observed first at large I, the widening occurs for smaller 

characteristic ratios Lp/R: for PLL, more flexible, domain II is the widest as seen in 

Fig. 1. Not surprisingly, this shows that the charge of NPs is more efficiently balanced 

by the winding of flexible PEL chains. 

- For the observations on HA/NP complexes in Fig. 5, a wider biphasic part is seen for 

large I. The shaded part of domain II vanishes for low I: the stability of overcharged 

primary complexes is higher. This can be related again with the increased rigidity at 

low I, hence uneasy binding of PEL chains. But it can also be said that van der Waals 

attraction becomes dominant in excess of salt and causes the phase separation, in a 

way we now detail below. 

 

 Effect of the interaction profile. The origin of the difference of fractal dimension at 

low and high I and thus of the NPs aggregation behavior can be understood by consideration 

of the nature of the short-range interaction energy between two approaching particles [43-45]. 

For charged colloids, the key feature is the repulsive electrostatic energy barrier Eel which has 
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to be overcome, for example, by a NP approaching a primary complex: Eel is determined by 

the surface charge and the screening length fixed by the ion concentration in solution. At low 

I, complexation between oppositely charged species occurs readily and we can assume that Eel 

is much less than kBT. This has direct effects on the fractal dimension Df: every collision will 

result in the particles sticking together, leading to a rapid aggregation, limited only by the rate 

of diffusion-induced collisions between the clusters. In this regime, called diffusion-limited 

colloid aggregation (DLCA), the interior of the complexes is screened from penetration, 

which results in a more tenuous, in other words more “open” structure with lower Df. 

Repulsion between NPs inside complexes can also account for such “open” structures. 

By contrast, if PEL-NP attraction is screened by addition of co-ions from added salt, Eel could 

remain comparable to, or larger than kBT, and many collisions can occur before two particles 

stick to one another (regime called reaction-limited colloid aggregation: RLCA). The 

probability of sticking P~exp(-Eel/kBT) is much lower and the aggregating clusters will have 

the opportunity to explore a large number of possible mutual configurations, which leads to 

some interpenetration and eventually close contacts, and therefore denser NP assemblies with 

larger fractal exponents Df. For RLCA Df is closer to 2.1, much larger than for DLCA [43-

45].  

In summary, we have shown the pivotal role of the quantity LT in the tuning of NP self-

assemblies. The absence of external salt undoubtedly accounts for more stretched structures 

with lower Df. 

 

V. CONCLUSION 

 To summarize, variations in LT/R allowed us to control the structure of NPs self-

assemblies. Increasing electrostatic screening or reducing LT/R are two interrelated efficient 

ways to drive an enhancement of phase separation, through the expansion of the coacervate 

region, and of complex compactness. For LT/R<1, fractal dimension values Df increase up to 2 

in excess of NPs. Df=1 for LT/R1, this comprises low ionic strength I data but also chitosan 

complexes at large I for which this characteristic ratio is just equal to 1. Hence, a universal 

account of I through the total persistence length LT is obtained here. Low-dimensional NP 

assemblies, such as well-defined compact nanorods obtained for LT/R~1, open routes toward 

new applications [1-7, 13, 14] such as plasmon-based waveguide, biosensors, nanorulers, 

theragnostic materials, or cancer cells therapy (e.g. with gold nanoparticles) [46]. Opposite to 
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elaborated procedures, such as rodlike nanocrystals syntheses, this basic approach of self-

assembly of preformed spherical NPs leads to nanorods with well-defined length, determined 

by the PEL contour length, and monodisperse cross-section (the cross-section radius and 

polydispersity values are similar to those of free NPs [13, 14]). On the other hand, pearl 

necklace nanorods obtained for LT/R>1 at low I could have strong interest by tuning the 

distance between NPs and hence some electromagnetic properties. One may thus foresee that 

our approach can be applied to a variety of developments involving other types of 

nanoparticles - such as gold and metallic ones, proteins, or viruses – covering a wide range of 

applications in materials as well as in the biological sciences. 
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APPENDIX: LIGHT AND SMALL-ANGLE X-RAY SCATTERING (SAXS) 

CHARACTERIZATION OF THE SILICA NANOPARTICLES AND 

POLYELECTROLYTES 

 

Static and dynamic light scattering: Fluctuations in the scattered intensity with time I(q,t) 

(also called count rate),  measured at a given scattering angle  or equivalently at a given 

scattering wave vector q=(4n/)sin(/2), are directly reflecting the so-called Brownian 

motion of the scattering particles. In dynamic light scattering (DLS), the fluctuation pattern is 

translated into the normalized time autocorrelation function of the scattered intensity, g
(2)

(q,t). 

It is related to the so-called dynamic structure factor (or concentration fluctuations 

autocorrelation function),

 

, where c(q,t) and c(q,0) represent 

fluctuations of the concentration at time t and zero, respectively. In the case of a diffusive 

process, with characteristic relaxation time  inversely proportioned to q
2
, g

(1)
(q,t)=exp(-

Dq
2
t), where D is diffusion coefficient. The Stokes-Einstein relation allows one to determine 

the hydrodynamic radius RH of the scattered objects; RH=kT/6πηD, if the temperature T and 

solvent viscosity  are known (here =0.89 cP at 25 °C). To determine the polydispersity 

index of particles, we have adopted the classical cumulant analysis: 

...
2

),(ln 22
10

)1(  t
k

tkktqg , where k1=1/<> and k2/k1
2
 represents the polydispersity index 

(PDI).   

 In static light scattering (SLS) experiments, the excess of scattered intensity is measured 

with respect to the solvent. The so-called excess Rayleigh ratio was deduced using a 

toluene sample reference for which the excess Rayleigh ratio is well-known 

(Rtoluene=1.352210
-5

 cm
-1

 at 633 nm): 𝑅𝑠𝑜𝑙𝑢𝑡𝑒(𝑐𝑚−1) =
𝐼𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝐼𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝐼𝑡𝑜𝑙𝑢𝑒𝑛𝑒
× (

𝑛

𝑛𝑡𝑜𝑙𝑢𝑒𝑛𝑒
)

2

×

𝑅𝑡𝑜𝑙𝑢𝑒𝑛𝑒 . The usual equation for absolute light scattering combines the form factor P(q), 

the structure factor S(q) and the weight-average molecular weight Mw of the scattered 

objects: )()()(
²4

)( 2

4

2

qSqPCM
dc

dn

N

n
qR w

A


 , where K=42

n
2
(dn/dC)

2
/NA

4
 is the scattering 

constant (refractive index n=1.34 at 25 °C for water), C the concentration in g/cm
3
, dn/dC 

is the measured refractive index increment (obtained using a Mettler Toledo Portable Lab 

2
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refractometer) and NA the Avogadro’s number. The data obtained at low q using SLS (see 

Table 1) and corresponding to large spatial scales can be fitted by a Zimm law as:  

CA
R

q
MCqR

KC G

W

2

2
2 2

3
1

1

),(









 ,  (A1) 

where RG is the radius of gyration of the particles and A2 the second Virial coefficient. For 

example, A2=(2.5±0.3)10
-4

 cm
3
g

-2
mol for 0.3 M CH3COOH / 0.2 M CH3COONa aqueous 

solutions of chitosan. 

Small-angle X-ray scattering (SAXS): SAXS experiments were performed at the European 

Synchrotron Radiation Facility (ESRF, Grenoble, France) on the ID-02 beamline using a 

pinhole camera and 1 mm capillaries. For negatively charged SiNPs (Ludox AM), two sets of 

sample-to-detector distances (D=1 m and 8 m) were chosen at an energy of 12.46 keV 

corresponding to a wide q-range varying between 0.0011 and 0.57 Å
-1

. In a second run, 

corresponding to the characterization of the positively charged SiNPs (Ludox CL), two 

configurations were chosen (=1 Å, D=1 m; and =1 Å, D=10 m) so that the following q-

ranges were respectively available: 0.011  q (Å
-1

)  0.625; and 9×10
-4 
 q (Å

-1
) 0.063. 

Finally, a Bonse-Hart configuration allowing for a q-range extending from 1.32×10
-4 

to 0.020 

Å
-1

 was used for the most concentrated samples. The absolute units are obtained by 

normalization with respect to water (high q-range) or lupolen (low q-range). For SAXS, the 

scattering length densities (SLDs) are defined by  = 1/(mv1.6610
-24

)relniZi, where 

rel=0.2810
-5

 nm is the electron radius and Zi the atomic number of element i. Table A1 

reports the scattering length densities SLDs per unit volume of polyelectrolytes and silica 

nanoparticles calculated for SANS and SAXS. 
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Table A1. Scattering length densities SLDs per unit volume calculated for SANS and 

SAXS. The specific volumes of the different components are also indicated as well as 

light scattering constant K and dn/dC values. 

 

Negatively charged SiNPs: Ludox AM particles, provided by GRACE, carry a 

pronounced negative surface charge over the whole pH range above the isoelectric point 

(located around pH=2) due to the substitution of tetravalent silicium by trivalent 

aluminium ions ([Al2O3]= 0.2 wt. % according to the supplier) giving rise to very good 

Components Specific 

volume 

(cm
3
/g) 

Calculated SLD-

SANS/10
10

 cm
-2

 

Calculated 

SLD-

SAXS/10
10

 

cm
-2

 

dn/dC 

(cm
3
/g) 

K (cm
2
.g

-

2
.mol) 

H2O 1 -0.56 9.37 - - 

D2O 0.9058 6.36 9.31 - - 

Chitosan in 0.3M 

CH3COOH/0.2M 

CH3COONa 

0.478 2.47 for C6H11NO4 

(in H2O) 

5.32 for C6H7NO4D4 

(in D2O) 

18.7 0.195 2.7910
-7

 

Poly-ʟ-lysine in 

0.2M KBr 

~1 1.06 for C6H12N2O 9.3 0.1645 1.9810
-7

 

Hyaluronan in 

0.1M NaCl 

0.59 2.37 for C14H21NO11 15.1 0.14 1.4410
-7

 

Silica NPs (Ludox 

AM 30: negatively 

charged) in 0.3M 

CH3COOH/0.2M 

CH3COONa 

0.4545 3.47 18.5 0.0658 3.1710
-8

 

Silica NPs in 0.1M 

NaCl at pH=4 

(Ludox CL: 

positively charged) 

0.4545 3.47 18.5 0.064 310
-8
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stability against pH variation [14]. Such stability has been checked using light scattering 

measurements showing a narrow size distribution over several months. SiNPs are well 

dispersed and stable in solution and show no tendency to aggregation with time.  We 

characterized the scattering from a SiNPs dilute suspension, introducing a polydispersity 

in size of the scattered objects described by a log-normal distribution, L(r, R, σ), where r 

is the radius, R the mean radius, and σ the variance: 



















R

r

r
RrL 2

2
ln

2

1
exp

2

1
),,(




  (A2) 

Thus, neglecting the virial effects (assuming S(q) = 1) at low concentration in the presence of 

salt, it is classical to define the global scattering intensity by the following relation: 

  



0

2
),,(),()( drRrLrqPVqI 

  (A3) 

Fig. A1 shows the scattering of a pure SiNPs solution, which can be fitted satisfactorily by 

means of the form factor expression derived for hard spheres of radius R: 

2

3)(

)cos()sin(
9)( 







 


qR

qRqRqR
qP   (A4) 

The form factor oscillations, damped by the size distribution, are well-reproduced with I(q) 

calculated as indicated above (eqs A3 and A4). The negatively charged SiNPs solution is 

well-represented by a suspension of hard spheres with R=9.2 nm and σ=0.12. Extrapolation of 

the scattered intensity to zero-wave vector, I(0), gives the SiNPs weight-average molecular 

weight, MW=3×10
6
 g·mol

−1
. 
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Fig. A1. (Color on-line) SiNP form factor, P(q), obtained using SAXS experiments performed 

at 5 g/l and 20 °C. The continuous blue line corresponds to the best fit of the data using the 

form factor expression derived for hard spheres of radius R=9.2 nm with =0.12. 

 

Positively charged SiNPs: Commercial dispersion of positively charged SiNPs was provided 

by GRACE under the reference Ludox CL-CAL25 and was used as received without further 

purification. Ludox CL is a colloidal dispersion of modified silica particles coated with 

aluminum oxide Al2O3 (3% according to the supplier) using aluminum chloride to reverse the 

surface charge density. Therefore, these modified silica particles carry a more pronounced 

positive charge on their surface (Zeta potential is equal to 17.8 mV in the presence of 0.1 M 

NaCl). Positive Al
+
 ions are bonded to the SiNPs surface through the silanol groups. We have 

considered a NP surface charge density of 1 elementary charge per nm
2
. The original 30 wt.% 

stock was diluted into a 10
-4 

M HCl solution to ensure a pH value of 4 and thus a good 

stability of the particles at high (0.1 M NaCl) and low (salt-free solution) ionic strength. 

Analysis of the single cooperative relaxation mechanism measured by DLS gives an apparent 

hydrodynamic radius, RH, of 221 nm, a value independent on the excess salt concentration. 

These silica particles are monodisperse in size as seen by the polydispersity index calculated 

using the cumulant procedure: k2/k1
2
=0.057. Their stability with time was also checked using 

DLS by performing new experiments 7 days after samples preparation, and no changes in the 

autocorrelation function were observed. 
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 Fig. A2 shows SAXS profiles collected at different SiNP concentrations and at pH=4. 

The spectra are identical, showing that the structure of the SiNPs remains unchanged in whole 

investigated concentration range. Additionally, the presence of an excess of salt does not 

destabilize the SiNPs dispersion either as seen by the superimposition of the data obtained for 

a C=10 g/l solution prepared with and without addition of salt. 

 

Fig. A2. (Color on-line) SAXS profiles collected at various positively charged SiNP 

concentrations. The dashed lines indicate the oscillations associated to the form factor of the 

SiNPs. 

 

 The low-q range data can fitted by a classical Guinier expression, which provides the 

average radius of gyration, RG, equal to 16 nm for all concentrations, and the zero-wave 

vector scattered intensity, I(0), associated to the mass of the particles. Extrapolation of the 

ratio C/I(q²0) to zero-concentration gives MW=3.37×10
7 

g/mol and A2=4.54×10
-5 

cm
3
.g

-

2
.mol (see eq. A1), a positive value indicating that the pH 4 buffer is a good solvent for the 

cationic SiNPs.

 

The high q data can be fitted satisfactorily by means of the form factor 

expression derived for hard spheres of radius R (see eq. A4). One obtains R=17 nm (data are 

summarized in Table 1). 
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