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ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION

AND STATIONARY NONLOCAL MINIMAL SURFACES

VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

ABSTRACT. This article is mainly devoted to the asymptotic analysis of a fractional version of

the (elliptic) Allen-Cahn equation in a bounded domain Ω ⊆ Rn, with or without a source term

in the right hand side of the equation (commonly called chemical potential). Compare to the

usual Allen-Cahn equation, the Laplace operator is here replaced by the fractional Laplacian

(−∆)s with s ∈ (0, 1/2), as defined in Fourier space. In the singular limit ε → 0, we

show that arbitrary solutions with uniformly bounded energy converge both in the energetic and

geometric sense to surfaces of prescribed nonlocal mean curvature in Ω whenever the chemical

potential remains bounded in suitable Sobolev spaces. With no chemical potential, the notion of

surface of prescribed nonlocal mean curvature reduces to the stationary version of the nonlocal

minimal surfaces introduced by L.A. Caffarelli, J.M. Roquejoffre, and O. Savin [16]. Under the

same Sobolev regularity assumption on the chemical potential, we also prove that surfaces of

prescribed nonlocal mean curvature have a Minkowski codimension equal to one, and that the

associated sets have a locally finite fractional 2s′-perimeter in Ω for every s′ ∈ (0, 1/2).
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1. INTRODUCTION

In the van der Waals-Cahn-Hilliard theory of phase transitions, two-phase systems are

driven by energy functionals of the form
∫

Ω

ε|∇u|2 + 1

ε
W (u) dx , ε ∈ (0, 1) , (1.1)

where u : Ω ⊆ Rn → R is a normalized density distribution of the two phases, and the

(smooth) potential W : R → [0,∞) has exactly two global minima at ±1 with W (±1) = 0

(see e.g. [31]). Here and after Ω denotes a smooth and bounded open set in dimension n > 2.

Critical points satisfy the so-called elliptic Allen-Cahn (or scalar Ginzburg-Landau) equation

−∆uε +
1

ε2
W ′(uε) = 0 in Ω . (1.2)

When ε is small, a control on the potential implies that uε ≃ ±1 away from a region whose

volume is of order ε. Formally, the transition layer from the phase −1 to the phase +1 has a

characteristic width of order ε. It should take place along an hypersurface which is expected

to be a critical point of the area functional, i.e., a minimal surface. More precisely, the region

1
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{uε ≃ 1}, which is essentially delimited by this hypersurface and the container Ω, should be a

stationary set in Ω of the perimeter functional, at least as ε→ 0.

For energy minimizing solutions (under their own boundary condition), this picture has

been justified first in [41] through one of the first examples of Γ-convergence. The result

shows that if the energy is equibounded, then uε → u∗ in L1(Ω) as ε → 0 for some function

u∗ ∈ BV (Ω; {±1}) (up to subsequences). The set {u∗ = 1} minimizes (locally) its perimeter

in Ω, and up to a multiplicative constant, the energy converges to the relative perimeter of

{u∗ = 1} in Ω. The analogous analysis concerning global minimization of the energy under a

volume constraint has been addressed in [40, 54].

The case of general critical points has been treated more recently in [33]. It presents a

slightly different feature. Namely, if the energy is equibounded, then the energy density con-

verges in the sense of measures as ε → 0 to a stationary integral (n − 1)-varifold, i.e., a

generalized minimal hypersurface with integer multiplicity. The multiplicity of the limiting

hypersurface comes from an eventual folding of the diffuse interface {|uε| . 1/2} as ε → 0.

In such a case, the interface between the two regions {u∗ = 1} and {u∗ = −1} can be strictly

smaller than the support of the limiting varifold. In fact, the boundary of the region {u∗ = 1}
corresponds to the set of points where the varifold has odd multiplicity. In particular, the

perimeter of {u∗ = 1} can be strictly smaller than the the limit of the energy. This energy loss

effect is in strong analogy with the lack of strong compactness as ε → 0 of solutions of the

(vectorial) Ginzburg-Landau system with a potential well {W = 0} given by a smooth and

compact manifold M ⊆ Rd, see [36, 37].

In the last few years, there have been many studies on nonlocal or fractional versions of

equation (1.2) and energy (1.1) (see e.g. [2, 3, 4, 9, 10, 13, 14, 15, 42, 44, 45, 47, 52]). Many

of them are motivated by physical problems such as stochastic Ising models from statistical

mechanics, or the Peirls-Nabarro model for dislocations in crystals [30, 34, 35]. In this article,

we consider one of the simplest fractional version of equation (1.2) where the Laplace operator

is replaced by the fractional Laplacian (−∆)s, i.e., the Fourier multiplier of symbol (2π|ξ|)2s,

with exponent s ∈ (0, 1/2). In details, we are interested in the asymptotic behavior as ε → 0

of weak solutions vε : R
n → R of the fractional Allen-Cahn equation

(−∆)svε +
1

ε2s
W ′(vε) = 0 in Ω , (1.3)

subject to an exterior Dirichlet condition of the form

vε = gε on R
n \ Ω , (1.4)

where gε : R
n → R is a given smooth and bounded function. For s ∈ (0, 1), the action of the

integro-differential operator (−∆)s on a smooth bounded function v : Rn → R is defined by

(−∆)sv(x) := p.v.

(
γn,s

∫

Rn

v(x) − v(y)

|x − y|n+2s
dy

)
with γn,s := s22sπ−n

2
Γ
(
n+2s

2

)

Γ(1− s)
, (1.5)

where the notation p.v. means that the integral is taken in the Cauchy principal value sense. In

terms of distributions, the action of (−∆)sv on a test function ϕ ∈ D(Ω) is defined by

〈
(−∆)sv, ϕ

〉
Ω
:=

γn,s
2

∫∫

Ω×Ω

(
v(x) − v(y)

)
(ϕ(x) − ϕ(y)

)

|x− y|n+2s
dxdy

+ γn,s

∫∫

Ω×(Rn\Ω)

(
v(x)− v(y)

)
ϕ(x)

|x− y|n+2s
dxdy . (1.6)
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This formula defines indeed a distribution on Ω whenever v ∈ L2
loc(R

n) satisfies

E(v,Ω) := γn,s
4

∫∫

Ω×Ω

|v(x) − v(y)|2
|x− y|n+2s

dxdy

+
γn,s
2

∫∫

Ω×(Rn\Ω)

|v(x) − v(y)|2
|x− y|n+2s

dxdy <∞ . (1.7)

More precisely, if (1.7) holds, then (−∆)sv belongs to H−s(Ω). To include the Dirich-

let condition (1.4), one considers the restricted class of functions given by the affine space

Hs
gε(Ω) := gε + Hs

00(Ω). Since E(·,Ω) is exactly the quadratic form induced by (1.6), the

functional E(·,Ω) can be thought as fractional Dirichlet energy in Ω associated to (−∆)s. In-

tegrating the potential in (1.3), we obtain the fractional Allen-Cahn energy in Ω associated to

equation (1.3), i.e.,

Eε(v,Ω) := E(v,Ω) + 1

ε2s

∫

Ω

W (v) dx . (1.8)

In this way, we define weak solutions of (1.3) as critical points of Eε(·,Ω) with respect to

perturbations supported in Ω.

Concerning minimizers of Eε(·,Ω) over Hs
gε(Ω), their asymptotic behavior as ε → 0 has

been investigated quite recently in [45] through a Γ-convergence analysis. The result reveals a

dichotomy between the two cases s > 1/2 and s < 1/2. In the case s > 1/2, the normalized

energies

Ẽε(·,Ω) :=
{
ε2s−1Eε(·,Ω) if s ∈ (1/2, 1) ,

| ln ε|−1Eε(·,Ω) if s = 1/2 ,

Γ
(
L1(Ω)

)
-converge as ε→ 0 to the functional Ẽ0(·,Ω) defined on BV (Ω; {±1}) by

Ẽ0(v,Ω) := σPer
(
{v = 1},Ω

)
,

where σ = σ(W,n, s) is a positive constant, and Per(E,Ω) denotes the distributional (relative)

perimeter of the set E in Ω. In other words, for s > 1/2, fractional Allen-Cahn energies (and

thus minimizers) behave essentially as in the classical case, and area-minimizing hypersurfaces

arise in the limit ε→ 0. For s ∈ (0, 1/2), the variational convergence of Eε(·,Ω) appears to be

much simpler since Hs-regularity does not exclude (all) characteristic functions. In particular,

there is no need in this case to normalize Eε(·,Ω). Assuming that gε → g in L1
loc(R

n \ Ω)

for some function g satisfying |g| = 1 a.e. in Rn \ Ω, the functionals Eε(·,Ω) (restricted to

Hs
gε(Ω)) converge as ε→ 0 both in the variational and pointwise sense to

E0(v,Ω) :=
{
E(v,Ω) if v ∈ Hs

g(Ω; {±1}) ,
+∞ otherwise .

Now it is worth noting that

E(v,Ω) = 2γn,sP2s

(
{v = 1},Ω

)
∀v ∈ Hs

g (Ω; {±1}) , (1.9)

where P2s(E,Ω) is the so-called fractional 2s-perimeter in Ω of a set E ⊆ R
n, i.e.,

P2s(E,Ω) :=

∫

E∩Ω

∫

Ec∩Ω

dxdy

|x− y|n+2s
+

∫

E∩Ω

∫

Ec\Ω

dxdy

|x− y|n+2s

+

∫

E\Ω

∫

Ec∩Ω

dxdy

|x− y|n+2s
.

As a consequence of this Γ-convergence result, a sequence {vε} of minimizing solutions of

(1.3)-(1.4) with s ∈ (0, 1/2) converges as ε → 0 (up to subsequences) to some function
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v∗ ∈ Hs
g(Ω) of the form v∗ = χE∗

− χRn\E∗
, and the limiting set E∗ ⊆ Rn is minimizing its

2s-perimeter in Ω, i.e.,

P2s(E∗,Ω) 6 P2s(F,Ω) ∀F ⊆ R
n , F \ Ω = E∗ \Ω . (1.10)

Sets satisfying the minimality condition (1.10) have been introduced in [16]. Their bound-

ary ∂E∗ ∩ Ω are referred to as (minimizing) nonlocal (2s-)minimal surfaces in Ω. By the

minimality condition (1.10), the first inner variation of the 2s-perimeter vanishes at E∗, i.e.,

δP2s(E∗,Ω)[X ] :=

[
d

dt
P2s

(
φt(E∗),Ω

)]

t=0

= 0 (1.11)

for any vector field X ∈ C1(Rn;Rn) compactly supported in Ω, where {φt}t∈R denotes the

flow generated by X . If the boundary ∂E ∩ Ω of a set E ⊆ Rn is smooth enough (e.g. a

C2-hypersurface), the first variation of the 2s-perimeter at E can be computed explicitly (see

e.g. [27, Section 6]), and it gives

δP2s(E,Ω)[X ] =

∫

∂E∩Ω

H
(2s)
∂E (x)X · νE dHn−1 , (1.12)

where νE denotes the unit exterior normal field on ∂E, and H
(2s)
∂E is the so-called nonlocal (or

fractional) (2s-)mean curvature of ∂E, defined by

H
(2s)
∂E (x) := p.v.

(∫

Rn

χRn\E(y)− χE(y)

|x− y|n+2s
dy

)
, x ∈ ∂E .

(See [1] for its geometric interpretation.) Therefore, a set E∗ whose boundary is a minimizing

nonlocal 2s-minimal surface in Ω (i.e., such that (1.10) holds) satisfies in the weak sense the

Euler-Lagrange equation

H
(2s)
∂E∗

= 0 on ∂E∗ ∩ Ω . (1.13)

The weak sense here being precisely relation (1.11). It has been proved in [16] that minimizing

nonlocal 2s-minimal surfaces also satisfies (1.13) in a suitable viscosity sense. This is one of

the key ingredient in the regularity theory of [16]. It states that a minimizing nonlocal minimal

surface is a C1,α-hypersurface away from a (relatively) closed subset of Hausdorff dimension

less than (n− 2). Since then, the C1,α regularity has been improved to C∞ in [8], and the size

of the singular set reduced to (n − 3) in [46]. Whether or not the singular set can be further

reduced remains an open question (see [24, 28] in this direction).

One of the main objective of this article is to extend the results of [45] on the fractional

Allen-Cahn equation (1.3) to the case of arbitrary critical points for s ∈ (0, 1/2), i.e., in the

regime of nonlocal minimal surfaces. Since we do not assume any kind of minimality, the

geometrical objects arising in the limit ε → 0 are not the “minimizing” nonlocal minimal

surfaces of [16] (i.e., solutions of (1.10)). Our main theorem shows that the limiting equation

is in fact relation (1.11), which can be interpreted as a weak formulation of the zero nonlocal

2s-mean curvature equation (1.13). We shall referred to as stationary nonlocal 2s-minimal

surface in Ω, the boundary ∂E∗ ∩Ω of a set E∗ ⊆ Rn satisfying relation (1.11) (i.e., a critical

point under inner variations in Ω of the 2s-perimeter).

In all our results, we make use of the following set of structural assumptions on the double

well potential W : R → [0,∞).

(H1) W ∈ C2
(
R; [0,∞)

)
.

(H2) {W = 0} = {±1} and W ′′(±1) > 0.

(H3) There exist p ∈ (1,∞) and a constant cW > 0 such that for all t ∈ R,

1

cW

(
|t|p−1 − 1

)
6 |W ′(t)| 6 cW

(
|t|p−1 + 1

)
.
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Those assumptions are of course satisfied by the prototypical potential W (t) = (1 − t2)2/4.

Notice that assumption (H3) implies that W has a p-growth at infinity so that finite energy

solutions of (1.3) belongs to Lp(Ω). Assuming that (H1)-(H2)-(H3) hold, we will prove that

any weak solution of (1.3)-(1.4) actually belongs to C1,α
loc (Ω) ∩ C0(Rn) for some α ∈ (0, 1).

Theorem 1.1. Assume that s ∈ (0, 1/2) and that (H1)-(H2)-(H3) hold. Let Ω ⊆ Rn be a

smooth and bounded open set. For a given sequence εk ↓ 0, let {gk}k∈N ⊆ C0,1
loc (R

n) be such

that supk ‖gk‖L∞(Rn\Ω) <∞ and gk → g in L1
loc(R

n \Ω) for a function g satisfying |g| = 1

a.e. in R
n \ Ω . For each k ∈ N, let vk ∈ Hs

gk(Ω) ∩ Lp(Ω) be a weak solution of




(−∆)svk +

1

ε2sk
W ′(vk) = 0 in Ω ,

vk = gk in Rn \ Ω .
(1.14)

If supk Eεk(vk,Ω) <∞, then there exist a (not relabeled) subsequence and a set E∗ ⊆ Rn of

finite 2s-perimeter in Ω such that

(i) vk → v∗ := χE∗
−χRn\E∗

strongly inHs′

loc(Ω)∩L2
loc(R

n) for every s′ < min(2s, 1/2);

(ii) the set E∗ ∩ Ω is open;

(iii) the boundary ∂E∗ ∩ Ω is a stationary nonlocal 2s-minimal surface in Ω (i.e., relation

(1.11) holds).

In addition, for every smooth open set Ω′ ⊆ Ω such that Ω′ ⊆ Ω,

(iv) E(vk,Ω′) → 2γn,sP2s(E∗,Ω
′);

(v)
∫
Ω′ W (vk) dx = O(ε

min(4s,α)
k ) for every α ∈ (0, 1);

(vi)
−1

ε2sk
W ′(vk) →

(
γn,s
2

∫

Rn

|v∗(x) − v∗(y)|2
|x− y|n+2s

dxdy

)
v∗(x) strongly in H−s(Ω′) and

weakly in Lp̄(Ω′) for every p̄ < 1/2s ;

(vii) vk → v∗ in C1,α
loc (Ω \ ∂E∗) for some α = α(n, s) ∈ (0, 1);

(viii) for each t ∈ (−1, 1), the level set Ltk := {vk = t} converges locally uniformly in Ω to

∂E∗ ∩ Ω, i.e., for every compact set K ⊆ Ω and every r > 0,

Ltk ∩K ⊆ Tr(∂E∗ ∩ Ω) and ∂E∗ ∩K ⊆ Tr(L
t
k ∩ Ω)

whenever k is large enough. Here, Tr(A) represents the open tubular neighborhood of

radius r of a set A.

Comparing this result to what is known on the classical Allen-Cahn equation (1.2), we can

now say that the main difference lies in the strong compactness of solutions (at and above the

energy regularity level), and the resulting continuity of the energy. In some sense, such com-

pactness is not really surprising as one may guess that Hs′ -regularity with s′ ∈ (0, 1/2) is not

strong enough to capture folding of interfaces. The key argument in proving compactness in

the energy space rests on the fractional scaling of the equation and the Marstrand’s Theorem

(see e.g. [38]), a purely measure theoretic result. In the same flavour, strong convergence

of solutions to the p-Ginzburg-Landau system (involving the p-Laplacian) towards stationary

p-harmonic maps has been proved in [59] for non-integer values of the exponent p. Com-

pactness at the Hs′ -level with s′ < min(2s, 1/2) is in turn a much more delicate issue. We

establish such compactness combining fine elliptic estimates in the region |vk| ≃ 1 together

with quantitative estimates on the volume of the sublevel sets {|vk| . 1/2}. To derive these

volume estimates, we apply the quantitative stratification principle of singular sets introduced

in [19] (in the context of harmonic maps and minimal currents) and generalized to an abstract

framework in [29]. We point out that this stratification principle does not apply verbatim to
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our setting since solutions of (1.3) are smooth, and non trivial adjustments have to be made.

To the best of our knowledge, this is the first time that the quantitative stratification principle

is applied to an Allen-Cahn (or Ginzburg-Landau) type equation.

Remark 1.2. We emphasize that Theorem 1.1 applies to minimizing solutions of (1.14) since

the function χΩ − gkχRn\Ω is an admissible competitor of uniformly bounded energy. In

particular, this theorem extend the result of [45] for s ∈ (0, 1/2) to arbitrary solutions (with

uniformly bounded energy) together with a full set of new estimates. However, if we assume

that each vk is minimizing, i.e., Eεk(vk,Ω) 6 Eεk(w,Ω) for every w ∈ Hs
gk
(Ω), then [45]

shows that the limiting set E∗ is a minimizing nonlocal minimal surface in Ω in the sense

of [16], i.e., E∗ satisfies (1.10).

Remark 1.3. Non trivial examples of (entire) stationary nonlocal minimal surfaces have been

constructed in [24]. These examples are nonlocal analogues of classical minimal surfaces such

as catenoids, or Lawson cones (see also [11, 12] for Delaunay type surfaces with constant

nonlocal mean curvature). It would be very interesting to construct solutions of the fractional

Allen-Cahn equation concentrating as ε→ 0 on such surfaces.

In proving Theorem 1.1, we actually investigate the more general case where (1.3) is re-

placed by

(−∆)svε +
1

ε2s
W ′(vε) = fε in Ω , (1.15)

with a smooth right hand side fε controlled (with respect to ε) in a suitable Sobolev space.

Considering such inhomogeneous equation is a way to analyse the asymptotic behavior of an

arbitrary sequence of (smooth) functions vε ∈ Hs
gε(Ω) satisfying Eε(vε,Ω) = O(1) and

∥∥(−∆)svε + ε−2sW ′(vε)
∥∥
W 1,q(Ω)

= O(1) as ε→ 0 ,

for some suitable exponent q.

In the classical case s = 1, such analysis has been pursued in [56, 57] (in continuation

to [33]). For s = 1, one considers a sequence {uε} of (uniformly bounded) smooth functions

on Ω with uniformly bounded energy (1.1), and satisfying

‖ − ε∆uε + ε−1W ′(uε)‖W 1,q(Ω) = O(1) for some q > n/2 . (1.16)

Under this assumption, there is still a well defined limiting interface as ε → 0, which is given

by an (n−1)−integral varifold with bounded first variation. In addition, the measure theoretic

mean curvature of this varifold is given by the weak W 1,q-limit of −ε∆uε + ε−2W ′(uε), and

it belongs to Lr, r := q(n − 1)/(n− q) > (n − 1), with respect to the (n − 1)-dimensional

measure on the interface. The range of exponents in (1.16) thus leads to the maximal range

of integrability exponents in Allard’s regularity theory [5, 50], and the limiting interface is

(partially) regular, see [48].

Considering the inhomogeneous equation (1.15) (complemented with the exterior Dirichlet

condition (1.4)), we assume that fε ∈ C0,1(Ω) satisfies

ε2s‖fε‖L∞(Ω) + ‖fε‖W 1,q(Ω) = O(1) for some q > n/(1 + 2s) .

In this setting, we have proved that the main conclusions in Theorem 1.1 hold (see Theorem 5.1

and Theorem 7.7 for precise statements) with a limiting set E∗ satisfying

δP2s(E∗,Ω)[X ] =
1

γn,s

∫

E∗∩Ω

div(fX) dx ∀X ∈ C1
c (Ω;R

n) , (1.17)

where f is the weak limit of fε in W 1,q(Ω) as ε → 0. In view of (1.12), the boundary of E∗

satisfies in the weak sense

H
(2s)
∂E∗

=
1

γn,s
f on ∂E∗ ∩ Ω . (1.18)
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We shall refer to this equation as the prescribed nonlocal (2s-)mean curvature equation in Ω,

and to weak solutions as surfaces of prescribed nonlocal (2s-)mean curvature.

Our analysis of the fractional Allen-Cahn equation naturally leads to the regularity problem

for stationary nonlocal minimal surfaces, or more generally, for weak solutions of (1.18) with

f ∈W 1,q(Ω) and q > n/(1+2s). In this direction, we have obtained partial results (compare

to [16]), and some of the main conclusions can be summarized in the following theorem (see

Section 6.6 for the complete set of results).

Theorem 1.4. For s ∈ (0, 1/2), let E∗ ⊆ Rn be a Borel set satisfying P2s(E∗,Ω) < ∞ and

(1.17) for some function f ∈ W 1,q(Ω) and q > n/(1 + 2s). Then,

(i) E∗ ∩ Ω is (essentially) open;

(ii) if ∂E∗ ∩ Ω is not empty, it has a Minkowski codimension equal to 1;

(iii) P2s′ (E∗,Ω
′) <∞ for every s′ ∈ (0, 1/2) and every open set Ω′ such that Ω′ ⊆ Ω.

This theorem is obtained through a blow-up analysis for solutions of (1.17). Such analysis

rests on a preliminary result stating that solutions of (1.17) are compact in the energy space.

This is of course the sharp interface analogue of the compactness property for the fractional

Allen-Cahn equation, and it relies again on Marstrand’s Theorem. Note that such compactness

doesn’t hold if P2s is replaced by the usual (distributional) perimeter of sets (see [48]). With

this compactness at hand, we have applied the quantitative stratification principle of [19, 29]

to solutions of (1.17), leading to conclusions (ii) and (iii).

Remark 1.5. Theorem 1.4 is new even in the case f = 0, i.e., in the case of stationary nonlocal

minimal surfaces. Whether or not solutions to (1.11) or (1.17) are more regular (in the spirit of

the minimizing case [16]) remains an open question. Let us mention that, in the recent article

[20], it has been proved that (some) stable solutions of (1.11) have locally finite perimeter

in Ω. In particular, their boundary are rectifiable. Note that item (iii) in Theorem 1.4 goes

somehow in this direction. Indeed, if we knew that (1− 2s′)P2s′ (E∗,Ω
′) = O(1) as s′ ↑ 1/2,

then it would say that E∗ has finite perimeter in the open set Ω′ since (1 − 2s′)P2s(·,Ω′)

converges to the usual perimeter functional as s′ → 1/2, see [6, 22]. Unfortunately, the

bound P2s′(E∗,Ω
′) < ∞ is obtained by a compactness argument (hinged on the quantitative

stratification principle), and no explicit dependence on s′ seems to follow.

Remark 1.6. A set E∗ ⊆ Rn satisfying

P2s(E∗,Ω)−
1

γn,s

∫

E∗∩Ω

f dx 6 P2s(F,Ω)−
1

γn,s

∫

F∩Ω

f dx

∀F ⊆ R
n , F \Ω = E∗ \ Ω , (1.19)

provides a solution of (1.17). It corresponds to a minimizing solution of the prescribed nonlocal

2s-mean curvature equation. Since f ∈ W 1,q(Ω) with q > n/(1 + 2s), we have f ∈ Lr(Ω)

with r := nq/(n − q) > n/2s. Hence we can apply in this case the regularity theory for

nonlocal almost minimal surfaces of [18]. Combined with [46], it shows that ∂E∗ ∩ Ω is a

C1,α-hypersurface for every α < (1 + 2s − n/q)/(n + 2s) away from a relatively closed

subset of Hausdorff dimension less then (n− 3) (and discrete for n = 3).

Remark 1.7. The notion of stationary nonlocal minimal surface is strongly related to station-

ary fractional s-harmonic maps into a sphere. With this respect, this article is natural continu-

ation to the analysis of the fractional Ginzburg-Landau equation and 1/2-harmonic maps [39]

by the two first authors. Fractional harmonic maps into a sphere were originally introduced in

[21] for s = 1/2 and n = 1. A mapping v : Rn → Sd−1 (of finite fractional Dirichlet energy)
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is called a weakly s-harmonic map in Ω if

[
d

dt
E
(
v + tϕ

|v + tϕ| ,Ω
)]

t=0

= 0 ∀ϕ ∈ D(Ω;Rd) .

As shown in [39] for s = 1/2, this condition leads (in the weak sense) to the Euler-Lagrange

equation

(−∆)sv(x) =

(
γn,s
2

∫

Rn

|v(x)− v(y)|2
|x− y|n+2s

dxdy

)
v(x) in Ω . (1.20)

For any set E ⊆ Rn of finite 2s-perimeter in Ω, the function v = χE − χRn\E turns out to

satisfy equation (1.20) (see Lemma 6.35). In other words, if we identify {±1} with {±1} ×
{0} ⊆ R × R

d−1, the function χE − χRn\E is a weakly s-harmonic map into S
d−1 in the

open set Ω (explaining in particular item (vi) in Theorem 1.1). As a consequence, no regularity

can be expected for weakly s-harmonic maps for s < 1/2. This is of course in analogy with

the non-regularity result of [43] for usual weakly harmonic maps into a manifold (for n > 3).

Stationary s-harmonic maps into Sd−1 are defined as weakly s-harmonic maps satisfying the

additional stationarity condition δE(v,Ω) = 0 (where δE(·,Ω) denotes the first inner variation

of E(·,Ω)). One may expect that, for such s-harmonic maps, some partial regularity holds (see

[21, 39] in the case s = 1/2). In view of (1.9), if a set E∗ ⊆ Rn satisfies (1.11) (i.e., whose

boundary is a stationary nonlocal 2s-minimal surface in Ω), then the function χE∗
−χRn\E∗

is

a stationary s-harmonic map in Ω. It shows that, for general stationary s-harmonic maps into

a sphere, the singular set (or discontinuity set) can have a positive Hn−1-measure if s < 1/2

(compare to the vanishingHn−1-measure of the singular set for stationary 1/2-harmonic maps,

see [39]).

As it is customary by now, our analysis rely on the Caffarelli-Silvestre extension proce-

dure [17] to the open upper half space R
n+1
+ := Rn × (0,∞). This extension allows us to

represent (−∆)s as the Dirichlet-to-Neumann operator associated to the degenerate elliptic

operatorLs := −div(z1−2s∇·) on R
n+1
+ , where z ∈ (0,∞) denotes the extension variable. In

this way, we rewrite solutions to the fractional Allen-Cahn equation or the prescribed nonlocal

2s-mean curvature equation as Ls-harmonic functions in R
n+1
+ satisfying nonlinear boundary

conditions. In the spirit of [16], this extension leads to fundamental monotonicity formulas.

All the functional and variational aspects surrounding the fractional Laplacian (−∆)s and the

Caffarelli-Silvestre extension are presented in Section 2. In Section 3, we prove some basic

(but necessary) regularity estimates on solutions to the fractional Allen-Cahn equation and

Ls-harmonic functions with Allen-Cahn degenerate boundary reaction. A first part of the as-

ymptotic analysis as ε → 0 is performed in Section 4 for Allen-Cahn degenerate boundary

reactions. Consequences for the fractional Allen-Cahn equation are then given in Section 5.

Section 6 is devoted to the analysis of surfaces of prescribed nonlocal mean curvature. Finally,

we prove in Section 7 the aforementioned volume estimate on transition sets, and complete our

asymptotic analysis of the fractional Allen-Cahn equation.

Notation. Throughout the paper, Rn is identified with ∂Rn+1
+ = Rn × {0}. More generally,

sets A ⊆ Rn are identified with A × {0} ⊆ ∂Rn+1
+ . Points in Rn+1 are written x = (x, z)

with x ∈ Rn and z ∈ R. We shall denote by Br(x) the open ball in Rn+1 of radius r centered

at x = (x, z), while Dr(x) := Br(x) ∩ Rn is the open ball (or disc) in Rn centered at x. For

an arbitrary set G ⊆ R
n+1, we write

G+ := G ∩R
n+1
+ and ∂+G := ∂G ∩ R

n+1
+ .

If G ⊆ R
n+1
+ is a bounded open set, we shall say that G is admissible whenever

• ∂G is Lipschitz regular;
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• the (relative) open set ∂0G ⊆ Rn defined by

∂0G :=
{
x ∈ ∂G ∩ ∂Rn+1

+ : B+
r (x) ⊆ G for some r > 0

}
,

is non empty and has Lipschitz boundary;

• ∂G = ∂+G ∪ ∂0G .

Finally, we shall always denote byC a generic positive constant which may only depend on

the dimension n, and possibly changing from line to line. If a constant depends on additional

given parameters, we shall write those parameters using the subscript notation.

2. FUNCTIONAL SPACES AND THE FRACTIONAL LAPLACIAN

2.1. Hs-spaces for s ∈ (0, 1/2). For an open set Ω ⊆ Rn, the fractional Sobolev space

Hs(Ω) is made of functions v ∈ L2(Ω) such that1

[v]2Hs(Ω) :=
γn,s
2

∫∫

Ω×Ω

|v(x)− v(y)|2
|x− y|n+2s

dxdy <∞ , γn,s := s 22sπ−n
2
Γ
(
n+2s

2

)

Γ(1 − s)
.

It is a separable Hilbert space normed by ‖·‖2Hs(Ω) := ‖·‖2L2(Ω)+[·]2Hs(Ω). The spaceHs
loc(Ω)

denotes the class of functions whose restriction to any relatively compact open subset Ω′ of Ω

belongs to Hs(Ω′). The linear subspace Hs
00(Ω) ⊆ Hs(Rn) is defined by

Hs
00(Ω) :=

{
v ∈ Hs(Rn) : v = 0 a.e. in R

n \ Ω
}
.

Endowed with the induced norm, Hs
00(Ω) is also an Hilbert space, and for v ∈ Hs

00(Ω),

[v]2Hs(Rn) = 2E(v,Ω) (2.1)

=
γn,s
2

∫∫

Ω×Ω

|v(x) − v(y)|2
|x− y|n+2s

dxdy + γn,s

∫∫

Ω×Ωc

|v(x)|2
|x− y|n+2s

dxdy

= [v]2Hs(Ω) +

∫

Ω

ρΩ(x)|v(x)|2 dx ,

where E(·,Ω) is the fractional Dirichlet energy defined in (1.7), and

ρΩ(x) := γn,s

∫

Rn\Ω

1

|x− y|n+2s
dy .

Since s ∈ (0, 1/2), if Ω is bounded and its boundary is smooth enough (e.g. if ∂Ω is Lipschitz

regular), then ∫

Ω

ρΩ(x)|v(x)|2 dx 6 CΩ‖v‖2Hs(Ω) ∀v ∈ Hs(Ω) ,

for a constant CΩ = CΩ(s) > 0. As a consequence, if v ∈ Hs(Ω) and ṽ denotes the extension

of v by zero outside Ω, then

‖v‖Hs(Ω) 6 ‖ṽ‖Hs(Rn) 6 (CΩ + 1)
1
2 ‖v‖Hs(Ω) .

In particular, if ∂Ω is smooth enough, then Hs
00(Ω) =

{
ṽ : v ∈ Hs(Ω)

}
(see [32, Corol-

lary 1.4.4.5]), and (see [32, Theorem 1.4.2.2])

Hs
00(Ω) = D(Ω)

‖·‖Hs(Rn)
. (2.2)

The topological dual space of Hs
00(Ω) is denoted by H−s(Ω).

We are interested in the class of functions

Ĥs(Ω) :=
{
v ∈ L2

loc(R
n) : E(v,Ω) <∞

}
.

The following properties hold for any bounded open subsets Ω and Ω′ of Rn:

• Ĥs(Ω) is a linear space;

1The normalization constant γn,s is chosen in such a way that [v]2Hs(Rn) =

∫
Rn

(2π|ξ|)2s|v̂|2 dξ .
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• Ĥs(Ω) ⊆ Ĥs(Ω′) whenever Ω′ ⊆ Ω, and E(v,Ω′) 6 E(v,Ω) ;

• Ĥs(Ω) ∩Hs
loc(R

n) ⊆ Ĥs(Ω′) ;

• Hs
loc(R

n) ∩ L∞(Rn) ⊆ Ĥs(Ω) .

From Lemma 2.1 below, it is straightforward to show that Ĥs(Ω) is actually a Hilbert space

for the scalar product induced by the norm v 7→
(
‖v‖2L2(Ω) + E(v,Ω)

)1/2
(see e.g. [39, proof

of Lemma 2.1]).

Lemma 2.1. Let x0 ∈ Ω and ρ > 0 be such thatDρ(x0) ⊆ Ω. There exists a constantCρ > 0,

independent of x0, such that

∫

Rn

|v(x)|2
(|x− x0|+ 1)n+2s

dx 6 Cρ

(
E
(
v,Dρ(x0)

)
+ ‖v‖2L2(Dρ(x0))

)

for every v ∈ Ĥs(Ω).

Remark 2.2. If v ∈ Ĥs(Ω), then v +Hs
00(Ω) ⊆ Ĥs(Ω). Conversely, if v = g a.e. in Rn \ Ω

for some functions v and g in Ĥs(Ω), then v−g ∈ Hs
00(Ω). As a consequence, for g ∈ Ĥs(Ω),

Hs
g (Ω) :=

{
v ∈ Ĥs(Ω;Rm) : v = g a.e. in R

n \ Ω
}
= g +Hs

00(Ω) .

Note that Hs
g(Ω) ⊆ Hs

loc(R
n) whenever g ∈ Ĥs(Ω) ∩Hs

loc(R
n).

2.2. The fractional Laplacian. Let Ω ⊆ Rn be a bounded open set. We define the fractional

Laplacian (−∆)s : Ĥs(Ω) → (Ĥs(Ω))′ as the continuous linear operator induced by the qua-

dratic form E(·,Ω). More precisely, given a function v ∈ Ĥs(Ω), we define its distributional

fractional Laplacian (−∆)sv through its action on Ĥs(Ω) by setting

〈
(−∆)sv, ϕ

〉
Ω
:=

γn,s
2

∫∫

Ω×Ω

(
v(x) − v(y)

)(
ϕ(x) − ϕ(y)

)

|x− y|n+2s
dxdy

+ γn,s

∫∫

Ω×Ωc

(
v(x)− v(y)

)(
ϕ(x) − ϕ(y)

)

|x− y|n+2s
dxdy . (2.3)

If v is a smooth bounded function, then the distribution (−∆)sv can be rewritten from (2.3)

as a pointwise defined function which coincides with the one given by formula (1.5). Notice

also that the restriction of the linear form (−∆)sv to the subspaceHs
00(Ω) belongs to H−s(Ω)

with the estimate

‖(−∆)sv‖2H−s(Ω) 6 2E(v,Ω) . (2.4)

In this way, (−∆)sv appears to be the first outer variation of E(·,Ω) at v with respect to

pertubations supported in Ω, i.e.,

〈
(−∆)sv, ϕ

〉
Ω
=

[
d

dt
E(v + tϕ,Ω)

]

t=0

(2.5)

for all ϕ ∈ Hs
00(Ω).

Remark 2.3. If Ω′ ⊆ Ω are two open sets and v ∈ Ĥs(Ω), then

〈
(−∆)sv, ϕ

〉
Ω
=

〈
(−∆)sv, ϕ

〉
Ω′

for all ϕ ∈ Hs
00(Ω

′).
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2.3. Weighted Sobolev spaces. For an open set G ⊆ Rn+1, we define the weighted L2-space

L2(G, |z|adx) :=
{
u ∈ L1

loc(G) : |z|
a
2 u ∈ L2(G)

}
with a := 1− 2s ,

normed by

‖u‖2L2(G,|z|adx) :=

∫

G

|z|a|u|2 dx .

Accordingly, we introduce the weighted Sobolev space

H1(G, |z|adx) :=
{
u ∈ L2(G, |z|adx) : ∇u ∈ L2(G, |z|adx)

}
,

normed by

‖u‖H1(G,|z|adx) := ‖u‖L2(G,|z|adx) + ‖∇u‖L2(G,|z|adx) .

Both L2(G, |z|adx) and H1(G, |z|adx) are separable Hilbert spaces when equipped with the

scalar product induced by their respective Hilbertian norm.

If Ω denotes a (relatively) open subset of ∂Rn+1
+ ≃ R

n such that Ω ⊆ ∂G, we set

L2
loc(G ∪ Ω, |z|adx) :=

{
u ∈ L1

loc(G) : |z|
a
2 u ∈ L2

loc(G ∪ Ω)
}
,

and

H1
loc(G ∪ Ω, |z|adx) :=

{
u ∈ L2

loc(G ∪ Ω, |z|adx) : ∇u ∈ L2
loc(G ∪ Ω, |z|adx)

}
.

Remark 2.4. For a bounded admissible open set G ⊆ R
n+1
+ , the space L2(G, |z|adx) embeds

continuously into Lγ(G) for every 1 6 γ < 1
1−s by Hölder’s inequality. In particular,

H1(G, |z|adx) →֒W 1,γ(G) (2.6)

continuously for every 1 < γ < 1
1−s . As a first consequence, H1(G, |z|adx) →֒ L1(G) with

compact embedding. Secondly, for such γ’s, the compact linear trace operator

u ∈W 1,γ(G) 7→ u|∂0G ∈ L1(∂0G) (2.7)

induces a compact linear trace operator fromH1(G, |z|adx) intoL1(∂0G), extending the usual

trace of smooth functions. We may denote by u|∂0G the trace of u ∈ H1(G, |z|adx) on ∂0G,

or simply by u if it is clear from the context. Finally, we write H1(G, |z|adx) ∩ Lp(∂0G) the

class of functions u ∈ H1(G, |z|adx) such that u|∂0G ∈ Lp(∂0G).

Lemma 2.5. There exists a constant λn,s > 0 depending only on n and s such that for every

r > 0, and every u ∈ H1(B+
r , |z|adx),

∥∥u− [u]r
∥∥
L1(Dr)

6 λn,s r
n+2s

2 ‖∇u‖L2(B+
r ,|z|adx)

,

where [u]r denotes the average of u over Dr.

Proof. By scaling it suffices to consider the case r = 1. We claim that there exists a constant

cn > 0 such that for every u ∈W 1,1(B+
1 ),

∥∥u− [u]1
∥∥
L1(D1)

6 cn

∫

B+
1

|∇u| dx . (2.8)

Then the conclusion follows from Hölder’s inequality. To prove (2.8) it is enough to consider

functions u ∈ W 1,1(B+
1 ) satisfying [u]1 = 0. Then we argue by contradiction assuming

that there exists a sequence {uk}k∈N ⊆ W 1,1(B+
1 ) such that [uk]1 = 0 and ‖uk‖L1(D1) >

k‖∇uk‖L1(B+
1 ) for every k ∈ N. Replacing uk by uk/‖uk‖L1(B+

1 ) if necessary, we can assume

that ‖uk‖L1(B+
1 ) = 1 for each k ∈ N. The trace operator being continuous, we can find a

constant tn > 0 such that

‖uk‖L1(D1) 6 tn(‖∇uk‖L1(B+
1 ) + ‖uk‖L1(B+

1 )) .

Therefore ‖uk‖L1(D1) 6 2tn whenever k is large enough. Then ‖∇uk‖L1(B+
1 ) 6 2tn/k.

By the compact embedding W 1,1(B+
1 ) →֒ L1(B+

1 ) and the condition [uk]1 = 0, we deduce
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that uk → 0 strongly in W 1,1(B+
1 ), which is in contraction with our normalization choice

‖uk‖L1(B+
1 ) = 1. �

Remark 2.6 (Smooth approximation). If G ⊆ R
n+1
+ is an admissible bounded open set, any

function u ∈ H1(G, |z|adx) with compact support in G ∪ ∂0G can be approximated in the

H1(G, |z|adx)-norm sense by a sequence {uk}k∈N of smooth functions compactly supported

in G ∪ ∂0G. To construct such a sequence, one can proceed as follows. First notice that

the set G̃ :=
{
(x, z) ∈ Rn+1 : (x, |z|) ∈ G ∪ ∂0G

}
is open in Rn+1. The symmetrized

function ũ(x, z) := u(x, |z|) then belongs to H1(G̃, |z|adx), and has compact support in G̃.

By classical (convolution) arguments, we can find a sequence {ũk}k∈N of smooth functions

with compact support in G̃ converging to ũ in the H1(G̃, |z|adx)-norm sense. Then we obtain

the required sequence {uk}k∈N by considering the restriction of ũk to G ∪ ∂0G.

If the function u ∈ H1(G, |z|adx) is compactly supported in G ∪ Ω for some smooth and

bounded open set Ω ⊆ R
n such that Ω ⊆ ∂0G, the sequence {uk}k∈N can be chosen in

such a way that each uk is compactly supported in G ∪ Ω. Indeed, by a diagonal argument,

it is enough to show that u can be approximated in the H1(G, |z|adx)-norm by a sequence

{ûk}k∈N ⊆ H1(G, |z|adx) made of functions compactly supported in the set G ∪ Ω. To

this purpose, we first reduce the problem to the case of a bounded function u through the

usual truncation argument. From the smoothness assumption on ∂Ω, and since ∂Ω is a set

of codimension 2 in Rn+1, it has a vanishing H1-capacity in Rn+1. Hence, we can find a

sequence of cut-off functions ζk : Rn+1 → [0, 1] such that ζk = 1 in a neighborhood of ∂Ω,

ζk → 0 a.e. in Rn+1 and ζk → 0 strongly in H1(Rn+1) (see e.g. [25, Theorem 3, p.154]).

Setting ûk := (1 − ζk)u, we observe that ûk has compact support in G ∪ Ω, and

‖ûk − u‖2H1(G,|z|adx) 6 C

(∫

G

zaζ2k |∇u|2 dx+ ‖u‖2L∞(G)‖ζk‖2H1(G)

)
−→
k→∞

0 ,

by dominated convergence.

2.4. The Dirichlet-to-Neumann operator. Consider the function Kn,s : Rn+1
+ → [0,∞)

defined by

Kn,s(x) := σn,s
z2s

|x|n+2s
, σn,s := π− n

2
Γ(n+2s

2 )

Γ(s)
,

where x := (x, z) ∈ R
n+1
+ := Rn × (0,∞). The choice of the constant σn,s is made in such

a way that 2
∫
Rn Kn,s(x, z) dx = 1 for every z > 0.

As shown in [17], the function Kn,s solves

{
div(za∇Kn,s) = 0 in R

n+1
+ ,

Kn,s = δ0 on ∂Rn+1
+ ,

where δ0 is the Dirac distribution at the origin. In other words, the function Kn,s can be

interpreted as the “fractional Poisson kernel” by analogy with the standard case s = 1/2.

From now on, for a measurable function v defined over R
n, we shall denote by ve its

extension to the half-space R
n+1
+ given by the convolution (in the x-variables) of v with the

2Indeed, changing variables one obtains

∫
Rn

1

(|x|2 + 1)
n+2s

2

dx = |Sn−1|

∫
∞

0

rn−1

(r2 + 1)
n+2s

2

dr

=
|Sn−1|

2

∫
∞

0

t
n
2
−1

(t + 1)
n+2s

2

dt =
|Sn−1|

2
B(n/2, s) ,

where B(·, ·) denotes the Euler Beta function.
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fractional Poisson kernel Kn,s, i.e.,

ve(x, z) := σn,s

∫

Rn

z2sv(y)

(|x− y|2 + z2)
n+2s

2

dy . (2.9)

Notice that ve is well defined if v belongs to the Lebesgue space Lq over Rn with respect to

the probability measure

m := σn,s(1 + |y|2)− n+2s
2 dy (2.10)

for some 1 6 q 6 ∞. In particular, ve can be defined whenever v ∈ Ĥs(Ω) for some bounded

open set Ω ⊆ R
n by Lemma 2.1. Moreover, if v ∈ L∞(Rn), then ve ∈ L∞(Rn+1

+ ) and

‖ve‖L∞(Rn+1
+ ) 6 ‖v‖L∞(Rn) . (2.11)

For an admissible function v, the extension ve has a pointwise trace on ∂Rn+1
+ = Rn which is

equal to v at every Lebesgue point. In addition, ve solves the equation
{
div(za∇ve) = 0 in R

n+1
+ ,

ve = v on ∂Rn+1
+ .

(2.12)

By analogy with the standard case s = 1/2 (for which (2.12) reduces to the Laplace equation),

we may say that ve is the fractional harmonic extension of v.

The following continuity property is elementary and can be obtained exactly as in [39,

Lemma 2.5].

Lemma 2.7. For every R > 0, the restriction operator RR : L2(Rn,m) → L2(B+
R , |z|adx)

defined by

RR(v) := ve|B+
R
, (2.13)

is continuous.

It has been proved in [17] that ve belongs to the weighted space H1(Rn+1
+ , |z|adx) when-

ever v ∈ Hs(Rn). In addition, the Hs-seminorm of v coincides with the weighted L2-norm

of ∇ve, extending a well known identity for s = 1/2.

Lemma 2.8 ([17]). Let v ∈ Hs(Rn), and let ve be its fractional harmonic extension to R
n+1
+

given by (2.9). Then ve belongs to H1(Rn+1
+ , |z|adx) and

[v]2Hs(Rn) = ds‖∇ve‖2L2(Rn+1
+ ,|z|adx)

= inf
{
ds‖∇u‖2L2(Rn+1

+ ,|z|adx)
: u ∈ H1(Rn+1

+ , |z|adx) , u = v on R
n
}
, (2.14)

where ds := 22s−1 Γ(s)
Γ(1−s) .

Remark 2.9. Let G ⊆ R
n+1
+ be an admissible bounded open set. For any function u ∈

H1(Rn+1
+ , |z|adx) compactly supported in G ∪ ∂0G, the trace u|Rn belongs to Hs

00(∂
0G).

Indeed, if u is smooth in R
n+1
+ , then we can apply identity (2.14). In the general case, it

suffices to apply the approximation procedure in Remark 2.6 to reach the conclusion.

If v ∈ Ĥs(Ω) for a bounded open set Ω ⊆ Rn, we have the following estimates on ve

extending Lemma 2.8 to the local setting. The proof follows closely the arguments in [39,

Lemma 2.7], and we shall omit it.

Lemma 2.10. Let Ω ⊆ Rn be a bounded open set. For every v ∈ Ĥs(Ω), the extension ve

given by (2.9) belongs toH1
loc(R

n+1
+ ∪Ω, |z|adx)∩L2

loc

(
R
n+1
+ , |z|adx

)
. In addition, for every

x0 ∈ Ω, R > 0, and ρ > 0 such that D3ρ(x0) ⊆ Ω, there exist constants Cs,R,ρ > 0 and

Cs,ρ > 0, independent of v and x0, such that

∥∥ve
∥∥2

L2(B+
R(x0),|z|adx)

6 Cs,R,ρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
,
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and ∥∥∇ve
∥∥2
L2(B+

ρ (x0),|z|adx)
6 Cs,ρ

(
E
(
v,D2ρ(x0)

)
+ ‖v‖2L2(D2ρ(x0))

)
.

Remark 2.11. By the previous lemma, for any v ∈ Ĥs(Ω)∩Hs
loc(R

n), the fractional harmonic

extension ve belongs to H1
loc(R

n+1
+ , |z|adx), and for any R > 0,

∥∥ve
∥∥2
H1(B+

R ,|z|
adx)

6 Cs,R

(
E
(
v,D2R

)
+ ‖v‖2L2(D2R)

)
.

If v ∈ Ĥs(Ω) for some bounded open set Ω ⊆ Rn with Lipschitz boundary, the divergence

free vector field za∇ve admits a distributional normal trace on Ω, that we denote by Λ(2s)v.

More precisely, we define Λ(2s)v through its action on a test function ϕ ∈ D(Ω) by setting

〈
Λ(2s)v, ϕ

〉
Ω
:=

∫

R
n+1
+

za∇ve · ∇Φdx , (2.15)

where Φ is any smooth extension of ϕ compactly supported in R
n+1
+ ∪ Ω. Note that the right

hand side of (2.15) is well defined by Lemma 2.10. Using equation (2.12) and the divergence

theorem, it is routine to check that the integral in (2.15) does not depend on the choice of the

extension Φ. In the light of (2.2) and Lemma 2.8, we infer that Λ(2s) : Ĥs(Ω) → H−s(Ω)

defines a continuous linear operator. It can be thought as a fractional Dirichlet-to-Neumann

operator. Indeed, whenever v is smooth, the distribution Λ(2s)v is the pointwise defined func-

tion given by

Λ(2s)v(x) = − lim
z↓0

za∂zv
e(x, z) = 2s lim

z↓0

ve(x, 0)− ve(x, z)

z2s

for x ∈ Ω.

In the case Ω = Rn, it has been proved in [17] that Λ(2s) coincides with (−∆)s, up to a

constant multiplicative factor. In our localized setting, this identity still holds, and it can be

obtained essentially as in [39, Lemma 2.9].

Lemma 2.12. If Ω ⊆ Rn is a bounded open set with Lipschitz boundary, then

(−∆)s = dsΛ
(2s) on Ĥs(Ω) .

A local counterpart of Lemma 2.8 concerning the minimality of ve can be obtained from

the above identity. This is the purpose of Corollary 2.13 below, which is inspired from [16,

Lemma 7.2]. From now on, we use the notation

E(u,G) :=
ds
2

∫

G

za|∇u|2 dx , (2.16)

for an open set G ⊆ R
n+1
+ and u ∈ H1(G, |z|adx). We shall refer to E(·, G) as the weighted

Dirichlet energy in the domain G.

Corollary 2.13. Let Ω ⊆ Rn be a bounded open set, andG ⊆ R
n+1
+ be an admissible bounded

open set such that ∂0G ⊆ Ω. Let v ∈ Ĥs(Ω), and let ve be its fractional harmonic extension

to R
n+1
+ given by (2.9). Then,

E(u,G)−E(ve, G) > E(u,Ω)− E(v,Ω) (2.17)

for all u ∈ H1(G, |z|adx) such that u − ve is compactly supported in G ∪ ∂0G. In the right

hand side of (2.17), the trace of u on ∂0G is extended by v outside ∂0G.

Proof. Let u ∈ H1(G, |z|adx) such that u−ve is compactly supported inG∪∂0G. We extend

u by ve outside G. Then w := u − ve ∈ H1(Rn+1
+ , |z|adx) and w is compactly supported in

G ∪ ∂0G. Hence w|Rn ∈ Hs
00(∂

0G) by Remark 2.9. Since v ∈ Ĥs(∂0G), we deduce from

Remark 2.2 that the trace of u on Rn belongs to Ĥs(∂0G).
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Using Lemma 2.8 and Lemma 2.12, we estimate

E(u,G)−E(ve, G) =
ds
2

∫

R
n+1
+

za|∇w|2 dx+ ds

∫

R
n+1
+

za∇ve · ∇w dx

=
ds
2

∫

R
n+1
+

za|∇w|2 dx+
〈
(−∆)sv, w|Rn

〉
∂0G

>
[
w|Rn

]2
Hs(Rn)

+
〈
(−∆)sv, w|Rn

〉
∂0G

= E(w|Rn , ∂0G) +
〈
(−∆)sv, w|Rn

〉
∂0G

. (2.18)

Using the fact that u|Rn , v ∈ Ĥs(∂0G), we derive that

E(w|Rn , ∂0G) = E(u|Rn , ∂0G) + E(v, ∂0G)−
〈
(−∆)sv, u|Rn

〉
∂0G

, (2.19)

and
〈
(−∆)sv, w|Rn

〉
∂0G

=
〈
(−∆)sv, u|Rn

〉
∂0G

− 2E(v, ∂0G) . (2.20)

Gathering (2.18)-(2.19)-(2.20) yields

E(u,G)−E(ve, G) > E(u|Rn , ∂0G)− E(v, ∂0G) .

Since u|Rn = v outside ∂0G, we infer that

E(u|Rn , ∂0G)− E(v, ∂0G) = E(u|Rn ,Ω)− E(v,Ω) ,

and the conclusion follows. �

The crucial observation for us is that (2.17) leads to a local representation (in terms of ve)

of the first inner variation of E(·,Ω) at a function v ∈ Ĥs(Ω). We recall that, given X ∈
C1(Rn;Rn) compactly supported in Ω, the first inner variation δE(v,Ω) evaluated at X is

defined by

δE(v,Ω)[X ] :=

[
d

dt
E(v ◦ φ−t,Ω)

]

t=0

,

where {φt}t∈R denotes the flow on Rn generated by X , i.e., for x ∈ Rn, the map t 7→ φt(x)

is defined as the unique solution of the ordinary differential equation




d

dt
φt(x) = X

(
φt(x)

)
,

φ0(x) = x .

Now we can state our representation result.

Corollary 2.14. Let Ω ⊆ Rn be a bounded open set, andG ⊆ R
n+1
+ be an admissible bounded

open set such that ∂0G ⊆ Ω. For each v ∈ Ĥs(Ω), and each X ∈ C1(Rn;Rn) compactly

supported in ∂0G, we have

δE(v,Ω)[X ] =
ds
2

∫

G

za
(
|∇ve|2divX− 2(∇ve ⊗∇ve) : ∇X

)
dx

+
dsa

2

∫

G

za−1|∇ve|2Xn+1 dx ,

where X = (X1, . . . ,Xn+1) ∈ C1(G;Rn+1) is any vector field compactly supported in

G ∪ ∂0G satisfying X = (X, 0) on ∂0G.

Proof. Let X = (X1, . . . ,Xn+1) ∈ C1(G;Rn+1) be an arbitrary vector field compactly

supported inG∪∂0G and satisfyingX = (X, 0) on ∂0G. Then consider a compactly supported

C1-extension of X to the whole space Rn+1, still denoted by X, such that X = (X, 0) on Rn.
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We define {Φt}t∈R to be the flow on Rn+1 generated by X, i.e., for x ∈ Rn+1, the map

t 7→ Φt(x) is defined as the unique solution of the differential equation




d

dt
Φt(x) = X

(
Φt(x)

)
,

Φ0(x) = x .

Noticing that Φt = (φt, 0) on Rn and that supp
(
Φt − idRn+1

)
∩ R

n+1
+ ⊆ G ∪ ∂0G, we infer

from Corollary 2.13 that

E(ve ◦ Φ−t, G)−E(ve, G) > E
(
v ◦ φ−t,Ω

)
− E(v,Ω) .

Dividing both sides of this inequality by t 6= 0, and then letting t ↓ 0 and t ↑ 0, we obtain
[
d

dt
E(ve ◦ Φ−t, G)

]

t=0

=

[
d

dt
E
(
v ◦ φt,Ω

)]

t=0

.

On the other hand, standard computations (see e.g. [51, Chapter 2.2]) yield

[
d

dt
E(ve ◦ Φ−t, G)

]

t=0

=
ds
2

∫

G

za
(
|∇ve|2divX− 2(∇ve ⊗∇ve) : ∇X

)
dx

+
dsa

2

∫

G

za−1|∇ve|2Xn+1 dx , (2.21)

and the conclusion follows. �

Remark 2.15. For an admissible bounded open set G ⊆ R
n+1
+ and u ∈ H1(G, |z|adx), we

can define the first inner variation up to the boundary ∂0G of E(·, G) at u as

δE
(
u,G ∪ ∂0G

)
[X] :=

[
d

dt
E(u ◦ Φ−t, G)

]

t=0

,

where (as in the previous proof) {Φt}t∈R denotes the flow on R
n+1 generated by a given

vector field X = (X,Xn+1) ∈ C1(G;Rn+1) compactly supported in G ∪ ∂0G and satisfying

Xn+1 = 0 on ∂0G. Then, one obtains

δE
(
u,G ∪ ∂0G

)
[X] =

ds
2

∫

G

za
(
|∇u|2divX− 2(∇u⊗∇u) : ∇X

)
dx

+
dsa

2

∫

G

za−1|∇u|2Xn+1 dx . (2.22)

Hence, we can rephrased the conclusion of Corollary 2.14 as δE(v,Ω) = δE
(
ve, G ∪ ∂0G

)
.

3. THE FRACTIONAL ALLEN-CAHN EQUATION: A PRIORI ESTIMATES

We consider in this section a bounded open set Ω ⊆ Rn with (at least) Lipschitz boundary.

We are interested in weak solutions vε ∈ Ĥs(Ω)∩Lp(Ω) of the fractional Allen-Cahn equation

(−∆)svε +
1

ε2s
W ′(vε) = f in Ω , (3.1)

with a source term f belonging to either L∞(Ω) or C0,1(Ω). The notion of weak solution is

understood in the duality sense according to the formulation (2.3) of the fractional Laplacian,

i.e.,

〈
(−∆)svε, ϕ

〉
Ω
+

1

ε2s

∫

Ω

W ′(vε)ϕdx =

∫

Ω

fϕdx ∀ϕ ∈ Hs
00(Ω) ∩ Lp(Ω) .

Such solutions correspond to critical points in Ω of the functional

Fε(v,Ω) := Eε(v,Ω) −
∫

Ω

fv dx ,
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where Eε(·,Ω) is the fractional Allen-Cahn energy in (1.8). In other words, we are interested

in maps vε ∈ Ĥs(Ω) ∩ Lp(Ω) satisfying

[
d

dt
Fε(vε + tϕ,Ω)

]

t=0

= 0 ∀ϕ ∈ Hs
00(Ω) ∩ Lp(Ω) . (3.2)

Remark 3.1. An elementary way to construct solutions of (3.1) is of course to minimize

Fε(·,Ω) under an exterior Dirichlet condition. Indeed, given g ∈ Ĥs(Ω) ∩ Lp(Ω), the mini-

mization problem

min
{
Fε(v,Ω) : v ∈ Hs

g(Ω) ∩ Lp(Ω)
}
, (3.3)

is easily solved using the Direct Method of Calculus of Variations, and it obviously returns a

solution of (3.2).

3.1. Degenerate Allen-Cahn boundary reactions. To obtain a priori estimates on weak so-

lutions of (3.1), we rely on the fractional harmonic extension to R
n+1
+ introduced in Section 2.

According to Lemmas 2.10 & 2.12, and (2.15), if vε ∈ Ĥs(Ω) ∩ Lp(Ω) is a weak solution of

(3.1), then its fractional harmonic extension veε given by (2.9) satisfies

ds

∫

R
n+1
+

za∇veε · ∇φdx +
1

ε2s

∫

Ω

W ′(veε)φdx =

∫

Ω

fφdx

for every smooth function φ : Rn+1
+ → R compactly supported in R

n+1
+ ∪ Ω, or equivalently,

for every φ ∈ H1(Rn+1
+ , |z|adx)∩Lp(Ω) compactly supported in R

n+1
+ ∪Ω (by Remark 2.6).

In particular, given an admissible bounded open set G ⊆ R
n+1
+ such that ∂0G ⊆ Ω, the

extension veε obviously satisfies

ds

∫

G

za∇veε · ∇φdx +
1

ε2s

∫

∂0G

W ′(veε)φdx =

∫

∂0G

fφdx (3.4)

for every φ ∈ H1(G, |z|adx) ∩ Lp(∂0G) compactly supported in G ∪ ∂0G. In other words,

the extension veε is a critical point of the functional Fε(·, G) defined on the weighted space

H1(G, |z|adx) ∩ Lp(∂0G) by

Fε(u,G) := Eε(u,G)−
∫

∂0G

fu dx , (3.5)

with

Eε(u,G) := E(u,G) +
1

ε2s

∫

∂0G

W (u) dx ,

where E(·, G) is the weighted Dirichlet energy defined in (2.16).

In general, if a function uε is a critical point of Fε(·, G) such that both uε and za∂zuε
are continuous in G up to ∂0G, then uε satisfies in the pointwise sense the Euler-Lagrange

equation




div(za∇uε) = 0 in G ,

ds∂
(2s)
z uε =

1

ε2s
W ′(uε)− f on ∂0G ,

(3.6)

where we have set for x = (x, 0) ∈ ∂0G,

∂(2s)
z uε(x) := lim

z↓0
za∂zuε(x, z) .

We shall refer to as weak solution of equation (3.6) a critical point of Fε(·, G).
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3.2. Regularity for degenerate boundary reactions. Our strategy now consists in deriving

a priori estimates for weak solutions of (3.6). Concerning regularity, the starting point is the

following linear estimate given in [13, proof of Lemma 4.5].

Lemma 3.2 ([13]). Let f ∈ L∞(D2) and u ∈ H1(B+
2 , |z|adx)∩L∞(B+

2 ) be a weak solution

of 



div(za∇u) = 0 in B+
2 ,

∂(2s)
z u = f on D2 .

(3.7)

There exist β∗ = β∗(n, s) ∈ (0, 1), and a positive constant cn,s depending only on n and s

such that

‖u‖
C0,β∗ (B1

+
)
6 cn,s

(
‖f‖L∞(D2) + ‖u‖L∞(B+

2 )

)
. (3.8)

In addition, if f ∈ C0,σ(D2) with σ ∈ (0, 1), then za∂zu ∈ C0,γ(B
+

1 ) for some γ ∈ (0, 1).

For f ∈ C0,1(D2), bootstrapping estimate (3.8) yields the following interior regularity for

bounded weak solutions of (3.6).

Theorem 3.3. Let f ∈ C0,1(D2) and uε ∈ H1(B+
2 , |z|adx) ∩ L∞(B+

2 ) be a weak solution

of 



div(za∇uε) = 0 in B+
2 ,

ds∂
(2s)
z uε =

1

ε2s
W ′(uε)− f on D2 .

(3.9)

Then uε ∈ C∞(B+
2 ), uε ∈ C0,β∗

(
B

+

1

)
, ∇xuε ∈ C0,β∗(B

+

1 ), and za∂zuε ∈ C0,γ(B
+

1 ) for

some γ ∈ (0, 1) (with β∗ given by Lemma 3.2).

Proof. Regularity in the interior of the half ball B+
2 follows from the usual elliptic theory.

Then, to prove the announced regularity near D1, we first apply Lemma 3.2 to deduce that

uε ∈ C
0,β∗

loc

(
B+

2 ∪ D2

)
and za∂zuε ∈ C0,γ

loc (B
+
2 ∪ D2). Now it only remains to show that

∇xuε is Hölder continuous up toD1. Denote by k∗ ∈ N the integer part of 1/β∗. Choosing the

universal constant β∗ slightly smaller if necessary, we may assume without loss of generality

that k∗ < 1/β∗. Then (k∗ + 1)β∗ ∈ (1, 2).

Fix an arbitrary point x0 ∈ D1, and for x = (x, z) ∈ B+
1 ∪D1 define the translated function

ū(x) := uε(x+ x0, z) .

Given a non vanishing h ∈ D1/8, we set for x ∈ B+
7/8 ∪D7/8,

wh(x) :=
ū(x+ h, z)− ū(x)

|h|β∗

. (3.10)

Thenwh ∈ H1(B+
7/8, |z|adx)∩L∞(B+

7/8) and ‖wh‖L∞(B+
7/8

) is bounded independently of h.

In addition, wh weakly solves equation (3.7) in B+
7/8 with right hand side

fh(x) :=
W ′

(
ū(x+ h, 0)

)
−W ′

(
ū(x, 0)

)

ε2s
(
ū(x+ h, 0)− ū(x, 0)

) wh(x, 0)−
f(x0 + x+ h)− f(x0 + x)

|h|β∗

.

By assumption W ∈ C2(R) and f ∈ C0,1(D2), so that ‖fh‖L∞(D7/8) is bounded indepen-

dently of h. Hence Lemma 3.2 yields wh ∈ C0,β∗(B
+

7/16), and ‖wh‖C0,β∗ (B+
7/16

) is bounded

independently of h. In particular,

|wh(x, z)− wh(x − h, z)|
|h|β∗

6 C1 ∀(x, z) ∈ D1/8 × [0, 1/8] ,

for some constant C1 independent of h. In view of the arbitrariness of h, we deduce that

sup
x∈D1/8

∣∣ū(x+ h, z)− 2ū(x, z) + ū(x− h, z)
∣∣ 6 C1|h|2β∗ (3.11)
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for every h ∈ D1/8 and z ∈ [0, 1/8].

Let us now fix a cut-off function ζ ∈ C∞(Rn; [0, 1]) such that ζ(x) = 1 for |x| 6 1/16 and

ζ(x) = 0 for |x| > 1/8. Given z ∈ [0, 1/8], we define for x ∈ Rn,

ϑz(x) := ζ(x)ū(x, z) .

For h ∈ Rn, we denote by D2
hϑz the second order difference quotient of ϑz on Rn given by

D2
hϑz(x) := ϑz(x+ h)− 2ϑz(x) + ϑz(x− h) .

From (3.11), it is elementary to show that

‖ϑz‖L∞(Rn) + sup
|h|>0

‖D2
hϑz‖L∞(Rn)

|h|2β∗

6 C2 ,

for a constant C2 independent of z ∈ [0, 1/8].

We now have to distinguish two cases.

Case 1). If k∗ = 1 (i.e., β∗ > 1/2), then we infer from [53, Proposition 9 in Chapter V.4] that

ϑz ∈ C1,α∗(Rn) with α∗ = 2β∗− 1, and ‖ϑz‖C1,α∗ (Rn) 6 C̃2 for a constant C̃2 independent

of z ∈ [0, 1/8]. As a consequence ū(·, z) ∈ C1,α∗(D1/16), and ‖ū(·, z)‖C1,α∗(D1/16) 6 C̃2

for every z ∈ [0, 1/8].

We fix j ∈ {1, . . . , n}, δ ∈ (0, 1/32), and we define for x = (x, z) ∈ B+
1/32 ∪D1/32,

w̃δ(x) :=
ū(x+ δej , z)− ū(x)

δ
.

Then w̃δ ∈ H1(B+
1/32, |z|adx) ∩ L∞(B+

1/32) and ‖w̃δ‖L∞((B+
1/32

) is bounded independently

of δ. In addition, w̃δ weakly solves equation (3.2) in B+
1/32 with right hand side

f̃δ(x) :=
W ′(ū(x+ δej , 0))−W ′(ū(x, 0))

ε2s(ū(x+ δej , 0)− ū(x, 0))
w̃δ(x, 0)−

f(x0 + x+ δej)− f(x0 + x)

δ
.

Again, since W ∈ C2(R) and f ∈ C0,1(D2), we have f̃δ ∈ L∞(D1/32) and ‖f̃δ‖L∞(D1/32) is

bounded independently of δ. Then Lemma 3.2 yields w̃δ ∈ C0,β∗(B
+

1/64), and

|w̃δ(x1)− w̃δ(x2)|
|x1 − x2|β∗

6 C3 ∀x1,x2 ∈ B
+

1/64 ,x1 6= x2 ,

for a constant C3 independent of δ. Letting δ → 0, we finally deduce that

|∂j ū(x1)− ∂j ū(x2)|
|x1 − x2|β∗

6 C3 ∀x1,x2 ∈ B
+

1/64 ,x1 6= x2 .

Since the index j is arbitrary, it shows that ∇xuε is indeed of class C0,β∗ in a neighborhood

of the point (x0, 0).

Case 2). We now assume that k∗ > 2 (i.e., β∗ < 1/2). Then we infer from [53, Proposition 8

in Chapter V.4] that ϑz ∈ C0,2β∗(Rn) and ‖ϑz‖C0,2β∗(Rn) 6 Ĉ2 for a constant Ĉ2 independent

of z ∈ [0, 1/8]. As a consequence, for every z ∈ [0, 1/8], we have ū(·, z) ∈ C0,2β∗(D1/16),

and ‖ū(·, z)‖C0,2β∗ (D1/16)
6 Ĉ2. We then repeat the argument starting with the function wh

given in (3.10) with β∗ replaced by 2β∗ and the point x lying in a smaller half ball. After

iterating k∗ times this procedure we are back to Case 1, and we conclude that ∇xuε is of class

C0,β∗ in a neighborhood of (x0, 0). �

Remark 3.4. Note that for ε > 1/2, Lemma 3.2 also shows that any weak solution uε ∈
H1(B+

2 , |z|adx) ∩ L∞(B+
2 ) of (3.9) satisfies

‖uε‖C0,β∗ (B1
+
)
6 c∗

for some constant c∗ > 0 depending only on n, s, W , ‖f‖L∞(D2), and ‖uε‖L∞(B+
2 ).
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A fundamental consequence of the previous regularity result is that bounded weak solutions

of (3.6) with f ∈ C0,1(∂0G) are stationary points of Fε(·, G), i.e., critical points with respect

to inner variations up to ∂0G. In other words, we have

Corollary 3.5. Let G ⊆ R
n+1
+ be an admissible bounded open set, and f ∈ C0,1(∂0G). If

uε ∈ H1(G, |z|adx) ∩ L∞(G) is a weak solution of (3.6), then

δE
(
uε, G ∪ ∂0G

)
[X] +

1

ε2s

∫

∂0G

W (uε) divX dx =

∫

∂0G

uε div(fX) dx

for every vector field X = (X,Xn+1) ∈ C1(G;Rn+1) compactly supported in G ∪ ∂0G such

that Xn+1 = 0 on ∂0G.

Proof. Let X = (X,Xn+1) ∈ C1(G;Rn+1) be an arbitrary vector field compactly supported

in G ∪ ∂0G and satisfying Xn+1 = 0 on ∂0G. For δ > 0, we set

Vδ :=
ds
2

∫

G∩{z>δ}

za
(
|∇uε|2divX− 2(∇uε ⊗∇uε) : ∇X

)
dx

+
dsa

2

∫

G∩{z>δ}

za−1|∇uε|2Xn+1 dx ,

so that V0 = limδ↓0 Vδ .

For each δ > 0 we can use equation (3.6) and integrate by parts to find

Vδ = ds

∫

G∩{z=δ}

(
za∂zuε

)(
X · ∇xuε

)
dx +

dsδ
2s

2

∫

G∩{z=δ}

∣∣za∂zuε
∣∣2Xn+1

z
dx

− ds
2

∫

G∩{z=δ}

za|∇xuε|2Xn+1 dx .

By the regularity estimates in Theorem 3.3, we can let δ ↓ 0 to derive

V0 =

∫

∂0G

(
∂(2s)
z uε

)(
X · ∇xuε

)
dx

=
1

ε2s

∫

∂0G

W ′(uε)X · ∇xuε dx−
∫

∂0G

fX · ∇xuε dx .

Integrating this last term by parts, we conclude that

V0 = − 1

ε2s

∫

∂0G

W (uε) divX dx+

∫

∂0G

uε div(fX) dx ,

which, in view of Remark 2.15, is the announced identity. �

3.3. Regularity and Maximum Principle for the fractional equation. By estimate (2.11), a

bounded weak solution of the fractional equation (3.1) yields a bounded weak solution of (3.6)

after extension. Hence Theorem 3.3 and Remark 3.4 provide the following interior regularity

for bounded weak solutions of the fractional equation.

Corollary 3.6. Let vε ∈ Ĥs(Ω)∩L∞(Rn) be a weak solution of (3.1) with f ∈ L∞(Ω). Then

vε ∈ C
0,β∗

loc (Ω) with β∗ given by Lemma 3.2. In addition, if f ∈ C0,1(Ω), then vε ∈ C
1,β∗

loc (Ω).

The regularity issue then reduces to prove that a given weak solution of the fractional equa-

tion (3.1) is bounded. If we complement (3.1) with a smooth exterior Dirichlet condition, this

is indeed the case.

Lemma 3.7. Let g ∈ C0,1
loc (R

n) ∩ L∞(Rn), f ∈ L∞(Ω), and let vε ∈ Hs
g(Ω) ∩ Lp(Ω) be a

weak solution of (3.1). Then vε ∈ L∞(Rn).

Let us start with an elementary lemma concerning the potential W .



ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION 21

Lemma 3.8. Let W : R → [0,∞) satisfying (H1)-(H2)-(H3). Then, for all δ > 0,

W ′(t)t− δ|t| > 0 whenever |t| > (1 + cW δ)
1

p−1 . (3.12)

Proof. From the lower bound in (H3), it follows that |W ′(t)| > 0 for |t| > 1. Since W

achieves its minimum value at ±1, we deduce that W ′(t) 6 0 for t 6 −1, and W ′(t) > 0 for

t > 1. Hence the lower bound in (H3) yields

W ′(t)t >
1

cW

(
|t|p−1 − 1

)
|t| > δ|t|

for |t| > (1 + cW δ)
1

p−1 . �

Proof of Lemma 3.7. We fix for the whole proof a radius R > 0 such that Ω ⊆ DR.

Step 1. By Remarks 2.2 & 2.11, veε ∈ H1
loc(R

n+1
+ , |z|adx) and veε weakly solves (3.6) with

G = B+
R . By elliptic regularity we have veε ∈ C∞(Rn+1

+ ). Since g is locally Lipschitz

continuous and dist(∂+BR,Ω) > 0, we easily infer from formula (2.9) that the function

x ∈ ∂+BR 7→ |veε(x)|+ za|∇veε(x)| is bounded. We set

M := ‖veε‖L∞(∂+BR) + ‖za∇veε‖L∞(∂+BR) <∞ .

Let us consider a cut-off function χR ∈ C∞(R; [0, 1]) such that χR(t) = 1 for |t| 6 R and

χR(t) = 0 for |t| > 3R/2. We introduce the scalar function

η := χR(|x|)
√

|veε|2 + λ2 ∈ H1(B+
2R, |z|adx) ∩ Lp(Ω) ,

with

λ := max
((

1 + cW ε
2s‖f‖L∞(Ω)

) 1
p−1 , 1 + ‖g‖L∞(Rn\Ω)

)
,

and cW the constant given in assumption (H3).

Fix a nonnegative function φ ∈ C1(B
+

2R) with compact support in B+
2R ∪ Ω. Noticing that

veε/η ∈ H1(B+
R , |z|adx), we obtain

∫

B+
R

za∇η · ∇φdx =

∫

B+
R

za∇veε · ∇
(
veε
η
φ

)
dx−

∫

B+
R

za
φ

η

(
1− (veε)

2

η2

)
|∇veε|2 dx .

On the other hand φ > 0, so that
∫

B+
R

za∇η · ∇φdx 6

∫

B+
R

za∇veε · ∇
(
veε
η
φ

)
dx .

Using equation (3.6), we infer that
∫

B+
R

za∇η·∇φdx 6

∫

∂+BR

za
∂veε
∂ν

veε
φ

η
dH

n− 1

ε2s

∫

Ω

(
W ′(veε)v

e
ε−ε2sfveε

)φ
η
dx . (3.13)

Then we conclude by approximation (see Remark 2.6) that (3.13) actually holds for any non-

negative φ ∈ H1(B+
2R, |z|adx) ∩ Lp(Ω) with compact support in B+

2R ∪ Ω.

Step 2. Given T > 0 and γ > 0, we define the functions

ρ := max{η −
√
2λ, 0} , ρT := min(ρ, T ) , ψT,γ := ργTρ , φT,γ := ρ2γT ρ .

which all belong to H1(B+
2R, |z|adx) ∩ Lp(Ω). Setting GT := {0 < ρ < T } ∩ B+

R , straight-

forward computations yield
∫

B+
R

za|∇ψT,γ |2 dx =

∫

B+
R

zaρ2γT |∇η|2 dx+ (γ2 + 2γ)

∫

GT

zaρ2γ |∇η|2 dx ,

and ∫

B+
R

za∇η · ∇φT,γ dx =

∫

B+
R

zaρ2γT |∇η|2 dx+ 2γ

∫

GT

zaρ2γ |∇η|2 dx .

From this two last equalities, we infer that
∫

B+
R

za|∇ψT,γ |2 dx 6 (γ + 1)

∫

B+
R

za∇η · ∇φT,γ dx .
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Next we want to use φT,γ as a test function in (3.13). To this purpose it is enough to show that

ρ has compact support in B+
2R ∪ Ω. Obviously, ρ has compact support in B+

2R ∪ D2R. Since

veε = gε on D2R \ Ω, we have |veε| 6 λ − 1 on D2R \ Ω. Consider a point x0 = (x0, 0) with

x0 ∈ D2R \ Ω. From the smoothness of gε and (2.9), we derive that veε is continous at x0.

Therefore there exists a radius δ > 0 such that |veε| < λ in B
+

δ (x0). Then ρ = 0 in B
+

δ (x0),

and hence ρ has compact support in B+
2R ∪Ω.

Then, finally using φT,γ as a test function in (3.13), we deduce that

∫

B+
R

za|∇ψT,γ |2 dx 6 (γ + 1)

∫

∂+BR

za
∂veε
∂ν

veε
η
ρ2γT ρ dH

n

− γ + 1

ε2s

∫

Ω

(
W ′(veε)v

e
ε − ε2sfveε

)ρ2γT ρ
η

dx .

Noting that |veε| > λ on {ρ > 0}, we have

W ′(veε)v
e
ε − ε2sfveε >W ′(veε)v

e
ε − ε2s‖f‖L∞(Ω)|veε| > 0 on {ρ > 0} ∩ Ω ,

by Lemma 3.8. Since ρ 6 |veε|, the previous estimate leads to

‖∇(ργTρ)‖2L2(B+
R ,|z|

adx)
6 (γ + 1)H n(∂+BR)M

2γ+2 .

By the continuous embedding (2.6), ργTρ ∈ W 1,1(B+
R). Moreover, since ργTρ vanishes on

DR \Ω, we can apply the Poincaré inequality in [60, Corollary 4.5.2] and the continuity of the

trace operator (2.7) to deduce that

‖ργTρ‖2L1(DR) 6 CR,Ω‖∇(ργTρ)‖2L1(B+
R)
,

for a constant CR,Ω > 0 which only depends on R and Ω. From the two previous inequality

and (2.6), we derive

‖ργTρ‖2L1(DR) 6 Cs,R,Ω(γ + 1)M2γ+2 .

Next we let T → ∞ in this last inequality to obtain

‖ρ‖2Lγ+1(DR) 6 C
1/(γ+1)
s,R,Ω (γ + 1)1/(γ+1)M2 .

Letting now γ → ∞ leads to ‖ρ‖L∞(DR) 6 M , which in turn implies vε ∈ L∞(Ω). Since

vε = g outside Ω, we have thus proved that vε ∈ L∞(Rn). �

In the case where equation (3.1) is complemented with a smooth exterior Dirichlet condi-

tion, weak solutions are thus bounded. Then we can apply [49, Theorem 2] to deduce continu-

ity across the boundary ∂Ω, and finally obtain the following regularity result.

Theorem 3.9. Assume that ∂Ω is smooth. Let g ∈ C0,1
loc (R

n) ∩ L∞(Rn), f ∈ L∞(Ω), and let

vε ∈ Hs
g(Ω) ∩ Lp(Ω) be a weak solution of (3.1). Then vε ∈ C

0,β∗

loc (Ω) ∩ C0(Rn) with β∗

given by Lemma 3.2.

By means of the Hopf boundary lemma in [13, Proposition 4.11], we now derive the fol-

lowing maximum principle for equation (3.1).

Corollary 3.10. Let Ω, g, and f be as in Theorem 3.9. Let vε ∈ Hs
g(Ω) ∩ Lp(Ω) be a weak

solution of (3.1). Then,

‖vε‖L∞(Rn) 6 max
((

1 + cW ε
2s‖f‖L∞(Ω)

) 1
p−1 , ‖g‖L∞(Rn\Ω)

)
, (3.14)

where cW is the constant given in assumption (H3).
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Proof. We consider the functionmε := λ2 − |veε|2 with λ being the constant in the right hand

side of (3.14). By Theorem 3.9,mε is continuous in R
n+1

+ , and za∂zmε is continuous up to Ω.

Moreover,mε satisfies (in the pointwise sense)





−div
(
za∇mε

)
= 2za|∇veε|2 > 0 in R

n+1
+ ,

ds∂
(2s)
z mε = − 2

ε2s
W ′(veε)v

e
ε + 2fveε on Ω

mε > 0 on Rn \ Ω .

Assume that mε achieves its minimum over Rn at a point x0 ∈ Ω. Then x0 is a point of

maximum of |vε|, and hence x0 = (x0, 0) is an absolute minima of mε over R
n+1

+ by (2.11).

If mε(x0) < 0, then |veε(x0)| > λ, and we obtain ∂(2s)
z mε(x0) 6 0 from (3.12). On the

other hand, the strong maximum maximum principle of [26, Corollary 2.3.10] implies that

mε > mε(x0) in R
n+1
+ . Then, the Hopf boundary lemma of [13, Proposition 4.11] yields

∂(2s)
z mε(x0) > 0 which gives a contradiction. �

4. ASYMPTOTICS FOR DEGENERATE ALLEN-CAHN BOUNDARY REACTIONS

In this section, our objective is to perform the asymptotic analysis as ε ↓ 0 of the degenerate

boundary reaction equation (4.1). As described in Section 3, any solution of the fractional

Allen-Cahn equation yields a solution of (4.1) after applying the extension procedure (2.9).

Here again, the strategy is to first analyse equation (4.1) and then to apply the results to the

fractional equation. The main theorem here is Theorem 4.1 below. Its application to the

fractional equation will be the object of Section 5.

Theorem 4.1. LetG ⊆ R
n+1
+ be an admissible bounded open set, and εk ↓ 0 a given sequence.

Let {fk}k∈N ⊆ C0,1(∂0G) satisfying

sup
k

(
ε2sk ‖fk‖L∞(∂0G) + ‖fk‖W 1,q(∂0G)

)
<∞ for some q ∈ (

n

1 + 2s
, n) .

Let {uk}k∈N ⊆ H1(G, |z|adx) ∩ L∞(G) satisfying supk ‖uk‖L∞(G) < ∞, and such that

each uk weakly solves




div
(
za∇uk) = 0 in G ,

ds∂
(2s)
z uk =

1

ε2sk
W ′(uk)− fk on ∂0G .

(4.1)

If supk Fεk(uk, G) <∞, then there exist a (not relabeled) subsequence, u∗ ∈ H1(G, |z|adx)
and an open subset E∗ ⊆ ∂0G such that u∗ = χE∗

− χ∂0G\E∗
on ∂0G, uk ⇀ u∗ weakly in

H1(G, |z|adx), and uk → u∗ strongly in H1
loc(G ∪ ∂0G, |z|adx) as k → ∞. In addition,

(i) ε−2s
k W (uk) → 0 in L1

loc(∂
0G);

(ii) uk → u∗ in C0
loc(∂

0G \ ∂E∗);

(iii) if supk ‖fk‖L∞(∂0G) < ∞, then uk → u∗ in C0,α
loc (∂

0G \ ∂E∗) for every α ∈ (0,β∗)

with β∗ given by Lemma 3.2;

(iv) if supk ‖fk‖C0,1(∂0G) <∞, then uk → u∗ in C1,α
loc (∂

0G \ ∂E∗) for every α ∈ (0,β∗);

(v) for each t ∈ (−1, 1), the level set Ltk := {uk = t} converges locally uniformly in ∂0G

to ∂E∗ ∩ ∂0G, i.e., for every compact set K ⊆ ∂0G and every r > 0,

Ltk ∩K ⊆ Tr(∂E∗ ∩ ∂0G) and ∂E∗ ∩K ⊆ Tr(L
t
k ∩ ∂0G) ,

whenever k is large enough;
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(vi) if fk ⇀ f∗ weakly in W 1,q(∂0G), then the function u∗ satisfies

δE
(
u∗, G ∪ ∂0G

)
[X] =

∫

∂0G

u∗ div(f∗X) dx

for every vector field X = (X,Xn+1) ∈ C1(G;Rn+1) compactly supported in G∪ ∂0G
such that Xn+1 = 0 on ∂0G.

We have divided the proof of this theorem in several steps according to the following sub-

sections.

4.1. Energy monotonicity and the clearing-out property. In this subsection, we prove two

of the main ingredients, an energy monotonicty, and a clearing-out property reminiscent of

Ginzburg-Landau theories. We start with the fundamental monotonicity formula.

Lemma 4.2. Let q ∈ ( n
1+2s , n), R > 0, and ε > 0. Given f ∈ C0,1(DR), let uε ∈

H1(B+
R , |z|adx) ∩ L∞(B+

R ) be a weak solution of





div(za∇uε) = 0 in B+
R ,

ds∂
(2s)
z uε =

1

ε2s
W ′(uε)− f on DR .

(4.2)

There exists a constant cn,q > 0 (depending only on n and q) such that for every point x0 =

(x0, 0) ∈ DR × {0}, the function r ∈ (0, R− |x0| ] 7→ Θε
uε
(f, x0, r) defined by

Θε
uε
(f, x0, r) :=

1

rn−2s
Eε

(
uε, B

+
r (x0)

)
+ cn,q‖uε‖L∞(DR)

∫ r

0

tθq−1‖f‖Ẇ 1,q(Dt(x0))
dt

with θq := 1 + 2s− n/q, is non-decreasing.

Remark 4.3. In the statement above, ‖f‖Ẇ 1,q(A) denotes the following W 1,q-homogeneous

norm of f in A,

‖f‖Ẇ 1,q(A) := ‖f‖Lq∗(A) + ‖∇f‖Lq(A) ,

where q∗ := nq/(n− q).

Proof of Lemma 4.2. Without loss of generality we may assume that x0 = 0. By Theorem 3.3

the function r ∈ (0, R) 7→ Eε(uε, B
+
r ) is of class C1, and then it is enough to seek for a

constant L such that for r ∈ (0, R),

− (n− 2s)

rn+1−2s
Eε(uε, B

+
r ) +

1

rn−2s

d

dr
Eε(uε, B

+
r ) + Lrθq−1‖f‖Ẇ 1,q(Dr)

> 0 ,

or equivalently,

(n− 2s)Eε(uε, B
+
r )− r

d

dr
Eε(uε, B

+
r ) 6 Lrn+1−n/q‖f‖Ẇ 1,q(Dr)

. (4.3)

Note that for r ∈ (0, R),

d

dr
Eε(uε, B

+
r ) =

ds
2

∫

∂+Br

za
∣∣∇uε

∣∣2 dH
n +

1

ε2s

∫

∂Dr

W (uε) dH
n−1 . (4.4)

To prove (4.3), we first consider an arbitrary even function η ∈ C∞(R; [0, 1]) with compact

support in (−R,R). Using the vector field X(x) := η(|x|)x in Corollary 3.5 and formula
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(2.22), we find that

(n− 2s)ds
2

∫

B+
R

za|∇uε|2η(|x|) dx +
ds
2

∫

B+
R

za|∇uε|2η′(|x|)|x| dx

− ds

∫

B+
R

za
∣∣∣ x|x| · ∇uε

∣∣∣
2

η′(|x|)|x| dx +
n

ε2s

∫

DR

W (uε) η(|x|) dx

+
1

ε2s

∫

DR

W (uε) η
′(|x|)|x| dx

=

∫

DR

(
nf + x · ∇f

)
uεη(|x|) dx +

∫

DR

fuεη
′(|x|)|x| dx . (4.5)

Given r ∈ (0, R), we can consider a sequence {ηk}k∈N of functions as above such that ηk
converges weakly* in BV as k → ∞ to the characteristic function of the interval [−r, r].
Using such sequences {ηk}k∈N as test functions in (4.5) and letting k → ∞, we infer that

(n− 2s)Eε(uε, B
+
r )− r

d

dr
Eε(uε, B

+
r ) + dsr

∫

∂+Br

za
∣∣∣ x|x| · ∇uε

∣∣∣
2

dH
n

+
2s

ε2s

∫

Dt

W (uε) dx =

∫

Dr

(
nf + x · ∇f

)
uε dx− r

∫

∂Dr

fuε dH
n−1 . (4.6)

Therefore,

(n− 2s)Eε(uε, B
+
r )− r

d

dr
Eε(uε, B

+
r ) 6 ‖uε‖L∞(DR)I(r) , (4.7)

with

I(r) :=

∫

Dr

|f |+ r|∇f | dx+ r

∫

∂Dr

|f | dH
n−1 . (4.8)

By Sobolev embedding and trace inequality, we have

I(r) 6 cn,q r
n+1− n

q ‖f‖Ẇ 1,q(Dr)
, (4.9)

for a constant cn,q depending only on n and q. Combining (4.7) and (4.9) leads to (4.3), with

L = cn,q‖uε‖L∞(DR). �

Lemma 4.4. Let q ∈ ( n
1+2s , n). Given b > 1 and T > 0, there exists a non-decreasing

function ηb,T : (0, 1) → (0,∞) depending only n, s, b, T , and W , such that the following

holds. Let R ∈ (0, 1], ε ∈ (0, R), and f ∈ C0,1(DR) such that ε2s‖f‖L∞(DR) 6 T . If

uε ∈ H1(B+
R , |z|adx)∩L∞(B+

R ) is a weak solution of (4.2) satisfying ‖uε‖L∞(B+
R) 6 b, and

for some δ ∈ (0, 1),

Θε
uε
(f, 0, R) 6 ηb,T (δ) , (4.10)

then
∣∣|uε| − 1

∣∣ 6 δ on DR/2.

Proof. Step 1. We assume in this first step that ε > R/2. We claim that we can find a constant

η̃b,T (δ) > 0 depending only on δ, n, s, b, T , and W , such that the condition Θε
uε
(f, 0, R) 6

η̃b,T (δ) implies
∣∣|uε| − 1

∣∣ 6 δ in B
+

R/2. To this purpose, we consider the rescaled function

ũε(x) := uε(Rx), which satisfies




div(za∇ũε) = 0 in B+
1 ,

ds∂
(2s)
z ũε =

R2s

ε2s
W ′(ũε)− fR on D1 ,

with ε/R ∈ [1/2, 1), and fR(x) := R2sf(Rx) satisfying

‖fR‖L∞(D1) 6 22sε2s‖f‖L∞(DR) 6 22sT .

Since ‖ũε‖L∞(B+
1 ) 6 b, we infer from Remark 3.4 that

‖ũε‖C0,β∗ (B
+
1/2)

6 Cb,T , (4.11)
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for a constant Cb,T depending only on n, s, b, T , and W .

We now argue by contradiction assuming that for some sequences {Rk}k∈N ⊆ (0, 1],

{εk}k∈N ⊆ [Rk/2, Rk), {fk}k∈N ⊆ C0,1(DRk
) with ε2sk ‖fk‖L∞(DRk

) 6 T , and points

{xk}k∈N ⊆ B
+

1/2, the function ũk := ũεk satisfies

∣∣|ũk(xk)| − 1
∣∣ > δ for every k ,

and

Eεk/Rk
(ũk, B

+
1 ) =

1

Rn−2s
k

Eεk(uεk , B
+
Rk

) 6 Θεk
uεk

(fk, 0, Rk) → 0 as k → ∞ .

By the Arzelà-Ascoli Theorem and (4.11), we can find a (not relabeled) subsequence such that

ũk converges uniformly on B
+

1/2. Since Eεk/Rk
(ũk, B

+
1 ) → 0, the limit has to be a constant

of modulus one. In particular, |ũk| → 1 uniformly on B
+

1/2, which contradicts our assumption∣∣|ũk(xk)| − 1
∣∣ > δ.

Step 2. Define

ηb,T (δ) := 22s−n inf
t∈[δ,1)

η̃b,T (t) .

Let δ ∈ (0, 1) and assume that (4.10) holds for R ∈ (0, 1] and ε ∈ (0, R). We fix an arbitrary

point x0 ∈ DR/2 × {0}. If ε > R/2, then
∣∣|uε(x0)| − 1

∣∣ 6 δ by Step 1. If ε < R/2, then

ε < R− |x0| and by Lemma 4.2 we have

Θε
uε
(f, x0, ε) 6 Θε

uε

(
f, x0, R− |x0|

)
6 22s−nΘε

uε
(f, 0, R) .

Our choice of ηb,T (δ) then implies Θε
uε
(f, x0, ε) 6 η̃b,T (δ), and we infer from Step 1 that∣∣|uε| − 1

∣∣ 6 δ in B
+

ε/2(x0). �

Remark 4.5. By Theorem 3.3, uε is continuous up toDR. Hence the conclusion of Lemma 4.4

implies that either |uε − 1| 6 δ on DR/2, or |uε + 1| 6 δ on DR/2.

4.2. Small energy compactness. Our objective in this subsection is to prove that the small

energy assumption (4.10) implies strong compactness in a half ball of smaller radius, and

uniform convergence to either +1 or −1 on the bottom disc. By Lemma 4.4, it suffices to

prove such compactness assuming that the solution is already very close to ±1 on the disc. In

this situation, the main ingredient to use is the convexity of the potentialW near {±1} to show

the minimality of the solution. Then compactness can be deduced by classical cut and paste

arguments. To quantify the convexity of W near {±1}, we introduce a structural constant

δW ∈ (0, 1/2] (whose existence is ensured by assumptions (H1)-(H2)) such that

W ′′(t) >
1

2
min

{
W ′′(1),W ′′(−1)

}
> 0 for

∣∣|t| − 1| 6 δW . (4.12)

In this way, the restriction of W to each interval Iκ := (κ − δW , κ + δW ), κ ∈ {±1}, is

(strictly) convex. We now consider the modified potentials defined for κ ∈ {±1} by

W̃κ(t) :=





W (t) for t ∈ Iκ ,

W (κ− δW ) +W ′(κ− δW )(t− κ+ δW ) for t 6 κ− δW ,

W (κ+ δW ) +W ′(κ+ δW )(t− κ− δW ) for t > κ+ δW .

By construction, we have W̃κ ∈ C1(R) and W̃κ is convex for each κ ∈ {±1}.
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Lemma 4.6. Let R > 0, f ∈ L∞(DR), and let uε ∈ H1(B+
R , |z|adx) ∩ Lp(DR) be a weak

solution of (4.2). If |uε − κ| 6 δW on DR with κ ∈ {±1}, then

E(uε, B
+
R ) +

1

ε2s

∫

DR

W̃κ(uε) dx−
∫

DR

fuε dx

6 E(w,B+
R ) +

1

ε2s

∫

DR

W̃κ(w) dx −
∫

DR

fw dx ,

for everyw ∈ H1(B+
R , |z|adx)∩Lp(DR) such thatw−uε is compactly supported inB+

R∪DR.

Proof. Set φ := w − uε, so that φ is compactly supported in B+
R ∪DR. By convexity of the

potential W̃κ, we have

W̃κ(uε + φ) > W̃κ(uε) + W̃ ′
κ(uε)φ on DR .

Since |uε − κ| 6 δW on DR, we have W̃ ′
κ(uε) = W ′(uε) on DR. Then we derive from

equation (4.2),

E(uε + φ,B+
R) +

1

ε2s

∫

DR

W̃κ(uε + φ) dx

> E(uε, B
+
R) +

1

ε2s

∫

DR

W̃κ(uε) dx

+ ds

∫

B+
R

za∇uε∇φdx+
1

ε2s

∫

DR

W ′(uε)φdx

> E(uε, B
+
R) +

1

ε2s

∫

DR

W̃κ(uε) dx+

∫

DR

fφdx ,

and the lemma is proved. �

We now prove the announced compactness in energy space under the closeness assumption

to {±1} on the bottom disc.

Corollary 4.7. Let R > 0, εk ↓ 0 a given sequence, and {fk}k∈N ⊆ L∞(DR) satisfying

supk ‖fk‖Lq(DR) < ∞ for some q > 1. Let {uk}k∈N ⊆ H1(B+
R , |z|adx) ∩ L∞(B+

R ) satisfy-

ing |uk − κ| 6 δW on DR with κ ∈ {±1}, and such that uk solves in the weak sense




div(za∇uk) = 0 in B+
R ,

ds∂
(2s)
z uk =

1

ε2sk
W ′(uk)− fk on DR .

(4.13)

If supk
{
Eεk(uk, B

+
R) + ‖uk‖L∞(B+

R)

}
< ∞, then there exist a (not relabeled) subsequence

and u∗ ∈ H1(B+
R , |z|adx) satisfying u∗ = κ on DR such that

(i) uk → u∗ strongly in H1(B+
r , |z|adx) for every r ∈ (0, R);

(ii) ε−2s
k

∫
Dr
W (uk) dx→ 0 for every r ∈ (0, R).

Proof. We may assume without loss of generality that R = 1 and |uk − 1| 6 δW on D1 (i.e.,

κ = +1). Let us set

M := sup
k

{
Eεk(uk, B

+
1 ) + ‖uk‖L∞(B+

1 )

}
.

From the assumption that M is finite, we first deduce that the sequence {uk}k∈N is bounded in

H1(B+
1 , |z|adx). Hence we can find a (not relateled) subsequence such that uk ⇀ u∗ weakly

in H1(B+
1 , |z|adx). On the other hand, since |uk− 1| 6 δW onDR, we infer from (4.12) that

∫

D1

|uk − 1|2 dx 6 C

∫

D1

W (uk) dx 6 CMε2sk → 0 ,

so that uk → 1 strongly in L2(D1), and therefore in Lq/(q−1)(D1). By continuity of the linear

trace operator, it also follows that u∗ = 1 on D1.
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Let us now fix r ∈ (0, 1). We start selecting a subsequence {ukj}j∈N such that

lim sup
k→+∞

Eεk(uk, B
+
r ) = lim

j→+∞
Eεkj (ukj , B

+
r ) .

For θ ∈ (0, 1), we set rθ := 1− θ + θr and Lθ := rθ − r. Given an arbitrary integer m > 1,

we define ri := r + iδm where i ∈ {0, . . . ,m} and δm := Lθ/m. Since

m−1∑

i=0

Eεkj (ukj , B
+
ri+1

\B+
ri) 6M ,

we can find a good index im ∈ {0, . . . ,m − 1} and a (not relabeled) further subsequence of

{ukj}j∈N such that

Eεkj (ukj , B
+
rim+1

\B+
rim

) 6
M + 1

m
∀j ∈ N .

From the weak convergence of ukj towards u∗ and the lower semicontinuity of E, we deduce

that

E
(
u∗, B

+
rim+1

\B+
rim

)
6
M + 1

m
.

Now consider a smooth cut-off function χ ∈ C∞
c (B1, [0, 1]) such that χ = 1 in Brim , χ = 0

in B1 \ Brim+1 , and satisfying |∇χ| 6 Cδ−1
m for a constant C only depending on n. Then

define

wj := χu∗ + (1− χ)ukj ,

so that wj ∈ H1(B+
1 , |z|adx) and wj − ukj is compactly supported in B+

1 ∪ D1. Since

|wj − 1| 6 δW on D1, we infer from Lemma 4.6 that

Fεkj (ukj , B
+
1 ) 6 Fεkj (wj , B

+
1 ) ,

which leads to

Eεkj (ukj , B
+
r ) 6 E(u∗, B

+
rθ
) +Eεkj (wj , B

+
rim+1

\B+
rim

)

+ ‖fkj‖Lq(D1)‖ukj − 1‖Lq/(q−1)(D1) .

Using the convexity of W (t) near t = 1, we estimate

Eεkj (wj , B
+
rim+1

\B+
rim

) 6 E
(
u∗, B

+
rim+1

\B+
rim

)

+Eεkj

(
ukj , B

+
rim+1

\B+
rim

)
+ Cδ−2

m

∫

B+
rim+1

\B+
rim

za|ukj − u∗|2 dx .

From the compact embedding H1(B+
1 , |z|adx) →֒ L1(B+

1 ) and the fact that |ukj | 6 M in

B+
1 , we infer that ukj → u∗ strongly in L2(B+

1 , |z|adx). Consequently,

lim sup
j→∞

Eεkj (wj , B
+
rim+1

\B+
rim

) 6
2(M + 1)

m
.

Therefore,

lim
j→∞

Eεkj (ukj , B
+
r ) 6 E(u∗, B

+
rθ
) +

2(M + 1)

m
.

Finally, letting first m→ ∞ and then θ → 1, we conclude that

lim
j→+∞

Eεkj (ukj , B
+
r ) 6 E(u∗, B

+
r ) .

On the other hand, lim infj E(ukj , B
+
r ) > E(u∗, B

+
r ) by lower semicontinuity, and conse-

quently,

lim
j→∞

E(ukj , B
+
r ) = E(u∗, B

+
r ) and lim

j→∞

1

ε2skj

∫

Dr

W (ukj ) dx = 0 .

From the weak convergence of ukj , it classically follows that the sequence {ukj}j∈N converges

strongly in H1(B+
r , |z|adx) towards u∗. �
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Lemma 4.8. If u∗ ∈ H1(B+
1 , |z|adx) ∩ L∞(B+

1 ) satisfies

{
div

(
za∇u∗) = 0 in B+

1 ,

u∗ = 1 on D1 ,

then u∗ ∈ C0,α
loc (B

+
1 ∪ D1), ∇xu∗ ∈ C0,α

loc (B
+
1 ∪ D1), and za∂zu∗ ∈ C0,α

loc (B
+
1 ∪ D1) for

some α = α(n, s) ∈ (0, 1). Moreover, for every r ∈ (0, 1), ‖u∗‖C0,α(B+
r ), ‖∇xu∗‖C0,α(B+

r ),

and ‖za∂zu∗‖C0,α(B+
r ) only depends n, s, r, and ‖u∗‖L∞(B+

1 ). In particular,

lim
r→0

1

rn−2s
E
(
u∗, B

+
r (x0)

)
= 0 (4.14)

locally uniformly with respect to x0 ∈ D1 × {0}.

Proof. Considering u∗−1 instead of u∗, we can assume that u∗ = 0 onD1. Then we extend u∗
to the whole ball B1 by odd symmetry, i.e., u∗(x, z) := −u∗(x,−z) for z < 0. Since u∗ = 0

on D1, we have u∗ ∈ H1(B1, |z|adx)∩L∞(B1). In addition, u∗ solves div(|z|a∇u∗) = 0 in

the ball B1 (in the weak sense), i.e.,
∫

B1

|z|a∇u∗ · ∇φdx = 0

for all φ ∈ H1(B1, |z|adx) compactly supported in B1. Standard elliptic regularity yields

u∗ ∈ C∞(B1 \D1), and for every compact set K ⊆ B1 \D1, ‖∇u∗‖L∞(K) only depends on

n, s,K , and ‖u∗‖L∞(B+
1 ). Then the regularity result in [26] (see also [13, Section 3.2]) tells us

that u∗ ∈ C0,α
loc (B1) for some exponent α ∈ (0, 1) depending only n and s. And for r ∈ (0, 1),

‖u∗‖C0,α(Br) only depends on n, s, r, and ‖u∗‖L∞(B+
1 ). By the argument used in the proof

of Theorem 3.3 (based on finite difference quotients), we show that ∇xu∗ ∈ C0,α
loc (B1), and

‖∇xu∗‖C0,α(Br) only depends on n, s, r ∈ (0, 1), and ‖u∗‖L∞(B+
1 ).

Let us now fix a radius r ∈ (0, 1) and an index j ∈ {1, . . . , n}. We set for δ ∈ (0, 1− r),

wδ(x, z) :=
u∗(x+ δej , z)− u∗(x, z)

δ
.

The function wδ belongs to H1(Br, |z|adx) ∩ L∞(Br), and it satisfies (in the weak sense)

div(|z|a∇wδ) = 0 in Br .

Consider a cut-off χ ∈ C1
c (Br) such that χ ≡ 1 in Br−τ for some τ ∈ (0, r). Using the test

function φ = χ2wδ , we obtain

0 =

∫

Br

|z|a∇wδ · ∇φdx =

∫

Br

|z|aχ2|∇wδ|2 dx+ 2

∫

Br

|z|a(χ∇wδ) · (wδ∇χ) dx .

From Cauchy-Schwarz Inequality we infer that
∫

Br

|z|aχ2|∇wδ|2 dx 6 4

∫

Br

|z|aw2
δ |∇χ|2 dx 6 C ,

for a constant C independent of δ. Letting δ → 0, we obtain by lower semicontinuity that
∫

Br−τ

|z|a|∇(∂ju∗)|2 dx 6 C .

In view of the arbitrariness of τ and r, we conclude that ∂ju∗ ∈ H1
loc(B1, |z|adx)∩L∞

loc(B1).

In addition, ∂ju∗ satisfies div(|z|a∇(∂ju∗)) = 0 in B1 (in the weak sense). By the regu-

larity results in [26] and the consideration above, we infer that ∇x(∂ju∗) ∈ C0,α
loc (B1), and

‖∇x(∂ju∗)‖C0,α(Br) only depends on n, s, r ∈ (0, 1), and ‖u∗‖L∞(B+
1 ) (since ‖∂ju∗‖L∞(Br)

only depends on n, s, r, and ‖u∗‖L∞(B+
1 )).
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From the arbitrariness of j, we conclude that ∆xu∗ ∈ C0,α
loc (B1), and ‖∆xu∗‖C0,α(Br) only

depends on n, s, r ∈ (0, 1), and ‖u∗‖L∞(B+
1 ). On the other hand,

∂z
(
za∂zu∗

)
= za∆xu∗ in B+

1 .

Consequently, given r ∈ (0, 1) and writing

za∂zu∗(x, z) = ra∂zu∗(x, r) −
∫ r

z

ta∆xu∗(x, t) dt

for (x, z) ∈ B+
1 such that (x, r) ∈ B+

1 , we deduce that za∂zu∗ is actually Hölder con-

tinuous up to D1 for some exponent α̃ = α̃(n, s) ∈ (0, 1) (perhaps smaller then α), and

‖za∂zu∗‖C0,α̃(B+
r ) only depends on n, s, r, and ‖u‖L∞(B+

1 ).

Finally, if x0 ∈ DR × {0} for some R ∈ (0, 1), we now have for 0 < r < 1/2(1− |x0|)
the estimate za|∇u∗| 6 CR in B+

r (x0) with a constant CR independent of x0 and r. Hence,
∫

B+
r (x0)

za|∇u∗|2 dx 6 CR

∫

B+
r (x0)

z−a dx 6 CRr
n+2s ,

and (4.14) follows. �

Combining Lemma 4.4 with Corollary 4.7 leads to the following

Proposition 4.9. Let q ∈ ( n
1+2s , n), b > 1, T > 0, and εk ↓ 0 a given sequence. LetR ∈ (0, 1]

and {fk}k∈N ⊆ C0,1(DR) such that

ε2sk ‖fk‖L∞(DR) + ‖fk‖Ẇ 1,q(DR) 6 T . (4.15)

There exist two constants θb,T > 0 and Rb,T > 0 (depending only on n, s, q, b, T , and

W ) such that the following holds. Let {uk}k∈N ⊆ H1(B+
R , |z|adx) ∩ L∞(B+

R ) be such that

‖uk‖L∞(B+
R) 6 b, and uk solves (4.13) in the weak sense. If R 6 Rb,T and

lim inf
k→∞

Eεk(uk, B
+
R) < θb,TR

n−2s , (4.16)

then there exist a (not relabeled) subsequence and u∗ ∈ H1(B+
R , |z|adx) satisfying either

u∗ = 1 on DR/4, or u∗ = −1 on DR/4, such that

(i) uk → u∗ strongly in H1(B+
R/4, |z|adx) ;

(ii) uk → u∗ uniformly on DR/4 ;

(iii) ε−2s
k

∫
DR/4

W (uk) dx→ 0 .

Proof. Let θb,T := 1
2ηb,T (δW ) where the constant δW is given by (4.12), and ηb,T given by

Lemma 4.4. Then we choose

Rb,T := min

{
1,

(
θqηb,T (δW )

2b cn,qT

)1/θq
}
.

If R 6 Rb,T , then the a priori bound (4.15) yields

cn,q‖uk‖L∞(B+
R)

∫ R

0

tθq−1‖fk‖Ẇ 1,q(Dt(xj))
dt 6

1

2
ηb,T (δW ) ,

so that

lim inf
k→∞

Θεk
uk
(fk, 0, R) < ηb,T (δW ) . (4.17)

Select a (not relabeled) subsequence which achieves the lim inf in (4.17). By the uniform

energy bound, we can find a (not relabeled) subsequence such that uk ⇀ u∗ weakly in

H1(B+
R , |z|adx). From the compact embedding H1(B+

R , |z|adx) →֒ L1(B+
R), we deduce

that |u∗| 6 b in B+
R . Since Θεk

uk
(fk, 0, R) 6 θb,T for k sufficiently large, Lemma 4.4 shows

that
∣∣|uk| − 1

∣∣ 6 δW on DR/2 for such k’s. Extracting another subsequence if necessary, we
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can assume without loss of generality that |uk−1| 6 δW on the discDR/2. Then Corollary 4.7

yields u∗ = 1 on DR/2, uk → u∗ strongly in H1(B+
3R/8, |z|adx), and

1

ε2sk

∫

D3R/8

W (uk) dx→ 0 . (4.18)

Now fix δ ∈ (0, δW ) arbitrary. By Lemma 4.8, we can find a radius rδ 6 R/8 such that

E
(
u∗, B

+
rδ
(x̄)

)
6

ηb,T (δ)

3
rn−2s
δ

for every x̄ ∈ DR/4 × {0}. Then consider a finite covering of DR/4 × {0} by balls of radius

rδ/2 centered at points of DR/4 × {0}. We denote by x1 = (x1, 0), . . . ,xL = (xL, 0) the

centers of these balls. From the strong convergence of {uk}k∈N and (4.18), we deduce that for

k large enough,

1

rn−2s
δ

Eεk(uk, B
+
rδ (xj)) 6

ηb,T (δ)

2
∀j ∈ {1, . . . , L} .

On the other hand,

cn,q‖uk‖L∞(B+
R)

∫ rδ

0

tθq−1‖fk‖Ẇ 1,q(Dt(xj))
dt 6

b cn,q
θq

Tr
θq
δ .

Hence, choosing a smaller value for rδ if necessary, we have

Θεk
uk
(fk, xj , rδ) 6 ηb,T (δ) ∀j ∈ {1, . . . , L} .

Then Lemma 4.4 shows that |uk − 1| 6 δ in Drδ/2(xj) for every j = 1, . . . , L. Hence

|uk − 1| 6 δ in DR/4 whenever k is large enough. �

We now improve the previous convergence result under stronger assumptions on the se-

quence {fk}k∈N.

Proposition 4.10. In addition to the conclusions of Proposition 4.9,

(i) if supk ‖fk‖L∞(DR) <∞, then uk → u∗ in C0,α(DR/16) for every α ∈ (0,β∗);

(ii) if supk ‖fk‖C0,1(DR) <∞, then uk → u∗ in C1,α(DR/32) for every α ∈ (0,β∗);

where β∗ is given by Lemma 3.2

Proof. Step 1. We start proving item (i). Assume that u∗ = 1 on DR/4. By Proposition 4.9,

we have for k large enough, |uk − 1| 6 δW on DR/4. We shall prove that

‖uk − 1‖L∞(DR/8) 6 Cε2sk , (4.19)

for some constant C independent of εk. Note that the conclusion follows from this estimate.

Indeed, if holds (4.19), then the C2-assumption on W implies that
∥∥W ′(uk)

∥∥
L∞(DR/8)

6 Cε2sk ,

and we can thus apply Lemma 3.2 to infer that uk is bounded in C0,β∗(B+
R/16).

To prove (4.19) we proceed as follows. Fix an arbitrary parameter η ∈ (0, 1), and consider

the nonnegative smooth convex function

ψη(t) :=
√
t2 + η2 − η .

Set υη := ψη(uk − 1) ∈ H1(B+
R/4, |z|adx) ∩ L∞(B+

R/4), and we observe that υη satisfies in

the weak sense




div(za∇υη) = zaψ′′(uk − 1)|∇uk|2 in B+
R/4 ,

ds∂
(2s)
z υη =

ψ′(uk − 1)

ε2sk
W ′(uk)− ψ′(uk − 1)fk on DR/4 .
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On the other hand, (4.12) implies that

(t− 1)W ′(t) > κW (t− 1)2 for |t− 1| 6 δW ,

where κW := 1
2 min

{
W ′′(1),W ′′(−1)

}
> 0. Noticing that tψ′(t) > ψ(t) for every t ∈ R,

we thus have

ψ′(t− 1)W ′(t) =
(t− 1)ψ′(t− 1)

(t− 1)2
(t− 1)W ′(t) > κWψ(t− 1) for |t− 1| 6 δW .

Therefore υη satisfies




div(za∇υη) > 0 in B+
R/4 ,

ds∂
(2s)
z υη >

κW

ε2sk
υη − ‖fk‖L∞(DR) on DR/4 .

By [55, Lemma 3.5] it implies

‖υη‖L∞(DR/8) 6
(1 + ‖fk‖L∞(DR))ε

2s
k

κW

√
(1 + b)2 + η2 .

Letting η → 0, we deduce that (4.19) holds with C = κ−1
W (1 + b)(1 + supk ‖fk‖L∞(DR)).

Step 2. To prove the C1,α-convergence, we shall rely on the regularity argument developed

in the proof of Theorem 3.3 (that we partially reproduce for clarity reason). To simplify the

notation, we assume here (without loss of generality) that R = 32. Fix an arbitrary point x0 ∈
D1, and for x = (x, z) ∈ B+

1 ∪D1 consider the translated function ūk(x) := uk(x + x0, z).

For h ∈ D1/8, h 6= 0, we set for x ∈ B+
7/8 ∪D7/8,

wh(x) :=
ūk(x+ h, z)− ūk(x)

|h|β∗

.

By Step 1, we have ‖wh‖L∞(B+
7/8) 6 C for a constant C independent of h and εk. Given η ∈

(0, 1), we can argue as in Step 1 to infer that the function ζη := ψη(wh) ∈ H1(B+
7/8, |z|adx)∩

L∞(B+
7/8) satisfies





div(za∇ζη) > 0 in B+
7/8 ,

ds∂
(2s)
z ζη >

κW

ε2sk
ζη − ‖fk‖C0,β∗ (D1) on D7/8 .

Then [55, Lemma 3.5] yields ‖wh‖L∞(D7/16) 6 Cε2sk once we let η → 0, for a constant C

independent of h and εk. From the equation satisfied by wh, it implies through Lemma 3.2

that wh is bounded in C0,β∗(B+
7/32) independently of h and εk. As a consequence,

sup
x∈D1/16

∣∣ūk(x + h, z)− 2ūk(x, z) + ūk(x− h, z)
∣∣ 6 C|h|2β∗

for every h ∈ D1/16, z ∈ [0, 1/16], and a constant C independent of h and εk. At this

stage, we can reproduce the iteration scheme of Theorem 3.3 by means of the above argument

(relying on [55, Lemma 3.5]) to conclude that ∇xuk is bounded in C0,β∗ in a (uniform in size)

neighborhood of (x0, 0). �

Note that (for later use) the proof above leads to the following estimate on the potential for

a right hand side f which is bounded.

Lemma 4.11. Let R > 0, f ∈ L∞(DR), and let uε ∈ H1(B+
R , |z|adx)∩L∞(DR) be a weak

solution of (4.2). If
∣∣|uε| − 1

∣∣ 6 δW on DR, then

W (uε) 6 CW (1 + ‖f‖L∞(DR))
2(1 + ‖uε‖L∞(B+

R))
2 ε

4s

R4s
on DR/2 ,
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and
∣∣W ′(uε)

∣∣ 6 CW (1 + ‖f‖L∞(DR))(1 + ‖uε‖L∞(B+
R))

ε2s

R2s
on DR/2 ,

for a constant CW > 0 depending only on the potentialW .

Proof. By rescaling equation (4.2), it is enough to consider the caseR = 1. Then, observe that

uε ∈ C0(B+
1 ∪ D1) by Remark 3.4. Hence, either |uε − 1| 6 δW or |uε + 1| 6 δW on the

disc D1. Without loss of generality, we may assume that the first case occurs. Then the proof

of Proposition 4.10 (Step 1) shows that

|uε − 1| 6 1

κW
(1 + ‖f‖L∞(D1))(1 + ‖uε‖L∞(B+

1 ))ε
2s on D1/2 .

ExpandingW near t = 1 yields the announced result. �

4.3. Proof of Theorem 4.1. We are now ready to give the proof of Theorem 4.1.

Proof. Step 1: Compactness. Let b > 1 such that b > supk ‖uk‖L∞(G). By the assumptions

on {uk}k∈N, we have

sup
k

Eεk(uk, G) 6 sup
k

(
Fεk(uk, G) + b‖fk‖L1(∂0G)

)
<∞ .

Hence there is a (not relabeled) subsequence such that uk ⇀ u∗ weakly in H1(G, |z|adx).
By the compact embedding H1(G, |z|adx) →֒ L1(G), we also have uk → u∗ strongly in

L1(G). Since |uk| 6 b, it implies that |u∗| 6 b in G, and uk → u∗ strongly in L2(G, |z|adx).
Moreover, by equation (4.1) and standard elliptic regularity, uk → u∗ in Cℓloc(G) for all ℓ ∈ N,

so that div
(
za∇u∗) = 0 in G. On the other hand, the uniform energy bound implies |uk| → 1

in L1(∂0G), and we infer from the continuity of the trace operator that |u∗| = 1 on ∂0G.

We now wish to analyse the asymptotic behavior of uk near ∂0G. For this we consider the

measures

µk :=
ds
2
za|∇uk|2L n+1 G+

1

ε2sk
W (uk)H

n ∂0G .

Since supk µk(G ∪ ∂0G) <∞, we can find a further subsequence such that

µk ⇀ µ :=
ds
2
za|∇u∗|2L n+1 G+ µsing , (4.20)

weakly* as Radon measures on G ∪ ∂0G for some finite nonnegative measure µsing. Notice

that the local smooth convergence of uk to u∗ in G implies that

spt(µsing) ⊆ ∂0G (4.21)

(here spt(µsing) denotes the relative support of µsing in G ∪ ∂0G).

Since ∂0G is a Lipschitz domain of Rn, there exits a constant C depending only on ∂0G

such that ‖fk‖Ẇ 1,q(∂0G) 6 C‖fk‖W 1,q(∂0G). Then we set

T := sup
k

(
(2εk)

2s‖fk‖L∞(∂0G) + ‖fk‖Ẇ 1,q(∂0G)

)
<∞ .

Noticing that ∫ r

ρ

tθq−1‖fk‖Ẇ 1,q(Dt(x))
dt 6

T

θq
(rθq − ρθq) ,

we can apply Lemma 4.2 to deduce that

ρ2s−nµk(Bρ(x)) +
b cn,q
θq

Tρθq 6 r2s−nµk(Br(x)) +
b cn,q
θq

Trθq (4.22)

for every x ∈ ∂0G and every 0 < ρ < r < min
(
1, dist(x, ∂+G)

)
. Therefore,

ρ2s−nµ(Bρ(x)) +
b cn,q
θq

Tρθq 6 r2s−nµ(Br(x)) +
b cn,q
θq

Trθq (4.23)
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for every x ∈ ∂0G and every 0 < ρ < r < min
(
1, dist(x, ∂+G)

)
. As a consequence, the

(n− 2s)-dimensional density

Θn−2s(µ,x) := lim
r↓0

µ(Br(x))

ωn−2srn−2s
(4.24)

exists3 and is finite at every point x ∈ ∂0G. Note that (4.20) and (4.22) yield

Θn−2s(µ,x) 6
C

(
dist(x, ∂+G)

)n−2s sup
k

Eεk(uk, G)+
b cn,q
θq

T (diam∂0G)θq <∞ (4.25)

for all x ∈ ∂0G. On the other hand, by the smooth convergence of uk toward u∗ in G,

Θn−2s(µ,x) = 0 for all x ∈ G .

In addition, we observe that x ∈ ∂0G 7→ Θn−2s(µ,x) is upper semicontinuous 4.

Next we define the concentration set

Σ :=

{
x ∈ ∂0G : inf

r

{
lim inf
k→∞

r2s−nµk(Br(x)) :

0 < r < min
(
1, dist(x, ∂+G)

)}
> θb,T

}
, (4.26)

where θb,T > 0 is the constant given by Proposition 4.9. From (4.22) and (4.23) we infer that

Σ =

{
x ∈ ∂0G : lim

r↓0
lim inf
k→∞

r2s−nµk(Br(x)) > θb,T

}

=

{
x ∈ ∂0G : lim

r↓0
r2s−nµ(Br(x)) > θb,T

}
,

and consequently,

Σ =

{
x ∈ ∂0G : Θn−2s(µ,x) >

θb,T

ωn−2s

}
. (4.27)

In particular, Σ is a relatively closed subset of ∂0G since Θn−2s(µ, ·) is upper semicontinuous.

Moreover, by a well known property of densities (see e.g. [7, Theorem 2.56]), we have

θb,T

ωn−2s
H

n−2s(Σ) 6 µ(Σ) <∞ . (4.28)

On the other hand, it follows from (4.25) and [7, Theorem 2.56] that µsing Σ is absolutely

continuous with respect to H n−2s Σ.

We now claim that spt(µsing) ⊆ Σ. Indeed, for x0 ∈ ∂0G \ Σ, we can find a radius

0 < r < min
{
Rb,T , dist(x0, ∂

+G ∪ Σ)
}

(with Rb,T given by Proposition 4.9) such that r2s−nµ(Br(x0)) < θb,T and µ(∂Br(x0)) = 0.

Then

lim
k→∞

Eεk(uk, B
+
r (x0)) = µ(Br(x0)) < θb,T r

n−2s ,

and we deduce from Proposition 4.9 that µsing(Br/4(x0)) = 0. Hence

µsing(∂
0G \ Σ) = 0 ,

and thus µsing is supported by Σ. In conclusion, we thus proved that µsing is absolutely con-

tinuous with respect to the Radon measure H n−2s Σ.

3Here we have set ωn−2s :=
π

n−2s
2

Γ(1 + n−2s
2

)
.

4Indeed, assume that xj → x ∈ ∂0G, and choose a sequence rm ↓ 0 such that µ(∂Brm (x)) = 0. By (4.23),

we have lim supj Θ
n−2s(µ,xj) 6 ω−1

n−2sr
n−2s
m µ(Brm (x))+Cr

θq
m , and the conclusion follows letting rm → 0.
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We are now ready to show that µsing ≡ 0. We argue by contradiction assuming that

µsing(Σ) > 0. By [60, Corollary 3.2.3], we can find a Borel subset Σ̃ ⊆ Σ such that

H n−2s(Σ \ Σ̃) = 0 and

lim
r↓0

1

rn−2s
E
(
u∗, B

+
r (x0)

)
= 0 for every x0 ∈ Σ̃ .

Then µsing(Σ̃) = µsing(Σ) > 0. Moreover, by our choice of Σ̃, the density

Θn−2s(µsing,x0) := lim
r↓0

µsing(Br(x0))

ωn−2srn−2s

exists at every x0 ∈ Σ̃, and

Θn−2s(µsing,x0) = Θn−2s(µ,x0) ∈ (0,∞) .

By Marstrand’s Theorem (see e.g. [38, Theorem 14.10]), it implies that (n− 2s) is an integer,

which is an obvious contradiction. Hence µsing ≡ 0.

Note that (4.28) now yields H n−2s(Σ) = 0. Moreover, we infer from (4.20) that for every

admissible open set G′ such that G′ ⊆ G ∪ ∂0G,

E(u∗, G
′) 6 lim inf

k→∞
E(uk, G

′) 6 lim
k→∞

Eεk(uk, G
′) = E(u∗, G

′) .

Therefore uk → u∗ strongly in H1
loc(G ∪ ∂0G, |z|adx), and ε−2s

k W (uk) → 0 in L1
loc(∂

0G).

Step 2: Uniform convergence. Let us define

E+ :=
{
x = (x, 0) ∈ ∂0G : u∗ = 1 a.e. on Dr(x) for some r ∈ (0, dist(x, ∂+G))

}
,

and

E− :=
{
x = (x, 0) ∈ ∂0G : u∗ = −1 a.e. on Dr(x) for some r ∈ (0, dist(x, ∂+G))

}
.

By construction,E+ and E− are disjoint relatively open subsets of ∂0G.

We claim that E± ∩Σ = ∅. Indeed, assume for instance that x0 = (x0, 0) ∈ E+. Then we

can find r > 0 such that u∗ = 1 on Dr(x0). By Lemma 4.8 we have

Θn−2s(µ,x0) = lim
ρ→0

1

ρn−2s
E
(
u∗, B

+
ρ (x0)

)
= 0 ,

whence x0 6∈ Σ.

Next we claim that ∂0G = E+ ∪ Σ ∪ E−. Indeed, if x0 = (x0, 0) ∈ ∂0G \ Σ, then we

can find a radius r > 0 such that limk Eεk(uk, B
+
r (x0)) < θb,T r

n−2s. By Proposition 4.9,

either uk → 1 or uk → −1 uniformly in Dr/4(x0). Therefore, either u∗ = 1 or u∗ = −1 on

Dr/4(x0). Hence x0 ∈ E+ ∪ E−.

Since L n(Σ) = 0, it implies in particular that

u∗ = χE+ − χ∂0G\E+ on ∂0G .

Now we show that

∂E+ ∩ ∂0G = Σ = ∂E− ∩ ∂0G .
Indeed, if x0 = (x0, 0) ∈ ∂E+ ∩ ∂0G, then Dr(x0) ∩ E+ 6= ∅ for every r > 0. Since

E+ is open, Dr(x0) ∩ E+ contains a small disc for every r > 0. Thus Dr(x0) 6⊆ E− for

every r > 0, and thus x0 ∈ Σ. This shows that ∂E+ ∩ ∂0G ⊆ Σ. The other way around, if

x0 ∈ Σ, then x0 6∈ E−. Thus L n({u∗ = −1} ∩ Dr(x0)) < L n(Dr(x0)) for every r > 0.

Since L n(Σ) = 0, we deduce that for every r > 0 there exists x ∈ E+ ∩ Dr(x0). Hence

Σ ⊆ ∂E+ ∩ ∂0G.

We claim that uk → ±1 locally uniformly in E± (respectively). We only show that uk → 1

locally uniformly in E+, the other case being completely analogous. Fix an arbitrary compact



36 VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

set K ⊆ E+. By Lemma 4.8, we can find a radius rK 6 min
{
dist(K, ∂E+),Rb,T

}
such

that

E
(
u∗, B

+
rK (x̄)

)
< θb,T r

n−2s
K

for every x̄ ∈ K × {0}. Then we deduce from Step 1 that

lim
k→∞

Eεk
(
uk, B

+
rK (x̄)

)
< θb,T r

n−2s
K

for every x̄ ∈ K × {0}. By Proposition 4.9 and a standard covering argument, it implies that

uk → u∗ = 1 uniformly on K . Then items (iii) and (iv) follow from Proposition 4.10.

Step 3: Convergence of level sets. We now prove (v). We fix t ∈ (−1, 1), a compact set

K ⊆ ∂0G, and a radius r > 0. First, from (iii) we deduce that |uk| → 1 uniformly on

K \ Tr(Σ). Therefore, Ltk ∩ K ⊆ Tr(Σ) for k large enough. Then we consider a covering

of Σ ∩K made by finitely many discs Dr/2(x1), . . . , Dr/2(xJ ) (included in ∂0G, choosing a

smaller radius if necessary). Then, for each j we can find a point x+j ∈ Dr/2(xj) ∩ E+ and a

point x−j ∈ Dr/2(xj) ∩ E−. From (ii) we infer that for k large enough,

uk(x
+
j ) > 1/2(1 + t) and uk(x

−
j ) 6 1/2(−1 + t) ∀j ∈ {1, . . . , J} .

Then, by the mean value theorem, for k large enough we can find for each j a point xkj ∈
[x−j , xj ]∪ [xj , x

+
j ] ⊆ Dr/2(xj) such that uk(x

k
j ) = t. Now, if x is an arbitrary point in Σ∩K ,

then x ∈ Dr/2(xjx ) for some jx ∈ {1, . . . , J}, and thus |x−xkjx | 6 |x−xjx |+|xjx−xkjx | < r.

Hence Σ ∩K ⊆ Tr(L
t
k) whenever k is sufficiently large.

Step 4: Proof of (vi). Let X = (X,Xn+1) ∈ C1(G;Rn+1) be a compactly supported vector

field in G ∪ ∂0G such that Xn+1 = 0 on ∂0G. By Corollary 3.5, we have

δE
(
uk, G ∪ ∂0G

)
[X] +

1

ε2sk

∫

∂0G

W (uk) divX dx =

∫

∂0G

uk div(fkX) dx .

From formula (2.22) and the convergences established in Step 1, we can pass to the limit

k → ∞ in this identity to infer that

δE
(
u∗, G ∪ ∂0G

)
[X] =

∫

∂0G

u∗div(fX) dx ,

and the proof is complete. �

5. ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION

The object of this section is to prove a general convergence result as ε ↓ 0 for the fractional

equation (5.1). As we already explained, we rely on the results obtained in Theorem 4.1 for

the degenerate equation with boundary reaction. In Section 7, we will improve some of the

convergences below under stronger assumptions on the sequence of right hand sides {fk}k∈N.

Theorem 5.1. Let Ω be a smooth bounded open set, and εk ↓ 0 a given sequence. Let

{gk}k∈N ⊆ C0,1
loc (R

n) be such that supk ‖gk‖L∞(Rn\Ω) <∞ and gk → g in L1
loc(R

n \Ω) for

a function g satisfying |g| = 1 a.e. in Rn \ Ω . Let {fk}k∈N ⊆ C0,1(Ω) satisfying

sup
k

(
ε2sk ‖fk‖L∞(Ω) + ‖fk‖W 1,q(Ω)

)
<∞ for some n/(1 + 2s) < q < n ,

and such that fk ⇀ f weakly in W 1,q(Ω). Let {vk}k∈N ⊆ Hs
gk
(Ω) ∩ Lp(Ω) be a sequence

such that vk weakly solves




(−∆)svk +

1

ε2sk
W ′(vk) = fk in Ω ,

vk = gk in Rn \ Ω .
(5.1)
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If supk Fεk(vk,Ω) <∞, then there exist a (not relabeled) subsequence and a Borel set E∗ ⊆
Rn of finite 2s-perimeter in Ω such that vk → v∗ := χE∗

− χRn\E∗
strongly in Hs

loc(Ω) and

L2
loc(R

n). Moreover, E∗ ∩ Ω is an open set, and

δP2s(E∗,Ω)[X ] =
1

γn,s

∫

E∗∩Ω

div(fX) dx for every X ∈ C1
c (Ω;R

n) . (5.2)

In addition, for every smooth open subset Ω′ ⊆ Ω such that Ω′ ⊆ Ω,

(i) E(vk,Ω′) → 2γn,sP2s(E∗,Ω
′);

(ii)
1

ε2sk
W (vk) → 0 in L1(Ω′);

(iii) fk(x)−
1

ε2sk
W ′(vk(x)) →

(
γn,s
2

∫

Rn

|v∗(x)− v∗(y)|2
|x− y|n+2s

dy

)
v∗(x) strongly inH−s(Ω′);

(iv) vk → v∗ in C0
loc(Ω \ ∂E∗);

(v) if supk ‖fk‖L∞(Ω) <∞, then vk → v∗ in C0,α
loc (Ω \ ∂E∗) for every α ∈ (0,β∗) with β∗

given by Lemma 3.2;

(vi) if supk ‖fk‖C0,1(Ω) <∞, then vk → v∗ in C1,α
loc (Ω \ ∂E∗) for every α ∈ (0,β∗);

(vii) for each δ ∈ (−1, 1), the level set Lδk := {vk = δ} converges locally uniformly in Ω to

∂E∗ ∩Ω, i.e., for every compact set K ⊆ Ω and every r > 0,

Lδk ∩K ⊆ Tr(∂E∗ ∩ Ω) and ∂E∗ ∩K ⊆ Tr(L
δ
k ∩ Ω)

whenever k is large enough.

Proof. Step 1. First we recall that, under the assumptions of the theorem, we have proved in

Section 3 that vk ∈ C
1,β∗

loc (Ω) ∩ C0(Rn) and supk ‖vk‖L∞(Rn) < ∞. Then the assumption

supk Fεk(vk,Ω) < ∞ clearly implies supk Eεk(vk,Ω) < ∞. In turn, Lemma 2.1 shows that

the sequence {vk}k∈N is bounded in L2(Rn,m), where the measure m is defined in (2.10).

Therefore, we can find a (not relabeled) subsequence and v∗ ∈ L2(Rn,m) such that vk ⇀ v∗
weakly in L2(Rn,m). In particular, vk ⇀ v∗ weakly in L2

loc(R
n). On the other hand, the

uniform energy bound shows that |vk| → 1 in L1(Ω), and {vk}k∈N is bounded in Hs(Ω).

Hence vk ⇀ v∗ weakly in Hs(Ω), and from the compact embedding Hs(Ω) →֒ L2(Ω), it

implies that vk → v∗ strongly in L2(Ω). By assumption we have gk → g in L1
loc(R

n \ Ω)

and supk ‖gk‖L∞(Rn\Ω) < ∞, so that gk → g in L2
loc(R

n \ Ω). Since vk = gk in Rn \ Ω,

we conclude that v∗ = g in Rn \ Ω and vk → v∗ strongly in L2
loc(R

n). Extracting a further

subsequence if necessary, we may assume that vk → v∗ a.e. in Rn. Since |g| = 1 a.e. in Rn,

we derive that |v∗| = 1 a.e. in Rn. Hence we can find a Borel set F ⊆ Rn such that

v∗ = χF − χRn\F a.e. in R
n.

Moreover, we easily infer from Fatou’s lemma that

E(v∗,Ω) 6 lim inf
k→∞

E(vk,Ω) <∞ . (5.3)

We end this first step showing that vek ⇀ ve∗ weakly in H1
loc(R

n+1
+ ∪ Ω, |z|adx). Indeed,

we start deducing from Lemma 2.7 that vek ⇀ ve∗ weakly in L2
loc(R

n+1
+ , |z|adx). On the other

hand, the uniform energy bound together with Lemma 2.10 and standard elliptic estimates

shows that {vek}k∈N is bounded in H1
loc(R

n+1
+ ∪Ω, |z|adx), whence the announced weak con-

vergence.

Step 2. Let us now consider an increasing sequence {Gl}l∈N of bounded admissible open sets

such that ∂0Gl ⊆ Ω for every l ∈ N, ∪lGl = R
n+1
+ , and ∪l∂0Gl = Ω. By (2.11), Step 1,
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and the results in Section 3, vek ∈ H1(Gl, |z|adx) ∩ L∞(Gl) satisfies supk ‖vek‖L∞(Gl) 6

supk ‖vk‖L∞(Rn) <∞, and each vk solves





div(za∇vek) = 0 in Gl ,

ds∂
(2s)
z vek =

1

ε2sk
W ′(vek)− f on ∂0Gl ,

for every l ∈ N. In addition, supkEεk(v
e
k, Gl) <∞ for every l ∈ N, still by Step 1. Therefore,

we can find a further subsequence such that the conclusions of Theorem 4.1 hold in every Gl,

and ve∗ is the limiting function in each Gl by Step 1. In particular, vek → ve∗ strongly in

H1
loc(R

n+1
+ ∪Ω, |z|adx).

For each l ∈ N, denote by El the limiting open subset of ∂0Gl provided by Theorem 4.1,

and observe that El = El+1 ∩ ∂0Gl for every l ∈ N (see the proof of Theorem 4.1, Step 2).

Then we define EΩ := ∪lEl, so that EΩ is an open subset of Ω, El = EΩ ∩ ∂0Gl for every

l ∈ N, and v∗ = χEΩ − χΩ\EΩ
a.e. in Ω. Setting

E∗ := (F \ Ω) ∪ EΩ ,

it follows that v∗ = χE∗
− χRn\E∗

a.e. in Rn. In particular, E∗ has finite 2s-perimeter in Ω

since

E(v∗,Ω) = 2γn,sP2s(E∗,Ω) .

Finally, the conclusions of Theorem 4.1 in each Gl clearly imply the announced results stated

in (ii), (iv), (v), (vi), and (vii).

Step 3. Now we show items (i), (iii), and the strong convergence of vk in Hs
loc(Ω). To this

purpose, we fix a smooth open set Ω′ ⊆ Ω such that Ω′ ⊆ Ω. Setting for an arbitrary function

v ∈ Ĥs(Ω),

es
(
v(x),Ω

)
:=

γn,s
2

∫

Ω

|v(x) − v(y)|2
|x− y|n+2s

dy + γn,s

∫

Rn\Ω

|v(x)− v(y)|2
|x− y|n+2s

dy ,

we claim that

es(vk,Ω)L
n Ω⇀ es(v∗,Ω)L

n Ω

weakly* as Radon measures on Ω. Indeed, by the uniform energy bound, we can extract a

subsequence such that es(vk,Ω)L n Ω
∗
⇀ν for some finite Radon measure ν on Ω. Then we

fix ϕ ∈ D(Ω) arbitrary. Notice that

∫

Ω

es(vk,Ω)ϕdx =
〈
(−∆)svk, ϕvk

〉
Ω

− γn,s
2

∫∫

Ω×Ω

(vk(x)− vk(y))vk(y)(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

− γn,s

∫∫

Ω×Ωc

(vk(x) − vk(y))vk(y)ϕ(x)

|x− y|n+2s
dxdy

=: Ik − IIk − IIIk .

We consider a function Φ ∈ C∞(Rn+1
+ ) compactly supported in G ∪ ∂0G for some bounded

admissible open set G ⊆ R
n+1
+ such that ∂0G ⊆ Ω and Φ|Rn = ϕ. Since ϕvk ∈ Hs

00(Ω) and

Φvek ∈ H1(G, |z|adx) is compactly supported in G ∪ ∂0G, Lemma 2.12 yields

〈
(−∆)svk, ϕvk

〉
Ω
= ds

∫

G

za|∇vek|2Φdx+ ds

∫

G

za∇vek · (vek∇Φ)dx .
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Since vek → ve∗ strongly in H1(G, |z|adx), we obtain

〈
(−∆)svk, ϕvk

〉
Ω
−→
k→∞

ds

∫

G

za|∇ve∗|2Φdx+ ds

∫

G

za∇ve∗ · (ve∗∇Φ)dx

= ds

∫

R
n+1
+

za∇ve∗ · ∇(Φve∗) dx .

By Lemma 2.12 again, we have thus proved that
〈
(−∆)svk, ϕvk

〉
Ω
−→
k→∞

〈
(−∆)sv∗, ϕv∗

〉
Ω
. (5.4)

On the other hand, we easily deduce by dominated convergence that

IIk → γn,s
2

∫∫

Ω×Ω

(v∗(x) − v∗(y))v∗(y)(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy (5.5)

and

IIIk → γn,s

∫∫

Ω×Ωc

(v∗(x)− v∗(y))v∗(y)ϕ(x)

|x− y|n+2s
dxdy (5.6)

as k → ∞. Gathering (5.4), (5.5), and (5.6) leads to
∫

Ω

es(vk,Ω)ϕdx −→
k→∞

∫

Ω

es(v∗,Ω)ϕdx ,

and thus ν = es(v∗,Ω)L n Ω by the arbitrariness of ϕ.

Since ν(∂Ω′) = 0, we now derive that
∫

Ω′

es(vk,Ω)dx→
∫

Ω′

es(v∗,Ω)dx . (5.7)

Then, since Ω′ is smooth and bounded, it has finite 2s-perimeter in Rn, and thus
∫

Ω′

∫

Ω\Ω′

1

|x− y|n+2s
dxdy 6

∫

Ω′

∫

Rn\Ω′

1

|x− y|n+2s
dxdy = P2s(Ω

′,Rn) <∞ . (5.8)

It now follows by dominated convergence and (5.7) that

E(vk,Ω′) =
1

2

∫

Ω′

es(vk,Ω)dx+
γn,s
4

∫

Ω′

∫

Ω\Ω′

|vk(x)− vk(y)|2
|x− y|n+2s

dxdy

−→
k→∞

1

2

∫

Ω′

es(v∗,Ω)dx+
γn,s
4

∫

Ω′

∫

Ω\Ω′

|v∗(x)− v∗(y)|2
|x− y|n+2s

dxdy

= E(v∗,Ω′) = 2γn,sP2s(E∗,Ω
′) . (5.9)

Using (5.7) again, the same argument shows that

[vk]
2
Hs(Ω′) → [v∗]

2
Hs(Ω′) ,

and thus vk → v∗ strongly in Hs(Ω′), since we already know that vk ⇀ v∗ weakly in

Hs(Ω′). In turn, the strong convergence inHs(Ω′) and (5.8) easily imply
〈
(−∆)svk, v∗

〉
Ω′ →〈

(−∆)sv∗, v∗
〉
Ω
= 2E(v∗,Ω′) by dominated convergence. Consequently,

E(vk − v∗,Ω
′) = E(vk,Ω′) + E(v∗,Ω′)−

〈
(−∆)svk, v∗

〉
Ω′ −→ 0 .

Next we infer from (2.4) that (−∆)svk → (−∆)sv∗ strongly in H−s(Ω′).

Then, fix some ϕ ∈ D(Ω′). Since v2∗ = 1, we have the identity

(
v∗(x) − v∗(y))(ϕ(x) − ϕ(y)

)
=

1

2
|v∗(x) − v∗(y)|2

(
v∗(x)ϕ(x) + v∗(y)ϕ(y)

)
, (5.10)

that we may insert in (2.3) to obtain

〈
(−∆)sv∗, ϕ

〉
Ω′ =

∫

Ω′

(
γn,s
2

∫

Rn

|v∗(x) − v∗(y)|2
|x− y|n+2s

dy

)
v∗(x)ϕ(x) dx . (5.11)

Using this equation and (5.1), item (iii) follows.
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Step 4. Now it only remains to show that E∗ satisfies (5.2). Let X ∈ C1(Rn;Rn) com-

pactly supported in Ω, and X = (X1, . . . ,Xn+1) ∈ C1(Rn+1
+ ;Rn+1) compactly supported in

R
n+1
+ ∪Ω satisfying X = (X, 0) on Ω. Setting {φt}t∈R to be the flow on Rn generated by X ,

we notice that

P2s

(
φt(E∗),Ω

)
=

1

2γn,s
E(v∗ ◦ φ−t,Ω) . (5.12)

Since the support of X is contained in Gl ∪ ∂0Gl for l large enough, we can apply (vi) in

Theorem 4.1. In view of Remark 2.15 and (5.12), we obtain

δP2s(E∗,Ω)[X ] =
1

2γn,s
δE(v∗,Ω)[X ]

=
1

2γn,s
δE

(
ve∗, Gl ∪ ∂0Gl

)
[X] =

1

2γn,s

∫

Ω

v∗ div(fX) dx

=
1

γn,s

∫

E∗∩Ω

div(fX) dx ,

by the divergence theorem, and the proof is complete. �

6. SURFACES OF PRESCRIBED NONLOCAL MEAN CURVATURE

In this section, we investigate regularity properties in a Lipschitz bounded open set Ω ⊆ Rn

of a (Borel) set E ⊆ R
n which is a weak solution in Ω of the prescribed nonlocal 2s-mean

curvature equation

H
(2s)
∂E =

1

γn,s
f on ∂E ∩ Ω , (6.1)

where f is a given Sobolev function in W 1,q(Ω) with q ∈ ( n
1+2s , n). The notion of weak

solution corresponds to the following weak formulation of (6.1):

Definition 6.1. A set E ⊆ Rn is a weak solution of (6.1) if P2s(E,Ω) <∞ and

δP2s(E,Ω)[X ] =
1

γn,s

∫

E∩Ω

div(fX) dx ∀X ∈ C1
c (Ω;R

n) .

Introducing the “phase function” vE := χE −χRn\E ∈ Ĥ(Ω), this equation rewrites (as in

the proof of Theorem 5.1, Step 4)

δE(vE ,Ω)[X ] =

∫

Ω

vE div(fX) dx ∀X ∈ C1
c (Ω;R

n) . (6.2)

As we already did for the fractional Allen-Cahn equation, we rely on the fractional harmonic

extension (vE)
e defined in (2.9) which satisfies





div(za∇(vE)
e) = 0 in R

n+1
+ ,

|(vE)e| 6 1 in R
n+1
+ ,

|(vE)e| = 1 on Rn ,

(6.3)

and (by Remark 2.15 and (6.2))

δE
(
(vE)

e, G ∪ ∂0G
)
[X] =

∫

∂0G

(vE)
e div(fX) dx (6.4)

for every vector field X = (X,Xn+1) ∈ C1(G;Rn+1) compactly supported in G ∪ ∂0G

satisfying Xn+1 = 0 on ∂0G, whenever G ⊆ R
n+1
+ is an admissible bounded open set such

that ∂0G ⊆ Ω.

Similarly to Section 4, instead of investigating only the regularity of (vE)
e from (6.3) and

(6.4), we deal with the following more general situation. We consider an admissible bounded
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open set G ⊆ R
n+1
+ and a function u ∈ H1(G, |z|adx) ∩ L∞(G) satisfying





div(za∇u) = 0 in G ,

|u| 6 b in G ,

|u| = 1 on ∂0G ,

(6.5)

for a given parameter b > 1 (whose importance will only appear in Section 7), and

δE
(
u,G ∪ ∂0G

)
[X] =

∫

∂0G

u div(fX) dx , (6.6)

where, again, f belongs to W 1,q(∂0G) with q ∈ ( n
1+2s , n).

Regularity estimates on the function u at the boundary ∂0G will be our main concern in this

section. The application to weak solutions of (6.1) is the object of the very last subsection with

some specific results.

6.1. Energy monotonicity and clearing-out. In this subsection, we consider an arbitrary

solution u ∈ H1(G, |z|adx) ∩ L∞(G) of (6.5)-(6.6). We begin with the fundamental mono-

tonicity formula involving the following density function: for a point x0 = (x0, 0) ∈ ∂0G and

r > 0 such that B
+

r (x0) ⊆ G, we set

Θu(f, x0, r) :=
1

rn−2s
E
(
u,B+

r (x0)
)
+ cn,q b

∫ r

0

tθq−1‖f‖Ẇ 1,q(Dt(x0))
dt ,

where the constants θq and cn,q are given by Lemma 4.2.

Lemma 6.2. For every x0 = (x0, 0) ∈ ∂0G and r > ρ > 0 such that B
+

r (x0) ⊆ G,

Θu(f, x0, r)−Θu(f, x0, ρ) > ds

∫

B+
r (x0)\B

+
ρ (x0)

za
|(x− x0) · ∇u|2
|x− x0|n+2−2s

dx .

Moreover, equality holds if f = 0.

Proof. We proceed exactly as in the proof of Lemma 4.2, assuming without loss of generality

that x0 = 0. Using (6.6) and formula (2.22), we infer that

(n− 2s)E(u,B+
r )− r

d

dr
E(u,B+

r ) + dsr

∫

∂+Br

za
∣∣∣ x|x| · ∇u

∣∣∣
2

dH
n 6 bI(r) ,

since ‖u‖L∞(∂0G) 6 b, where I(r) is given by (4.8). Note that equality actually holds for

f = 0. In view of (4.9), dividing by rn+1−2s and integrating the resulting inequality (or

equality if f = 0), the conclusion follows. �

Corollary 6.3. For every x = (x, 0) ∈ ∂0G× {0}, the limits

Θu(x) := lim
r↓0

Θu(f, x, r) = lim
r↓0

1

rn−2s
E
(
u,B+

r (x0)
)

exist, and the function Θu : ∂0G→ [0,∞) is upper semicontinuous. In addition,

Θu(f, x0, r)−Θu(x0) > ds

∫

B+
r (x0)

za
|(x − x0) · ∇u|2
|x− x0|n+2−2s

dx , (6.7)

and equality holds if f = 0.

Proof. The existence of first limit defining Θu(x) is of course a direct consequence of the

monotonicity of the density function established in Lemma 6.2. Existence and equality for the

second one follows from the existence of the first one and the estimate
∫ r

0

tθq−1‖f‖Ẇ 1,q(Dt(x0))
dt 6

‖f‖Ẇ 1,q(∂0G)

θq
rθq .

Then Θu is upper semicontinuous as a pointwise limit of a decreasing family of continuous

functions. Finally, letting ρ→ 0 in Lemma 6.2 yields (6.7). �
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We continue with the following clearing-out property which can be seen as a small-energy

regularity result.

Lemma 6.4. There exist a constantη0 > 0 (depending only on n and s) such that the following

holds. For x0 = (x0, 0) ∈ ∂0G and r > 0 such that B
+

r (x0) ⊆ G, the condition

Θu(f, x0, r) 6 η0

implies that either u = 1 on Dr/2(x0), or u = −1 on Dr/2(x0).

Proof. Let us fix some y = (y, 0) ∈ Dr/2(x0)× {0}. By Lemma 6.2, for 0 < ρ < r/2,

Θu(y, ρ) 6 Θu(y, r/2) 6 2n−2sΘu(x0, r) 6 2n−2sη0 .

By the Poincaré inequality in Lemma 2.5, we deduce that

Aρ(y) :=
1

ρn

∫

Dρ(y)

∣∣u− [u]y,ρ
∣∣dx 6 2n/2−sλn,s

√
η0 ,

where [u]y,ρ denotes the average of u over Dρ(y). Since |u| = 1 on ∂0G, we can find a Borel

subset E ⊆ ∂0G such that u = χE − χ∂0G\E a.e. on ∂0G. Then,

Aρ(y) = 4ωn

(
1− |E ∩Dρ(y)|

|Dρ|

) |E ∩Dρ(y)|
|Dρ|

.

Choosing

η0 :=
9ω2

n

2n+4−2sλ2
n,s

leads to Aρ(y) 6 3ωn/4. In turn, this inequality implies

|E ∩Dρ(y)|/|Dρ| ∈ [0, 1/4]∪ [3/4, 1] .

Since the function (y, ρ) ∈ Dr/2(x0)× (0, r/2) 7→ |E ∩Dρ(y)|/|Dρ| is continuous, we infer

that either

|E ∩Dρ(y)|
|Dρ|

∈ [0, 1/4] for every y ∈ Dr/2(x0) and every 0 < ρ < r/2 ,

or

|E ∩Dρ(y)|
|Dρ|

∈ [3/4, 1] for every y ∈ Dr/2(x0) and every 0 < ρ < r/2 . (6.8)

Now assume that (6.8) holds (the other case being analogous). Then, by the Lebesgue differen-

tiation theorem, we deduce that a.e. y ∈ Dr/2(x0) is a point of density 1 forE. Consequently,

u = 1 a.e. on Dr/2(x0), and the lemma is proved. �

Corollary 6.5. For every (x, 0) ∈ ∂0G, either Θu(x) = 0 or Θu(x) > η0. As a consequence,

there is an open subset Eu ⊆ ∂0G such that ∂Eu ∩ ∂0G =
{
Θu > η0

}
and

u = χEu − χ∂0G\Eu
a.e. on ∂0G .

Proof. The alternative Θu(x) = 0 or Θu(x) > η0 is a direct consequence of Lemma 6.4

together with Lemma 4.8. By upper semicontinuity of Θu, the set Σ := {Θu > η0} is

relatively closed in ∂0G, and

Eu :=
{
x = (x, 0) ∈ ∂0G : u = 1 on Dr(x) for some r ∈ (0, dist(x, ∂+G))

}

is open and disjoint from Σ. Arguing as in the proof of Theorem 4.1, Step 4, we obtain that

u = χEu − χ∂0G\Eu
a.e. on ∂0G, and ∂Eu ∩ ∂0G = Σ. �

Remark 6.6. By [60, Corollary 3.2.3], we also have H n−2s(∂Eu ∩ ∂0G) = 0. We will

improve this a priori estimate later on.
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6.2. Compactness. In this subsection, we are dealing with compactness issues for sequences

{uk}k∈N ⊆ H1(G, |z|adx) ∩ L∞(G) satisfying





div(za∇uk) = 0 in G ,

|uk| 6 b in G ,

|uk| = 1 on ∂0G ,

and

δE
(
uk, G ∪ ∂0G

)
[X] =

∫

∂0G

uk div(fkX) dx , (6.9)

for some fk ∈ W 1,q(∂0G) with q ∈ ( n
1+2s , n), and a parameter b > 1 independent of k.

Theorem 6.7. If supkE(uk, G) + ‖fk‖W 1,q(∂0G) < ∞, then there exist a (not relabeled)

subsequence and a function u ∈ H1(G, |z|adx) ∩ L∞(G) satisfying (6.5) such that uk ⇀ u

weakly in H1(G, |z|adx), and uk → u strongly in H1
loc(G ∪ ∂0G, |z|adx). In addition, if

fk ⇀ f weakly in W 1,q(∂0G), then u satisfies (6.6).

Proof. Since the argument essentially follows the proof of Theorem 4.1 (Step 1), we only

sketch the main points. First, by assumption on the energy, we can find a subsequence and

u ∈ H1(G, |z|adx)∩L∞(G) satisfying (6.5) such that uk ⇀ u weakly inH1(G, |z|adx) and

strongly inH1
loc(G, |z|adx) . Consider the sequence of measuresµk := ds

2 z
a|∇uk|2L n+1 G

which admits a weakly* convergent (not relabeled) subsequence towards a limiting measure

µ = ds
2 z

a|∇u|2L n+1 G+ µsing with spt(µsing) ⊆ ∂0G. From Lemma 6.2, we infer that µ

satisfies the monotonicity inequality (4.23) with T = supk ‖fk‖Ẇ 1,q(∂0G). As a consequence,

the density Θn−2s(µ,x) (as defined in (4.24)) exists, is finite for every x ∈ ∂0G, and defines

an upper semicontinuous function on ∂0G. We define the concentration set Σ as in (4.26) with

θb,T replaced by η0/2. Then Σ =
{
Θn−2s(µ, ·) > η0/(2ωn−2s)

}
⊆ ∂0G, and H n−2s(Σ)

is finite. We continue exactly as Theorem 4.1 to show that µsing is absolutely continuous

with respect H n−2s Σ, and that Θn−2s(µsing,x) ∈ [0,∞) exists at H n−2s-a.e. x ∈ Σ.

By Marstrand’s Theorem, we must have µsing ≡ 0. In other words, uk → u strongly in

H1
loc(G ∪ ∂0G, |z|adx). In view of (2.22), if fk ⇀ f weakly in W 1,q(∂0G), this strong

convergence allows us to pass to the limit k → ∞ in (6.9) and obtain (6.6). �

Remark 6.8. If uk → u strongly in H1
loc(G ∪ ∂0G, |z|adx), fk → f strongly in W 1,q(∂0G),

xk → x and rk → r > 0, then Θuk
(fk, xk, rk) → Θu(f, x, r).

Lemma 6.9. In addition to the conclusion of Theorem 6.7, if {xk}k∈N ⊆ ∂0G is a sequence

converging to x ∈ ∂0G, then

lim sup
k→∞

Θuk
(xk) 6 Θu(x) .

Proof. Assume for simplicity that x = 0. Applying Corollary 6.3, we obtain for r > 0

sufficiently small and rk := |xk| < r,

Θuk
(xk) 6 Θuk

(fk, xk, r) 6
1

rn−2s
E(uk, B

+
r+rk

) + Trθq ,

with T := (cn,qb/θq) supk ‖fk‖Ẇ 1,q(∂0G) < ∞. Since rk → 0 and uk converges strongly to

u in H1(B+
2r, |z|adx), we have E(uk, B

+
r+rk) → E(u,B+

r ). Hence

lim sup
k→∞

Θuk
(xk) 6

1

rn−2s
E(u,B+

r ) + Trθq .

Letting r ↓ 0 now leads to the conclusion. �
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Corollary 6.10. In addition to the conclusion of Theorem 6.7, the boundaries ∂Euk
∩ ∂0G

converge locally uniformly in ∂0G to ∂Eu∩∂0G, i.e., for every compact subsetK ⊆ ∂0G and

every r > 0,

∂Euk
∩K ⊆ Tr(∂Eu ∩ ∂0G) and ∂Eu ∩K ⊆ Tr(∂Euk

∩ ∂0G)
for k large enough.

Proof. We start proving the first inclusion. By Corollary 6.5, Θu(x) = 0 for every point

x ∈ K \ Tr(∂Eu ∩ ∂0G). Since Θuk
is upper semicontinuous, we can find a point xk ∈

K \ Tr(∂Eu ∩ ∂0G) such that

Θuk
(xk) = sup

x∈K\Tr(∂Eu∩∂0G)

Θuk
(x) .

Then select a subsequence {kj}j∈N such that limj Θukj
(xkj ) = lim supkΘuk

(xk). Extract-

ing a further subsequence if necessary, we can assume that xkj → x∗ ∈ K \Tr(∂Eu ∩ ∂0G).
Since Θu(x∗) = 0, we infer from Lemma 6.9 that lim supkΘuk

(xk) = 0. Consequently,

Θuk
(xk) 6 η0/2 for k large enough, and Corollary 6.5 shows that, for such integers k,

(∂Euk
∩K) \ Tr(∂Eu ∩ ∂0G) = ∅.

To prove the second inclusion, we consider a covering of ∂Eu ∩K made by finitely many

discs Dr/2(x1), . . . , Dr/2(xJ ) (included in ∂0G, choosing a smaller radius if necessary).

Then, for each j, we can find a point x+j ∈ Dr/2(xj) ∩ Eu and a point x−j ∈ Dr/2(xj) \ Eu.

Since Dr/2(xj) ∩ Eu and Dr/2(xj) \ Eu are open sets, we can find a radius ̺ > 0 such that

D2̺(x
+
j ) ⊆ Dr/2(xj) ∩ Eu and D2̺(x

−
j ) ⊆ Dr/2(xj) \ Eu for each j ∈ {1, . . . , J}. Hence,

u = ±1 onD2̺(x
±
j ) for each j ∈ {1, . . . , J}. In particular,Θu(x) = 0 for every x ∈ D̺(x

±
j )

and each j ∈ {1, . . . , J}. Arguing as before (for the first inclusion), we infer from Lemma 6.9

that

lim
k→∞

(
sup

x∈D̺(x
±

j )

Θuk
(x)

)
= 0 ∀j ∈ {1, . . . , J} .

Then Corollary 6.5 implies that Θuk
(x) = 0 for every x ∈ D̺(x

±
j ) and j ∈ {1, . . . , J},

whenever k is large enough. Since each D̺(x
±
j ) is connected, we must have either uk = +1

or uk = −1 on D̺(x
±
j ) (otherwise D̺(x

±
j ) could be written as the disjoint union of two

non empty open sets). On the other hand, uk → u in L1(D̺(x
±
j )) by Remark 2.4, and

we conclude that uk = u = ±1 on D̺(x
±
j ) for each j ∈ {1, . . . , J}, whenever k is large

enough. Hence, Dr/2(xj) ∩ Euk
6= ∅ and Dr/2(xj) \ Euk

6= ∅, and we have thus proved

that ∂Euk
∩ Dr/2(xj) 6= ∅ for each j ∈ {1, . . . , J}, whenever k is large enough. Therefore,

∂Eu ∩K ⊆ ⋃
j Dr/2(xj) ⊆ Tr(∂Euk

∩ ∂0G) for k sufficiently large. �

6.3. Tangent maps. We now return back a given solution u ∈ H1(G, |z|adx) ∩ L∞(G) of

(6.5) and (6.6), and we apply the results of Subsection 6.2 to define the so-called “tangent

maps” of u at a given point. To this purpose, we fix the point of study x0 = (x0, 0) ∈ ∂0G

and a reference radius ρ0 > 0 such that B+
ρ0(x0) ⊆ G. We introduce the rescaled functions

ux0,ρ(x) := u(x0 + ρx) and fx0,ρ(x) := f(x0 + ρx) , (6.10)

which are defined for 0 < ρ < ρ0/r, x ∈ B+
r and x ∈ Dr, respectively. Changing variables,

we observe that

Θux0,ρ(ρ
2sfx0,ρ, 0, r) = Θu(f, x0, ρr) . (6.11)

This identity, together with Lemma 6.2, leads to

1

rn−2s
E(ux0,ρ, B

+
r ) 6 Θu(f, x0, ρr) 6 Θu(f, x0, ρ0)

6
1

ρn−2s
0

E(u,G) +
cn,qb ρ

θq
0

θq
‖f‖Ẇ 1,q(∂0G) . (6.12)
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Given a sequence ρk → 0, we deduce that

lim sup
k→∞

E(ux0,ρk , B
+
r ) <∞ for every r > 0 . (6.13)

As a consequence of Theorem 6.7, we have the following

Lemma 6.11. Every sequence ρk → 0 admits a subsequence {ρ′k}k∈N such that ux0,ρ′k
→ ϕ

strongly in H1(B+
r , |z|adx) for every r > 0, where ϕ satisfies





div(za∇ϕ) = 0 in R
n+1
+ ,

|ϕ| 6 b in R
n+1
+ ,

|ϕ| = 1 on Rn ,

(6.14)

and for each r > 0,

δE(ϕ,B+
r ∪Dr)[X] = 0 (6.15)

for every vector field X = (X,Xn+1) ∈ C1(B
+

r ,R
n+1) compactly supported in B+

R ∪ Dr

such that Xn+1 = 0 on Dr.

Proof. In view of (6.13), Theorem 6.7 yields the announced convergence and (6.14). Then

observe that ux0,ρ satisfies

δE(ux0,ρ, B
+
r ∪Dr)[X] =

∫

Dr

ux0,ρ div(ρ
2sfx0,ρX) dx .

Rescaling variables, we obtain

‖ρ2sfx0,ρ‖Ẇ 1,q(Dr)
= ρθq‖f‖Ẇ 1,q(Dρr(x0))

−→
ρ→0

0 .

Hence ρ2sfx0,ρ → 0 strongly inW 1,q(Dr), and the conclusion follows from Theorem 6.7. �

Definition 6.12. Every function ϕ obtained by this process will be referred to as tangent map

of u at the point x0. The family of all tangent maps of u at x0 will be denoted by Tx0(u).

Lemma 6.13. If ϕ ∈ Tx0(u), then

Θϕ(0, 0, r) = Θϕ(0) = Θu(x0) ∀r > 0 ,

and ϕ is 0-homogeneous, i.e., ϕ(λx) = ϕ(x) for every λ > 0 and every x ∈ R
n+1
+ .

Proof. From the strong convergence of ux0,ρ′k
toward ϕ and the identity in (6.11), we first infer

that

Θϕ(0, 0, r) = lim
k→∞

Θux0,ρ′
k

(
(ρ′k)

2sfx0,ρ′k
, 0, r

)
= Θu(x0) ∀r > 0 .

Then the monotonicity formula in Lemma 6.2 applied to ϕ implies that x · ∇ϕ(x) = 0 for

every x ∈ R
n+1
+ , and the conclusion follows. �

6.4. Homogeneous solutions. In view of Lemma 6.13, the study of tangent maps leads to the

study of 0-homogeneous solutions, which is the purpose of this subsection. We start with the

following observation.

Lemma 6.14. Let ϕ ∈ H1(B+
1 , |z|adx) ∩ L∞(B+

1 ) be a solution of




div(za∇ϕ) = 0 in B+
1 ,

|ϕ| 6 b in B+
1 ,

|ϕ| = 1 on D1 ,

(6.16)

for some constant b > 1. Assume that there exists f ∈ W 1,q(D1) with n/(1 + 2s) < q < n

such that

δE
(
ϕ,B+

1 ∪D1

)
[X] =

∫

D1

ϕdiv(fX) dx , (6.17)
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for every vector field X = (X,Xn+1) ∈ C1(B
+

1 ,R
n+1) compactly supported in B+

1 ∪ D1

such that Xn+1 = 0 on D1. If Θϕ(f, 0, 1) = Θϕ(0), then ϕ is 0-homogeneous and f = 0.

Proof. As in the proof Lemma 6.13, Corollary 6.3 applied at x0 = 0 leads to the homogeneity

of ϕ. In turn, the homogeneity of ϕ implies that T0(ϕ) = {ϕ}, and the conclusion follows

from Lemma 6.11. �

Definition 6.15. We say that a function ϕ ∈ L1
loc(R

n+1
+ ) is a nonlocal stationary cone if ϕ

is 0-homogeneous, ϕ ∈ H1(B+
1 , |z|adx) ∩ L∞(B+

1 ), and ϕ satisfies (6.14)-(6.15) (for some

constant b > 1).

Summing up the results of the previous subsection, tangent maps to a solution of (6.5)-(6.6)

are thus nonlocal stationary cones. We shall present in details the main properties of those

“cones”. We start with the following lemma explaining somehow the terminology.

Lemma 6.16. If ϕ is a nonlocal stationary cone, then there is an open cone Cϕ ⊆ Rn such

that

ϕ =
(
χCϕ − χRn\Cϕ

)e
,

as defined in (2.9). In particular, |ϕ| 6 1 in R
n+1
+ .

Proof. By Corollary 6.5, there is an open set Cϕ ⊆ Rn such that ϕ = χCϕ − χRn\Cϕ
a.e. on

Rn. Since ϕ is 0-homogeneous, we easily infer that Cϕ is an open cone. We set

w := ϕ−
(
χCϕ − χRn\Cϕ

)e
.

Since w is 0-homogeneous, w ∈ H1
loc

(
R
n+1
+ , |z|adx

)
∩ L∞(Rn+1

+ ) with ‖w‖L∞(Rn+1
+ ) 6

1 + ‖ϕ‖L∞(Rn+1
+ ), and w satisfies

{
div(za∇w) = 0 in R

n+1
+ ,

w = 0 on ∂Rn+1
+ .

Note that, as in the proof of Lemma 4.8, w and za∂zw are Hölder continuous up to ∂Rn+1
+ ,

and smooth in R
n+1
+ by elliptic regularity. Since w is bounded, the Liouville type theorem in

[13, Corollary 3.5] tells us that w ≡ 0. �

Remark 6.17. If ϕ is a nonlocal stationary cone, then Θϕ(λy) = Θϕ(y) for every y ∈
R
n \ {0} and λ > 0. Indeed, by homogeneity of ϕ we have for each ρ > 0,

Θϕ(0, λy, ρ) = Θϕ(0, y, ρ/λ) ,

and the assertion follows letting ρ→ 0.

Lemma 6.18. Let ϕ be a nonlocal stationary cone. Then,

Θϕ(y) 6 Θϕ(0) ∀y ∈ R
n .

In addition, the set

S(ϕ) :=
{
y ∈ R

n : Θϕ(y) = Θϕ(0)
}

is a linear subspace of Rn, and ϕ(x + y) = ϕ(x) for every y ∈ S(ϕ) × {0} and x ∈ R
n+1
+ .

Proof. By Corollary 6.3, we have for every y = (y, 0) ∈ ∂Rn+1
+ and every ρ > 0,

Θϕ(y) + ds

∫

B+
ρ (y)

za
|(x− y) · ∇ϕ(x)|2
|x− y|n+2−2s

dx = Θϕ(0, y, ρ) . (6.18)

On the other hand, by homogeneity of ϕ,

Θϕ(0, y, ρ) 6
(ρ+ |z|)n−2s

ρn−2s
Θϕ(0, 0, ρ+ |y|) = (ρ+ |y|)n−2s

ρn−2s
Θϕ(0) .
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Inserting this inequality in (6.18) and letting ρ→ ∞, we deduce that

Θϕ(y) + ds

∫

R
n+1
+

za
|(x− y) · ∇ϕ(x)|2
|x− y|n+2−2s

dx 6 Θϕ(0) .

Next, if Θϕ(y) = Θϕ(0), then (x− y) · ∇ϕ(x) = 0 for every x ∈ R
n+1
+ . By homogeneity of

ϕ, we deduce that y · ∇ϕ(x) = 0 for every x ∈ R
n+1
+ , i.e,

ϕ(x+ y) = ϕ(x) ∀x ∈ R
n+1
+ . (6.19)

The other way around, if y = (y, 0) satisfies (6.19), then (x − y) · ∇ϕ(x) = 0 for every

x ∈ R
n+1
+ (using again the homogeneity of ϕ). By (6.18) and (6.19), it implies that for each

radius ρ > 0,

Θϕ(y) = Θϕ(0, y, ρ) = Θϕ(0, 0, ρ) = Θϕ(0) ,

and thus y ∈ S(ϕ). From (6.19) it now follows that S(ϕ) is a linear subspace of Rn. �

Remark 6.19. If ϕ is a non constant nonlocal stationary cone, then Θϕ(0) > 0 by Lemma 6.4.

In turn, we infer from Corollary 6.5 that S(ϕ) ⊆ ∂Cϕ.

Remark 6.20. If ϕ is a nonlocal stationary cone such that dimS(ϕ) = n, then either Cϕ = Rn

or Cϕ = ∅, i.e., either ϕ = 1 or ϕ = −1, respectively. As a consequence, if ϕ ∈ Tx0(u)

for some solution u of (6.5)-(6.6), then Θu(x0) = Θϕ(0) = 0. Now Corollary 6.5 yields

x0 6∈ ∂Eu ∩ ∂0G. In other words,

x0 ∈ ∂Eu ∩ ∂0G⇐⇒ dimS(ϕ) 6 n− 1 for all ϕ ∈ Tx0(u) .

Remark 6.21. If ϕ is a nonlocal stationary cone such that dimS(ϕ) = n−1, then Cϕ is a half-

space. Indeed, up to a rotation, we may assume that S(ϕ) = {0} × Rn−1, and Lemma 6.18

yields ϕ(x) = ϕ(x1, z) for all x = (x1, . . . , xn, z) ∈ R
n+1
+ . As a consequence, either

Cϕ = {x1 > 0} or Cϕ = {x1 < 0}.

In view of the remark above, we introduce the half-space P1 ⊆ Rn defined by

P1 := {x1 > 0} , (6.20)

and its extension to R
n+1
+ , ϕref := (χP1 − χRn\P1

)e. Then we set

θn,s :=
ds
2

∫

B+
1

za|∇ϕref |2 dx . (6.21)

Lemma 6.22. Ifϕ is a non constant nonlocal stationary cone, thenΘϕ(0) > θn,s. In addition,

equality holds if and only if Cϕ is an open half-space.

Proof. Step 1. Since ϕ is not trivial, by Corollary 6.5, Remark 6.19, and Lemma 6.18, we can

find a point y ∈ Sn−1 such that Θϕ(0) > Θϕ(y) > 0. Rotating coordinates if necessary, we

may assume that y = en, where (e1, . . . , en) denotes the canonical basis of Rn. Let ψn be a

tangent map ofϕ at en. We claim thatψn is independent of the xn-variable, i.e., ∂xnψn(x) = 0

for every x ∈ R
n+1
+ . To prove this claim, we consider a sequence of radii ρk ↓ 0 such that

ϕen,ρk → ψn strongly in H1(B+
r , |z|adx) for every r > 0. By homogeneity of ϕ, we have for

every x = (x, z) ∈ R
n+1
+ ,

∂xnϕen,ρk(x) = −ρ2kx · ∇ϕ(en + ρkx, ρkz) = −ρkx · ∇ϕen,ρk(x) .
Consequently,

1

rn−2s

∫

B+
r

za|∂xnϕen,ρk |2 dx 6 r2ρ2kΘϕ(0, en, rρk) −→
k→∞

0 ,

and the claim follows. As a consequence, Cψn = Cn−1×R for some open cone Cn−1 ⊆ Rn−1,

and Θψn(0) = Θϕ(y) > 0. Since ψn is not trivial, we can now find a point y ∈ Sn−2 × {0}
such that Θϕ(0) > Θψn(y) > 0. Rotating coordinates if necessary, we may assume that
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y = en−1, and we consider a tangent map ψn−1 of ψn at en−1. Then, such a tangent map

is independent of the xn and xn−1 variables. Iterating this process, we produce for each

k ∈ {n−1, . . . , 2}, a non trivial tangent map ψk of ψk+1 at ek such that Cψk
= Ck−1×Rn+1−k

for some open cone Ck−1 ⊆ Rk−1, and Θϕ(0) > Θψk
(0) > 0. At the last step of the

process (i.e., k = 2), we have either C1 = (0,+∞) or C1 = (−∞, 0). In other words, either

Cψ2 = {x1 > 0} or Cψ2 = {x1 < 0}. Without loss of generality, we may assume that

Cψ2 = {x1 > 0}. Then, by Corollary 6.16 we have ψ2 = (χP1 − χRn\P1
)e where P1 is the

reference half space (6.20). By Lemma 6.13, we conclude that Θψ2(0) = θn,s, and we have

thus proved that Θϕ(0) > θn,s.

Step 2. Assume that Θϕ(0) = θn,s. From Step 1, Corollary 6.5, and Lemma 6.18 we infer

that Θϕ(x) = θn,s for every x ∈ ∂Cϕ. In view of Remark 6.19, it leads to S(ϕ) = ∂Cϕ.

Since ϕ is not trivial, we must have dimS(ϕ) = n − 1, and Remark 6.21 tells us that Cϕ is a

half-space. �

For a constant Λ > 0 and j ∈ {0, . . . , n}, we now introduce the following class of nonlocal

stationary cones

Cj(Λ) :=
{

nonlocal stationary cones ϕ such that dimS(ϕ) > j and Θϕ(0) 6 Λ
}
.

Note that Cj+1(Λ) ⊆ Cj(Λ), and Cn(Λ) = {+1,−1} by Remark 6.20.

Lemma 6.23. For each j ∈ {0, . . . , n} and r > 0, the set
{
ϕ|B+

r
: ϕ ∈ Cj(Λ)

}
is strongly

compact in H1(B+
r , |z|adx).

Proof. By homogeneity, it is enough to consider the case r = 1. Let {ϕk}k∈N ⊆ Cj(Λ) be an

arbitrary sequence. Still by homogeneity, we have Θϕk
(0, 0, 2) = Θϕk

(0) 6 Λ, so that

E(ϕk, B
+
2 ) 6 2n−2sΛ .

Since |ϕk| 6 1 by Lemma 6.16, we can apply Theorem 6.7 to find a (not relabeled) subse-

quence such that ϕk → ψ strongly inH1(B+
1 , |z|adx) for a functionψ satisfying (6.16)-(6.17)

with f = 0 and b = 1. Then we deduce from Lemma 6.9 that

Θψ(0) > lim
k→∞

Θϕk
(0) = lim

k→∞
Θϕk

(0, 0, 1) = Θψ(0, 0, 1) .

In turn, Corollary 6.3 shows that Θψ(0) = Θψ(0, 0, 1), and thus ψ is 0-homogeneous by

Lemma 6.14, and Θψ(0) = limkΘϕk
(0) 6 Λ. Consequently, ψ is a nonlocal stationary cone,

and it remains to show that dimS(ψ) > j.

Extracting a further subsequence if necessary, we may assume that dimS(ϕk) is a constant

integer d > j, and S(ϕk) → V in the Grassmannian G(d, n) of all d-dimensional linear

subspaces of Rn. For an arbitrary y ∈ V ∩ D1, there exists a sequence {yk}k∈N ⊆ D1 such

that yk ∈ S(ϕk) and yk → y. By Lemma 6.9, we have

Θψ(y) > lim
k→∞

Θϕk
(yk) = lim

k→∞
Θϕk

(0) = Θψ(0) ,

and we deduce from Lemma 6.18 that y ∈ S(ψ). Therefore V ⊆ S(ψ), and in particular

dimS(ψ) > d. �

6.5. Quantitative stratification. In this subsection, we are back again to the analysis of the

function u ∈ H1(G, |z|adx) ∩ L∞(G) solving (6.5)-(6.6). We are interested in regularity

properties of the open subset Eu ⊆ ∂0G satisfying u = χEu − χ∂0G\Eu
on ∂0G (provided

by Corollary 6.5). To this purpose, we introduced the following (standard) stratification of the

singular set of u,

Singj(u) :=
{
x ∈ ∂0G : dimS(ϕ) 6 j for all ϕ ∈ Tx(u)

}
, j = 0, . . . , n− 1 .
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Obviously,

Singj(u) ⊆ Singj+1(u) ,

and by Remark 6.20,

∂Eu ∩ ∂0G = Singn−1(u) . (6.22)

We also introduce the “regular part” Σreg(u) of ∂Eu ∩ ∂0G,

Σreg(u) :=
(
∂Eu ∩ ∂0G

)
\ Singn−2(u) .

The terminology regular part is motivated by the following proposition showing that all blow-

up limits of ∂Eu at points of Σreg(u) are hyperplanes.

Proposition 6.24. For every x ∈ Σreg(u) and ϕ ∈ Tx(u), we have dimS(ϕ) = n − 1. In

particular, if x ∈ Σreg(u), then every sequence ρk ↓ 0 admits a subsequence {ρ′k}k∈N and a

half space P ⊆ Rn, with 0 ∈ ∂P , such that the rescaled boundaries

∂Ek := (∂E ∩ ∂0G− x)/ρ′k

converge locally uniformly to the hyperplane ∂P , i.e., for every compact set K ⊆ Rn and

every r > 0,

∂Ek ∩K ⊆ Tr(∂P ) and ∂P ∩K ⊆ Tr(∂Ek)

whenever k is large enough.

Proof. By the very definition of Σreg(u) and (6.22), if x ∈ Σreg(u), then there exists ϕ0 ∈
Tx(u) such that dimS(ϕ0) = n − 1. By Lemma 6.13 and Remark 6.21, we have Θu(x) =

Θϕ0(0) = θn,s as defined in (6.21).

Let ρk ↓ 0 be an arbitrary sequence. By the results in Subsection 6.3, there exists a subse-

quence {ρ′k}k∈N such that ux,ρ′
k
→ ϕ strongly in H1(B+

r , |z|adx) for every r > 0, for some

nonlocal stationary cone ϕ ∈ Tx(u) satisfying Θϕ(0) = Θu(0) = θn,s. By Lemma 6.22,

there is an open half-space P ⊆ Rn, with 0 ∈ ∂P , such that ϕ = (χP − χRn\P )
e. Then the

conclusion follows from Corollary 6.10. �

We are now ready to prove one of the main result of this section: the optimal estimate for

the dimension of ∂Eu ∩ Ω (here, dimM denotes the Minkowski dimension).

Theorem 6.25. We have dimM (∂Eu∩Ω′) = n−1 for every open subset Ω′ ⊆ ∂0G such that

Ω′ ⊆ ∂0G and ∂Eu ∩ Ω′ 6= ∅. In addition, dimH Singj(u) 6 j for each j ∈ {1, . . . , n− 2},

and Sing0(u) is countable.

We will prove Theorem 6.25 usnig the abstract stratification principle of [29], originally

introduced in [19]. To fit the setting of [29], we first need to introduce some notations.

For a radius r > 0, we set

Ωr :=
{
x ∈ R

n : B+
2r((x, 0)) ⊆ G

}
. (6.23)

In what follows, we fix three constants r0 > 0, H0 > 0, and Λ0 > 0 such that

‖f‖Ẇ 1,q(∂0G) 6 H0 , (6.24)

and

sup
{
Θu(f, x, ρ) : x ∈ Ωr0 , 0 < ρ 6 r0

}
6 Λ0 . (6.25)

Note that the supremum above is indeed finite by (6.12), and for 0 < ρ 6 r0,

Θu(f, x, ρ) 6
1

rn−2s
0

E(u,G) +
cn,qb (diam ∂0G)θq

θq
H0 ∀x ∈ Ωr0 .
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For each j ∈ {0, . . . , n}, ρ ∈ (0, r0), x0 ∈ Ωr0 and x0 = (x0, 0), we now introduce the

function dj(·, x0, ρ) : H1(B+
ρ (x0), |z|adx) → [0,∞) defined by

dj(v, x0, ρ) := inf
{
‖vx0,ρ − ϕ‖L1(B+

1 ) : ϕ ∈ Cj(Λ0)
}
,

where vx0,ρ(x) := v(x0 + ρx). Note that the infimum above is well defined by Remark 2.4,

and it is always achieved by Lemma 6.23. Moreover,

d0(·, x0, ρ) 6 d1(·, x0, ρ) 6 . . . 6 dn(·, x0, ρ) ,
and

dn(v, x0, ρ) := min
{
‖vx0,ρ − 1‖L1(B+

1 ), ‖vx0,ρ + 1‖L1(B+
1 )

}
.

Observe that each functionaldj(·, x0, ρ) is a (rescaled)L1-distance function, and consequently

they are ρ−n-Lipschitz functions with respect to the L1(B+
ρ (x0))-norm. In particular, each

functional dj(·, x0, ρ) is continuous with respect to strong convergence in L1(B+
ρ (x0)).

In the terminology of [29, Section 2.1], the functionsΘu(f, ·, ρ) and dj(u, ·, ·) will play the

roles of density function and control functions, respectively (thanks to Lemma 6.2). We need

to show that they satisfy the structural assumptions of [29, Section 2.2]. This is the purpose of

the following lemmas.

Lemma 6.26. There exists a constant

δ0(r0) = δ0(r0, H0,Λ0, b, n, s, q) ∈ (0, 1)

(independent of u and f ) such that for every for every x ∈ Ωr0 and ρ ∈ (0, r0),

Θu(x) > 0 =⇒ dn(u, x, ρ) > δ0 .

Proof. Assume by contradiction that there exist sequences of functions {(uk, fk)}k∈N solving

(6.5)-(6.6) and satisfying (6.24)-(6.25), points {xk}k∈N ⊆ Ωr0 , and radii {ρk}k∈N ⊆ (0, r0)

such that Θuk
(xk) > 0 and dn(uk, xk, ρk) 6 2−k.

We continue with a general first step that we shall use again in the sequel.

Step 1, general compactness. We consider the rescaled maps ũk := (uk)xk,ρk and f̃k :=

ρ2sk (fk)xk,ρk as defined in (6.10). By our choice of Λ0, a simple change of variables yields

Θũk
(f̃k, 0, 1) 6 Λ0 and ‖f̃k‖Ẇ 1,q(D1)

6 r
θq
0 H0 .

By Theorem 6.7, we can find a (not relabeled) subsequence such that ũk → u∗ weakly in

H1(B+
1 , |z|adx) and strongly in H1(B+

r , |z|adx) for every 0 < r < 1, and f̃k ⇀ f∗ weakly

in W 1,q(D1), where (u∗, f∗) satisfies (6.16)-(6.17). By Remark 2.4, ũk → u∗ strongly in

L1(B+
1 ), so that

dj(ũk, 0, 1) → dj(u∗, 0, 1) for each j ∈ {0, . . . , n} .
In addition, by lower semicontinuity of E(·, B+

1 ) and Fatou’s lemma, we have

Θu(f, 0, 1) 6 lim inf
k→∞

Θũk
(f̃k, 0, 1) 6 Λ0 and ‖f‖Ẇ 1,q(D1)

6 r
θq
0 H0 . (6.26)

Step 2, conclusion. Sincedn(ũk, 0, 1) 6 2−k, we havedn(u∗, 0, 1) = 0. In other words, either

u∗ = 1 or u∗ = −1, and consequently Θu∗
(0) = 0. On the other hand, by Corollary 6.5,

Θũk
(0) = Θuk

(0) > η0 > 0. Then Lemma 6.9 yields Θu∗
(0) > lim supkΘuk

(0) > 0,

which contradicts Θu∗
(0) = 0. �

Lemma 6.27. For every δ > 0, there exist constants

η1(δ, r0) = η1(δ, r0, H0,Λ0, b, n, s, q) ∈ (0, 1/4)

and

λ1(δ, r0) = λ1(δ, r0, H0,Λ0, b, n, s, q) ∈ (0, 1/4)
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(independent of u and f ) such that for every x ∈ Ωr0 and ρ ∈ (0, r0),

Θu(f, x, ρ) −Θu(f, x, λ1ρ) 6 η1 =⇒ d0(u, x, ρ) 6 δ .

Proof. Assume by contradiction that for some δ > 0, there exist sequences of functions

{(uk, fk)}k∈N solving (6.5)-(6.6) and satisfying (6.24)-(6.25), points {xk}k∈N ⊆ Ωr0 , and

radii {ρk}k∈N ⊆ (0, r0) such that

Θuk
(fk, xk, ρk)−Θuk

(fk, xk, λkρk) 6 2−k and d0(uk, xk, ρk) > δ ,

where λk → 0 as k → ∞. We consider the rescaled maps ũk := (uk)xk,ρk and f̃k :=

ρ2sk (fk)xk,ρk as defined in (6.10), so that

Θũk
(f̃k, 0, 1)−Θũk

(f̃k, 0, λk) 6 2−k and d0(ũk, 0, 1) > δ .

Then we apply Step 1 in the proof of Lemma 6.26 to find a (not relabeled) sequence along

which ũk and f̃k converge to u∗ and f∗, respectively. As consequence of the established

convergences, we first deduce that d0(u∗, 0, 1) > δ.

On the other hand, by Lemma 6.2 we can estimate for 0 < r < 1 and k large enough (in

such a way that λk < r),

Θũk
(f̃k, 0, 1)−

1

rn−2s
E(ũk, B

+
r )−

cn,qb r
θq
0

θq
H0r

θq

6 Θũk
(f̃k, 0, 1)−Θũk

(f̃k, 0, r) 6 2−k .

Using (6.26) and the strong convergence of ũk in H1(B+
r , |z|adx), we can let k → ∞ to

deduce that

Θu∗
(f∗, 0, 1)−

1

rn−2s
E(u∗, B

+
r ) 6

cn,qb r
θq
0

θq
H0r

θq .

Letting r → 0, we infer from Corollary 6.3 that Θu∗
(f∗, 0, 1) = Θu∗

(0). By Lemma 6.14,

f∗ = 0 and u∗ is a nonlocal stationary cone. Moreover, (6.26) yields the estimate Θu∗
(0) 6

Λ0, so that u∗ ∈ C0(Λ0). Hence d0(u∗, 0, 1) = 0, which contradicts the previous estimate

d0(u∗, 0, 1) > δ. �

Lemma 6.28. For every δ, τ ∈ (0, 1), there exists a constant

η2(δ, τ, r0) = η2(δ, τ, r0, H0,Λ0, b, n, s, q) ∈ (0, δ ]

(independent of u and f ) such that the following holds for every ρ ∈ (0, r0/5) and x ∈ Ωr0 . If

dj(u, x, 4ρ) 6 η2 and dj+1(u, x, 4ρ) > δ ,

hold for some j ∈ {0, . . . , n− 1}, then there exists a j-dimensional linear subspace V ⊆ Rn

for which

d0(u, y, 4ρ) > η2 ∀y ∈ Dρ(x) \ Tτρ(x + V ) .

Proof. The proof is again by contradiction. Assume that for some δ, τ ∈ (0, 1) and some

j ∈ {0, . . . , n − 1}, there exist sequences of functions {(uk, fk)}k∈N solving (6.5)-(6.6) and

satisfying (6.24)-(6.25), points {xk}k∈N ⊆ Ωr0 , and radii {ρk}k∈N ⊆ (0, r0/5) such that

dj(uk, xk, 4ρk) 6 2−k and dj+1(uk, xk, 4ρk) > δ ,

and such that the conclusion of the lemma does not hold. Now we consider the rescaled

functions ũk := (uk)xk,4ρk and f̃k := (4ρk)
2s(fk)xk,4ρk .

Step 1. For each k, we select ϕk ∈ Cj(Λ0) such that ‖ũk − ϕk‖L1(B+
1 ) 6 2−k (which is

possible by Lemma 6.23). Since

dj+1(ϕk, 0, 1) > dj+1(ũk, 0, 1)− ‖ũk − ϕk‖L1(B+
1 ) > δ − 2−k , (6.27)
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we infer that dimS(ϕk) = j for k large enough. Extracting a (not relabeled) subsequence

and rotating coordinates if necessary, we may assume that S(ϕk) = V for some fixed linear

subspace V of dimension j. Then, by Lemma 6.23 we can find a further (not relabeled) subse-

quence such that ϕk → ϕ strongly in H1(B+
r , |z|adx) for every r > 0 and some ϕ ∈ Cj(Λ0).

In particular,

Θϕ(0) = Θϕ(0, 0, 1) = lim
k→∞

Θϕk
(0, 0, 1) = lim

k→∞
Θϕk

(0) .

On the other hand, by Lemma 6.9,

Θϕ(y) > lim
k→∞

Θϕk
(y) = lim

k→∞
Θϕk

(0) = Θϕ(0) ∀y ∈ V .

Therefore, V ⊆ S(ϕ) by Lemma 6.18. But letting k → ∞ in (6.27), we deduce that

dj+1(ϕ, 0, 1) > δ, and thus S(ϕ) = V . Since the conclusion of the lemma does not hold,

for each k we can find a point yk ∈ D1/4 \ Tτ/4(V ) such that d0(ũk, yk, 1) → 0 as k → ∞.

Step 2. Consider the translated function ûk := (ũk)yk,1, and select ψk ∈ C0(Λ0) such that

‖ûk−ψk‖L1(B+
1 ) = d0(ũk, yk, 1) → 0. By Lemma 6.23 and Remark 2.4, we can find a further

(not relabeled) subsequence such that ψk → ψ strongly in L1(B+
1 ) for some ψ ∈ C0(Λ0).

Then ûk → ψ strongly in L1(B+
1 ). Now we extract a further (not relabeled) subsequence such

that yk → y∗ for some y∗ ∈ D1/4 \ Tτ/4(V ). Observe that

‖ψ − ϕyk,1‖L1(B+
3/4

) 6 ‖ψ − ûk‖L1(B+
3/4

) + ‖(ũk)yk,1 − ϕyk,1‖L1(B+
3/4

)

6 ‖ψ − ûk‖L1(B+
1 ) + ‖ũk − ϕ‖L1(B+

1 ) .

By continuity of translations in L1, and since ũk → ϕ, we infer that

‖ψ − ϕy∗,1‖L1(B+
3/4

) = lim
k→∞

‖ψ − ϕyk,1‖L1(B+
3/4

) = 0 .

In other words, ψ = ϕy∗,1 on B+
3/4. As a consequence, setting y∗ := (y∗, 0), for every

x ∈ B+
1/2 and t ∈ (0, 1),

ϕ
(
x+ t(y∗ − x)

)
= ψ

(
(1 − t)x+ (t− 1)y∗

)
= ψ(y∗ − x) .

Differentiating first this identity with respect to t, and then letting t → 0, we discover that

0 = (y∗ − x) · ∇ϕ(x) = y∗ · ∇ϕ(x) for every x ∈ B+
1/2. By homogeneity of ϕ, it implies

that y∗ · ∇ϕ(x) = 0 for every x ∈ R
n+1
+ . Arguing as in the proof of Lemma 6.18, we deduce

that y∗ ∈ S(ϕ) = V , which contradicts the fact that y∗ ∈ D1/4 \ Tτ/4(V ). �

We finally prove the following corollary whose importance will be revealed in Section 7.

Corollary 6.29. For every δ, τ ∈ (0, 1), there exists a constant

η3(δ, τ, r0) = η3(δ, τ, r0, H0,Λ0, b, n, s, q) ∈ (0, δ]

(independent of u and f ) such that for every ρ ∈ (0, r0/5] and x ∈ Ωr0 , the conditions

d0(u, x, 4ρ) 6 η3 and dn(u, x, 4ρ) > δ ,

imply the existence of a linear subspace V ⊆ Rn, with dimV 6 n− 1, for which

d0(u, y, 4ρ) > η3 ∀y ∈ Dρ(x) \ Tτρ(x + V ) .

Proof. We argue by induction on the dimension j ∈ {1, . . . , n} assuming that there exists a

constant η∗,j(δ, τ, r0) ∈ (0, δ] such that for every ρ ∈ (0, r0/5] and x ∈ Ωr0 , the conditions

d0(u, x, 4ρ) 6 η∗,j and dj(u, x, 4ρ) > δ ,

imply the existence of a linear subspace V , with dimV 6 j − 1, for which

d0(u, y, 4ρ) > η∗,j ∀y ∈ Dρ(x) \ Tτρ(x+ V ) .
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By Lemma 6.28 this property holds for j = 1 with η∗,1(δ, τ) = η2(δ, τ).

Now we assume that the property holds at step j, and we prove that it also holds at step

j + 1. To this purpose, we choose

η∗,j+1(δ, τ, r0) := η∗,j
(
η∗,j(δ, τ, r0), τ, r0

)
∈
(
0, η∗,j(δ, τ)

]
⊆ (0, δ] .

Then we distinguish two cases.

Case 1). If dj(u, x, 4ρ) 6 η∗,j , then dj(u, x, 4ρ) 6 η2 and we can apply Lemma 6.28 to find

the required linear subspace V of dimension j = (j + 1)− 1.

Case 2). If dj(u, x, 4ρ) > η∗,j , then we apply the induction hypothesis to find the required

linear subspace V of dimension less than j − 1.

Now the conclusion follows for η3(δ, τ, r0) := η∗,n(δ, τ, r0). �

We now introduce the so-called singular strata of u. For δ ∈ (0, 1), 0 < r 6 r0, and

j ∈ {0, . . . , n− 1}, we set

Sjr0,r,δ(u) :=
{
x ∈ Ωr0 : Θu(x) > 0 and dj+1(u, x, ρ) > δ for all r 6 ρ 6 r0

}
,

Sjr0,δ(u) :=
⋂

0<r6r0

Sjr0,r,δ(u) and Sjr0(u) :=
⋃

0<δ<1

Sjr0,δ(u) .

According to [29], we have the following result.

Theorem 6.30. For every κ0 ∈ (0, 1), there exists a constant

C = C(κ0, r0, H0,Λ0, b, n, s, q) > 0

such that

L
n
(
Tr

(
Sn−1
r0 (u)

))
6 Cr1−κ0 ∀r ∈ (0, r0) . (6.28)

In addition, dimH

(
Sjr0(u)

)
6 j for each j ∈ {1, . . . , n− 2}, and S0

r0(u) is countable.

Proof. By Lemma 6.27 and Lemma 6.28, the functions Θu(f, ·, ·) and dj(u, ·, ·) satisfy the

assumptions in [29, Section 2.2]. Then the dimension estimate on Sjr0(u) for each j ∈
{1, . . . , n− 2}, and the fact that S0

r0(u) is countable, follow from [29, Theorem 2.3].

According to Lemma 6.26, Sn−1
r0,δ

(u) = Sn−1
r0,δ0(r0)

(u) for every δ ∈ (0, δ0(r0)]. Since the

sets Sn−1
r0,δ

(u) are decreasing with respect to δ, we deduce that Sn−1
r0 (u) = Sn−1

r0,δ0(r0)
(u). Then,

estimate (6.28) follows from [29, Theorem 2.2]. �

Proof of Theorem 6.25. We choose r0 > 0 in such a way that Ω′ ⊆ Ωr0 . By Corollary 6.5

and Lemma 6.26, we have ∂Eu ∩ Ω′ ⊆ Sn−1
r0 (u). According to estimate (6.28), for every

α ∈ (0, 1) there exists a constant C = C(α, r0) such that

L
n
(
Tr(∂Eu ∩ Ω′)

)
6 Crα ∀r ∈ (0, r0) . (6.29)

Hence,

lim sup
r↓0


n−

log
(
L n

(
Tr(∂Eu ∩ Ω′)

))

log r


 6 n− α ∀α ∈ (0, 1) ,

and we obtain that the upper Minkowski dimension dimM (∂Eu ∩ Ω′) is less than n − 1. On

the other hand, since Eu ∩ Ω′ is a not empty open subset of Ω′, distinct from Ω′, we have

dimH (∂Eu ∩ Ω′) > n − 1. Since the lower Minkowski dimension dimM (∂Eu ∩ Ω′) is

greater than than the Hausdorff dimension, we conclude that dimM (∂Eu ∩ Ω′) = n− 1.

To complete the proof, we show that

Singj(u) ∩ Ωr0 ⊆ Sjr0(u) for each j ∈ {0, . . . , n− 2} , (6.30)

so that the conclusion follows from Theorem 6.30 (letting r0 → 0 along a decreasing se-

quence). To prove (6.30), we argue by contradiction assuming that there exists a point x ∈
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Singj(u)∩Ωr0 \Sjr0(u). Then, x 6∈ Sj
r0,2−k(u) for every k ∈ N. Hence, for each k ∈ N, there

exists a radius rk ∈ (0, r0] such that x 6∈ Sj
r0,rk,2−k(u), and therefore a radius ρk ∈ [rk, r0]

such that dj+1(u, x, ρk) < 2−k. Now we extract a (not relabeled) subsequence such that

ρk → ρ∗ for some ρ∗ ∈ [0, r0]. We distinguish the two following cases:

Case 1). If ρ∗ = 0, then we can extract a further subsequence such that (u)x,ρk → ϕ strongly

in H1(B+
1 , |z|adx) for some ϕ ∈ Tx(u) (by Lemma 6.11). In addition,

dj+1(ϕ, 0, 1) = lim
k→∞

dj+1(ux,ρk , 0, 1) = lim
k→∞

dj+1(u, x, ρk) = 0 ,

so that ϕ ∈ Cj+1(Λ0). Then dimS(ϕ) > j + 1 which contradicts x ∈ Singj(u).

Case 2). If ρ∗ > 0, then

dj+1(ux,ρ∗ , 0, 1) = lim
k→∞

dj+1(ux,ρk , 0, 1) = lim
k→∞

dj+1(u, x, ρk) = 0 .

Hence there exists ϕ ∈ Cj+1(Λ0) such that ux,ρ∗ = ϕ onB+
1 . Clearly, it implies that Tx(u) =

{ϕ}, which contradicts x ∈ Singj(u) as in Case 1). �

6.6. Application to the prescribed nonlocal mean curvature equation. In this subsection,

we apply the previous results to a weak solution E ⊆ Rn of the prescribed nonlocal 2s-

mean curvature equation (6.1). In order to do so, we may consider an increasing sequence of

admissible bounded open sets {Gl}l∈N such that ∂0Gl ⊆ Ω,
⋃
lGl = R

n+1
+ , and

⋃
l ∂

0Gl =

Ω. In view of (6.3)-(6.4), we can apply to the extended function (vE)
e the different results

from Subsection 6.1 to Subsection 6.5 to reach the following main conclusions:

(1) The set E ∩Ω is essentially open. More precisely, L n
(
(E ∩Ω)△E(vE)e

)
= 0 where

E(vE)e ⊆ Ω is the open set provided by Corollary 6.5. From now on, we will identify

the set E ∩Ω with E(vE)e .

(2) dimM (∂E ∩Ω′) 6 n− 1 for every open subset Ω′ such that Ω′ ⊆ Ω (with equality if

if ∂E ∩ Ω′ is not empty).

(3) There is a subset Σsing ⊆ ∂E ∩ Ω with dimH Σsing 6 n − 2 (countable if n = 2)

such that the following holds: if x0 ∈ (∂E ∩ Ω) \ Σsing, then every sequence ρk ↓ 0

admits a (not relabeled) subsequence such that

• Ek := (E − x0)/ρk → P in L1
loc(R

n) for some half-space P ⊆ Rn, 0 ∈ ∂P ;

• ∂Ek converges locally uniformly to the hyperplane ∂P , i.e., for every compact

set K ⊆ Rn and every r > 0, ∂Ek ∩ K ⊆ Tr(∂P ) and ∂P ∩K ⊆ Tr(∂Ek)

whenever k is large enough.

Remark 6.31. In the case of minimizing nonlocal minimal surfaces (i.e., solutions of (1.10)),

or minimizing solutions of (6.1) for f 6= 0 (i.e., solutions of (1.19)), the set Σsing is a closed

subset of ∂E ∩ Ω, and (∂E ∩ Ω) \ Σsing is locally the graph of a C1,α function (at least), see

[16, 18]. The minimality condition allows one to prove that equation (6.1) holds in a suitable

viscosity sense. This is a key point to prove the improvement of flatness of [16]. Combined

with property (3) above, it leads to the regularity at points of (∂E∩Ω)\Σsing. The improvement

of flatness property also implies the existence of a constant δ > 0 such that Θϕ(0) > θn,s+ δ

for every minimizing nonlocal cone ϕ such that dimS(ϕ) 6 n− 2, and the closeness of Σsing

can be deduced from the upper semicontinuity of the density function Θ. In the stationary

case, it remains unclear whether or not an improvement of flatness holds. It is even unclear if

this there an energy gap between hyperplanes and other nonlocal stationary cones.

Remark 6.32. In the minimizing case, we have the improved estimate dimH Σsing 6 n − 3

as shown in [46]. In the stationary case, the estimate dimH Σsing 6 n− 2 is optimal. Indeed,

in the plane R2, the boundary of the open set E := {x1x2 > 0} is an entire stationary nonlocal

minimal surface with Σsing = {0}.
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Our objective for the rest of this subsection is to show that the Minkowski dimension esti-

mate on ∂E ∩ Ω leads to the following higher regularity result.

Theorem 6.33. For every s′ ∈ (0, 1/2) and every open subset Ω′ ⊆ Ω such that Ω′ ⊆ Ω,

P2s′(E,Ω
′) <∞ .

The proof of Theorem 6.33 (postponed to this end of the subsection) rests on a general

regularity result, which might be of independent interest.

Proposition 6.34. Let v ∈ Ĥs(Ω) be such that v ∈ L∞
loc(Ω) and (−∆)sv ∈ Lp̄loc(Ω) for some

exponent p̄ ∈ (1,∞). Then, for every s′ ∈ (0, s) and every open subsets Ω′,Ω′′ of Ω such that

Ω′′ ⊆ Ω′ and Ω′ ⊆ Ω,

(∫∫

Ω′′×Ω′′

|v(x) − v(y)|p̄
|x− y|n+2s′p̄

dxdy

)1/p̄

6 C
(
‖(−∆)sv‖Lp̄(Ω′) + ‖v‖L∞(Ω′)

)
, (6.31)

for some constant C = C(n, s, s′, p̄,Ω′,Ω′′) independent of v.

Proof. Step 1. We fix a cut-off function ζ ∈ C∞
c (Ω′; [0, 1]) such that ζ = 1 in Ω′′. Define

w := ζv, and notice that w ∈ Hs
00(Ω

′) ∩ L∞(Ω′). In particular, (−∆)sw ∈ H−s(Rn). The

objective of this first step is to show that (−∆)sw ∈ Lp̄(Rn) with

‖(−∆)sw‖Lp̄(Rn) 6 C
(
‖(−∆)sv‖Lp̄(Ω′) + ‖v‖L∞(Ω′)

)
, (6.32)

for some constant C independent of v.

We start writing for ϕ ∈ D(Rn),

〈(−∆)sw,ϕ〉 = γn,s
2

∫∫

Ω′×Ω′

(
w(x) − w(y)

)
(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

+ γn,s

∫∫

Ω′×(Rn\Ω′)

(
w(x) − w(y)

)
(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy .

Since sptw ⊆ Ω′, we have

〈(−∆)sw,ϕ〉 = γn,s
2

∫∫

Ω′×Ω′

(
w(x) − w(y)

)
(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy +

∫

Rn

g1ϕdx ,

where

g1(x) := γn,sχΩ′(x)ζ(x)v(x)

∫

Rn\Ω′

dy

|x− y|n+2s
− γn,sχRn\Ω′(x)

∫

Ω′

ζ(y)v(y)

|x− y|n+2s
dy ,

and g1 ∈ Lp̄(Rn) ∩ L∞(Rn). Now we write

(
w(x) − w(y)

)(
ϕ(x)− ϕ(y)

)
=

(
v(x)− v(y)

)(
ζ(x)ϕ(x) − ζ(y)ϕ(y)

)

+ v(y)
(
ζ(x) − ζ(y)

)
ϕ(x) − v(x)

(
ζ(x) − ζ(y)

)
ϕ(y)

to realize that

γn,s
2

∫∫

Ω′×Ω′

(
w(x) − w(y)

)
(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=
γn,s
2

∫∫

Ω′×Ω′

(
v(x) − v(y)

)
(ζ(x)ϕ(x) − ζ(y)ϕ(y))

|x− y|n+2s
dxdy

+ γn,s

∫∫

Ω′×Ω′

v(y)
(
ζ(x) − ζ(y)

)
ϕ(x)

|x− y|n+2s
dxdy .
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Consquently,

〈(−∆)sw,ϕ〉 = γn,s
2

∫∫

Ω′×Ω′

(
v(x) − v(y)

)
(ζ(x)ϕ(x) − ζ(y)ϕ(y))

|x− y|n+2s
dxdy

+

∫

Rn

(g1 + g2)ϕdx ,

where

g2(x) := γn,sχΩ′(x)

∫

Ω′

v(y)
(
ζ(x) − ζ(y)

)

|x− y|n+2s
dy ,

and g2 ∈ Lp̄(Rn) ∩ L∞(Rn). Since ζϕ ∈ D(Ω′), we have

〈(−∆)sw,ϕ〉 = 〈(−∆)sv, ζϕ〉Ω′ − γn,s

∫∫

Ω′×(Rn\Ω′)

(
v(x)− v(y)

)
ζ(x)ϕ(x)

|x− y|n+2s
dxdy

+

∫

Rn

(g1 + g2)ϕdx ,

so that

〈(−∆)sw,ϕ〉 = 〈(−∆)sv, ζϕ〉Ω′ +

∫

Rn

(g1 + g2 + g3)ϕdx ,

where

g3(x) := −γn,sζ(x)
∫

Rn\Ω′

v(x)− v(y)

|x− y|n+2s
dy ,

and g3 ∈ Lp̄(Rn)∩L∞(Rn) (recall that spt ζ ⊆ Ω′). By assumption, there exists g4 ∈ Lp̄(Ω′)

such that 〈(−∆)sv, ψ〉Ω′ =
∫
Ω′ g4ψ dx for all ψ ∈ D(Ω′). Extending g4 by zero outside Ω′,

we conclude that

〈(−∆)sw,ϕ〉 =
∫

Rn

gϕdx ,

with g := g1+g2+g3+ζg4 ∈ Lp̄(Rn). Clearly, ‖g‖Lp̄(Rn) 6 C
(
‖(−∆v‖Lp̄(Ω′)+‖v‖L∞(Ω′)

)

for some constant C independent of v, and (6.32) is proved.

Step 2. We now claim that (I −∆)sw ∈ Lp̄(Rn) with

∥∥(I −∆)sw
∥∥
Lp̄(Rn)

6 C
(
‖(−∆v‖Lp̄(Ω′) + ‖v‖L∞(Ω′)

)
, (6.33)

for some constant C independent of v. Indeed, by [53, proof of Lemma 2, Section 3.2] there

exists Φs ∈ L1(Rn) such that

(
1 + 4π2|ξ|2

)s
= 1 + Φ̂s(ξ) + (2π|ξ|)2s + (2π|ξ|)2sΦ̂s(ξ) ,

where Φ̂s denotes the Fourier transform of Φs. Since
(
1+4π2|ξ|2

)s
is the symbol of (I−∆)s

in Fourier space, we infer that

(I −∆)sw = w +Φs ∗ w + g +Φs ∗ g ∈ Lp̄(Rn) ,

and (6.33) follows.

Step 3. By Step 2, the functionw belongs to the Bessel potential space L
p̄
2s(R

n). According to

[58, Section 2.3.5], L
p̄
2s(R

n) coincides with the Triebel-Lizorkin space F 2s
p,2(R

n) (notice that

L
p̄
2s(R

n) is denoted by H2s
p̄ (Rn) in [58]). Then we use the continuous embeddings between

Triebel-Lizorkin spaces and Besov spaces (recall that s′ < s)

F 2s
p̄,2(R

n) ⊆ B2s
p̄,max(p̄,2)(R

n) ⊆ B2s′

p̄,p̄(R
n) ,

see [58, Proposition 2, p. 47], to deduce thatw belongs to the Besov spaceB2s′

p̄,p̄(R
n). Recalling

that B2s′

p̄,p̄(R
n) = W 2s′,p̄(Rn) (the Slobodeckij-Sobolev space, see [58, Section 2.3.5]), we
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have thus proved that

‖w‖W 2s′,p̄(Rn) := ‖w‖Lp̄(Rn) +

(∫∫

Rn×Rn

|w(x) − w(y)|p̄
|x− y|n+2s′p̄

dxdy

)1/p̄

6 C
(
‖(−∆)sv‖Lp̄(Ω′) + ‖v‖L∞(Ω′)

)
,

for some constant C independent of v. Since w = v on Ω′′, this estimate implies (6.31). �

We continue with a simple observation (that we already made implicitly during the proof of

Theorem 5.1).

Lemma 6.35. Let F ⊆ Rn be a Borel set such that P2s(F,Ω) < ∞. Then the function

vF := χF − χRn\F belongs to Ĥs(Ω), and (−∆)svF ∈ L1(Ω) with

(−∆)svF (x) =

(
γn,s
2

∫

Rn

|vF (x)− vF (y)|2
|x− y|n+2s

dy

)
vF (x) for a.e. x ∈ Ω .

Proof. Argue as in (5.10)-(5.11). �

Back to our original set E, we combine Lemma 6.35 with the estimate on the Minkowski

dimension to obtain

Proposition 6.36. We have (−∆)svE ∈ Lp̄loc(Ω) for every p̄ < 1/2s.

Proof. Let us fix two open subsets Ω′,Ω′′ of Ω such that Ω′′ ⊆ Ω′ and Ω′ ⊆ Ω. By

Lemma 6.35, we have (−∆)svE ∈ L1(Ω′). We claim that

∣∣(−∆)svE(x)| 6
C(Ω′,Ω′′)

dist(x, ∂E ∩ Ω′)2s
for a.e. x ∈ Ω′′ \ ∂E , (6.34)

for some constant C(Ω′,Ω′′) independent of E. For x ∈ Ω′′ \ ∂E, we set

rx :=
1

2
min

(
dist(x, ∂E ∩ Ω′),min

{
|z − y| : z ∈ Ω′′ , y ∈ R

n \ Ω′
})

.

Since Drx(x) ⊆ Ω′ \ ∂E, we can deduce from Lemma 6.35 that

∣∣(−∆)svE(x)| 6 2γn,s

∫

Rn\Drx (x)

1

|x− y|n+2s
dy =

Cn,s
(rx)2s

,

and (6.34) follows.

Let us now fix an exponent α ∈ (2sp̄, 1). Since dimM (∂E ∩ Ω′) 6 n − 1, we can find

a radius Rα ∈ (0, 1) such that L n(Tr(∂E ∩ Ω′)) 6 rα for every r ∈ (0, 2Rα). Then, we

estimate for an arbitrary integer k > 1,

∫

Ω′′\T
2−kRα

(∂E∩Ω′)

∣∣(−∆)svE |p̄ dx 6

∫

Ω′′\TRα (∂E∩Ω′)

∣∣(−∆)svE |p̄ dx

+

k−1∑

j=0

∫

Ω′′∩Aj

∣∣(−∆)svE |p̄ dx .

where we have set Aj := T2−jRα
(∂E ∩ Ω′) \ T2−(j+1)Rα

(∂E ∩ Ω′). Inserting (6.34), we

derive

∫

Ω′′\T
2−kRα

(∂E∩Ω′)

∣∣(−∆)svE |p̄ dx 6 CR−2sp̄
α


1 +

∞∑

j=0

1

2(α−2sp̄)j


 <∞ .

Letting k → ∞, we can now conclude by dominated convergence. �
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Proof of Theorem 6.33. Fix two open subsets Ω′,Ω′′ of Ω such that Ω′′ ⊆ Ω′ and Ω′ ⊆ Ω.

We choose a number θ > 2 such that max(s, s′) < 1/θ. We set p̄ := 1/(θs) < 1/2s, and

s̄ := s′/p̄ < s. By Proposition 6.36, (−∆)svE ∈ Lp̄loc(Ω), and in turn, Proposition 6.34 yields
∫∫

E∩Ω′×(Ω′\E)

1

|x− y|n+2s′
dxdy =

1

2p̄+1

∫∫

Ω′×Ω′

|vE(x) − vE(y)|p̄
|x− y|n+2s̄p̄

dxdy <∞ .

Then we observe that

P2s′(E,Ω
′′) 6

∫∫

E∩Ω′×(Ω′\E)

1

|x− y|n+2s′
dxdy + C ,

for a constant C depending only Ω′ and Ω′′, n, and s′. �

7. VOLUME OF TRANSITION SETS AND IMPROVED ESTIMATES

In this section, we apply the quantitative stratification principle of the previous section in

order to improve the convergence results of Theorem 5.1. In few words, we obtain a quantita-

tive volume estimate on the transition set (i.e., where the solution takes values close to zero).

This estimate, combined with Lemma 4.11, leads to further estimates on the potential in the

case where fε is uniformly bounded. We stress again that the general framework of [29] does

not apply stricto sensu to Allen-Cahn type equations, and non trivial adjustments need to be

made. As before, we start with estimates on the degenerate boundary Allen-Cahn equation.

7.1. Quantitative estimates for the Allen-Cahn boundary equation. In this subsection, we

are considering a bounded admissible open set G ⊆ R
n+1
+ , ε ∈ (0, 1), and a weak solution

uε ∈ H1(G, |z|adx) ∩ L∞(G) of




div(za∇uε) = 0 in G ,

ds∂
(2s)
z uε =

1

ε2s
W ′(uε)− fε on ∂0G ,

(7.1)

for some given function fε ∈ C0,1(∂0G). We fix constants r0 > 0, b > 1, q ∈ ( n
1+2s , n),

H0 > 0, and Λ0 > 0 such that

‖uε‖L∞(G) 6 b , (7.2)

ε2s‖fε‖L∞(∂0G) + ‖fε‖Ẇ 1,q(∂0G) 6 H0 , (7.3)

and

sup
{
Θε
uε
(fε, x, ρ) : x ∈ Ωr0 , 0 < ρ 6 r0

}
6 Λ0 , (7.4)

where the domain Ωr0 is defined in (6.23).

Our aforementioned volume estimate is the following theorem, cornerstone of the section.

Theorem 7.1. For each α ∈ (0, 1), there exist k∗ = k∗(α, r0, H0,Λ0,W, b, n, s, q) > 0 and

C = C(α, r0, H0,Λ0,W, diam(∂0G), b, n, s, q) such that

L
n
(
Tr

(
{|uε| < 1− δW } ∩ Ωr0

))
6 Crα ∀r ∈ (k∗ε, r0) , (7.5)

where δW ∈ (0, 1/2] is given by (4.12).

The proof of Theorem 7.1 follows in some sense the lines of [29, Theorem 2.2] with a

different set of structural assumptions adjusted to our setting. Since the solution uε is smooth,

there is of course no singular set, and no strict analogue to [29, Theorem 2.2]. However, if we

don’t look at uε at too small scales, then the transition set {|uε| < 1 − δW } can play the role

of singular set. As one may guess, the threshold scale is ε, explaining the restriction on the

admissible radii in (7.5). The same threshold appears of course in our “structural assumptions”,

provided by Lemmas 7.2, 7.3, and 7.4 below.
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Lemma 7.2. There exist constants

δ̃0(r0) = δ0(r0, H0,Λ0,W, b, n, s, q) ∈ (0, 1)

and

k0(r0) = k0(r0, H0,Λ0,W, b, n, s, q) > 1

(independent of ε, uε, and fε) that for every x ∈ Ωr0 and ρ ∈ (0, r0),

|uε(x, 0)| < 1− δW and k0ε 6 ρ =⇒ dn(uε, x, ρ) > δ̃0 .

Proof. Assume by contradiction that there exist sequences {εk}k∈N ⊆ (0, 1), {(uk, fk)}k∈N

satisfying (7.1)-(7.2)-(7.3)-(7.4), points {xk}k∈N ⊆ Ωr0 , and radii {ρk}k∈N ⊆ (0, r0) such

that |uk(xk, 0)| < 1− δW , εk/ρk 6 2−k, and dn(uk, xk, ρk) → 0.

Setting ε̃k := εk/ρk, consider the rescaled maps ũk := (uk)xk,ρk and f̃k := ρ2sk (fk)xk,ρk

as defined in (6.10). Rescaling variables, we derive that




div(za∇ũk) = 0 in B+
1 ,

ds∂
(2s)
z ũk =

1

(ε̃k)2s
W ′(ũk)− f̃k on D1 ,

(7.6)

and

‖ũk‖L∞(B+
1 ) 6 b , (ε̃k)

2s‖f̃k‖L∞(D1) 6 H0 , ‖f̃k‖Ẇ 1,q(D1)
6 r

θq
0 H0 , (7.7)

as well as

Θε̃k
ũk
(f̃k, 0, 1) = Θεk

uk
(fk, xk, ρk) 6 Λ0 . (7.8)

By Theorem 4.1, we can find a (not relabeled) subsequence such that ũk → u∗ weakly in

H1(B+
1 , |z|adx) and strongly in H1(B+

r , |z|adx) for every r ∈ (0, 1). Then ũk → u∗
strongly in L1(Dr) for every r ∈ (0, 1) by Remark 2.4. On the other hand, dn(ũk, 0, 1) =

dn(uk, xk, ρk) → 0, so that either u∗ = 1 or u∗ = −1 on D1. Without loss of gener-

ality, we may assume that u∗ = 1 on D1. Then Theorem 4.1 tells us that ũk → 1 uni-

formly on Dr for every r ∈ (0, 1). In particular ũk(0) → 1 which contradicts our assumption

|ũk(0)| = |uk(xk, 0)| < 1− δW . �

Lemma 7.3. For every δ > 0, there exist constants

η̃1(δ, r0) = η̃1(δ, r0, H0,Λ0,W, b, n, s, q) ∈ (0, 1/4) ,

λ̃1(δ, r0) = λ̃1(δ, r0, H0,Λ0,W, b, n, s, q) ∈ (0, 1/4) ,

and

k1(δ, r0) = k1(δ, r0, H0,Λ0,W, b, n, s, q) > 1

(independent of uε and fε) such that for every ρ ∈ (0, r0/5) and x ∈ Ωr0 ,

Θε
uε
(fε, x, ρ)−Θε

uε
(fε, x, λ̃1ρ) 6 η̃1 and k1ε 6 ρ =⇒ d0(uε, x, ρ) 6 δ .

Proof. We choose

η̃1(δ, r0) :=
1

2
η1(δ/2, 2/5, r

θq
0 H0,Λ0, b, n, s, q) ,

where η1 is given by Lemma 6.27. Then we argue again by contradiction assuming that for

some constant δ > 0, there exist sequences {εk}k∈N ⊆ (0, 1), {(uk, fk)}k∈N satisfying (7.1)-

(7.2)-(7.3)-(7.4), points {xk}k∈N ⊆ Ωr0 , radii {ρk}k∈N ⊆ (0, r0/5), and λk → 0 such that

εk/ρk 6 2−k,

Θεk
uk
(fk, xk, ρk)−Θεk

uk
(fk, xk, λkρk) 6 η̃1 , and d0(uk, xk, ρk) > δ .
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Next we proceed as in the proof of Lemma 7.2 rescaling variables as ε̃k := εk/(5ρk), ũk :=

(uk)xk,5ρk , and f̃k := (5ρk)
2s(fk)xk,5ρk . Then, (7.6), (7.7), and (7.8) hold, as well as

sup
{
Θε̃k
ũk
(f̃k, x, ρ) : x ∈ D1/5 , 0 < ρ 6 2/5

}
6 Λ0 . (7.9)

Now our assumptions lead to

Θ
ε̃k
ũk
(f̃k, 0, 1/5)−Θ

ε̃k
ũk
(f̃k, 0, λk/5) 6 η̃1 , and d0(ũk, 0, 1/5) > δ .

By Theorem 4.1, we can find a (not relabeled) subsequence such that ũk → u∗ strongly in

H1(B+
r , |z|adx) for every r ∈ (0, 1), and f̃k ⇀ f∗ in W 1,q(D1), where the pair (u∗, f∗)

solves (6.16)-(6.17). Note that, by lower semicontinuity, we have ‖f∗‖Ẇ 1,q(D1)
6 r

θq
0 H0. In

addition, by Theorem 4.1 and Fatou’s lemma, we deduce from (7.9) that

sup
{
Θu∗

(f∗, x, ρ) : x ∈ D1/5 , 0 < ρ 6 2/5
}
6 Λ0 . (7.10)

By means of Lemma 4.2, we now estimate for 0 < r < 1/5 and k large enough (in such a

way that λk < r),

Θ
ε̃k
ũk
(f̃k, 0, 1/5)−

1

rn−2s
Eε̃k(ũk, B

+
r )−

cn,qb r
θq
0

θq
H0r

θq

6 Θũk
(f̃k, 0, 1/5)−Θũk

(f̃k, 0, r) 6 η̃1 .

Using Theorem 4.1, we can let k → ∞ in this inequality to derive

Θu∗
(f∗, 0, 1/5)−Θu∗

(f∗, 0, r) 6 Θu∗
(f∗, 0, 1/5)−

1

rn−2s
E(u∗, B

+
r )

6 η̃1 +
cn,qb r

θq
0

θq
H0r

θq .

Choosing r small enough in such a way that

cn,qb r
θq
0

θq
H0r

θq 6 η̃1 and r 6
1

5
λ1(δ/2, 2/5, r

θq
0 H0,Λ0, b, n, s, q) ,

where λ1 is given Lemma 6.27, we infer from Lemma 6.2 that

Θu∗
(f∗, 0, 1/5)−Θu∗

(f∗, 0, λ1/5) 6 2η̃1 = η1 .

Then Lemma 6.27 yields d0(u∗, 0, 1/5) 6 δ/2. On the other hand, by Remark 2.4, ũk → u∗
in L1(D1/5), and thus d0(u∗, 0, 1/5) = limk d0(ũk, 0, 1/5) > δ, contradiction. �

Lemma 7.4. For every δ, τ ∈ (0, 1), there exist two constants

η̃2(δ, τ, r0) = η̃2(δ, τ, r0, H0,Λ0,W, b, n, s, q) ∈ (0, δ]

and

k2(δ, τ, r0) = k2(δ, τ, r0, H0,Λ0,W, b, n, s, q) > 1

(independent of uε and fε) such that for every ρ ∈ (0, r0/25) and x ∈ Ωr0 , the conditions

k2ε 6 ρ , d0(uε, x, 4ρ) 6 η̃2 and dn(uε, x, 4ρ) > δ ,

imply the existence of a linear subspace V ⊆ Rn, with dimV 6 n− 1, for which

d0(uε, y, 4ρ) > η̃2 ∀y ∈ Dρ(x) \ Tτρ(x+ V ) .

Proof. We choose

η̃2(δ, τ, r0) :=
1

2
η3(δ, τ, 2/5, r

θq
0 H0,Λ0, b, n, s, q) ,
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where η3 is given by Corollary 6.29. We still argue by contradiction assuming that for some

constants δ, τ ∈ (0, 1), there exist sequences {εk}k∈N ⊆ (0, 1), {(uk, fk)}k∈N satisfying

(7.1)-(7.2)-(7.3)-(7.4), points {xk}k∈N ⊆ Ωr0 , and radii {ρk}k∈N ⊆ (0, r0/25) such that

εk/ρk 6 2−k , d0(uk, xk, 4ρk) 6 η̃2 and dn(uk, xk, 4ρk) > δ ,

and such that the conclusion of the lemma fails.

Once again, we rescale variables setting ε̃k := εk/(25ρk), ũk := (uk)xk,25ρk , and f̃k :=

(25ρk)
2s(fk)xk,25ρk , so that (7.6), (7.7), (7.8), and (7.9) hold. Then we reproduce the proof

of Lemma 7.3 to find a (not relabeled) subsequence along which (ũk, f̃k) converges to some

limiting pair (u∗, f∗) solving (6.16)-(6.17), and satisfying (7.7)-(7.8)-(7.10). In particular,

ũk → u∗ strongly in L1(D1/5). As a consequence,

d0(u∗, 0, 4/25) 6 η̃2 and dn(u∗, 0, 4/25) > δ .

By Corollary 6.29, there exists a linear subspace V ⊆ Rn, with dimV 6 n− 1, such that

d0(u∗, y, 4/25) > η3 ∀y ∈ D1/25 \ Tτ/25(V ) . (7.11)

Since the conclusion of the lemma does not hold, we can find for each integer k a point yk ∈
D1/25 \ Tτ/25(V ) such that d0(ũk, yk, 4/25) 6 η̃2. Then extract a further subsequence such

that yk → y∗ for some y∗ ∈ D1/25 \ Tτ/25(V ). Noticing that

‖(u∗)y∗,1 − (ũk)yk,1‖L1(D4/25) 6 ‖(u∗)y∗,1 − (u∗)yk,1‖L1(D4/25) + ‖u∗ − ũk‖L1(D1/5) ,

by continuity of translations in L1, we have ‖(u∗)y∗,1 − (ũk)yk,1‖L1(D4/25) → 0. Conse-

quently,

d0(u∗, y∗, 4/25) = d0

(
(u∗)y∗,1, 0, 4/25

)

= lim
k→∞

d0

(
(ũk)yk,1, 0, 4/25) = lim

k→∞
d0(ũk, yk, 4/25) ,

and thus d0(u∗, y∗, 4/25) 6 η̃2. However (7.11) yields d0(u∗, y∗, 4/25) > η3 = 2η̃2, contra-

diction. �

Proof of Theorem 7.1. For 0 < r 6 r0, we consider the set

Sεr0,r :=
{
x ∈ Ωr0 : dn(uε, x, ρ) > δ̃0(r0) ∀ r 6 ρ 6 r0

}
,

where δ̃0(r0) > 0 is given by Lemma 7.2. We fix the exponent α ∈ (0, 1), and we set

κ0 := 1− α ∈ (0, 1).

We will prove that there exist constants k∗ = k∗(κ0, r0, H0,Λ0,W, b, n, s, q) > k0(r0)

and C = C(κ0, r0, H0,Λ0,W, b, n, s, q) such that

L
n
(
Tr(Sεr0,r)

)
6 Cr1−κ0 ∀r ∈ (k∗ε, r0) , (7.12)

where k0(r0) is given by Lemma 7.2. Note that, since k∗ > k0(r0), we have

{|uε| < 1− δW } ∩ Ωr0 ⊆ Sεr0,r ∀r ∈ (k∗ε, r0) ,

by Lemma 7.2. In other words, estimates (7.12) implies Theorem 7.1.

Now the proof follows closely the arguments in [29, proof of Theorem 2.2] once adjusted

to our setting, but for the sake of clarity we partially reproduce it.

We start fixing a number τ = τ(κ0, n) ∈ (0, 1) such that τκ0/2 6 20−n. We consider the

following constants according to Lemma 7.2, Lemma 7.3, and Lemma 7.4:

(i) η̃2 := η̃2
(
δ̃0(r0), τ, r0

)
and k2 := k2

(
δ̃0(r0), τ, r0

)
;

(ii) η̃1 := η̃1
(
η̃2, r0

)
, λ̃1 := λ̃1

(
η̃2, r0

)
, and k1 := k1

(
η̃2, r0

)
;

(iii) k3 := max{k0(r0),k1,k2}.
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Next we fix an integer q0 ∈ N such that τq0 6 λ̃1, and we set M := ⌊q0Λ0/η̃1⌋ (the integer

part of). Set p0 := q0 +M + 1 and define

ε0 := min

{
1,
r0τ

p0+1

25k3

}
, k∗ :=

k3

τ
.

Without loss of generality, we may assume that ε ∈ (0, ε0) (since (7.12) is straightforward

for ε > ε0). Let k4 = k4(ε) be defined by the relation r0τ
k4| log ε| = 25k3ε, and set p1 =

p1(ε) := ⌊k4| log ε|⌋ (the integer part of). Note that our choice of ε0 and k∗ insures that

p1 > p0 + 1 and k3ε 6
r0τ

p1

25 6 k∗ε.

Step 1. Reduction to τ -adic radii. We argue exactly as in [29, Proof of Theorem 2.2, Step 1]

to show that it suffices to prove (7.12) for each radius r of the form r = r0τ
k

25 for an integer k

satisfying p0 6 k 6 p1.

Step 2. Selection of good scales. We fix an integer k with p0 6 k 6 p1 and set r = r0τ
k

25 . For

an arbitrary x ∈ Ωr0 , we have

k∑

l=q0

Θε
uε
(fε, x, 4r0τ

l)−Θε
uε
(fε, x, 4r0τ

l+q0 )

=
k∑

l=q0

l+q0−1∑

i=l

Θε
uε
(fε, x, 4r0τ

i)−Θε
uε
(fε, x, 4r0τ

i+1)

6 q0

k+q0−1∑

l=q0

Θε
uε
(fε, x, 4r0τ

l)−Θε
uε
(fε, x, 4r0τ

l+1) ,

and thus

k∑

l=q0

Θε
uε
(fε, x, 4r0τ

l)−Θε
uε
(fε, x, 4r0τ

l+q0 ) 6 q0Θ
ε
uε
(fε, x, 4r0τ

q0 ) 6 q0Λ0 .

Hence there exists a (possibly empty) subsetA(x) ⊆ {q0, . . . , k} with Card(A(x)) 6M such

that for every l ∈ {q0, . . . , k} \A(x),
Θε
uε
(fε, x, 4r0τ

l)−Θε
uε
(fε, x, 4r0τ

l+q0 ) 6 η̃1 . (7.13)

Next define A := {A ⊆ {q0, . . . , k} : Card(A) =M}, and set for A ∈ A,

SA :=

{
x ∈ Sεr0,r : (7.13) holds for each l ∈ {q0, . . . , k} \A

}
.

By our previous discussion, we have Sεr0,r ⊆ ⋃
A∈A

SA. In the next step, we shall prove that

for any A ∈ A,

L
n
(
Tr(SA)

)
6 Cr1−κ0/2 . (7.14)

Since Card(A) 6 kM 6 C| log r|M , the conclusion follows from this estimate, i.e.,

L
n
(
Tr(Sεr0,r)

)
6

∑

A∈A

L
n
(
Tr(SA)

)
6 C| log r|M r1−κ0/2 6 Cr1−κ0 ,

for some constants C = C(κ0, r0, H0,Λ0,W, diam(∂0G), b, n, s, q).

Step 3. Proof of (7.14). Again we follow [29, Proof of Theorem 2.2, Step 3]. We first consider

a finite cover of Tr0τq0/25(SA) made of discs {Dr0τq0 (xi,q0 )}i∈Iq0 with xi,q0 ∈ SA, and

Card(Iq0 ) 6 5nτ−nq0r−n0 (diam(∂0G) + 1)n .

We argue now by iteration on the integer j ∈ {q0 + 1, . . . , k}, assuming that we already have

a cover {Dr0τ j−1(xi,j−1)}i∈Ij−1 of Tr0τ j−1/25(SA) such that xi,j−1 ∈ A. We select the

next cover {Dr0τ j(xi,j)}i∈Ij (still centered at points of SA) of Tr0τ j/25(SA) according to the

following two cases: j − 1 ∈ A or j − 1 6∈ A.
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Case 1) If j−1 ∈ A, then we proceed exactly as in [29, Proof of Theorem 2.2, Step 3, Case (a)]

to produce the new cover {Dr0τ j (xi,j)}i∈Ij in such a way that

Card(Ij) 6 20nCard(Ij−1)τ
−n .

Case 2) If j − 1 6∈ A, then (7.13) holds with l = j − 1. By our choice of q0 and Lemma 4.2,

we infer that

Θε
uε
(fε, xi, 4r0τ

j−1)−Θε
uε
(fε, xi, 4r0λ̃1τ

j−1)

6 Θε
uε
(fε, xi, 4r0τ

j−1)−Θε
uε
(fε, xi, 4r0τ

j−1+q0 ) 6 η̃1 ∀x ∈ SA .
Then Lemma 7.3 yields d0(uε, x, 4r0τ

j−1) 6 η̃2 for every x ∈ SA. On the other hand, by the

definition of SA we have dn(uε, x, 4r0τ
j−1) > δ̃0 for every x ∈ SA. Applying Lemma 7.4

at each point xi,j−1, we infer that for each i ∈ Ij−1, there is a linear subspace Vi, with

dim Vi 6 n− 1, such that SA ∩Dr0τ j−1(xi,j−1) ⊆ Tr0τ j (xi,j−1 + Vi). From this inclusion,

we estimate for each i ∈ Ij−1,

L
n

(
Tr0τ j

(
SA ∩Dr0τ j−1(xi,j−1)

))
6 2n+1ωn−1r

n
0 τ

nj−n+1 .

By the covering lemma in [29, Lemma 3.2]), we can find a cover of Tr0τ j/25(SA) by discs

{Dr0τ j(xi,j)}i∈Ij centered on SA such that

Card(Ij) 6 10n
2ωn−1

ωn
Card(Ij−1)τ

−(n−1) 6 20nCard(Ij−1)τ
−(n−1) .

The iteration procedure stops at j = k, and it yields a cover {Dr0τk(xi,k)}i∈Ik of Tr(SA).
Collecting the estimates from Case 1 and Case 2 (and using CardA =M ), we derive

Card(Ik) 6 5nτ−nq0r−n0 (diam(∂0G) + 1)n(20nτ−n)M
(
20nτ−(n−1)

)k−q0−M

6 Cτ−k(n−1+κ0/2) ,

where C depends on the announced parameters (recall that τκ0/2 6 20−n). Consequently,

L
n
(
Tr(SA)

)
6 ωnCard(Ik)r

n 6 Cτk(1−κ0/2) 6 Cr1−κ0/2 ,

and the proof is complete. �

Corollary 7.5. For every α ∈ (0, 1),
∫

Ω2r0

W (uε) dx 6 Cεmin(4s,α) ,

for some constant C = C(α, r0, ‖fε‖L∞(∂0G), H0,Λ0,W, b, n, s, q).

Proof. Without loss of generality, we may assume that α 6= 4s. We use the notation of the

proof of Theorem 7.1, and we assume (without loss of generality) that ε ∈ (0, ε0). Let us set

Vε := {|uε| < 1− δW }, and ρk := r0τ
k

25 for k ∈ N. Notice that

ρp1(ε)−1 ∈ (k∗ε,k∗τ
−1ε) .

Hence, by Theorem 7.1, we have

L
n (Tρk(Vε ∩ Ωr0) 6 Cραk 6 Cταk for k = 0, . . . , p1(ε)− 1 , (7.15)

where the constant C may depend on the announced parameters. In particular,
∫

Tρp1(ε)−1
(Vε∩Ωr0 )

W (uε) dx 6 C‖W‖L∞(−b,b)ρ
α
p1(ε)−1 6 Cεα . (7.16)

On the other hand, by Lemma 4.11, we have

W
(
uε(x, 0)

)
6

Cε4s
(
dist(x,Vε)

)4s 6
Cε4s

(
dist(x,Vε ∩ Ωr0)

)4s in Ω2r0 \ Vε . (7.17)
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Writing Ak :=
(
Tρk−1

(Vε ∩ Ωr0) \
(
Tρk(Vε ∩ Ωr0)

)
, we have

∫

Ω2r0

W (uε) dx =

∫

Ω2r0\Tρ0 (Vε)

W (uε) dx+

∫

Tρp1(ε)−1
(Vε∩Ωr0)∩Ω2r0

W (uε) dx

+

p1(ε)−1∑

k=1

∫

Ak∩Ω2r0

W (uε) dx ,

We may now estimate by (7.15), (7.16), and (7.17),

∫

Ω2r0

W (uε) dx 6 C


ε4s + εα + ε4s

p1(ε)−1∑

k=1

τk(α−4s)


 . (7.18)

If α > 4s, then
∑

k>1 τ
k(α−4s) <∞, and the result is proved. If α < 4s, then

p1(ε)−1∑

k=1

τk(α−4s) 6 Cτp1(ε)(α−4s) 6 Cεα−4s .

Inserting this estimate in (7.18) still yields the announced result. �

Corollary 7.6. For every p̄ < 1/2s,

‖W ′(uε)‖Lp̄(Ω2r0 ) 6 Cε2s ,

for some constant C = C(p̄, r0, ‖fε‖L∞(∂0G), H0,Λ0,W, b, n, s, q).

Proof. We proceed as in the proof Corollary 7.5, using α ∈ (2sp̄, 1). Keeping the same

notations, we first derive as in (7.16),
∫

Tρp1(ε)−1
(Vε∩Ωr0 )

∣∣W ′(uε)
∣∣p̄ dx 6 Cεα . (7.19)

Then Lemma 4.11 yields,

∣∣W
(
uε(x, 0)

)∣∣ 6 Cε2s
(
dist(x,Vε ∩ Ωr0)

)2s in Ω2r0 \ Vε . (7.20)

Writing

∫

Ω2r0

∣∣W ′(uε)
∣∣p̄ dx =

∫

Ω2r0\Tρ0 (Vε)

∣∣W ′(uε)
∣∣p̄ dx

+

∫

Tρp1(ε)−1
(Vε∩Ωr0)∩Ω2r0

∣∣W ′(uε)
∣∣p̄ dx+

p1(ε)−1∑

k=1

∫

Ak∩Ω2r0

∣∣W ′(uε)
∣∣p̄ dx ,

we estimate by means of (7.15), (7.19), and (7.20),

∫

Ω2r0

∣∣W ′(uε)
∣∣p̄ dx 6 C


ε2sp̄ + εα + ε2sp̄

p1(ε)−1∑

k=1

τk(α−2sp̄)


 6 Cε2sp̄ ,

and the proof is complete. �

7.2. Application to the fractional Allen-Cahn equation. Applying the estimates obtained in

the previous section to the fractional Allen-Cahn equation, we obtain the following improve-

ment of Theorem 5.1. Together with Theorem 5.1, it completes the proof of Theorem 1.1 in

the special case f = 0.

Theorem 7.7. In addition to Theorem 5.1, if supk ‖fk‖L∞(Ω) <∞, then for every open subset

Ω′ ⊆ Ω such that Ω′ ⊆ Ω,

(i) vk → v∗ strongly in Hs′(Ω′) for every s′ ∈
(
0,min(2s, 1/2)

)
;
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(ii)
∫
Ω′ W (vk) dx = O

(
ε
min(4s,α)
k

)
for every α ∈ (0, 1);

(iii) fk(x) −
1

ε2sk
W (vk(x)) ⇀

(
γn,s
2

∫

Rn

|v∗(x) − v∗(y)|2
|x− y|n+2s

dy

)
v∗(x) weakly in Lp̄(Ω′)

for every p̄ < 1/2s.

Proof. The proof departs from the end of the proof of Theorem 5.1. We apply the results

of Subsection 7.1 to the extended function vek. Then items (ii) and (iii) are straightforward

consequences of Corollaries 7.5 and 7.6 (together with item (iii) in Theorem 5.1).

Let us now fix an open subset Ω′′ ⊆ Ω′ with Lipschitz boundary such that Ω′′ ⊆ Ω′.

Since s′ < 2s, we can find a number θ > max(2, 1/2s) such that max(s, s′) < 1/θ. We set

p̄ := 1/(θs) < min(1/2s, 2), and s̄ := s′/p̄ < s. Since {fk}k∈N is assumed to be bounded in

L∞(Ω), we infer from item (iii) that {(−∆)svk}k∈N remains bounded in Lp̄(Ω′). On the other

hand, we already proved that {vk}k∈N remains bounded in L∞(Rn). Hence Proposition 6.34

shows that

∫∫

Ω′′×Ω′′

|vk(x)− vk(y)|2
|x− y|n+2s′

dxdy

6 22−p̄‖vk‖2−p̄L∞(Rn)

∫∫

Ω′′×Ω′′

|vk(x) − vk(y)|p̄
|x− y|n+2s̄p̄

dxdy 6 C ,

for some constant C independent of k. The sequence {vk}k∈N is thus bounded in Hs′(Ω′′).

Finally, for an arbitrary s′′ ∈ (0, s′), the embedding Hs′′(Ω′′) ⊆ Hs′(Ω′) is compact, and

consequently {vk}k∈N is strongly relatively compact in Hs′′(Ω′′) which proves (i). �
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[9] X. CABRÉ, E. CINTI : Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,

Discrete Contin. Dyn. Syst. 28 (2010), 1179–1206.
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[59] C.Y. WANG : Limits of solutions to the generalized Ginzburg-Landau functional, Comm. Partial Differential

Equations 27 (2002), 877–906.

[60] W.P. ZIEMER : Weakly differentiable functions, Graduate Texts in Mathematics, Springer-Verlag, New York

(1989).
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