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ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION
AND STATIONARY NONLOCAL MINIMAL SURFACES

VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

ABSTRACT. This article is mainly devoted to the asymptotic analysis of a fractional version of
the (elliptic) Allen-Cahn equation in a bounded domain 2 C R™, with or without a source term
in the right hand side of the equation (commonly called chemical potential). Compare to the
usual Allen-Cahn equation, the Laplace operator is here replaced by the fractional Laplacian
(—A)® with s € (0,1/2), as defined in Fourier space. In the singular limit ¢ — 0, we
show that arbitrary solutions with uniformly bounded energy converge both in the energetic and
geometric sense to surfaces of prescribed nonlocal mean curvature in €2 whenever the chemical
potential remains bounded in suitable Sobolev spaces. With no chemical potential, the notion of
surface of prescribed nonlocal mean curvature reduces to the stationary version of the nonlocal
minimal surfaces introduced by L.A. Caffarelli, J.M. Roquejoffre, and O. Savin [16]. Under the
same Sobolev regularity assumption on the chemical potential, we also prove that surfaces of
prescribed nonlocal mean curvature have a Minkowski codimension equal to one, and that the
associated sets have a locally finite fractional 2s’-perimeter in 2 for every s’ € (0,1/2).

CONTENTS
1. Introduction 1
2. Functional spaces and the fractional Laplacian 9
3. The fractional Allen-Cahn equation: a priori estimates 16
4. Asymptotics for degenerate Allen-Cahn boundary reactions 23
5. Asymptotics for the fractional Allen-Cahn equation 36
6. Surfaces of prescribed nonlocal mean curvature 40
7. Volume of transition sets and improved estimates 58
References 65

1. INTRODUCTION

In the van der Waals-Cahn-Hilliard theory of phase transitions, two-phase systems are
driven by energy functionals of the form

1
/ e|Vul® + gW(u)dgc, e€(0,1), (1.1
Q

where u : @ C R™ — R is a normalized density distribution of the two phases, and the
(smooth) potential W : R — [0, 00) has exactly two global minima at £1 with W (£1) = 0
(see e.g. [31]). Here and after €2 denotes a smooth and bounded open set in dimension n > 2.
Critical points satisfy the so-called elliptic Allen-Cahn (or scalar Ginzburg-Landau) equation

1
~Au + W (1) =0 in Q. (1.2)

When ¢ is small, a control on the potential implies that u. ~ £1 away from a region whose
volume is of order €. Formally, the transition layer from the phase —1 to the phase +1 has a
characteristic width of order e. It should take place along an hypersurface which is expected

to be a critical point of the area functional, i.e., a minimal surface. More precisely, the region
1
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{u. ~ 1}, which is essentially delimited by this hypersurface and the container €2, should be a
stationary set in €2 of the perimeter functional, at least as ¢ — 0.

For energy minimizing solutions (under their own boundary condition), this picture has
been justified first in [41] through one of the first examples of I'-convergence. The result
shows that if the energy is equibounded, then u. — u, in L' (£2) as ¢ — 0 for some function
u, € BV (Q;{£1}) (up to subsequences). The set {u, = 1} minimizes (locally) its perimeter
in §2, and up to a multiplicative constant, the energy converges to the relative perimeter of
{usx = 1} in Q. The analogous analysis concerning global minimization of the energy under a
volume constraint has been addressed in [40, 54].

The case of general critical points has been treated more recently in [33]. It presents a
slightly different feature. Namely, if the energy is equibounded, then the energy density con-
verges in the sense of measures as ¢ — 0 to a stationary integral (n — 1)-varifold, i.e., a
generalized minimal hypersurface with integer multiplicity. The multiplicity of the limiting
hypersurface comes from an eventual folding of the diffuse interface {|u.| < 1/2} ase — 0.
In such a case, the interface between the two regions {u, = 1} and {u, = —1} can be strictly
smaller than the support of the limiting varifold. In fact, the boundary of the region {u, = 1}
corresponds to the set of points where the varifold has odd multiplicity. In particular, the
perimeter of {u, = 1} can be strictly smaller than the the limit of the energy. This energy loss
effect is in strong analogy with the lack of strong compactness as ¢ — 0 of solutions of the
(vectorial) Ginzburg-Landau system with a potential well {7V = 0} given by a smooth and
compact manifold M C R?, see [36, 37].

In the last few years, there have been many studies on nonlocal or fractional versions of
equation (1.2) and energy (1.1) (see e.g. [2, 3,4, 9, 10, 13, 14, 15, 42, 44, 45, 47, 52]). Many
of them are motivated by physical problems such as stochastic Ising models from statistical
mechanics, or the Peirls-Nabarro model for dislocations in crystals [30, 34, 35]. In this article,
we consider one of the simplest fractional version of equation (1.2) where the Laplace operator
is replaced by the fractional Laplacian (—A)?, i.e., the Fourier multiplier of symbol (27||)2%,
with exponent s € (0,1/2). In details, we are interested in the asymptotic behavior as & — 0
of weak solutions v, : R™ — R of the fractional Allen-Cahn equation

1
W (v.)=0 inQ, (1.3)

S
(—A) Ve + €§
subject to an exterior Dirichlet condition of the form

Ve = e onR"\ Q, (1.4)

where g. : R — R is a given smooth and bounded function. For s € (0, 1), the action of the
integro-differential operator (—A)*® on a smooth bounded function v : R™ — R is defined by

n+28)

(=A)*v(x) = p.v. (%/R vlz) — o) dy) with 7y, ¢ := $2%577 % L)

1.5
w |z —y|nt2s r—s)’ (1.5)

where the notation p.v. means that the integral is taken in the Cauchy principal value sense. In
terms of distributions, the action of (—A)®v on a test function ¢ € Z() is defined by

. _ Tns (v(z) —v(y)) (p(x) — o(y))
<(*A) v7<)0>Q =5 //Qx(z dzdy

|z — gyt

(v(@) —v(y)) p(x)
+ Yn,s //QX(R”\Q) dzdy. (1.6)

|z —y|t+2e
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This formula defines indeed a distribution on 2 whenever v € L (R™) satisfies

_ s Jv(z) —ov(y)?
E(v,Q) // dxdy
QxQ |$ - |n+2S

B 2
JrM// dedy<oo. (1.7)
2 ax@m\Q) |z =yt

More precisely, if (1.7) holds, then (—A)®v belongs to H*(£2). To include the Dirich-
let condition (1.4), one considers the restricted class of functions given by the affine space
H; () = g + Hgo(Q). Since £(-, Q) is exactly the quadratic form induced by (1.6), the
functional (-, 2) can be thought as fractional Dirichlet energy in € associated to (—A)®. In-
tegrating the potential in (1.3), we obtain the fractional Allen-Cahn energy in €2 associated to
equation (1.3), i.e.,

E(v,9) :=E&(v, Q) + W (v)dx. (1.8)

€2 J,
In this way, we define weak solutions of (1.3) as critical points of &.(-,{2) with respect to
perturbations supported in 2.

Concerning minimizers of (-, 2) over Hy (), their asymptotic behavior as e — 0 has
been investigated quite recently in [45] through a I'-convergence analysis. The result reveals a
dichotomy between the two cases s > 1/2 and s < 1/2. In the case s > 1/2, the normalized

energies

E(.0) = e2571E (1, Q) ifse (1/2,1),
T e (L) ifs=1/2,

I'(L*(£2))-converge as € — 0 to the functional Eo(-, Q) defined on BV (Q; {#1}) by
Eo(v,Q) == oPer({v=1},9),

where 0 = (W, n, s) is a positive constant, and Per(F, ) denotes the distributional (relative)
perimeter of the set E in §2. In other words, for s > 1/2, fractional Allen-Cahn energies (and
thus minimizers) behave essentially as in the classical case, and area-minimizing hypersurfaces
arise in the limit e — 0. For s € (0, 1/2), the variational convergence of (-, §2) appears to be
much simpler since H *-regularity does not exclude (all) characteristic functions. In particular,
there is no need in this case to normalize £.(-, ). Assuming that g — ¢ in L .(R™ \ Q)
for some function g satisfying |g| = 1 a.e. in R™ \ 2, the functionals & (-, ) (restricted to
H; (€2)) converge as ¢ — 0 both in the variational and pointwise sense to

Ew,Q) ifve H3(Q; {£1}),
eyoq) o {E@D) v Hy@: 1)
+00 otherwise .

Now it is worth noting that
E(,Q) =29nsPos({v =1},Q) Vo e H3(Q;{£1}), (1.9)

where Pa,(E, Q) is the so-called fractional 2s-perimeterin Q of aset E C R”, i.e

Po(E,9) __/ / _ dady / / _ dedy
R gnaJeena 1T —y" T2 T Jgng a\Q |z —y[n+2s

/ / dxdy
E\Q JEena o —y|nt2s

As a consequence of this I'-convergence result, a sequence {v.} of minimizing solutions of
(1.3)-(1.4) with s € (0,1/2) converges as ¢ — 0 (up to subsequences) to some function
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ve € Hy(Q) of the form v, = X, — Xgn\ g, , and the limiting set £, C R™ is minimizing its
2s-perimeter in €2, i.e.,

Po(E., Q) < Poy(F,Q)  VYFCR", F\Q=E,\Q. (1.10)

Sets satisfying the minimality condition (1.10) have been introduced in [16]. Their bound-
ary 0F, N Q are referred to as (minimizing) nonlocal (2s-)minimal surfaces in €). By the
minimality condition (1.10), the first inner variation of the 2s-perimeter vanishes at F,, i.e.,

d

Py (B, Q)[X] = [EPQS(@(E*),Q) =0 (1.11)
t=0

for any vector field X € C'(R"™;R™) compactly supported in €2, where {¢; }:cr denotes the

flow generated by X. If the boundary OE N Q of a set £ C R"™ is smooth enough (e.g. a

C?-hypersurface), the first variation of the 2s-perimeter at £ can be computed explicitly (see

e.g. [27, Section 6]), and it gives

5Py (E, Q) [X] :/ HY (2) X - vg dH™ ! (1.12)
OENSQ

where vg denotes the unit exterior normal field on O F, and H(;;) is the so-called nonlocal (or

fractional) (2s-)mean curvature of OF, defined by

s Xe\B(Y) — XE(Y)
H(62E> (z) := p.v. (/n |\$ — dy | , z€dFE.

(See [1] for its geometric interpretation.) Therefore, a set I, whose boundary is a minimizing
nonlocal 2s-minimal surface in € (i.e., such that (1.10) holds) satisfies in the weak sense the
Euler-Lagrange equation

Hw) =0 ondE,NQ. (1.13)

The weak sense here being precisely relation (1.11). It has been proved in [16] that minimizing
nonlocal 2s-minimal surfaces also satisfies (1.13) in a suitable viscosity sense. This is one of
the key ingredient in the regularity theory of [16]. It states that a minimizing nonlocal minimal
surface is a C'1:-hypersurface away from a (relatively) closed subset of Hausdorff dimension
less than (n — 2). Since then, the C1 regularity has been improved to C* in [8], and the size
of the singular set reduced to (n — 3) in [46]. Whether or not the singular set can be further
reduced remains an open question (see [24, 28] in this direction).

One of the main objective of this article is to extend the results of [45] on the fractional
Allen-Cahn equation (1.3) to the case of arbitrary critical points for s € (0,1/2), i.e., in the
regime of nonlocal minimal surfaces. Since we do not assume any kind of minimality, the
geometrical objects arising in the limit ¢ — 0 are not the “minimizing” nonlocal minimal
surfaces of [16] (i.e., solutions of (1.10)). Our main theorem shows that the limiting equation
is in fact relation (1.11), which can be interpreted as a weak formulation of the zero nonlocal
2s-mean curvature equation (1.13). We shall referred to as stationary nonlocal 2s-minimal
surface in €2, the boundary OF, N Q of a set F, C R™ satisfying relation (1.11) (i.e., a critical
point under inner variations in €2 of the 2s-perimeter).

In all our results, we make use of the following set of structural assumptions on the double
well potential W : R — [0, 00).

(H1) W € C?(R;[0,00)).
(H2) {W =0} = {£1} and W"(£1) > 0.
(H3) There exist p € (1, 00) and a constant ¢y > 0 such that forall t € R,

1
E(W‘l —1) < W' @) <ew (|t +1).
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Those assumptions are of course satisfied by the prototypical potential W (¢) = (1 — t2)? /4.
Notice that assumption (H3) implies that W has a p-growth at infinity so that finite energy
solutions of (1.3) belongs to L?(2). Assuming that (H1)-(H2)-(H3) hold, we will prove that
any weak solution of (1.3)-(1.4) actually belongs to C\2*(€2) N C°(R") for some a € (0,1).

Theorem 1.1. Assume that s € (0,1/2) and that (H1)-(H2)-(H3) hold. Let Q@ C R™ be a
smooth and bounded open set. For a given sequence ¢y, | 0, let {gi }ren C co! (R™) be such

loc

that supy, || gk || Lo (rm\0) < 00 and g — g in Li, (R™ \ Q) for a function g satisfying |g| = 1

loc

ae. inR™\ Q. Foreach k € N, let vy, € H, () N LP(2) be a weak solution of

1
(7A)S’Uk + ?W/(Uk) =0 in Q,
e? (1.14)
Vg = gk inR"\ Q.

If supy, &.,, (vk, ) < o, then there exist a (not relabeled) subsequence and a set E, C R™ of
finite 2s-perimeter in § such that

(i) vk = Vs == XE, — XRr\E, Strongly in Hﬁ;c(Q)QL2

loc

(R™) for every s’ < min(2s,1/2);
(ii) the set E, N ) is open;

(iii) the boundary OF, N ) is a stationary nonlocal 2s-minimal surface in 2 (i.e., relation
(1.11) holds).

In addition, for every smooth open set Q' C Q such that QY C Q,
(IV) 5(7}767 Q/) — 2’7n,sP23 (E*a Q/);
V) Jop W (vg) da = O(E?in(45’a))f0r every a € (0,1);

. —1 Yn,s ve(2) — v (y)? ) .
(vi) % W' (vy) — <T /n % dxdy) vy () strongly in H=*(Q") and

weakly in LP(Q)') for every p < 1/2s;
(vii) v — vy in CE*(Q\ OE,) for some o = a(n, s) € (0,1);

loc
(viii) for eacht € (—1,1), the level set L, := {vy, = t} converges locally uniformly in ) to
OF, NS, ie., for every compact set K C Q) and every r > 0,

LiNK C Z.(0E.NQ) and O0E.NK C Z.(L,NQ)

whenever k is large enough. Here, 7, (A) represents the open tubular neighborhood of
radius r of a set A.

Comparing this result to what is known on the classical Allen-Cahn equation (1.2), we can
now say that the main difference lies in the strong compactness of solutions (at and above the
energy regularity level), and the resulting continuity of the energy. In some sense, such com-
pactness is not really surprising as one may guess that A S/-regularity with s € (0,1/2) is not
strong enough to capture folding of interfaces. The key argument in proving compactness in
the energy space rests on the fractional scaling of the equation and the Marstrand’s Theorem
(see e.g. [38]), a purely measure theoretic result. In the same flavour, strong convergence
of solutions to the p-Ginzburg-Landau system (involving the p-Laplacian) towards stationary
p-harmonic maps has been proved in [59] for non-integer values of the exponent p. Com-
pactness at the H* -level with s’ < min(2s,1/2) is in turn a much more delicate issue. We
establish such compactness combining fine elliptic estimates in the region |vi| ~ 1 together
with quantitative estimates on the volume of the sublevel sets {|vi| < 1/2}. To derive these
volume estimates, we apply the quantitative stratification principle of singular sets introduced
in [19] (in the context of harmonic maps and minimal currents) and generalized to an abstract
framework in [29]. We point out that this stratification principle does not apply verbatim to
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our setting since solutions of (1.3) are smooth, and non trivial adjustments have to be made.
To the best of our knowledge, this is the first time that the quantitative stratification principle
is applied to an Allen-Cahn (or Ginzburg-Landau) type equation.

Remark 1.2. We emphasize that Theorem 1.1 applies to minimizing solutions of (1.14) since
the function xo — grxrn\q is an admissible competitor of uniformly bounded energy. In
particular, this theorem extend the result of [45] for s € (0,1/2) to arbitrary solutions (with
uniformly bounded energy) together with a full set of new estimates. However, if we assume
that each vy, is minimizing, i.e., &, (vg, Q) < &, (w, Q) for every w € Hj (), then [45]
shows that the limiting set £, is a minimizing nonlocal minimal surface in {2 in the sense
of [16], i.e., F, satisfies (1.10).

Remark 1.3. Non trivial examples of (entire) stationary nonlocal minimal surfaces have been
constructed in [24]. These examples are nonlocal analogues of classical minimal surfaces such
as catenoids, or Lawson cones (see also [11, 12] for Delaunay type surfaces with constant
nonlocal mean curvature). It would be very interesting to construct solutions of the fractional
Allen-Cahn equation concentrating as € — 0 on such surfaces.

In proving Theorem 1.1, we actually investigate the more general case where (1.3) is re-
placed by

1
(—A)*ve + E@W’(va) =f. inQ, (1.15)

with a smooth right hand side f. controlled (with respect to €) in a suitable Sobolev space.
Considering such inhomogeneous equation is a way to analyse the asymptotic behavior of an
arbitrary sequence of (smooth) functions v. € H; (€2) satisfying £ (ve, Q) = O(1) and

[[(—A)*ve + e W' (ve O(1) ase—0,

)levq(sz) -
for some suitable exponent q.

In the classical case s = 1, such analysis has been pursued in [56, 57] (in continuation
to [33]). For s = 1, one considers a sequence {u.} of (uniformly bounded) smooth functions
on 2 with uniformly bounded energy (1.1), and satisfying

| — eAue + ™' W (ue)||wraq) = O(1)  for some ¢ > n/2. (1.16)

Under this assumption, there is still a well defined limiting interface as ¢ — 0, which is given
by an (n — 1)—integral varifold with bounded first variation. In addition, the measure theoretic
mean curvature of this varifold is given by the weak W1 :4-limit of —Au. + e~ 2W’(u.), and
it belongs to L", r := q(n — 1)/(n — q) > (n — 1), with respect to the (n — 1)-dimensional
measure on the interface. The range of exponents in (1.16) thus leads to the maximal range
of integrability exponents in Allard’s regularity theory [5, 50], and the limiting interface is
(partially) regular, see [48].

Considering the inhomogeneous equation (1.15) (complemented with the exterior Dirichlet
condition (1.4)), we assume that f. € C%1() satisfies

2| felln (o) + [ fllwra(@) = O(1)  forsome g > n/(1 + 2s).
In this setting, we have proved that the main conclusions in Theorem 1.1 hold (see Theorem 5.1
and Theorem 7.7 for precise statements) with a limiting set E,. satisfying
1
In,s

where f is the weak limit of f. in W19(Q) as e — 0. In view of (1.12), the boundary of E,
satisfies in the weak sense

6Py (E,, Q)[X] = /Emdiv(fX)dx VX € CHO;R), (1.17)

1

HGY = —f ondE,NQ. (1.18)

n,s
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We shall refer to this equation as the prescribed nonlocal (2s-)mean curvature equation in 2,
and to weak solutions as surfaces of prescribed nonlocal (2s-)mean curvature.

Our analysis of the fractional Allen-Cahn equation naturally leads to the regularity problem
for stationary nonlocal minimal surfaces, or more generally, for weak solutions of (1.18) with
f € Whi(Q) and ¢ > n/(1+ 2s). In this direction, we have obtained partial results (compare
to [16]), and some of the main conclusions can be summarized in the following theorem (see
Section 6.6 for the complete set of results).

Theorem 1.4. For s € (0,1/2), let E, C R™ be a Borel set satisfying Pas(E,, ) < oo and
(1.17) for some function f € WH4(Q) and ¢ > n/(1 + 2s). Then,

(1) E.NQ is (essentially) open;
(i) if OF. N is not empty, it has a Minkowski codimension equal to 1;
(iii) Poy (Ey, ) < oo for every s' € (0,1/2) and every open set Q' such that Q' C Q.

This theorem is obtained through a blow-up analysis for solutions of (1.17). Such analysis
rests on a preliminary result stating that solutions of (1.17) are compact in the energy space.
This is of course the sharp interface analogue of the compactness property for the fractional
Allen-Cahn equation, and it relies again on Marstrand’s Theorem. Note that such compactness
doesn’t hold if P»; is replaced by the usual (distributional) perimeter of sets (see [48]). With
this compactness at hand, we have applied the quantitative stratification principle of [19, 29]
to solutions of (1.17), leading to conclusions (ii) and (iii).

Remark 1.5. Theorem 1.4 is new even in the case f = 0, i.e., in the case of stationary nonlocal
minimal surfaces. Whether or not solutions to (1.11) or (1.17) are more regular (in the spirit of
the minimizing case [16]) remains an open question. Let us mention that, in the recent article
[20], it has been proved that (some) stable solutions of (1.11) have locally finite perimeter
in €. In particular, their boundary are rectifiable. Note that item (iii) in Theorem 1.4 goes
somehow in this direction. Indeed, if we knew that (1 — 25") Pog (E,, ') = O(1) as s’ 1 1/2,
then it would say that E, has finite perimeter in the open set ' since (1 — 2s)Pa, (-, Q)
converges to the usual perimeter functional as ' — 1/2, see [6, 22]. Unfortunately, the
bound Py (E,, Q') < oo is obtained by a compactness argument (hinged on the quantitative
stratification principle), and no explicit dependence on s’ seems to follow.

Remark 1.6. A set £, C R” satisfying

1
Tn,s

1

Tn,s J FNQ

VECR", F\Q=E,\Q, (1.19)

PQS(E*7Q) -

/ fde < Py (F,Q) — fdx
E.NQ

provides a solution of (1.17). It corresponds to a minimizing solution of the prescribed nonlocal
2s-mean curvature equation. Since f € W14(Q) with ¢ > n/(1 + 2s), we have f € L"(Q)
with » := ng/(n — q) > n/2s. Hence we can apply in this case the regularity theory for
nonlocal almost minimal surfaces of [18]. Combined with [46], it shows that 0F, N € is a
Cl-@-hypersurface for every a < (1 + 25 — n/q)/(n + 2s) away from a relatively closed
subset of Hausdorff dimension less then (n — 3) (and discrete for n = 3).

Remark 1.7. The notion of stationary nonlocal minimal surface is strongly related to station-
ary fractional s-harmonic maps into a sphere. With this respect, this article is natural continu-
ation to the analysis of the fractional Ginzburg-Landau equation and 1/2-harmonic maps [39]
by the two first authors. Fractional harmonic maps into a sphere were originally introduced in
[21] for s = 1/2 and n = 1. A mapping v : R™ — S%~1 (of finite fractional Dirichlet energy)
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is called a weakly s-harmonic map in {2 if

Pg(“”@ Q)] —0 Ve 9(%RY).
& o

v+ tepl’

As shown in [39] for s = 1/2, this condition leads (in the weak sense) to the Euler-Lagrange
equation
2

(—A)’v(z) = (% /n 7|v|:(f) y|:gry2)5| dxdy) v(xz) in. (1.20)
For any set E C R™ of finite 2s-perimeter in €2, the function v = xp — XRr\ E turns out to
satisfy equation (1.20) (see Lemma 6.35). In other words, if we identify {£1} with {£1} x
{0} € R x R971, the function yp — Xrr\ g is @ weakly s-harmonic map into S%=1 in the
open set €2 (explaining in particular item (vi) in Theorem 1.1). As a consequence, no regularity
can be expected for weakly s-harmonic maps for s < 1/2. This is of course in analogy with
the non-regularity result of [43] for usual weakly harmonic maps into a manifold (for n > 3).
Stationary s-harmonic maps into S~ are defined as weakly s-harmonic maps satisfying the
additional stationarity condition 6& (v, 2) = 0 (where d€(-, ) denotes the first inner variation
of £(-,2)). One may expect that, for such s-harmonic maps, some partial regularity holds (see
[21, 39] in the case s = 1/2). In view of (1.9), if a set £, C R" satisfies (1.11) (i.e., whose
boundary is a stationary nonlocal 2s-minimal surface in €2), then the function x g, — xr~\ £, 18
a stationary s-harmonic map in €2. It shows that, for general stationary s-harmonic maps into
a sphere, the singular set (or discontinuity set) can have a positive H"~!-measure if s < 1/2
(compare to the vanishing "~ !-measure of the singular set for stationary 1/2-harmonic maps,
see [39]).

As it is customary by now, our analysis rely on the Caffarelli-Silvestre extension proce-
dure [17] to the open upper half space R’j_“ := R™ x (0,00). This extension allows us to

S

represent (—A)® as the Dirichlet-to-Neumann operator associated to the degenerate elliptic
operator L, := —div(2!72°V+) on R’;"", where z € (0, 00) denotes the extension variable. In
this way, we rewrite solutions to the fractional Allen-Cahn equation or the prescribed nonlocal
2s-mean curvature equation as Ls-harmonic functions in R’}rﬂ satisfying nonlinear boundary
conditions. In the spirit of [16], this extension leads to fundamental monotonicity formulas.
All the functional and variational aspects surrounding the fractional Laplacian (—A)® and the
Caffarelli-Silvestre extension are presented in Section 2. In Section 3, we prove some basic
(but necessary) regularity estimates on solutions to the fractional Allen-Cahn equation and
L¢-harmonic functions with Allen-Cahn degenerate boundary reaction. A first part of the as-
ymptotic analysis as € — 0 is performed in Section 4 for Allen-Cahn degenerate boundary
reactions. Consequences for the fractional Allen-Cahn equation are then given in Section 5.
Section 6 is devoted to the analysis of surfaces of prescribed nonlocal mean curvature. Finally,
we prove in Section 7 the aforementioned volume estimate on transition sets, and complete our
asymptotic analysis of the fractional Allen-Cahn equation.

Notation. Throughout the paper, R™ is identified with 8R1+1 = R"™ x {0}. More generally,
sets A C R™ are identified with A x {0} C OR’;"'. Points in R"*! are written x = (z, 2)
with € R™ and z € R. We shall denote by B,.(x) the open ball in R"*! of radius r centered
at x = (z, z), while D, (z) := B,(x) N R™ is the open ball (or disc) in R™ centered at z. For
an arbitrary set G C R™*!, we write

GT:=GNRI" and 0TG:=0GNR}.

IfG C Ri“ is a bounded open set, we shall say that G is admissible whenever

e OG is Lipschitz regular;
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o the (relative) open set 9°G C R™ defined by
G = {x € 0GN IR B (x) C G for some r > 0} ,
is non empty and has Lipschitz boundary;
e G =90TGUIG.
Finally, we shall always denote by C' a generic positive constant which may only depend on
the dimension n, and possibly changing from line to line. If a constant depends on additional
given parameters, we shall write those parameters using the subscript notation.

2. FUNCTIONAL SPACES AND THE FRACTIONAL LAPLACIAN

2.1. H*-spaces for s € (0,1/2). For an open set  C R™, the fractional Sobolev space
H*(92) is made of functions v € L2(Q) such that'

2 n+2s
2 . ’Yn s // | dZCd . 2s,_—12 F( 2 )
Y <00, Yns =82 2 ——~ .
Wliecon o ri—)
It is a separable Hilbert space normed by || - ||2 o =1 H%Q(Q) + [-]%S(Q). The space H{ ()

denotes the class of functions whose restriction to any relatively compact open subset 2" of €2
belongs to H*(Q2'). The linear subspace H,(2) C H*(R™) is defined by

Hgy(2) := {v e H*(R™"):v=0ae. in R"\ Q} )
Endowed with the induced norm, H,(2) is also an Hilbert space, and for v € H, (),
(V)% (mny = 26(0,9) @.1)

Yns (y)]? //
= dzd dzd
féﬂzu— girrzs A s chm—|M% vy

:M%®+meMm%L

where E(+, Q) is the fractional Dirichlet energy defined in (1.7), and
1

po(z) = 'Yn,S/ s dy.
¢ rr\Q |7 — y|" 2

Since s € (0,1/2), if 2 is bounded and its boundary is smooth enough (e.g. if 92 is Lipschitz
regular), then

Kfawwwﬁm Collvld Yo HY(Q),

for a constant C, = Cq(s) > 0. As a consequence, if v € H*(§2) and v denotes the extension
of v by zero outside (2, then

vl s @) < 1ol s @n) < (Ca +1)2|[v]l(q) -

In particular, if OS2 is smooth enough, then Hy(2) = {0 : v € H*(Q)} (see [32, Corol-
lary 1.4.4.5]), and (see [32, Theorem 1.4.2.2])

Hip(@) = 2(@) e 2.2)
The topological dual space of H,(2) is denoted by H ().
We are interested in the class of functions
H(Q) = {v € L2 (R"): £(v,Q) < oo} .
The following properties hold for any bounded open subsets €2 and 2 of R":

e H*() is a linear space;

IThe normalization constant v, s is chosen in such a way that [U}%S(Rn) = / (27)€])2%|9|? d€ .
RTL
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o H*(Q) C H*(Q) whenever ' C Q, and E(v, ) < E(v,Q);
o H¥(Q)NHp (R") C H¥(Y);

loc

o H: (R")N L®(R™) C H*(Q).

loc
From Lemma 2.1 below, it is straightforward to show that H () is actually a Hilbert space

for the scalar product induced by the norm v — (”UH%Q(Q) +&(v,Q)) 1/2 (see e.g. [39, proof
of Lemma 2.1]).

Lemma 2.1. Letxg € Qand p > 0 be such that D ,(xo) C ). There exists a constant C,, > 0,
independent of xq, such that

[v(z)|?
L o e 4 < G (£ Do) + olico, )

for every v € H*(Q).

Remark 2.2. If v € H*(Q), then v + H, () C H*(2). Conversely, if v = g a.e. in R™ \
for some functions v and g in H*(2), thenv—g € H,(£2). As a consequence, for g € H*(Q),

HE(Q) := {v € HY(UR™) v =g ae. inR"\ Q} = g+ H ().

Note that H;(Q2) C Hj; (R™) whenever g € H*(Q) N H

loc (Rn)

2.2. The fractional Laplacian. Let {2 C R"” be a bounded open set. We define the fractional
Laplacian (—A)® : H5(Q2) — (H*(€2))’ as the continuous linear operator induced by the qua-
dratic form £(-, 2). More precisely, given a function v € H*(Q2), we define its distributional
fractional Laplacian (—A)®v through its action on H*(2) by setting

; _ Yns (v(z) —v(y)) (elx) —(y))
<(*A) v7<)0>Q = T//QxQ dzdy

|z —y|nt?

(v(@) —v(y)) (e(z) — o(v))
+'Yn,s //QXQC dl’dy (23)

|z — gyt

If v is a smooth bounded function, then the distribution (—A)*v can be rewritten from (2.3)
as a pointwise defined function which coincides with the one given by formula (1.5). Notice
also that the restriction of the linear form (—A)®v to the subspace H,(€2) belongs to H5(2)
with the estimate

I(=2) 0l o) < 26(v,9). 2.4

In this way, (—A)®v appears to be the first outer variation of £(-,{2) at v with respect to
pertubations supported in €2, i.e.,

s _|d
<(7A) v,gp>ﬂ = |:&5(’U thga,Q)]t_O (2.5)

forall p € H, ().
Remark 2.3. If €/ C Q are two open sets and v € H 5(2), then
<(7A)SU7 90>Q - <(7A)Sva 50>Q/

forall p € H, ().
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2.3. Weighted Sobolev spaces. For an open set G C R"*!, we define the weighted L2-space
L*(G, |2|*dx) = {u e LL (G):|z3ue L2(G)} witha =1 — 2s,
normed by
[l seany = [ 21T .
Accordingly, we introduce the weighted Sobolev space
HY(G, |2]%dx) := {u € L2(G, |2|*dx) : Vu € L(G, |z|“dx)} :
normed by
[ull (G )2jeax) = ullL2(q,|zjeax) + VUl L2,z edx) -

Both L?(G, |z|*dx) and H'(G, |z|*dx) are separable Hilbert spaces when equipped with the

scalar product induced by their respective Hilbertian norm.
If Q) denotes a (relatively) open subset of 6R’}r+1 ~ R"™ such that 2 C JG, we set
L3 (G U 2]"dx) = {u € Lo (G) : [zl Fu € LE(GU )},
and
HL (G UQ, |2|%dx) = {u € L2 (GUQ, |2[%dx) : Vu e L2 (GUQ, |z|adx)} .

Remark 2.4. For a bounded admissible open set G C R’ the space L?(G, |z|*dx) embeds
continuously into L7 (G) forevery 1 < v < ﬁ by Holder’s inequality. In particular,

HY (G, |z]"dx) — W (G) (2.6)
continuously for every 1 < 7 < t1. As a first consequence, H' (G, |z|*dx) < L'(G) with
compact embedding. Secondly, for such +’s, the compact linear trace operator

u€ W (G) = upog € L'(0°G) .7

induces a compact linear trace operator from H' (G, |z|*dx) into L' (9°G), extending the usual
trace of smooth functions. We may denote by u|go¢ the trace of u € H'(G, |z|*dx) on 8°G,
or simply by w if it is clear from the context. Finally, we write H*(G, |z|%dx) N LP(9°G) the
class of functions u € H' (G, |z|*dx) such that u|go; € LP(8°G).

Lemma 2.5. There exists a constant X, s > 0 depending only on n and s such that for every
r >0, and every u € H'(B;", |z]|*dx),

n4

HU - [U]THLI(DT) g )\n,sr 2

2s
HVU”L?(B,T,\z\adx) )
where [u], denotes the average of u over D,..

Proof. By scaling it suffices to consider the case » = 1. We claim that there exists a constant
¢y, > 0 such that for every u € WH(B;),

[|lu— [uhHLl(Dl) <ep /B+ |Vu|dx. (2.8)

Then the conclusion follows from Holder’s inequality. To prove (2.8) it is enough to consider
functions u € WH1(B]) satisfying [u]; = 0. Then we argue by contradiction assuming
that there exists a sequence {uy}ren € WHH(B]) such that [ug]; = 0 and [Jug| 11 (p,) >
k| Vuy ||L1(Bl+) forevery k € N. Replacing uy, by u/||ug HLl(Bj) if necessary, we can assume
that ||uk||L1(B1+) = 1 for each £ € N. The trace operator being continuous, we can find a
constant t,, > 0 such that

lurllLr (o) < talllVurl pa gy + lunll pagy) -
Therefore ||uy| r1(p,) < 2t, whenever k is large enough. Then |\Vuk||L1(Bl+) < 2t,/k.
By the compact embedding W1 (Bf") < L'(Bj") and the condition [uz]; = 0, we deduce
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that ux — 0 strongly in W11(B;"), which is in contraction with our normalization choice
HUkHLl(Bj) =1L O

Remark 2.6 (Smooth approximation). If G C Ri“ is an admissible bounded open set, any
function u € H'(G, |z|*dx) with compact support in G'U 9°G can be approximated in the
H'(G, |z|*dx)-norm sense by a sequence {uy }ren of smooth functions compactly supported
in G U 8°G. To construct such a sequence, one can proceed as follows. First notice that
the set G := {(z,2) € R"™ : (z,]z]) € GU 80G} is open in R™*1. The symmetrized
function @(z, z) := u(z, |z|) then belongs to H*(G, |2|*dx), and has compact support in G.
By classical (convolutlon) arguments, we can find a sequence {ty }ren of smooth functions
with compact support in G converging to @ in the H' (G |2|*dx)-norm sense. Then we obtain
the required sequence {uy, } e by considering the restriction of u, to G U 9°G.

If the function u € H'(G, |2|%dx) is compactly supported in G' U €2 for some smooth and
bounded open set 2 C R™ such that Q C 9°G, the sequence {ug}ren can be chosen in
such a way that each uy, is compactly supported in G U €2. Indeed, by a diagonal argument,
it is enough to show that u can be approximated in the H' (G, |z|*dx)-norm by a sequence
{Ur}ren € HY(G,|2z|*dx) made of functions compactly supported in the set G U 2. To
this purpose, we first reduce the problem to the case of a bounded function u through the
usual truncation argument. From the smoothness assumption on 0f2, and since 0f2 is a set
of codimension 2 in R"*1, it has a vanishing H!-capacity in R"*!. Hence, we can find a
sequence of cut-off functions ¢;, : R"*1 — [0, 1] such that ¢, = 1 in a neighborhood of 92,
¢ — Oae. in R" ! and ¢, — 0 strongly in H!(R"*1) (see e.g. [25, Theorem 3, p.154]).
Setting @y, := (1 — (j)u, we observe that Uy, has compact supportin G U €2, and

@, — ullfr (g jzaax) < C (/G 2°Ci[Vul? dx + |u|%°°(G)||Ck|§{1(G)> 20,
by dominated convergence.

2.4. The Dirichlet-to-Neumann operator. Consider the function K,, s : R — [0, 00)
defined by
2’28 N F( n452s )

Kn,s(X) = 0On,s W s On,s ‘= T2 W )

where x := (z,2) € R := R" x (0,00). The choice of the constant o, , is made in such
away that? [, K, s(z,2) dz = 1 for every z > 0.
As shown in [17], the function K, ; solves

div(2°VK, ) =0 inR}H,
K,s=1d on 8R1+1 ,

where d¢ is the Dirac distribution at the origin. In other words, the function K,, s can be

interpreted as the “fractional Poisson kernel” by analogy with the standard case s = 1/2.
From now on, for a measurable function v defined over R", we shall denote by v° its

extension to the half-space erjl given by the convolution (in the x-variables) of v with the

Indeed, changing variables one obtains
/ (22 +1) "%

————da=[S"" 1|/ st dr

‘S" 1‘ /oo tgfl ‘Sn—l‘
= dt = B 2,s8),
2 0 n+izs 2 (n/2,s)

where B(, -) denotes the Euler Beta function.
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fractional Poisson kernel K, 4, i.e.,
2s

z=*u(y)
ve(x, 2) = O’n_s/ ——dy. 2.9)
R Sy I

Notice that v° is well defined if v belongs to the Lebesgue space L9 over R™ with respect to

the probability measure
m = o, (1+ |y2) "7 dy (2.10)
for some 1 < g < oo. In particular, v® can be defined whenever v € H #(Q2) for some bounded

open set 2 C R™ by Lemma 2.1. Moreover, if v € L°(R"), then v® € L>®(R"7!) and

HUEHLOO(R1+1) g ||UHL°°(]R"') . (211)

For an admissible function v, the extension v° has a pointwise trace on 8RT‘1 = R"™ which is
equal to v at every Lebesgue point. In addition, v° solves the equation

{div(zaVve) =0 inRM,

(2.12)
¢ =0 on 8R7j_+1 .

By analogy with the standard case s = 1/2 (for which (2.12) reduces to the Laplace equation),
we may say that v® is the fractional harmonic extension of v.

The following continuity property is elementary and can be obtained exactly as in [39,
Lemma 2.5].

Lemma 2.7. For every R > 0, the restriction operator Ry : L>(R",m) — L?(B}, |z|*dx)
defined by
Rr(v) = ve|B1§ , (2.13)

is continuous.

It has been proved in [17] that v° belongs to the weighted space H*(R"™", |2|?dx) when-
ever v € H*(R™). In addition, the H*-seminorm of v coincides with the weighted L?-norm
of Vv©, extending a well known identity for s = 1/2.

Lemma 2.8 ([17]). Let v € H*(R™), and let v° be its fractional harmonic extension to R’
given by (2.9). Then v® belongs to H' (R}, |z|%dx) and

2 o e|2
[U]Hs(Rn) = dSva ||L2(]Ri+1,|z|adx)

= inf {dSHVuH2 ru € HY (R |2]%dx), u=von R”} , (2.14)

L2(R}MY|z]2dx)

— s—1_I(s)
where dg 1= 22571 =5
Remark 2.9. Let G C Ri“ be an admissible bounded open set. For any function u €
H' (R}, |z|°dx) compactly supported in G U 9°G, the trace wgn belongs to Hgy(0°G).
Indeed, if u is smooth in R’}FH, then we can apply identity (2.14). In the general case, it
suffices to apply the approximation procedure in Remark 2.6 to reach the conclusion.

IfveH #(Q2) for a bounded open set 2 C R™, we have the following estimates on v°
extending Lemma 2.8 to the local setting. The proof follows closely the arguments in [39,
Lemma 2.7], and we shall omit it.

Lemma 2.10. Let Q C R"™ be a bounded open set. For every v € Hs (Q), the extension v°
given by (2.9) belongs to H (R UQ, |z[*dx)NLE (R}, |2|%dx). In addition, for every

zo € Q, R > 0, and p > 0 such that D3,(x¢) C €, there exist constants Cs g, > 0 and
Cs,p > 0, independent of v and xq, such that

H”eH;(Bg(zo),\z\adx) S Cs.Rp (5(”7D2p($0)) + ||”H%2(sz(m))) ’



14 VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

and
HVueHiz(B;(zo),\z\adx) < Cop (5(”aD2p(x0)) + ||”H%2(D2p(zo))) :

Remark 2.11. By the previous lemma, for any v € H* (Q)NH (R™), the fractional harmonic

extension v° belongs to HL (R’7™, |z|%dx), and for any R > 0,

loc

1 3 ey < Cort (€0 D2r) + Noll s ) -

Ifv e H 5(92) for some bounded open set 2 C R™ with Lipschitz boundary, the divergence
free vector field z*Vv° admits a distributional normal trace on 2, that we denote by ARy,
More precisely, we define A(2)y through its action on a test function ¢ € 2(f2) by setting

<A<2S>v,<p>Q = /RM 29V - VP dx, (2.15)
+

where ® is any smooth extension of ¢ compactly supported in RT}FH U €. Note that the right
hand side of (2.15) is well defined by Lemma 2.10. Using equation (2.12) and the divergence
theorem, it is routine to check that the integral in (2.15) does not depend on the choice of the
extension ®. In the light of (2.2) and Lemma 2.8, we infer that A(29) : H5(Q) — H~()
defines a continuous linear operator. It can be thought as a fractional Dirichlet-to-Neumann
operator. Indeed, whenever v is smooth, the distribution A9y is the pointwise defined func-
tion given by

, °(z,0) — v°(x,
APy(z) = —lim 290,0°(z, 2) = 25 lim v(@,0) 5 vz, 2)
210 210 24

for z € Q.

In the case Q = R™, it has been proved in [17] that A(>*) coincides with (—A)*, up to a
constant multiplicative factor. In our localized setting, this identity still holds, and it can be
obtained essentially as in [39, Lemma 2.9].

Lemma 2.12. IfQ2 C R" is a bounded open set with Lipschitz boundary, then
(—=A)* = d,A) on H*(Q).

A local counterpart of Lemma 2.8 concerning the minimality of v® can be obtained from
the above identity. This is the purpose of Corollary 2.13 below, which is inspired from [16,
Lemma 7.2]. From now on, we use the notation

ds
E(u,G) = —/ 2%\ Vul? dx, (2.16)
2 Ja
for an open set G C R/ and u € HY(G, |2|%dx). We shall refer to E(-, G) as the weighted
Dirichlet energy in the domain G.

Corollary 2.13. Let 2 C R"” be a bounded open set, and G C RT}FH be an admissible bounded
open set such that O°G C Q. Let v € ﬁS(Q), and let v° be its fractional harmonic extension
to RT‘l given by (2.9). Then,

E(u,G) — E(v°,G) = E(u, Q) — E(v,Q) (2.17)

forallu € HY(G,|z|*dx) such that u — v® is compactly supported in G U 9°G. In the right
hand side of (2.17), the trace of u on 9°G is extended by v outside 9" G.
Proof. Letu € H'(G, |z|*dx) such that u— v is compactly supported in GUJ°G. We extend
u by v° outside G. Then w := u — v® € HY (R}, |z|%dx) and w is compactly supported in
G U 8°G. Hence wyrn € H,(0"G) by Remark 2.9. Since v € H*(0°G), we deduce from
Remark 2.2 that the trace of u on R™ belongs to H*(8°G).
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Using Lemma 2.8 and Lemma 2.12, we estimate

ds
E(u,G) —E(v°,G) = —/ 2% Vw|* dx + ds/ 2°Vo® - Vw dx
2 Riﬂ R

ds
== 24| Vw? dx + ((=A)*v, wign )
2 Riﬂ

n-+1
+
G

2 S
> [w\R"]Hs(Rn) +((=4) U’w|R">60G

= E(wrn, °G) + ((—A)*v, wirn ) o - (2.18)
Using the fact that ujgn, v € H*(9°G), we derive that
E(wppn, 0°G) = E(upn, 0°G) + E(v,0°G) — ((=A)* v, urn) sos (2.19)
and
(A0, wirn ) oy = ((—A)° v, urn ) oy — 2E(v,0°G) . (2.20)
Gathering (2.18)-(2.19)-(2.20) yields
E(u,G) — E(v°, G) > E(upn, 8°G) — E(v,0°G).
Since ujr~ = v outside 9°G, we infer that
E(u‘Rn,c’)OG) —&(v,0°G) = E(urn, Q) — E(v,Q),
and the conclusion follows. (|

The crucial observation for us is that (2.17) leads to a local representation (in terms of v¢)
of the first inner variation of £(-,€) at a function v € H*(). We recall that, given X €
C1(R"™;R"™) compactly supported in (2, the first inner variation 6€ (v, {2) evaluated at X is
defined by

5E(v, Q)[X] := [% E(wo ¢t,Q)L_O ,

where {¢: }+cr denotes the flow on R™ generated by X, i.e., for x € R™, the map t — ¢+(x)
is defined as the unique solution of the ordinary differential equation

d
&@(35) = X (¢())
do(z) = x.

Now we can state our representation result.

Corollary 2.14. Let Q2 C R"™ be a bounded open set, and G C RT‘l be an admissible bounded
open set such that °G C Q. For each v € H*(Q), and each X € C*(R™;R™) compactly
supported in O°G, we have

ds .
0E(v, Q) [X] = 0 /G z“<|Vve|2d1VX —2(Vv® @ Vo°) : VX) dx
ds _
+ a/ 297V 2 X dx,
2 Ja

where X = (Xq,...,X,11) € CYG;R""1) is any vector field compactly supported in
G U 3G satisfying X = (X,0) on 9°G.

Proof Let X = (Xi,...,X,41) € CY(G;R""1) be an arbitrary vector field compactly
supported in GUAY G and satisfying X = (X, 0) on 3°G. Then consider a compactly supported
C'-extension of X to the whole space R, still denoted by X, such that X = (X, 0) on R™.
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We define {®;};cr to be the flow on R"*! generated by X, i.e., for x € R""!, the map
t — ®;(x) is defined as the unique solution of the differential equation

d
&Q)t(x) = X(@t(x)) s

Dp(x) = x.

Noticing that ®; = (¢, 0) on R™ and that supp(CI)t — ian,+1) N RT}FH C G UOG, we infer
from Corollary 2.13 that

E(v°o®_,G) —E(°,G) > E(vod_y,Q) —E(v, Q).
Dividing both sides of this inequality by ¢ # 0, and then letting ¢ | 0 and ¢ 1 0, we obtain

d_. . C[d g
[EE(U O‘Pth)L_O thg(” fbt,Q)L_O

On the other hand, standard computations (see e.g. [51, Chapter 2.2]) yield

d ds .
—E@°o®_4,G) == / z“(|Vve|2d1VX —2(Vu® @ Vu°) : VX) dx
dt =0 2 Jo
ds
+ a/ 2072 Xy dx, (2.21)
2 Ja
and the conclusion follows. 0

Remark 2.15. For an admissible bounded open set G C R’"! and u € HY(G, |z|?dx), we
can define the first inner variation up to the boundary 9°G of E(-, G) at u as

d
SE(u,GU'G)[X] := | = E(uo ®_;,G) )
dt ‘=0
where (as in the previous proof) {®;};cr denotes the flow on R"! generated by a given

vector field X = (X, X,,;1) € C*(G; R"*1) compactly supported in G'U 9°G' and satisfying
X,41 = 0 on @°G. Then, one obtains

ds
SE(u,GUI’G)[X] = 5 / z“(|Vu|2diVX —2(Vu® Vu) : VX) dx
G

dsa
2

Hence, we can rephrased the conclusion of Corollary 2.14 as 6 (v, Q) = 6E(v°, G U 9°G).

+

/z“_1|Vu|2Xn+1 dx. (2.22)
G

3. THE FRACTIONAL ALLEN-CAHN EQUATION: A PRIORI ESTIMATES

We consider in this section a bounded open set {2 C R™ with (at least) Lipschitz boundary.
We are interested in weak solutions v. € H*(£2)N LP(£2) of the fractional Allen-Cahn equation

1
EW/(’UE) =f inQ, (3.1

(—A)% e +

with a source term f belonging to either L>°(€2) or C%1(Q). The notion of weak solution is
understood in the duality sense according to the formulation (2.3) of the fractional Laplacian,
ie.,

1
(A teg o [ Wiapde= [ foar  woe Hy@ N LK),
Q Q
Such solutions correspond to critical points in €2 of the functional

Fe(v,Q) =& (v,Q) — [ fvda,
Q
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where E.(+, ) is the fractional Allen-Cahn energy in (1.8). In other words, we are interested
in maps v. € H*(Q) N LP(Q) satisfying

FFre )] =0 vee @@, 62
t=0

Remark 3.1. An elementary way to construct solutions of (3.1) is of course to minimize
F=(+,€) under an exterior Dirichlet condition. Indeed, given g € H*(2) N LP(2), the mini-
mization problem

min {]-‘E(v, Q):ve H(Q)N LP(Q)} , 3.3)

is easily solved using the Direct Method of Calculus of Variations, and it obviously returns a
solution of (3.2).

3.1. Degenerate Allen-Cahn boundary reactions. To obtain a priori estimates on weak so-
lutions of (3.1), we rely on the fractional harmonic extension to Rﬁ“ introduced in Section 2.
According to Lemmas 2.10 & 2.12, and (2.15), if v, € ﬁé(Q) N LP(9) is a weak solution of
(3.1), then its fractional harmonic extension v¢ given by (2.9) satisfies

1
ds/ ZaV’L):-V(bdXﬁLTS/W/(’Ug)Q/)dx: f¢d$
RoH € Q Q

for every smooth function ¢ : @ — R compactly supported in R’}fl U £, or equivalently,
forevery ¢ € H* (R’ |2|*dx) N LP(£2) compactly supported in R’ UQ (by Remark 2.6).
In particular, given an admissible bounded open set G C R’}FH such that 9°G C Q, the
extension v¢ obviously satisfies

1
ds/ 24Vl - Vodx + T&/ W' (ve) ¢pdx = fodx (3.4)
G € 2°G 0@

for every ¢ € H(G, |z|*dx) N LP(0°G) compactly supported in G U 9°G. In other words,
the extension ¢ is a critical point of the functional F.(-, G) defined on the weighted space
HY(G,|z|*dx) N L?(0°G) by

F.(u,G) := E.(u,G) — fudx, (3.5)
G

with

1
E.(u,G) == E(u,G) + —; W(u)de,
€% Joog
where E(-, G) is the weighted Dirichlet energy defined in (2.16).
In general, if a function wu. is a critical point of F.(-, @) such that both u. and 2*0.u.
are continuous in G' up to G, then u. satisfies in the pointwise sense the Euler-Lagrange
equation

div(2*Vues) =0 inG,
) (3.6)
—W'(u.) — f ondG,

525

d58§25>u6 =
where we have set for x = (z,0) € 9°G,

8225)1% (X) = 11?01 240z ue (‘T’ Z) )

We shall refer to as weak solution of equation (3.6) a critical point of F.(-, G).
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3.2. Regularity for degenerate boundary reactions. Our strategy now consists in deriving
a priori estimates for weak solutions of (3.6). Concerning regularity, the starting point is the
following linear estimate given in [13, proof of Lemma 4.5].

Lemma 3.2 ([13]). Letf € L>°(Dy) andu € H'(By, |2|°dx) N L>(By ) be a weak solution
of
div(2*Vu) =0 in By,
(3.7)
Oy =f on Dy.
There exist B, = 3,(n,s) € (0,1), and a positive constant c,, s depending only on n and s
such that
el o, 5+ < Ene (1€ ey + ) - (3:8)

In addition, if £ € C%7 (D) with o € (0,1), then 2°0,u € COW(Ef)for some vy € (0,1).

For f € C%1(D,), bootstrapping estimate (3.8) yields the following interior regularity for
bounded weak solutions of (3.6).

Theorem 3.3. Let f € C%'(Dy) and u. € HY (B, |z|%dx) N L>=(B) be a weak solution
of

div(2*Vue) =0 in By,
(3.9)

; 1
d0 ) u, = —W'(u:) = f onDs.
£ S

Then u. € C®(BY), u. € COP~ (E—f), Vaue € COP- (E;—), and z*0,u. € CO’V(Ef)for
some v € (0, 1) (with 3, given by Lemma 3.2).

Proof. Regularity in the interior of the half ball B follows from the usual elliptic theory.
Then, to prove the announced regularity near D;, we first apply Lemma 3.2 to deduce that
ue € CYP+ (B U Dy) and 2°9,u. € C7(By U Dy). Now it only remains to show that
V ,u. is Holder continuous up to D;. Denote by k.. € N the integer part of 1/3,.. Choosing the
universal constant 3, slightly smaller if necessary, we may assume without loss of generality
that k.. < 1/8,. Then (k. + 1)3, € (1,2).

Fix an arbitrary point zg € Dy, and for x = (z,z) € Bf"UD; define the translated function
a(x) = ue(x 4+ x0,2) .
Given a non vanishing h € D, /g, we set for x € B;/8 U Dy/s,
a(z+ h,z) — a(x)
|h|P-

Then wy, € H* (B;r/g, |z|*dx) N L> (B;r/g) and ||wp, ||LOO(B7+/8) is bounded independently of h.

wp(x) 1= (3.10)

In addition, wy, weakly solves equation (3.7) in B;/s with right hand side
~ W'(a(z + h,0)) — W'(a(x,0))

g2 (@(x + h,0) — a(z,0))
By assumption W € C*(R) and f € C%!'(Dy), so that ||y~ (D, ) is bounded indepen-

f(.ro +x+h)— f(l’o + .17)
lP- |

£ (x) : wp (2,0) —

dently of h. Hence Lemma 3.2 yields w;, € C0P- (E;/m), and |(wp, || qo.8, (B 1) is bounded
7/16
independently of h. In particular,

|wp (2, 2) — wp(x — h, 2)|

<Cl v(m,z)eﬁl/gx[0,1/8],

[h|B-
for some constant C; independent of /. In view of the arbitrariness of h, we deduce that
sup |u(z + h, 2) — 2u(z, 2) + U(z — h, 2)| < C1|h|*P- (3.11)

z€Dqs8
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forevery h € Dy s and z € [0,1/8].
Let us now fix a cut-off function ¢ € C°°(R"; [0, 1]) such that {(x) = 1 for || < 1/16 and
¢(z) =0 for || > 1/8. Given z € [0, 1/8], we define for x € R™,

9. () = ((x)u(x, 2) .
For h € R™, we denote by D34, the second order difference quotient of 17, on R™ given by
D39, (x) :== 9, (x 4+ h) — 20, (x) + 9. (x — h).
From (3.11), it is elementary to show that
192l Loe (rr) + sup ————2——— < Oy,
E T im0 (R
for a constant C5 independent of z € [0, 1/8].

We now have to distinguish two cases.

Case 1). If k. = 1 (i.e., 3, > 1/2), then we infer from [53, Proposition 9 in Chapter V.4] that
0. € CYo+(R™) with ar, = 28, — 1, and [|9. || c1.a () < C2 for a constant Cy independent
of z € [0,1/8]. As a consequence u(-, z) € C**(Dy16), and [|a(-, 2) || cree (D, 1) < Cy
for every z € [0,1/8].
We fix j € {1,...,n},d € (0,1/32), and we define for x = (x, z) € Bf'/w U Dj /30,
a(z + dej, z) — u(x)
5 :

) and [[ws]| 700 (( B, 18 bounded independently

Ws(X) 1=

Then ws € H'(BY g9, |2|*dx) 0 L>(BY 4,

of 0. In addition, ws weakly solves equation (3.2) in B:',.., with right hand side

1/32
W(@(e +de;,0)) = W'(@(@,0)) o oy
e2s(u(x + de;,0) — u(z,0)) o

f(xo +2 +dej) — fxo + )

f5(x) = 5

Again, since W € C*(R) and f € C%(Dy), we have f5 € L™(Dy /3,) and ||E5||Loo(D1/32) is
bounded independently of §. Then Lemma 3.2 yields ws € C98- (FT/M), and

|ws (x1) — ws (x2)]

—+
5 S O3 VX1,X2 € Byjgy, X1 # X2,

|X1 — X2
for a constant C's independent of §. Letting § — 0, we finally deduce that

|0ju(x1) — 9;u(x2)|
B.

-+
< O3 Vx1,X2 € Byjgq,X1 # X2.

|X1 — X2
Since the index j is arbitrary, it shows that V,u, is indeed of class C%#+ in a neighborhood
of the point (zg, 0).
Case 2). We now assume that k., > 2 (i.e., 3, < 1/2). Then we infer from [53, Proposition 8
in Chapter V.4] that 9, € C%2P-(R") and ||, || co.26. (rn) < Cs for a constant C5 independent
of z € [0,1/8]. As a consequence, for every z € [0,1/8], we have u(-,z) € C%?P+(Dy ),
and [|u(-, z)||go20. (b, ) < C. We then repeat the argument starting with the function wy,
given in (3.10) with 3, replaced by 23, and the point x lying in a smaller half ball. After
iterating k. times this procedure we are back to Case 1, and we conclude that V ,u. is of class
C%A+ in a neighborhood of (z,0). O

Remark 3.4. Note that for ¢ > 1/2, Lemma 3.2 also shows that any weak solution u. €
HY(BY,|z|%dx) N L>=(BF) of (3.9) satisfies

l[uell co.s. B < s

for some constant ¢, > 0 depending only on n, s, W,

f||Loo(D2), and ||Us||Loo(B;)'
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A fundamental consequence of the previous regularity result is that bounded weak solutions
of (3.6) with f € C%1(9°G) are stationary points of F.(-, G), i.e., critical points with respect
to inner variations up to 9°G. In other words, we have

Corollary 3.5. Let G C Riﬂ be an admissible bounded open set, and f € C*1(3°Q). If
us € HY(G,|2|%dx) N L>(G) is a weak solution of (3.6), then

6E (ue, GUOG)[X] + W(ug)dide:E:/ ue div(fX) da

= 20G 90G
for every vector field X = (X, X,,11) € CY(G;R" ) compactly supported in G U 9°G such

that X, 41 = 0on IG.

Proof. Let X = (X, X,,11) € C'(G;R""1) be an arbitrary vector field compactly supported
in G U 0°G and satisfying X,, 1 = 0 on 9°G. For § > 0, we set
ds a 2 q:
Vs = — z (|Vug| divX — 2(Vu. @ Vu,) : VX) dx
2 Jani=>6)
dsa

/ 297 Ve P X 41 dx,
2 Jan(z>s)

so that Vp = lims o V5.
For each § > 0 we can use equation (3.6) and integrate by parts to find

ds0% X
Vimdo [ (o) (Ve b+ B [ (o R
GN{z=4} 2 Janga=s) z
ds
- — 2V e |*Xppr o
2 Jan(z=5)

By the regularity estimates in Theorem 3.3, we can let d | 0 to derive

Vo = / (8% u.) (X - Vyu.) de
G

1
== W' (ue)X - Vyue do — / fX -Vyusdo.
e*® Joog G
Integrating this last term by parts, we conclude that
1
Vo=—— W(ug)didex—i—/ ue div(fX)da,
€ el iJel
which, in view of Remark 2.15, is the announced identity. O

3.3. Regularity and Maximum Principle for the fractional equation. By estimate (2.11), a
bounded weak solution of the fractional equation (3.1) yields a bounded weak solution of (3.6)
after extension. Hence Theorem 3.3 and Remark 3.4 provide the following interior regularity
for bounded weak solutions of the fractional equation.

Corollary 3.6. Let v. € H*(Q)NL>(R™) be a weak solution of (3.1) with f € L>(Q). Then
v. € CLP- () with B, given by Lemma 3.2. In addition, if f € C%1(Q), thenv. € cLP- ().

loc loc

The regularity issue then reduces to prove that a given weak solution of the fractional equa-
tion (3.1) is bounded. If we complement (3.1) with a smooth exterior Dirichlet condition, this
is indeed the case.

Lemma 3.7. Let g € CH(R™) N L®°(R™), f € L™(Q), and let v, € H3(2) N LP(Q) be a

loc

weak solution of (3.1). Thenv. € L>=(R™).

Let us start with an elementary lemma concerning the potential 1.
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Lemma 3.8. Let W : R — [0, 00) satisfying (H1)-(H2)-(H3). Then, for all 6 > 0,
W/ (t)t —5|t| > 0 whenever |t| > (14 ey )71 . (3.12)

Proof. From the lower bound in (H3), it follows that |[WW/(¢)| > 0 for |¢| > 1. Since W
achieves its minimum value at +1, we deduce that W’ (¢) < 0 fort < —1, and W'(¢) > 0 for
t > 1. Hence the lower bound in (H3) yields

1
W' (t)t > E(Ilflj”f1 —1)[t = oft]

for |t| > (14 cwd)71. O

Proof of Lemma 3.7. We fix for the whole proof a radius R > 0 such that Q C Dpg.
Step 1. By Remarks 2.2 & 2.11, v¢ € H} (R, |2|%dx) and v¢ weakly solves (3.6) with

loc

G = Bj;. By elliptic regularity we have v¢ € C*°(R’/*"). Since g is locally Lipschitz

continuous and dist(0T Bg, ) > 0, we easily infer from formula (2.9) that the function
x € 0T B+ |[v2(x)| + 2%/ Ve (x)| is bounded. We set

M = HUSHL“’(6+BR) + ||ZGVU§||L<>¢(6+BR) < 0.

Let us consider a cut-off function xgp € C*°(R; [0, 1]) such that xg(t) = 1 for |[{| < R and
Xr(t) = 0 for [t| > 3R /2. We introduce the scalar function

1= xr(x|) Vg2 + X2 € H' (Bg, |2]°dx) N LP(Q),
with )
A := max ((1 +ewe|| fllre() 1+ ||9HL°°(R"\Q)) :
and cyy the constant given in assumption (H3).

Fix a nonnegative function ¢ € O (F;R) with compact support in B, 1 U L. Noticing that
ve/n € H' (B}, |2|*dx), we obtain

© e\2
/ zaVn~V¢dx:/ 2V -V (”_a¢) dx,/ La® <1 (v2) >|W§|2dx'
B Bf n B N n

2
On the other hand ¢ > 0, so that

/ zaVn-V¢dx</
B B

R R

A v (”—¢) dx
Ui
Using equation (3.6), we infer that

/ 29Vn-Vodx < / za%@? d%"—i / (W’(Ue)’ve—&'st’Ue) ¢ dz. (3.13)
B otBy OV " €% Jo T I

Then we conclude by approximation (see Remark 2.6) that (3.13) actually holds for any non-
negative ¢ € H' (B, |2|%dx) N LP () with compact support in By U Q.

Step 2. GivenT' > 0 and v > 0, we define the functions

p:=max{n—V2\,0}, pri=min(p,T), vr,:=ppp, bry:=psp.
which all belong to H' (B, |2|*dx) N LP(). Setting G := {0 < p < T'} N B}, straight-
forward computations yield

/+Z‘1|VwT,7|2dX=/+Z“p?lvnl2d><+(72+2v)/ 2 p1 |V dx
B

R Bp Gt
and
a _ a 27 2 a 2y 2
/ an-VqﬁTﬁdx_/ 2%p7 V] dx+27/ 277 |Vn)? dx.
B B} Gr
From this two last equalities, we infer that

/ 29V P dx < (7 + 1)/
B+

B B

2"V Vor,, dx.

R
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Next we want to use ¢~ as a test function in (3.13). To this purpose it is enough to show that
p has compact support in B, U Q. Obviously, p has compact support in By U Dap. Since
ve = g. on Dag \ ©, we have [v¢| < A — 1 on Dag \ Q. Consider a point xg = (7, 0) with
To € Dog \ﬁ From the smoothness of g. and (2.9), we derive that v¢ is continous at xg.
Therefore there exists a radius & > 0 such that [v¢| < X in By (xo). Then p = 0 in B, (o),
and hence p has compact support in B, U Q.

Then, finally using ¢~ as a test function in (3.13), we deduce that

a 2 aa’Ug’Ug 2y n
B+z [Vipr |7 dx < (v + 1) z ?pT pdA

I 8+ Bgr ov

1 7
s / (W’(Ue)ve EQSf’Ug) PrP 4.
Q n

o2s ACEE

Noting that [v¢| > A on {p > 0}, we have
W (WE)oE — 2 fuf > W/ (E)0t — 2 fllpmlofl 0 on{p>0}NQ,
by Lemma 3.8. Since p < [vg], the previous estimate leads to

IV o725 ooy < (v + 1A (07 Br)M*7H2.

By the continuous embedding (2.6), prp € Wlﬁl(B;{F). Moreover, since pJ.p vanishes on
D\ ©, we can apply the Poincaré inequality in [60, Corollary 4.5.2] and the continuity of the
trace operator (2.7) to deduce that

lo3oll7s gy < CralV(P7o) 71 51 »

for a constant C'r o > 0 which only depends on R and 2. From the two previous inequality
and (2.6), we derive

||P%P||%1(DR) < Csraly +1)M>+2,

Next we let T" — oo in this last inequality to obtain
1 1
”PH%vH(DR) < Cs,/jgg )(ry + 1)1/(v+1)M2-

Letting now y — oo leads to ||p|| Lo (py) < M, which in turn implies v. € L>(€2). Since
ve = g outside 2, we have thus proved that v. € L>=(R"). O

In the case where equation (3.1) is complemented with a smooth exterior Dirichlet condi-
tion, weak solutions are thus bounded. Then we can apply [49, Theorem 2] to deduce continu-
ity across the boundary 0f2, and finally obtain the following regularity result.

Theorem 3.9. Assume that 9 is smooth. Let g € CL(R™) N L®(R™), f € L>®(X), and let

loc

ve € Hy(Q2) N LP(Q) be a weak solution of (3.1). Then v. € - () N COR™) with 3,

loc

given by Lemma 3.2.

By means of the Hopf boundary lemma in [13, Proposition 4.11], we now derive the fol-
lowing maximum principle for equation (3.1).

Corollary 3.10. Let §), g, and f be as in Theorem 3.9. Let v. € H(2) N LP(2) be a weak
solution of (3.1). Then,

[[Ve || oo () < max ((1 +ewe®|| flln=@) ", ||9HL°°(1R"\Q)) : (3.14)

where cyy is the constant given in assumption (H3).
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Proof. We consider the function m. := A\? — [v¢|? with \ being the constant in the right hand
. . . . —=n+l . .

side of (3.14). By Theorem 3.9, m,. is continuous in Ri , and z®0,m. is continuous up to €.

Moreover, m. satisfies (in the pointwise sense)

—div(2*Vm.) = 22°|Voe|? > 0 in R
, 2
d8%*)m. = fETsW’(vg)vg +2fvS onQ
me >0 onR™\ Q.

Assume that m. achieves its minimum over R™ at a point ¢y € 2. Then z is a point of
maximum of |v.|, and hence x¢ = (¢, 0) is an absolute minima of m. over @Tfl by (2.11).
If m.(xo) < 0, then [v¢(x0)| > A, and we obtain d*m,(x) < 0 from (3.12). On the
other hand, the strong maximum maximum principle of [26, Corollary 2.3.10] implies that
me > me(Xp) in R’}fl. Then, the Hopf boundary lemma of [13, Proposition 4.11] yields
8*)m.(x0) > 0 which gives a contradiction. O

4. ASYMPTOTICS FOR DEGENERATE ALLEN-CAHN BOUNDARY REACTIONS

In this section, our objective is to perform the asymptotic analysis as € | 0 of the degenerate
boundary reaction equation (4.1). As described in Section 3, any solution of the fractional
Allen-Cahn equation yields a solution of (4.1) after applying the extension procedure (2.9).
Here again, the strategy is to first analyse equation (4.1) and then to apply the results to the
fractional equation. The main theorem here is Theorem 4.1 below. Its application to the
fractional equation will be the object of Section 5.

Theorem4.1. Let G C erjl be an admissible bounded open set, and €y, | 0 a given sequence.
Let { fi. }ren C CU1(0°QG) satisfying

).

SI;p (E%stkHLw(aOG) + ||kaW1*q(8°G)) < oo forsomeq € (1 ILQS’R

Let {up}ren C© H'(G, |z|*dx) N L>(G) satisfying supy, ||ug||=(c) < oo, and such that

each uy, weakly solves

div(2*Vug) =0 inG,
| . @.1)
dsafé)uk = ?W/(uk) —fr ond°G.
k

Ifsupy, Fe, (ur, G) < oo, then there exist a (not relabeled) subsequence, u, € H'(G,|z|*dx)
and an open subset E, C 9°G such that u, = g, — XooG\E, ONn 0°G, up — u, weakly in
HY(G,|z|*dx), and uj, — . strongly in H. (G U 8°G, |z|*dx) as k — oo. In addition,

() e, *W(ug) — 0in LL (3°G);

(i) ug — u. in CL(0°G \ OF,);

(iii) if supy, || frll @0y < 00, then up — uy in CY(8°G \ OE,) for every a € (0,8,)

loc

with B, given by Lemma 3.2;
@) if supy, || fellco.1 (o) < 00, then uy, — . in q{;g‘(aOG \ OF,) for every a € (0,3,);
(v) foreacht € (—1,1), the level set L, := {uy, = t} converges locally uniformly in 9°G
to OF, N O°G, i.e., for every compact set K C 9°G and every r > 0,

LiNK C Z.(0E.N3°G) and OE.NK C Z.(L,Nd°G),

whenever k is large enough;
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(Vi) if fr. — f« weakly in W14(0°G), then the function u, satisfies

SE(u., GU'G)[X] :/ uy div(f. X) da
oG
for every vector field X = (X, X,,11) € C1(G; R" 1) compactly supported in G U°G
such that X,,11 = 0 on 9°G.

We have divided the proof of this theorem in several steps according to the following sub-
sections.

4.1. Energy monotonicity and the clearing-out property. In this subsection, we prove two
of the main ingredients, an energy monotonicty, and a clearing-out property reminiscent of
Ginzburg-Landau theories. We start with the fundamental monotonicity formula.

Lemma 4.2. Let ¢ € (y5;,n), R > 0, and ¢ > 0. Given f € C%'(Dg), let u. €
HY(B}, |z|*dx) N L>=(B}) be a weak solution of

div(z*Vue) =0 in Bf; ,

. 4.2)

dsags)us = TW’(UE) —f onDg.
£ S

There exists a constant c,, ; > 0 (depending only on n and q) such that for every point xo =
(w0,0) € D x {0}, the functionr € (0, R — |xo|] — ©7_(f,x0,r) defined by

1 T oa
0%, (frn.) = B, B (50) + ol e oy |1 i, oy
0
with 0q := 14 25 — n/q, is non-decreasing.

Remark 4.3. In the statement above, || f|lyi1,4(4) denotes the following Wh4-homogeneous
normof fin A,

[ f lirviacay = N fllas cay + IV FllLacay
where ¢* :=ngq/(n — q).
Proof of Lemma 4.2. Without loss of generality we may assume that g = 0. By Theorem 3.3

the function r € (0, R) + Ec(uc, B;) is of class C*, and then it is enough to seek for a
constant L such that for r € (0, R),

(n —2s) 1 d _
*mEs(ue,B}F) + o EEE(%’B:F) + Lr% 1HfHW1,q(DT) 20,
or equivalently,
d —n
(n —28)Ec(ue, BY) — TEEE(UE, Bf) < Let! /q||f||W1,q(DT) . (4.3)
Note that for r € (0, R),
d d 2 1
—E.(ue, Bf) = = ¢ dA™ + — W (ue)ds™ . 4.4
T e(ue, BY) 5 /(%Brz ’Vugy + or /é)DT (ue) (4.4)

To prove (4.3), we first consider an arbitrary even function n € C'*°(R; [0, 1]) with compact
support in (—R, R). Using the vector field X(x) := n(|x|)x in Corollary 3.5 and formula
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(2.22), we find that

(n — 2s)ds

ds u
22 [ v dxr G [ sV ()il dx
B B

X
—ds/ Lo X
By

-Vu,
x|

2 n
o ()] dx + - / W (uz) n(J2]) da
E Dr
1 /
+ o [ W) (e de
ond Dr

= [ st Vuantehae+ [ fualGeieldr. @)
Dgr Dr

Given r € (0, R), we can consider a sequence {7 }ren of functions as above such that 7,
converges weakly* in BV as k — oo to the characteristic function of the interval [—r,r].
Using such sequences {7 } e as test functions in (4.5) and letting k¥ — oo, we infer that
2

dsem

d
(n —28)Ec(ue, BY) — r—E(ue, B) + dsr/ 2| = Vue

dr PSR

2
JrTs, W(us)dx:/ (anr:E-Vf)ugdxfr/ fu.ds""t . (4.6)
€= Jp, D, oD,
Therefore,
d
(n = 28)Ee(ue, B") = 1 Be(ue, BY) < JJuc] = I(r). (4.7)
with
I(r) ::/ |f|+r|Vf|d:c+7’/ |fldsemt. (4.8)
D oD,
By Sobolev embedding and trace inequality, we have

n

1 oo, “9)
for a constant c,, ;, depending only on n and g. Combining (4.7) and (4.9) leads to (4.3), with

I(r) < cnyq ptls

L = cngllucllLe(np)- 0

Lemma 4.4. Let ¢ € (1753,
function my, 7 : (0,1) — (0,00) depending only n, s, b, T, and W, such that the following
holds. Let R € (0,1], ¢ € (0,R), and f € C%'(Dg) such that €*| f||Lpy) < T. If
u. € HY (B}, |z|*dx) N L>®(BY},) is a weak solution of (4.2) satisfying ||u€HLx(BE) < b, and
forsome § € (0,1),

n). Givenb > 1 and T > 0, there exists a non-decreasing

625 (fa 07 R) < nb,T(é) ) (410)
then ||uc| — 1| < 6 on Dgs.
Proof. Step 1. We assume in this first step that e > R/2. We claim that we can find a constant
1y, 7(0) > 0 depending only on 4, n, s, b, T', and W, such that the condition @, (f,0, R) <

7y, 7(6) implies ||uc| — 1| < din E;/Q. To this purpose, we consider the rescaled function
Ue(x) := u.(Rx), which satisfies

div(22Vu.) = 0 in B},
R25

d,00)U. = —W'(@.) — fr onDy,
£ S

withe/R € [1/2,1), and fr(x) := R? f(Rx) satisfying
I frll Lo py) < 2% | fll =gy < 2°°T.

Since [|tic|| ;o0 5+ < b, we infer from Remark 3.4 that

el cos. g+ y < Cor, (4.11)
Co8 (BY,,)
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for a constant C, 7 depending only on n, s, b, T', and W.
We now argue by contradiction assuming that for some sequences { Ry }ren < (0,1],

{Ek}keN - [Rk/Q,Rk), {fk}keN - CO’I(DRk) with EisllkaL“’(DRk) < T, and points

{Xk}ren C Ff/g, the function uy, := ., satisfies
|[te(xx)| — 1| > & forevery k,

and

1

E, /R (aka;r) = pHn—2s
&/ Rk Ry

E., (ue. B, ) < O (fr,0,Rx) =0 ask — oo,

By the Arzela-Ascoli Theorem and (4.11), we can find a (not relabeled) subsequence such that
uy, converges uniformly on FT/Q. Since E., /g, (ur, Bi") — 0, the limit has to be a constant

of modulus one. In particular, |@;;| — 1 uniformly on ET/Q, which contradicts our assumption
’|ﬂk(xk)| — 1’ > 0.
Step 2. Define

= 2257 inf 7, (1),

té%l)’?b,T( )
Let 0 € (0,1) and assume that (4.10) holds for R € (0,1] and £ € (0, R). We fix an arbitrary
point xg € Dp/s x {0}. If ¢ > R/2, then ‘|u5(x0)| - 1‘ < dbyStep 1. If e < R/2, then
€ < R — |xo| and by Lemma 4.2 we have

77b.,T(5)

GZE(fv IE(),E) < 9161,5 (f7 IEO,R - |:E0|) g 2257"@25 (faovR) .

Our choice of 7, 1(0) then implies ©;,_(f,zo,€) < 7, 7(0), and we infer from Step 1 that
.=+
|Jue| — 1] < din B, j5(x0)- O

Remark 4.5. By Theorem 3.3, u. is continuous up to D r. Hence the conclusion of Lemma 4.4
implies that either |[u. — 1| < § on Dy s, or Jue + 1| < d on Dg/s.

4.2. Small energy compactness. Our objective in this subsection is to prove that the small
energy assumption (4.10) implies strong compactness in a half ball of smaller radius, and
uniform convergence to either +1 or —1 on the bottom disc. By Lemma 4.4, it suffices to
prove such compactness assuming that the solution is already very close to =1 on the disc. In
this situation, the main ingredient to use is the convexity of the potential W near {1} to show
the minimality of the solution. Then compactness can be deduced by classical cut and paste
arguments. To quantify the convexity of W near {+1}, we introduce a structural constant
dw € (0,1/2] (whose existence is ensured by assumptions (H1)-(H2)) such that

W (t) > %min (W), w"(=1)} >0 for ||t — 1] < dw . (4.12)

In this way, the restriction of W to each interval I, := (k — dw,k + dw), k € {£1}, s
(strictly) convex. We now consider the modified potentials defined for x € {41} by

W (t) fort € I, ,
We(t) .= S W(k —8w) +W'(k—8w)(t —k+dw) fort <r—dw,
W(Ii-i—(sw)-i-W/(/i—f—é[/V)(t—K—(sw) fort > k+ 0w .

By construction, we have W,, € C* (R) and W, is convex for each 1 € {£1}.
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Lemma 4.6. Let R > 0, f € L>(Dg), and let u. € H* (B}, |2|%dx) N LP(DR) be a weak
solution of (4.2). If |uc — k| < 8w on D with k € {£1}, then

1 _
E(uE,BE)—i— t’:‘?/ W, (ue)da — fuedx
Dr Dr

< E(w, BY) Jr—/ W (w)dz — fwdx,
Dr

foreveryw € H' (B;g, |z|2dx)NLP (Dg) such that w—1u. is compactly supported in BR UDg.

Proof. Set ¢ := w — u., so that ¢ is compactly supported in B;{ U Dpg. By convexity of the
potential W,;, we have

Wi (ue + ¢) = We(u) + W.(us)p on Dg.
Since |u. — k| < &w on Dg, we have W/.(u.) = W'(u.) on Dg. Then we derive from
equation (4.2),
1 —
E(uerd)aB]J%)Jr s Wi(ue + ¢) do
g Dr
1 .
> E(ue, Bf) + = W (ue) dz
o Dnr

1
+ds/ 2°VuVodx + = W' (u:)pdz
B

7 Dr
1 —
> E(e B+ 5 [ Walwdet [ fods,
€ Dr Dr
and the lemma is proved. il

‘We now prove the announced compactness in energy space under the closeness assumption
to {£1} on the bottom disc.

Corollary 4.7. Let R > 0, ¢ | 0 a given sequence, and { fi}ren C L°(Dpg) satisfying

supy, || frllLa(pp) < 00 for some q > 1. Let {ux}ren € H' (B}, |2]%dx) N L>®(BY},) satisfy-

ing |up — k| < 0w on Dg with k € {£1}, and such that uy, solves in the weak sense
div(z*Vug) =0 in Bf; ,

, 1 (4.13)
dsaf‘s)uk = ;W’(uk) — fk on DR.
k

If supy, {Ec, (ur, Bf) + HU’CHL“(Bg)} < o0, then there exist a (not relabeled) subsequence
and u, € H'(B},,|2|*dx) satisfying u. = r on D, such that

(i) up — us strongly in HY (B, |z|*dx) for every r € (0, R);

(i) e, fD (ug)dz — 0 for everyr € (0, R).

Proof. We may assume without loss of generality that R = 1 and |uy — 1| < dw on D (i.e.,
Kk = +1). Let us set

M = s%p {E., (uk, Bf) + ||Uk||Loo(Bl+)} :

From the assumption that M is finite, we first deduce that the sequence {uy }gen is bounded in
H'(Bi,|2|%dx). Hence we can find a (not relateled) subsequence such that uj, — u, weakly
in HY(Bj, |z|%dx). On the other hand, since |uy, — 1| < dy on D, we infer from (4.12) that

/ lup — 1)°de < C | W(up)dz < CMed* — 0,
Dy D1y

so that uy, — 1 strongly in L?(D1), and therefore in L9/(@=1)(Dy). By continuity of the linear
trace operator, it also follows that u, = 1 on D1.
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Let us now fix r € (0, 1). We start selecting a subsequence {uy; } jen such that

limsup E,, (ur, Bf) = lim E., (u,,B)).
k——+o00 J—+oo J

For 6 € (0,1), weset rg := 1 — 60 + 0r and Ly := 79 — r. Given an arbitrary integer m > 1,

we define r; :=r + id,, where i € {0,...,m} and 6,, := Ly/m. Since

Z EEk uk]aBn+1 \B::) < Mv

we can find a good index i,, € {0, ...,m — 1} and a (not relabeled) further subsequence of
{ug, }jen such that
B Br y< M1l

Tim+1 "'im) =

Ec,, (uk Vj eN.

From the weak convergence of uy, towards u, and the lower semicontinuity of E, we deduce

that
M+1

E(u*,B+ Bl )<

Tim+1 Tim
Now consider a smooth cut-off function xy € C2°(By, [0,1]) such that y = 1in B, , x =0
in By \ B,,, ,,,and satisfying |Vx| < C4,," for a constant C only depending on n. Then
define

wj = Xux + (1 — X)ug, ,
so that w; € H'(B,|z|%dx) and w; — uy, is compactly supported in Bi" U D;. Since
|w; — 1| < dw on Dy, we infer from Lemma 4.6 that
Fakj (U’kj ) Bi’_) < FEkj (wj7 Bf) )

which leads to

Eakj (ukj,Bf) < E(uy, B;;) + Egkj (w;, BTt B )

Tim+1 Tim
+ [ fi; lpapiy 1wy, = Upara—v(py) -

Using the convexity of W (¢) near ¢t = 1, we estimate

E., (w,B}  \Bf )<B(u.B  \B )

Tim+1 Tim Tim+1 Tim,
Tim+1

+E., (uk,, B, Bf )+ C6,7 2|y, — us|? dx.
kj Tim m + \B+ J
im+1

From the compact embedding H' (B}, |z|*dx) < L'(Bj) and the fact that |uj,| < M in
By, we infer that i, — u, strongly in L?(Bj, |z|*dx). Consequently,

2(M +1)
1lﬁnggk (w],BI _— B;tm) < -
Therefore,
2(M +1
lim E., (u,, B}) < B(u., B},) + M+
j—ro0 m

Finally, letting first m — oo and then § — 1, we conclude that

lim Eak (ug;, B) < E(u., BY).

j—+oo

On the other hand, liminf; E(ug,, B;") > E(u., B;") by lower semicontinuity, and conse-
quently,

lim E(ug,, B;") = E(us, B;) and hm—/ W(ug,;)dz =0.

Jj—oo Jj—oo Ek

From the weak convergence of uy, it classically follows that the sequence {u; } jen converges
strongly in H (B, |z|dx) towards .. O
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Lemma 4.8. Ifu, € H' (B, |z|%dx) N L>(By) satisfies
div(z*Vu,) =0 in B,
Uye = 1 on Dy,

then u, € CO%(Bf U Dy), Vau, € CO%(Bf U Dy), and 29,u, € CO%(Bf U Dy) for

loc loc loc

some o = a(n, s) € (0,1). Moreover, for every r € (0,1),

Uillgoa gy IVatillcow sty

and [|2°0;ux| co.o g+ only depends n, s, v, and Hu*”LO@(Bj)' In particular,
1
: N B
lim = B (u., B (x0)) =0 (4.14)

locally uniformly with respect to xg € D1 x {0}.

Proof. Considering u,. — 1 instead of u.., we can assume that u, = 0 on D;. Then we extend w.
to the whole ball By by odd symmetry, i.e., u.(x, z) := —uy(x, —2) for z < 0. Since u, = 0
on D, we have u, € H(By, |z|%dx) N L°°(By). In addition, u, solves div(]z|*Vu.) = 0in
the ball B; (in the weak sense), i.e.,

/ |2]*Vu, - Vopdx =0
By

for all ¢ € H'(By,|z|*dx) compactly supported in B;. Standard elliptic regularity yields
uy € C*°(By \ D1), and for every compact set K C By \ Dy,
n, s, K, and ||u, ||L°°(Bl+)' Then the regularity result in [26] (see also [13, Section 3.2]) tells us

V| Lo (k) only depends on

that u, € C%(By) for some exponent o € (0, 1) depending only n and s. And for 7 € (0, 1),
l|u«|lco.o(p,) only depends on n, s, r, and H“*||Loo(31+)- By the argument used in the proof
of Theorem 3.3 (based on finite difference quotients), we show that V, u, € CIOO’S‘(Bl), and
[Vats || co.c(p,) only depends on n, 5,7 € (0,1), and [|u| e )

Let us now fix a radius » € (0,1) and an index j € {1,...,n}. We setford € (0,1 —r),

us(x + dej, z) — uu(z, 2)

0
The function ws belongs to H'(B,, |z|%dx) N L>°(B,), and it satisfies (in the weak sense)

ws(x, 2) =

div(|z|*Vws) =0 in B,.

Consider a cut-off y € C}(B,) such that Y = 1 in B,_, for some 7 € (0,7). Using the test
function ¢ = x2ws, we obtain

0:/ |z|an5~V¢dx:/ |z|ax2|Vw5|2dx+2/ [z]*(xVws) - (wsVx)dx.

r B, By

From Cauchy-Schwarz Inequality we infer that

/ |2]%x % Vws|* dx < 4/ 2| w2 | Vx|? dx < C,
B

T

for a constant C' independent of §. Letting 6 — 0, we obtain by lower semicontinuity that
/ 12|V (Qju.)|?dx < C'.
By,

In view of the arbitrariness of 7 and 7, we conclude that dju. € H} (B, |z|*dx) N LS. (By).

In addition, 0;u, satisfies div(|z|*V(0jus)) = 0 in By (in the weak sense). By the regu-
larity results in [26] and the consideration above, we infer that V,(9ju.) € C’IOO’CO‘(Bl), and
|V (95us)|| 0.« (p,) only depends on n, s, € (0,1), and Hu*”Lw(Bl*) (since || Ot || o< (B,)

only depends on 7z, s, 7, and [|w.| e ++).
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From the arbitrariness of j, we conclude that A, u. € CIOO’S‘(Bl), and || Az x|/ co.a(p, ) only

dependsonn, s, r € (0,1), and ||u*|\Lx(Bl+). On the other hand,
0, (z“@zu*) = 2Aju, in Bfr .

Consequently, given r € (0, 1) and writing
200, ux(x, 2) = r*Oyus(z, 1) — / Ay uy(x, t) dt

for (z,2) € B such that (z,r) € B, we deduce that 2?0, u, is actually Holder con-
tinuous up to D; for some exponent & = &(n,s) € (0,1) (perhaps smaller then «), and
[20: x| co. g+ only depends on 7, s, 7, and |\u|\Lx(Bl+).

Finally, if xg € D x {0} for some R € (0, 1), we now have for 0 < r < 1/2(1 — |x¢])
the estimate 2%|Vu,| < Cg in B;f (xo) with a constant Cr independent of x, and 7. Hence,

/ z“|Vu*|2 dx < CR/ 27%dx < Cpr™t2s,
B (x0) By (x0)

and (4.14) follows. [l

Combining Lemma 4.4 with Corollary 4.7 leads to the following

Proposition4.9. Letq € (75;.1), b > 1, T > 0, andey, | 0 a given sequence. Let R € (0, 1]
and { f1}ren C C*1(DRg) such that

e’ Ikl (or) + 1 fellyirra(pny < T- (4.15)

There exist two constants O, 7 > 0 and Ry 7 > 0 (depending only on n, s, ¢, b, T', and
W) such that the following holds. Let {uy}ren € H'(Bf, |z|*dx) N L°°(B},) be such that
H“kHLw(B;) < b, and uy, solves (4.13) in the weak sense. If R < Ry, 1 and

1ikm inf E., (u, B) < 0, 7R" ™%, (4.16)
—»00

then there exist a (not relabeled) subsequence and u. € H'(B},|z|%dx) satisfying either
ux = Lon DRy, or ux, = —1on Dpyy4, such that
(1) uk — uy strongly in Hl(BIJgM, |z]*dx) ;
(ii) wk — ux uniformly on Dy ;
(iii) £, fDM W (uy)dz — 0.

Proof. Let 0, 7 := %nbyT(éw) where the constant §yy is given by (4.12), and m,, 1 given by
Lemma 4.4. Then we choose

Oy, (Ow)\ /7
= mi 1, ———~ .
Ry, r mln{ ,( ZbcnoT )

If R < Ry, 7, then the a priori bound (4.15) yields

R
- 1
cn,q”Uk”Loo(B;)/ t 1||fk|‘W1,q(Dt($j))dt< 51717,T(5W),
~JO

so that
likm inf O3 (fx,0,R) < nb,T(5W) . 4.17)
—00

Uk

Select a (not relabeled) subsequence which achieves the liminf in (4.17). By the uniform
energy bound, we can find a (not relabeled) subsequence such that u; — wu, weakly in
HY(B},|z|*dx). From the compact embedding H'(B},, |z|*dx) — L'(B}), we deduce
that |u,| < bin Bj,. Since O (fx,0, R) < Oy, for k sufficiently large, Lemma 4.4 shows
that ‘|uk| — 1‘ < Ow on D/, for such k’s. Extracting another subsequence if necessary, we
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can assume without loss of generality that |ug — 1| < dw on the disc Dy /5. Then Corollary 4.7

yields u. = 1 on Dgys, ux — us strongly in H'(By, g, |2|dx), and
1
- W (ur) dz — 0. (4.18)
€k D3r/s

Now fix § € (0, dyy ) arbitrary. By Lemma 4.8, we can find a radius 75 < R/8 such that

"7b,T(6) n—2s
R a—
3
for every x € Dp/4 x {0}. Then consider a finite covering of D4 x {0} by balls of radius

E(u*, B;Z ()‘()) <

75/2 centered at points of Dy 4 x {0}. We denote by x; = (21,0),...,x. = (z,0) the
centers of these balls. From the strong convergence of {uy, }ren and (4.18), we deduce that for
k large enough,

1 nb,T(5)
n—2s EEk (Uk,B;’;(X]‘)) g 2
Ts

On the other hand,

vje{l,...,L}.

e be
0,— s 6
<:,17q||u,€|\mBg)/O O il (9, oy < 4T
q

Hence, choosing a smaller value for rs if necessary, we have
QZi(fkv:rjvré)gnb,T(é) V]E{l,,L}
Then Lemma 4.4 shows that |uy — 1| < ¢ in D, /o(x;) for every j = 1,..., L. Hence

|uxp — 1] < 0 in Dp/4 whenever k is large enough. O

We now improve the previous convergence result under stronger assumptions on the se-

quence { i} ren-

Proposition 4.10. In addition to the conclusions of Proposition 4.9,
(@) if supy, || fill oo (D) < 00, then u, — uy in C**(Dg 1) for every o € (0, 8,);
(i) if supy || frllcor(pg) < 00, then uy, — u, in CH*(Dg/30) for every o € (0,8,);
where 3, is given by Lemma 3.2

Proof. Step 1. We start proving item (i). Assume that u. = 1 on Dg/4. By Proposition 4.9,
we have for & large enough, [uy, — 1| < dw on Dp/4. We shall prove that

[k = 1 (D) < CeR° (4.19)

for some constant C' independent of ;. Note that the conclusion follows from this estimate.
Indeed, if holds (4.19), then the C2-assumption on W implies that

W )| o () < CR

and we can thus apply Lemma 3.2 to infer that u, is bounded in C?-#~ (B;g/w).
To prove (4.19) we proceed as follows. Fix an arbitrary parameter € (0, 1), and consider

the nonnegative smooth convex function

Py (t) == 2+ 0% —1.
Set vy, == Yy (up — 1) € Hl(BIJgM, |z|*dx) N Lm(BIJgM), and we observe that v,, satisfies in

the weak sense

div(2*Vu,) = 29" (u, — 1)|Vug|? in BEM ,
R "ug — 1
Ao vy = %W’(uw —¢/(ur — 1)fi on Dpya.

k
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On the other hand, (4.12) implies that
(t— D)W (t) > kw(t —1)* for|t — 1| < éw,

where ky = 3 min {W” (1), W”(—1)} > 0. Noticing that t)’(t) > v(t) for every t € R,
we thus have

(t— DYt —1)

1//(t - 1)W/(t) = (t — 1)2

(t—1DW'(t) > kwoo(t—1) for|t—1/ <8
Therefore v,, satisfies

div(z*Vuvy,) = 0 in B,
K

s w
dsag2 )Un 2 gis U"7 — ka”LOO(DR) on DR/4 .

y [55, Lemma 3.5] it implies

(L4 |l fell o (Dr))ER
K

(14b)2+n?

HUWHLOO(DR/g) X

Letting 7 — 0, we deduce that (4.19) holds with C' = k3! (1 + b)(1 + supy, || fxll L (D) )-

Step 2. To prove the C1:*-convergence, we shall rely on the regularity argument developed
in the proof of Theorem 3.3 (that we partially reproduce for clarity reason). To simplify the
notation, we assume here (without loss of generality) that R = 32. Fix an arbitrary point zg €
D;, and for x = (z,2) € B]” U D; consider the translated function @ (x) := uy (2 + o, 2).

For h € Dy g, h # 0, we set for x € B7/8 U D7 /s,
ﬂk(erh,z)fﬂk(x)
wp(x) == I

By Step 1, we have |[wp,|| (B;r/8) < O for a constant C independent of / and &, Given 7 €
(0, 1), we can argue as in Step 1 to infer that the function ¢, := ¥, (wy) € H' (B;r/g, |z]2dx)N
L°°(B;r/8) satisfies

div(2°V¢,) =0 in B¢,

da(%)Cn/ 25 n = fkllcos. (p,y onDzss.
k

Then [55, Lemma 3.5] yields |[w ||z~ (D,,,5) < Ce2% once we let n — 0, for a constant C'
independent of i and ;. From the equation satisfied by wj, it implies through Lemma 3.2

that wy, is bounded in C#- (B independently of / and ;. As a consequence,

7/32)

sup  |ug(x + h, z) — 2uk(z, 2) + U(z — h, 2)| < C|h|*P+
€Dy )16
for every h € 31/16, z € [0,1/16], and a constant C' independent of h and ;. At this
stage, we can reproduce the iteration scheme of Theorem 3.3 by means of the above argument

(relying on [55, Lemma 3.5]) to conclude that V,uy, is bounded in C%#« in a (uniform in size)
neighborhood of (zg, 0). O

Note that (for later use) the proof above leads to the following estimate on the potential for
a right hand side f which is bounded.

Lemma4.11. Let R > 0, f € L°°(Dg), and let u. € H' (B}, |2|%dx) N L>(DRg) be a weak
solution of (4.2). If‘ |ue| — ‘ Ow on Dg, then

848
W (ue) < Ow (14 [flloe(op)* (A + lell oo (51)) Tz 07 Dryas
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and )
E S
W/ ()| < Cow (14 1) (U e ) e

for a constant Cyy > 0 depending only on the potential W.

on DR/Q;

Proof. By rescaling equation (4.2), it is enough to consider the case R = 1. Then, observe that
u. € C°(Bf" U Dy) by Remark 3.4. Hence, either |u. — 1| < & or |u. + 1| < dy on the
disc D;. Without loss of generality, we may assume that the first case occurs. Then the proof
of Proposition 4.10 (Step 1) shows that

1 2s
[ue =1 < (L4 ([ flle () + lluell e (s))e™ - 0n Daya.
Expanding W near ¢ = 1 yields the announced result. (]
4.3. Proof of Theorem 4.1. We are now ready to give the proof of Theorem 4.1.

Proof. Step 1: Compactness. Let b > 1 such that b > supy, ||ux| (). By the assumptions
on {ug }ken, we have

sgp E., (ur, G) < sgp(ng(uk, G) + bekHLl(aog)) < 00.

Hence there is a (not relabeled) subsequence such that uj, — wu, weakly in H'(G, |z|*dx).
By the compact embedding H'(G, |z|*dx) < L'(G), we also have uy — wu, strongly in
LY(G). Since |uy| < b, it implies that |u,| < bin G, and uy, — u, strongly in L?(G, |z|%dx).
Moreover, by equation (4.1) and standard elliptic regularity, u;, — u, in C’foc (@) forall ¢ € N,
so that div(2*Vu,) = 0 in G. On the other hand, the uniform energy bound implies |u| — 1
in L' (9°@), and we infer from the continuity of the trace operator that |u.| = 1 on 9°G.

We now wish to analyse the asymptotic behavior of 1y, near 9°G. For this we consider the

measures J !
K = ?Sz“|Vuk|2.Z”“ LG + ?W(uk)%"LaoG
€k
Since supy, k(G U 0°G) < oo, we can find a further subsequence such that
ds
P — = ?za|Vu*|QZ"+1 LG + fising , (4.20)

weakly* as Radon measures on G U G for some finite nonnegative measure fising. Notice
that the local smooth convergence of uy, to u, in G implies that

spt(psing) C 0°G (4.21)

(here spt(psing) denotes the relative support of figing in G U YG).
Since 9°G is a Lipschitz domain of R”, there exits a constant C' depending only on 9°G
such that | fi[lyir1.0906) < Cllfrllw.a(a0c). Then we set

7= sup (290 el o0 + el ) < -
Noticing that

" T
0,—1 , L6, 0,
/p P Frllvir o Dy (o) A < 0, (rfe —p"),
we can apply Lemma 4.2 to deduce that

. bc, n bcn.
P (B (x)) + =T <2 i (By(x)) + =4 T (4.22)
q q
for every x € 9°G and every 0 < p < r < min (1, dist(x, 07G)). Therefore,
n bey, sm bey,
PP (Bp(x)) + =T < T pu(Be(x)) + =T (4.23)
q q
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for every x € 9°G and every 0 < p < r < min (1,dist(x,07G)). As a consequence, the
(n — 2s)-dimensional density

6" (1 x) = lim % (4.24)
exists® and is finite at every point x € 9°G. Note that (4.20) and (4.22) yield
C
(dist(x, 3*6‘))”725

0" () < Sup Eak(uk,GH%T (diam 8°G)% < o0 (4.25)

q
for all x € 0°G. On the other hand, by the smooth convergence of uj, toward u, in G,

0" *(u,x) =0 forallz € G.

In addition, we observe that x € 9°G +— ©"~2%(u, x) is upper semicontinuous *.

Next we define the concentration set

Y= {x € 0°G : inf { liminf 257" g (B, (x)) :

T k—o00
0 < r < min (1, dist(x, a*c:))} > eb_,T} . (4.26)

where 8, 7 > 0 is the constant given by Proposition 4.9. From (4.22) and (4.23) we infer that

Y= {x € 9°G : lim liminf TQS_"uk(BT(x)) > ObyT}

rl0 k—oo
= {X € d°G: hfol 27 u(Br(x)) > 0b7T} ,
and consequently,
; 6
Y= {x € 0°G: 0" % (u,x) = L} : (4.27)
Wn—2s
In particular, X is a relatively closed subset of 9°G since ©™~2%(p, -) is upper semicontinuous.
Moreover, by a well known property of densities (see e.g. [7, Theorem 2.56]), we have
0
0T pn=25(8) < u(S) < 00 (4.28)
Wn—2s
On the other hand, it follows from (4.25) and [7, Theorem 2.56] that fi5, L2 is absolutely
continuous with respect to "2 LY,
We now claim that spt (fising) C 2. Indeed, for xo € 9°G \ X, we can find a radius

0 < r < min {Rb,T, dist(x0, TG U 2)}
(with Ry, 7 given by Proposition 4.9) such that 725~ " (B, (x¢)) < 0.7 and (0B, (x¢)) = 0.

Then
lim E¢, (ug, B (x0)) = u(Br(x0)) < 0b7TT"_28 ,

k—o0
and we deduce from Proposition 4.9 that pging (B, /4(x0)) = 0. Hence
:U/sing(aOG \ Z) =0 5

and thus fi,, is supported by X. In conclusion, we thus proved that i, is absolutely con-
tinuous with respect to the Radon measure J#"~25L ¥,

n—2s
3H, have set T’
ere we have set wy, 925 1= ———————.
n—as F(l + n—223)
4Indeed, assume that x; — x € 909G, and choose a sequence 7, | O such that w(OBr,, (x)) = 0. By (4.23),

we have lim sup; ©" 2 (1, x;) < w2 (B, (%)) + €29 and the conclusion follows letting 7y, — 0.
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We are now ready to show that pg,, = 0. We argue by contradiction assuming that
using(E) > 0. By [60, Corollary 3.2.3], we can find a Borel subset X C X such that
HA"72(N\ ¥) = 0and

1 -
13%1 Tni%E(u*,Bj(xo)) =0 foreveryxg € 2.

Then Msing(i) = lsing(X) > 0. Moreover, by our choice of Y, the density

=) T ,using(Br(XO))
O e ) = e

exists at every Xg € 3, and
O™ (sing, X0) = O™ ?*(1,%0) € (0,00).

By Marstrand’s Theorem (see e.g. [38, Theorem 14.10]), it implies that (n — 2s) is an integer,
which is an obvious contradiction. Hence jiging = 0.

Note that (4.28) now yields /" ~2%(%) = 0. Moreover, we infer from (4.20) that for every
admissible open set G’ such that G’ C G U 9°G,

E(u.,G') <liminf E(ug, G') < lim E, (ug, G') = E(u.,G").
k— o0 k—o00

Therefore u;, — . strongly in HL (G U 8°G, |z|*dx), and e, **W (us,) — 0in LL (9°G).

loc

Step 2: Uniform convergence. Let us define
Et .= {x = (2,0) € 3°G : u, = 1 ae. on D,.(x) for some r € (0, dist(x, 8+G))} :
and
E- = {x = (2,0) € 3°G : u, = —1 ae. on D,.(x) for some r € (0, dist(x, 6+G))} :

By construction, £+ and E~ are disjoint relatively open subsets of 9°G.

We claim that E* N'Y = (). Indeed, assume for instance that xg = (x9,0) € E*. Then we

can find > 0 such that u, = 1 on D,.(z). By Lemma 4.8 we have
0" 2% (1, xq) = gig% #E(u*,B;(xo)) =0,
whence xo € X..

Next we claim that 9°G = ET U X U E~. Indeed, if xo = (20,0) € 9°G \ ¥, then we
can find a radius r > 0 such that limy, E., (ug, B;" (x0)) < 6 7r"~2%. By Proposition 4.9,
either up — 1 or up, — —1 uniformly in Dr/4(x0). Therefore, either u, = 1 oru, = —1 on
D, s4(xo). Hence xg € ET U E™.

Since .£™(X) = 0, it implies in particular that

Usx = XE+ — X3°G\E+ on 806‘

Now we show that
OET NG = =0E" NdG.

Indeed, if xo = (20,0) € OET N 3°G, then D,.(x9) N ET # () for every r > 0. Since
ET is open, D,(x9) N E™ contains a small disc for every r > 0. Thus D,(z¢) € E~ for
every 7 > 0, and thus 7o € ¥. This shows that 9ET N 9°G C X. The other way around, if
x9 € X, then zg ¢ E~. Thus £"({u. = —1} N Dy (x0)) < L™ (D, (x0)) for every r > 0.
Since £™(X) = 0, we deduce that for every r > 0 there exists z € E*T N D,(z0). Hence
¥ COETNEG.

We claim that uj, — +1 locally uniformly in E* (respectively). We only show that u;, — 1
locally uniformly in £, the other case being completely analogous. Fix an arbitrary compact
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set K C ET. By Lemma 4.8, we can find a radius rx < min {dist(K,0ET), Ry 1} such
that

B(u., B}, (X)) < 007>
forevery X € K x {0}. Then we deduce from Step 1 that
Jim B, (ur, By (%)) < O 17
for every x € K x {0}. By Proposition 4.9 and a standard covering argument, it implies that
up — U, = 1 uniformly on K. Then items (iii) and (iv) follow from Proposition 4.10.

Step 3: Convergence of level sets. We now prove (v). We fix ¢t € (—1,1), a compact set
K C 9YG, and a radius » > 0. First, from (iii) we deduce that |uz| — 1 uniformly on
K\ Z.(%). Therefore, L}, N K C J,(X) for k large enough. Then we consider a covering
of X N K made by finitely many discs D,.>(x1), ..., D, 2(x ) (included in °G, choosing a
smaller radius if necessary). Then, for each j we can find a point x;r S DT/Q(xj) N E' and a

point x;

€ D, /2(w;) N E~. From (ii) we infer that for & large enough,
ur(x]) > 1/2(1+1t) and wg(z;) <1/2(-1+1t)  Vje{l,...,J}.

Then, by the mean value theorem, for & large enough we can find for each j a point zf €

x;]Ufx;, 2] C Dyja(x;) such that ug () = ¢. Now, if z is an arbitrary pointin SN K,

j I
thenz € D, jo(x;, ) forsome j, € {1,...,J}, and thus [z —2 | < |w—az;, |+]x;, —af | <.
Hence ¥ N K C 7, (L% ) whenever  is sufficiently large.

Step 4: Proof of (vi). Let X = (X,X,,11) € C(G;R"*!) be a compactly supported vector
field in G U 8°G such that X,,;1 = 0 on 9°G. By Corollary 3.5, we have

[«

SE (ug, GUI°G)[X] + W (ug) divX do = / ug div(frX) dzx.

G

2s
€L Jooa

From formula (2.22) and the convergences established in Step 1, we can pass to the limit
k — oo in this identity to infer that

SE(u., GUG)[X] = / u,div(fX)dz,
oG

and the proof is complete. (I

5. ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION

The object of this section is to prove a general convergence result as € | 0 for the fractional
equation (5.1). As we already explained, we rely on the results obtained in Theorem 4.1 for
the degenerate equation with boundary reaction. In Section 7, we will improve some of the
convergences below under stronger assumptions on the sequence of right hand sides { f } ren.

Theorem 5.1. Let 2 be a smooth bounded open set, and i, | 0 a given sequence. Let
{9 }ren C Co’l(R”) be such that supy, || gk || L ®n\) < 00 and g, — g in LL (R"\ Q) for

loc loc

a function g satisfying |g| = 1 a.e. in R™ \ Q. Let { fx }xen € C*1(Q) satisfying
SI;p (sistkHLoo(Q) + | fellwra)) < oo forsomen/(1+2s) <q<mn,

and such that fi — f weakly in Wh(Q). Let {vp}ren C H;, () N LP(Q) be a sequence
such that vy, weakly solves
1
(=A) v+ 5 W (o) = firo inQ,
€k (5.1)
Vg = gk inR"\ Q.
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If supy, Fe, (v, Q) < oo, then there exist a (not relabeled) subsequence and a Borel set E,, C
R™ of finite 2s-perimeter in S such that vy — v. = XE, — Xrr\ g, Strongly in H (Q) and

L% (R™). Moreover, E. N ) is an open set, and
1

Tn,s

0Py (E,, Q)[X] = /E . div(fX)dz forevery X € CH(L;R™). (5.2

In addition, for every smooth open subset ' C Q such that Q' C Q,
(1) E(vi, ) = 29 s Pas(Ey, ),

1
(i) —= W (vg) —= 0in LX)
€k

1 n,s * - Ux 2 . _
(iii) fk(x)—gW'(vk(x)) - (%/ %dy) v, () strongly in H=* ('),
2 n

(V) vp = v, in O (Q\ OF,);
(V) if supy, || frllLo () < 0o, then vy — v in CLY(Q\ DE,) for every a € (0, B,) with 3,

loc

given by Lemma 3.2;
(vi) if supy, || frllco1(q) < oo, then vy — vy in CLY(Q\ OE,) for every a € (0, B,);

loc

(vii) for each § € (—1,1), the level set LY, := {v, = §} converges locally uniformly in €2 to
OF. NQ, ie., for every compact set K C Q) and every r > 0,

LSNK C Z.(0E.,NQ) and OE.,NK C (L, NQ)
whenever k is large enough.

Proof. Step 1. First we recall that, under the assumptions of the theorem, we have proved in
Section 3 that vy, € Clt’cﬁ* (Q) N C°(R™) and supy, ||vg || oo (rny < oo. Then the assumption
supy, Fe,, (vg, Q) < oo clearly implies supy, &, (vi, ) < oo. In turn, Lemma 2.1 shows that
the sequence {vy }xen is bounded in L?(R™, m), where the measure m is defined in (2.10).
Therefore, we can find a (not relabeled) subsequence and v, € LQ(R”, m) such that v, — v,
weakly in L?(R™,m). In particular, vy — v, weakly in L? _(R"™). On the other hand, the
uniform energy bound shows that |vx| — 1in L*(9), and {vy}ren is bounded in H*((2).
Hence vy — v, weakly in H*(2), and from the compact embedding H*(Q) — L?(Q), it
implies that v, — v, strongly in L?(2). By assumption we have g, — g in L{ (R™\ )

and supy, [|gx | Lo mr\) < 00, so that g — g in L2 _(R™\ Q). Since vy = g in R™\ Q,

loc

we conclude that v, = g in R"™ \ © and v, — v, strongly in L (R™). Extracting a further
subsequence if necessary, we may assume that v, — v, a.e. in R™. Since |g| = 1 a.e. in R™,

we derive that |v.| = 1 a.e. in R”. Hence we can find a Borel set /' C R™ such that
Vs = XF — Xro\F a.€. in R"™,
Moreover, we easily infer from Fatou’s lemma that
E(vs, Q) < 1ikrr_1>ioréf5(vk,ﬂ) < 00. (5.3)

We end this first step showing that v§ — v¢ weakly in ! (R} U Q, [2[*dx). Indeed,
we start deducing from Lemma 2.7 that v§ — v¢ weakly in L2 (R7*', |z|%dx). On the other
hand, the uniform energy bound together with Lemma 2.10 and standard elliptic estimates
shows that {v§ } e is bounded in H}L (R’7T! U, |2|%dx), whence the announced weak con-

vergence.

Step 2. Let us now consider an increasing sequence {G };en of bounded admissible open sets
such that 0°G; C Q forevery [ € N, U;G; = R’}FH, and U;0°G; = . By (2.11), Step 1,
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and the results in Section 3, v§ € H' (G, |z|"dx) N L>(Gy) satisfies supy, [[vf || () <
supy, || Vx| oo (mny < 00, and each vy solves

div(z*Vug) =0 inG,

4,82 e — E—isw'(vz) —F ondGy,
k
forevery [ € N. In addition, sup,, E., (v§, G;) < oo forevery ! € N, still by Step 1. Therefore,
we can find a further subsequence such that the conclusions of Theorem 4.1 hold in every Gy,
and v§ is the limiting function in each G; by Step 1. In particular, v;;, — v strongly in
HY (RTTUQ, |2|%dx).

For each [ € N, denote by E; the limiting open subset of 9°G) provided by Theorem 4.1,
and observe that E; = E;; N 9°G; for every | € N (see the proof of Theorem 4.1, Step 2).
Then we define FEq := U;Ej, so that Eq is an open subset of 2, £} = Eq N G, for every
l €N, and vi = xE, — X0\ E, a-€. in . Setting

E.:=(F\Q)UEq,
it follows that v« = x g, — Xr~\ g, a.€. in R". In particular, F has finite 2s-perimeter in {2
since
E(v4, Q) = 2y, s Pas (B, ).
Finally, the conclusions of Theorem 4.1 in each (G clearly imply the announced results stated
in (ii), (iv), (v), (vi), and (vii).

Step 3. Now we show items (i), (iii), and the strong convergence of vy, in H{ (). To this

purpose, we fix a smooth open set €' C €2 such that Q’ C ). Setting for an arbitrary function
ve m® (Q),

_ s [ [o(@) — o) [o(z) —v(y)?
) = T W g Te— g

we claim that
es(Vp, ) LML — es(vs, Q) ZL7LO

weakly* as Radon measures on (2. Indeed, by the uniform energy bound, we can extract a
subsequence such that e, (v, 2) £ L v for some finite Radon measure v on 2. Then we
fix p € 2(Q) arbitrary. Notice that

[ eaton @pdo = ((-8) v o),
Q

_ % //QXQ (vi(z) — v (y)vk (y) (p(z) — o(y)) drdy

|z —y|t+2e
e [ O,
Qx Qe |z — y|nt2s
— Iy — I, — ITI, .

We consider a function ® € C'* (R’ffl) compactly supported in G U 9°G for some bounded
admissible open set G C Ri“ such that 9°G' C Q and @ = . Since v € H,(2) and
Pvg € HY(G, |z|*dx) is compactly supported in G U 9°G, Lemma 2.12 yields

((=A)%vg, por), = ds /G 2% Vo | ® dx + d /Gzasz - (vpVP) dx.
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Since v§ — v¢ strongly in H!(G, |z|*dx), we obtain
((=A)vx, pup )y, — ds/ 2% Vol |2 dx + ds/ 24Vug - (Vs V) dx

= ds/ 2Vug - V(Do) dx
Rn+1

By Lemma 2.12 again, we have thus proved that

<(_A)8Uka907)k>9 k:)@<(—A)S’U*,(p’U*>Q . (54)
On the other hand, we easily deduce by dominated convergence that
2 axQ |z — y[nt2s
and
IIT; = s / / ©:(@) 0 W) Wel@) 4, (5.6)
axQe |z — y[nt2s

as k — oo. Gathering (5.4), (5.5), and (5.6) leads to

/ es(vp, Vpdr — | es(ve, Q) da,
Q

k— o0 O

and thus v = e;(vy, Q) £ L by the arbitrariness of .
Since v(9€Y) = 0, we now derive that

/ es(vg, Q) da — es(vs, Q) da. (5.7)
/ Q/

Then, since €2’ is smooth and bounded, it has finite 2s-perimeter in R™, and thus

1 1
. drdy< / / dady = Poy(Q,R") < 0. (5.8)
/(z/ /(z\sz/ |z — y[n+2s o Jrmoy |z —y|" T2 (

It now follows by dominated convergence and (5.7) that

SU,Q/:—/eSv, dz+%s// o) = )P g,
(vg, ) , (v s Joner |$_ |2

1 Tns |va () — va ()2
a s *,Q d — —d d
k:;oQ/Q,e('U )da + 1 /,/Q\Q/ |$_y|n+28 Yy
= E(04, V) = 27 s Pas(E., ). (5.9)
Using (5.7) again, the same argument shows that
[vk]qum/) — [U*]%S(Q,) ,

and thus vy — v, strongly in H*(Q)'), since we already know that v, — wv, weakly in

H*(€'). In turn, the strong convergence in H*(€)') and (5.8) easily imply {(—=A)*vy, v, ), —

((=A)*vs,0.), = 2E(vs, ) by dominated convergence. Consequently,
E(vk — v, V) = E(vg, V) + E(vs, Q) — <(—A)Svk,v*>g, — 0.
Next we infer from (2.4) that (—A)%v, — (—A)%wv, strongly in H*().
Then, fix some ¢ € Z(£'). Since v2 = 1, we have the identity
1
(v(2) = v ()) (P (@) = $(y)) = 5lva() = v ()] (va (@) () + 0:(W)(y)) ,  (5.10)

that we may insert in (2.3) to obtain

(=) v, 0, :/Q, (% /n %dy) (x)p(z) de . (5.11)

Using this equation and (5.1), item (iii) follows.

Q/
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Step 4. Now it only remains to show that E, satisfies (5.2). Let X € C*(R";R") com-
pactly supported in 2, and X = (Xi,..., X, 41) € C}(R’"'; R"*1) compactly supported in
R U Q satisfying X = (X, 0) on €. Setting {¢¢ }ser to be the flow on R™ generated by X,
we notice that

Py (¢1(E4), Q) E(vs0¢-,9). (5.12)

- 2n,s

Since the support of X is contained in G; U G for [ large enough, we can apply (vi) in
Theorem 4.1. In view of Remark 2.15 and (5.12), we obtain

0P (E., Q)[X] = 27171 Séé‘(v*, 2)[X]
_ ! SE(vS,GLUd°G))[X] = ! / v div(fX) de
2’}/7178 2'771,8 Q
= ! / div(fX)dx,
Tn,s JE.NQ
by the divergence theorem, and the proof is complete. O

6. SURFACES OF PRESCRIBED NONLOCAL MEAN CURVATURE

In this section, we investigate regularity properties in a Lipschitz bounded open set {2 C R™
of a (Borel) set £ C R"™ which is a weak solution in §2 of the prescribed nonlocal 2s-mean

curvature equation
1

HY) — —f ondENQ, 6.1)

where f is a given Sobolev function in W14(Q) with ¢ € (1155, n). The notion of weak
solution corresponds to the following weak formulation of (6.1):
Definition 6.1. A set E C R is a weak solution of (6.1) if Pos(E, ) < oo and

1

0P (E,Q)[X] =
Tn,s

/ div(fX)dz VX € CL(;R™).
ENQ

Introducing the “phase function” vg := X — Xgre\E € H (€2), this equation rewrites (as in
the proof of Theorem 5.1, Step 4)

5E(ve, V[X] = / vpdiv(fX)de VX € CL(;R™). (6.2)
Q
As we already did for the fractional Allen-Cahn equation, we rely on the fractional harmonic

extension (vg)® defined in (2.9) which satisfies

div(22V(vg)®) =0 inRTT,

l(vp)e| < 1 in R (6.3)
[(vg)e| =1 onR",
and (by Remark 2.15 and (6.2))
SE((vp)®, GUI’G)[X] = / (vp)°div(fX)dx (6.4)
oG

for every vector field X = (X,X,,+1) € C'(G;R"*!) compactly supported in G U 9°G
satisfying X,, .1 = 0 on 9°G, whenever G C Ri“ is an admissible bounded open set such
that 399G C Q.

Similarly to Section 4, instead of investigating only the regularity of (vg)® from (6.3) and
(6.4), we deal with the following more general situation. We consider an admissible bounded
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open set G C R'M™ and a function u € H*(G, |z|*dx) N L*>°(G) satisfying

div(2*Vu) =0 inG,

lul <b inG, (6.5)
lu| =1 on 9°G ,
for a given parameter b > 1 (whose importance will only appear in Section 7), and
SE(u,GUI’G)[X] = / uwdiv(fX)dx, (6.6)
G

where, again, f belongs to W' 4(9°G) with q € (7355, n).
Regularity estimates on the function u at the boundary 9°G will be our main concern in this
section. The application to weak solutions of (6.1) is the object of the very last subsection with

some specific results.

6.1. Energy monotonicity and clearing-out. In this subsection, we consider an arbitrary
solution u € HY(G,|z|*dx) N L*(G) of (6.5)-(6.6). We begin with the fundamental mono-
tonicity formula involving the following density function: for a point xg = (x¢,0) € 9°G and
r > 0 such that Ej (x0) C G, we set

1 "o
O.(f,zo,7) := mE(u,Bi(xo)) + cmqb/0 04 1HfHW1,q(Dt(cm)) dt,

where the constants 6, and c,, 4 are given by Lemma 4.2.

Lemma 6.2. For every Xo = (x¢,0) € °G and r > p > 0 such that F: (x0) C G,

@u(f,xo,r)—Gu(f,zO,p)>d5/ Za|(x—x0).Vu|2

x — X0|n+2—23

dx
B (xo)\B} (x0) |

Moreover, equality holds if f = 0.

Proof. We proceed exactly as in the proof of Lemma 4.2, assuming without loss of generality

that ¢ = 0. Using (6.6) and formula (2.22), we infer that
d
(n —28)E(u, B}) —r—E(u, B) + dsr/ 2o X

2
Vu’ A" <bI(r),
dT o+ B, ( )

|
since ||ul| =0y < b, where I(r) is given by (4.8). Note that equality actually holds for
f = 0. In view of (4.9), dividing by »"*172¢ and integrating the resulting inequality (or
equality if f = 0), the conclusion follows. (|

Corollary 6.3. For everyx = (z,0) € 9°G x {0}, the limits

. . 1

exist, and the function ©,, : °G — [0, 00) is upper semicontinuous. In addition,

Ou(f.a0.7) - Oulan) > d. [ ol = x0) - Vul?

d 6.7
Bt (xg) X — Xo|"T228 X, (6.7)

and equality holds if f = 0.

Proof. The existence of first limit defining ®,,(x) is of course a direct consequence of the
monotonicity of the density function established in Lemma 6.2. Existence and equality for the
second one follows from the existence of the first one and the estimate

! - ”f”qu 900G
[ i,y < L,
0 q

Then ®,, is upper semicontinuous as a pointwise limit of a decreasing family of continuous
functions. Finally, letting p — 0 in Lemma 6.2 yields (6.7). O
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We continue with the following clearing-out property which can be seen as a small-energy
regularity result.

Lemma 6.4. There exist a constant n > 0 (depending only onn and s) such that the following
holds. For xg = (x¢,0) € 0°G and r > 0 such that F:r (x0) € G, the condition

©.(f,z0,7) <My
implies that either u = 1 on D, j5(x0), or u = —1 on D, j5(x0).
Proof. Letus fix some y = (y,0) € D, 2(x0) x {0}. By Lemma 6.2, for 0 < p < r/2,
©.(y, p) < Ou(y,1/2) < 2" %Oy (x9,7) < 2"7*ny.

By the Poincaré inequality in Lemma 2.5, we deduce that

Ay(y) == —/ ’u — [u]yﬂp‘ dzr < 2"/275)\,175./770,
P JD,(y)

where [u],,, denotes the average of u over D, (y). Since |u| = 1 on §°G, we can find a Borel
subset £ C §°G such that u = xp — Xgoc\ g a.e. on §°G. Then,

[EN Dp(y)l) [ENDy(y)]
D] Dol

Ayl =t (1

Choosing

9w?
Ny = —
4-—2
2n+ 5)\’”75

leads to A,(y) < 3wy/4. In turn, this inequality implies
[END,y(y)l/|D,| €[0,1/4]U[3/4,1].

Since the function (y, p) € D, j2(x0) % (0,7/2) = [E N D,(y)|/|D,| is continuous, we infer
that either

EnNnD
% €[0,1/4] foreveryy € D, 5(xo) andevery 0 < p < r/2,
p
or
EnNnD
% €[3/4,1] foreveryy € DT/Q(J;O) andevery 0 < p < r/2. (6.8)
P

Now assume that (6.8) holds (the other case being analogous). Then, by the Lebesgue differen-
tiation theorem, we deduce that a.e. y € D, /5(x0) is a point of density 1 for E. Consequently,
u = la.e.on D, (o), and the lemma is proved. O

Corollary 6.5. Forevery (x,0) € 0°G, either ©,(x) = 0 or ©,(x) > n,. As a consequence,
there is an open subset E,, C 0°G such that 0FE, N °G = {@u > 170} and

u=xg, — Xoog\p, a.e.ond'G.

Proof. The alternative @, (z) = 0 or ©,(z) > n, is a direct consequence of Lemma 6.4
together with Lemma 4.8. By upper semicontinuity of ©,, the set ¥ := {©®, > n,} is
relatively closed in 9°G, and

E, = {x = (2,0) € 3°G : uw = 10on D,(z) for some r € (0, dist(x, 8+G))}

is open and disjoint from . Arguing as in the proof of Theorem 4.1, Step 4, we obtain that
U= Xg, — Xooc\E, a.¢. on "G, and 90F, N "G = X. O

Remark 6.6. By [60, Corollary 3.2.3], we also have J#"~25(9E, N 0°G) = 0. We will
improve this a priori estimate later on.
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6.2. Compactness. In this subsection, we are dealing with compactness issues for sequences
{urtren € HY(G, |2|*dx) N L>=°(G) satisfying

div(z*Vug) =0 inG,

lug| < b inG,
lup| =1 on 0°G,
and
SE (ug, GUG)[X] = / ug, div(fp X ) dz, (6.9)
G

for some fi, € WH4(9°G) with ¢ € ( n), and a parameter b > 1 independent of k.

_n_
1+2s?

Theorem 6.7. If sup;, E(ug, G) + || frllwia@og) < 0o, then there exist a (not relabeled)
subsequence and a function v € H'(G,|z|*dx) N L>°(Q) satisfying (6.5) such that u, — u
weakly in H'(G, |2|°dx), and u, — u strongly in HL (G U G, |z|*dx). In addition, if
fr = f weakly in W14(9°G), then u satisfies (6.6).

Proof. Since the argument essentially follows the proof of Theorem 4.1 (Step 1), we only
sketch the main points. First, by assumption on the energy, we can find a subsequence and
u € HY(G,|z|*dx) N L*>°(G) satistying (6.5) such that u, — u weakly in H*(G, |z|*dx) and
strongly in H}! (G, |2|*dx) . Consider the sequence of measures 1, := % 29| Vu 2" LG
which admits a weakly* convergent (not relabeled) subsequence towards a limiting measure
= %z“Wuﬂiﬂ”“ LG + fising With spt(pising) € 0°G. From Lemma 6.2, we infer that x
satisfies the monotonicity inequality (4.23) with T' = sup,, ka||W1,q(60G). As a consequence,
the density ©" 2 (1, x) (as defined in (4.24)) exists, is finite for every x € 9°G, and defines
an upper semicontinuous function on °G. We define the concentration set ¥ as in (4.26) with
0y, 1 replaced by 1/2. Then & = {©"72(p, ) > ny/(2wn—2s)} € 0°G, and #"2%()
is finite. We continue exactly as Theorem 4.1 to show that p,, is absolutely continuous
with respect 52" ~251_3, and that ©" % (ging, X) € [0,00) exists at # " *-ae. x € .
By Marstrand’s Theorem, we must have fiine = 0. In other words, u;, — w strongly in
H} (G U 8°G,|z|°dx). In view of (2.22), if fr — f weakly in W14(9"@), this strong
convergence allows us to pass to the limit k¥ — oo in (6.9) and obtain (6.6). (I

Remark 6.8. If u;, — u strongly in H (G UG, |z|*dx), fr — [ strongly in W14 (9°G),
xp — xand r, — r > 0, then Oy, (fr, 2k, k) = Ou(f, x, 7).

Lemma 6.9. In addition to the conclusion of Theorem 6.7, if {xi}ren C 0%G is a sequence
converging to x € 9°G, then

limsup O, (zx) < Oy (x).

k—o0
Proof. Assume for simplicity that x = 0. Applying Corollary 6.3, we obtain for » > 0
sufficiently small and 7y, := |zg| < 7,

E(uk, BJr

T+

Ou, (21) < Ou, (fi, 2, 7) < )+ Trb

rn72s

with " := (Cp,4b/0q) supy. [|.fkllyir1.a(p0q) < 0o Since ri — 0 and uy converges strongly to
win HY(Bj,, |z|*dx), we have E(ug, B, ) — E(u, B;). Hence

r4+7EK

limsup O, (x) < E(u, B}) + Trb .

k— o0 rn=2s

Letting r | 0 now leads to the conclusion. (]
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Corollary 6.10. In addition to the conclusion of Theorem 6.7, the boundaries OE,, N 9°G
converge locally uniformly in 0°G to 0FE, N0°G, i.e., for every compact subset K C 0°G and
everyr > (),

0E,, NK C 7.(0E,N3°G) and 0E,NK C Z.(0E,, Nd°QG)
for k large enough.

Proof. We start proving the first inclusion. By Corollary 6.5, ®,,(x) = 0 for every point
x € K\ Z.(0E, N d°G). Since ©,, is upper semicontinuous, we can find a point x5, €
K\ 7,(0FE, N 8°G) such that
0, (x;) = sup 0, (x).
2EK\ T, (0E,NIG)

Then select a subsequence {k; }jen such that lim; O, (zx;) = limsupy, Oy, (). Extract-
ing a further subsequence if necessary, we can assume that z,, — z. € K \ .7,(9E, N 8°G).
Since ©,(z,) = 0, we infer from Lemma 6.9 that lim sup;, ©,,, (z;) = 0. Consequently,
O, () < ny/2 for k large enough, and Corollary 6.5 shows that, for such integers k,
(0B, NK)\ Z.(0E, Nd°G) = 0.

To prove the second inclusion, we consider a covering of 0F,, N K made by finitely many
discs D, /5(x1),..., Dy o(x ) (included in 0°G, choosing a smaller radius if necessary).
Then, for each j, we can find a point :cj € D, jo(x;) N Ey and a point z; € D, jo(w5) \ E,.
Since D,.j3(z;) N E, and D, /5(x;) \ £, are open sets, we can find a radius ¢ > 0 such that
Dgg(xj) C Dy jo(x;) N Ey and Doy(x;) C Dy () \ B, foreach j € {1,...,J}. Hence,
u=+lon Dgg(z]i) foreachj € {1,...,J}. In particular, ®,(z) = 0 forevery x € Eg(xf)
andeach j € {1,..., J}. Arguing as before (for the first inclusion), we infer from Lemma 6.9
that
lim ( sup @uk(z)):() Vie{l,...,J}.
k=00 X oeDy (aF)

Then Corollary 6.5 implies that ©,,, (z) = 0 for every x € EQ(.Z‘;-‘:) and j € {1,...,J},
whenever k is large enough. Since each DQ(ach) is connected, we must have either u, = +1

oruy = —1 on Dg(zjt) (otherwise Dg(xji) could be written as the disjoint union of two
non empty open sets). On the other hand, u;, — w in Ll(DQ(sz)) by Remark 2.4, and
we conclude that u, = u = £1 on Dg(xj[) for each j € {1,...,J}, whenever k is large

enough. Hence, D, 5(2;) N Ey, # 0 and D, 5(x;) \ Ey, # 0, and we have thus proved
that O, N D, j5(x;) # () foreach j € {1,...,J}, whenever k is large enough. Therefore,
OB, NK CU; Dyja(xj) € Fr(0E,, NI°G) for k sufficiently large. O

6.3. Tangent maps. We now return back a given solution v € H'(G, |z|*dx) N L>°(G) of
(6.5) and (6.6), and we apply the results of Subsection 6.2 to define the so-called “tangent
maps” of u at a given point. To this purpose, we fix the point of study xo = (z¢,0) € G
and a reference radius py > 0 such that Bljo (x0) € G. We introduce the rescaled functions

Uso,p(X) i= u(xo + px) and  fo, ,(2) := f(xo + pz), (6.10)

which are defined for 0 < p < po/r, x € B;" and x € D,, respectively. Changing variables,
we observe that

®Uxoxp(p2st07P’O7T) = @u(f,lﬁo,[ﬂ’). (611)
This identity, together with Lemma 6.2, leads to
1
mE(uIU-ﬁ? B';F) < ®u(fa Zo, pT) < ®u(f7 Zo, Po)

0
1 n.q0 Po’
nikE(u,G)—i— Cn,qY Po

< 1.4 . (6.12
P s 1 llvra@oc) - (6-12)
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Given a sequence p;, — 0, we deduce that

limsup E(ug, ., Bf) < 0o foreveryr > 0. (6.13)

k—o0

As a consequence of Theorem 6.7, we have the following

Lemma 6.11. Every sequence p, — 0 admits a subsequence {pj, }ren such that ug, , — ¢
strongly in HY (B}, |z|*dx) for every r > 0, where ¢ satisfies

div(2Ve) =0 in R},

lpl < b in R (6.14)
o] =1 onR™,

and for each r > 0,
OE(p, B UD,)[X] =0 (6.15)

for every vector field X = (X,X,11) € C* (Er, R"*1) compactly supported in Bf, U D,
such that X,,+1 = 0 on D,.

Proof. In view of (6.13), Theorem 6.7 yields the announced convergence and (6.14). Then
observe that u,,, , satisfies

SE(ugy p, B U D,)[X] :/ Uy, p Aiv(0%* firg,pX ) da .

.

Rescaling variables, we obtain

2s . _ 9q .
10°° fzo,olvirrap,) = P HfHWLq(DPT(IU))RO-

Hence p** f,,,, — 0 strongly in W'¢(D,.), and the conclusion follows from Theorem 6.7. [

Definition 6.12. Every function ¢ obtained by this process will be referred to as tangent map
of u at the point . The family of all tangent maps of u at ¢ will be denoted by Ty, (u).

Lemma 6.13. If ¢ € T, (u), then
0,(0,0,7) = 0,(0) = Oy(xzg) Vr >0,
and @ is 0-homogeneous, i.e., p(AX) = p(x) for every X > 0 and every x € R1+1.

Proof. From the strong convergence of uy, ,» toward ¢ and the identity in (6.11), we first infer
that

©,(0,0,r) = kl;n;o Guww; ((03)%* frop,0,7) = Ou(g) Vr>0.
Then the monotonicity formula in Lemma 6.2 applied to ¢ implies that x - Vo(x) = 0 for

every X € R’}r“, and the conclusion follows. 0

6.4. Homogeneous solutions. In view of Lemma 6.13, the study of tangent maps leads to the
study of 0-homogeneous solutions, which is the purpose of this subsection. We start with the
following observation.

Lemma 6.14. Let o € H'(B,|z|%dx) N L>=(B;") be a solution of
div(2¢V¢) =0 in Bf,
lpl <b in B, (6.16)
lp| =1 on D1,

for some constant b > 1. Assume that there exists f € Wh9(Dy) withn/(1+ 2s) < ¢ < n
such that

SE(y, Bf U Dy)[X] :/ ediv(fX)dz, (6.17)
D,



46 VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

for every vector field X = (X,X,41) € Cl(Ef, R™+1) compactly supported in B U D
such that X, 11 = 0 on D1. If ©4(f,0,1) = ©,(0), then ¢ is 0-homogeneous and f = 0.

Proof. As in the proof Lemma 6.13, Corollary 6.3 applied at zo = 0 leads to the homogeneity
of ¢. In turn, the homogeneity of ¢ implies that To(¢) = {®}, and the conclusion follows
from Lemma 6.11. 0

Definition 6.15. We say that a function ¢ € Llloc(Rf_H) is a nonlocal stationary cone if ¢

is 0-homogeneous, ¢ € HY (B, |z|*dx) N L°°(B;"), and ¢ satisfies (6.14)-(6.15) (for some
constant b > 1).

Summing up the results of the previous subsection, tangent maps to a solution of (6.5)-(6.6)
are thus nonlocal stationary cones. We shall present in details the main properties of those
“cones”. We start with the following lemma explaining somehow the terminology.

Lemma 6.16. If ¢ is a nonlocal stationary cone, then there is an open cone C, C R™ such
that
e
Y = (ch, - XRn\cg,) )

as defined in (2.9). In particular, |p| < 1in RT‘l.

Proof. By Corollary 6.5, there is an open set C,, € R™ such that ¢ = xc, — xgn\c, a.€. on
R™. Since ¢ is 0-homogeneous, we easily infer that C, is an open cone. We set

wi= Q= (XC¢ - X]Rn\cw)e.
Since w is 0-homogeneous, w € HllOC (Riﬂ, |z|adx) n Loo(Ri-l—l) with ”wHLoc(Ri“) <
1+ H('DHL(’O(RTI)’ and w satisfies

div(2°Vw) =0 in Ri—i-l 7

w =0 on GRTA :

Note that, as in the proof of Lemma 4.8, w and 2?0, w are Holder continuous up to 8R7fr+1,
and smooth in RT}FH by elliptic regularity. Since w is bounded, the Liouville type theorem in
[13, Corollary 3.5] tells us that w = 0. O

Remark 6.17. If ¢ is a nonlocal stationary cone, then ®,(\y) = O, (y) for every y €
R™\ {0} and A > 0. Indeed, by homogeneity of ¢ we have for each p > 0,

O, (0, Ay, p) = ©4(0,, p/A)
and the assertion follows letting p — 0.
Lemma 6.18. Let o be a nonlocal stationary cone. Then,
O,(y) < O,(0) vyeR".
In addition, the set
S(p) = {y € R": ©,(y) = ©,(0)}
is a linear subspace of R™, and p(x +y) = ¢(x) for everyy € S(p) x {0} and x € R}
Proof. By Corollary 6.3, we have forevery y = (y,0) € 8R7}FH and every p > 0,
Lalx =) - Vo(x)”

O,y +ds/ dx = 0,(0,y,p) . (6.18)
‘P( ) B;(y) |X7y|n+2725 ‘P( )
On the other hand, by homogeneity of ¢,
p+ = n—2s p+ y n—=2s
0.0, < L 0 0.0+ 1) = CH " 6,0,
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Inserting this inequality in (6.18) and letting p — oo, we deduce that

X =) - Vo)
O, (y) + ds /RW Sy X < 0,(0).
+

Next, if @, (y) = @, (0), then (x —y) - Vio(x) = 0 for every x € R’,"'. By homogeneity of
¢, we deduce that y - Vipo(x) = 0 for every x € R, ie,

p(x+y)=px) VxeR}. (6.19)

The other way around, if y = (y,0) satisfies (6.19), then (x —y) - Vi(x) = 0 for every
X € RT}FH (using again the homogeneity of ). By (6.18) and (6.19), it implies that for each
radius p > 0,

Oy (y) = ©4(0,y,p) = ©,(0,0,p) = B,(0),
and thus y € S(¢). From (6.19) it now follows that S(¢) is a linear subspace of R™. O

Remark 6.19. If ¢ is a non constant nonlocal stationary cone, then ®,(0) > 0 by Lemma 6.4.
In turn, we infer from Corollary 6.5 that S(¢) C 0C,,.

Remark 6.20. If ¢ is a nonlocal stationary cone such that dim S(¢) = n, then either C, = R”
or C, = 0, i.e., either ¢ = 1 or ¢ = —1, respectively. As a consequence, if ¢ € T}, (u)
for some solution v of (6.5)-(6.6), then ©,(z9) = ©,(0) = 0. Now Corollary 6.5 yields
xo € 0F, N 0°G. In other words,

z9 € 0B, N3°G <= dim S(p) < n — 1forall p € Ty, (u).

Remark 6.21. If ¢ is a nonlocal stationary cone such that dim S(y¢) = n—1, then C,, is a half-
space. Indeed, up to a rotation, we may assume that S(¢) = {0} x R"~1, and Lemma 6.18
yields p(x) = ¢(21,2) for all x = (z1,...,2,,2) € R} As a consequence, either
Cy, ={x1 >0} orC, = {z1 <0}

In view of the remark above, we introduce the half-space P; C R” defined by
Py :={x >0}, (6.20)

and its extension to R’ffl, @ref := (XP, — Xrr\ P, )¢~ Then we set
ds
0,5 = 3 / 2%V pref|? dx . (6.21)
Bf

Lemma 6.22. If ¢ is a non constant nonlocal stationary cone, then © , 0) > 0,, 5. In addition,
equality holds if and only if C, is an open half-space.

Proof. Step 1. Since ¢ is not trivial, by Corollary 6.5, Remark 6.19, and Lemma 6.18, we can
find a point y € S"~! such that ©,(0) > ©,(y) > 0. Rotating coordinates if necessary, we
may assume that y = e,,, where (eq, ..., e,) denotes the canonical basis of R™. Let 1, be a
tangent map of ¢ at e,,. We claim that ¢, is independent of the x,,-variable, i.e., O, 1, (x) = 0
for every x € R’fr“. To prove this claim, we consider a sequence of radii p; | 0 such that
©e.pr — Uy strongly in H' (B, |z|*dx) for every 7 > 0. By homogeneity of ¢, we have for
every x = (z,2) € R,

D Pen o (X) = —pix - Vp(en + prx, prz) = —prX - Vipe, p, (X) .

Consequently,
1

Tn—QS

/ Za|aﬂcnsﬁen,pk|2 dx < TQF’%@@(Oa en,Tpr) — 0,
Bt k— oo

and the claim follows. As a consequence, Cy,, = C,,—1 X R for some open cone C,,—1 C R,
and ©,, (0) = ©,(y) > 0. Since ¥, is not trivial, we can now find a pointy € S"~2 x {0}
such that ®,(0) > ©,,(y) > 0. Rotating coordinates if necessary, we may assume that
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Yy = en—1, and we consider a tangent map v,,_; of ¥, at e,,_;. Then, such a tangent map
is independent of the x,, and x,_; variables. Iterating this process, we produce for each
ke {n—1,...,2}, anon trivial tangent map 1y, of Y541 at ey, such that Cy,, = Ci—1 xRrt1-k
for some open cone C;—; C RF™!, and 0,(0) > O,,(0) > 0. At the last step of the
process (i.e., k = 2), we have either C; = (0, 4+00) or C; = (—00,0). In other words, either
Cy, = {x1 > 0} or Cy, = {1 < 0}. Without loss of generality, we may assume that
Cy, = {x1 > 0}. Then, by Corollary 6.16 we have ¢ = (xp, — xr~\p,)¢ Where P} is the
reference half space (6.20). By Lemma 6.13, we conclude that ®,,(0) = 6,, 5, and we have
thus proved that ©,(0) > 6,, ..

Step 2. Assume that ©,(0) = 0,, ;. From Step 1, Corollary 6.5, and Lemma 6.18 we infer
that ®,(z) = 6, , for every x € 0C,. In view of Remark 6.19, it leads to S(¢) = 0C,.
Since ¢ is not trivial, we must have dim S(¢) = n — 1, and Remark 6.21 tells us that C,, is a
half-space. U

Fora constant A > O and j € {0,...,n}, we now introduce the following class of nonlocal
stationary cones

Ci(A) == {nonlocal stationary cones ¢ such that dim S(¢) > j and ©,(0) < A} .
Note that €41 (A) C %;(A), and €, (A) = {+1, —1} by Remark 6.20.

Lemma 6.23. For each j € {0,...,n} and r > 0, the set {%Bj tp € CKJ(A)} is strongly
compact in H*(B,, |z|*dx).

Proof. By homogeneity, it is enough to consider the case = 1. Let {¢ fren € €;(A) be an
arbitrary sequence. Still by homogeneity, we have ©, (0,0,2) = ©,, (0) < A, so that

E(pr, BS) < 2" %A

Since || < 1 by Lemma 6.16, we can apply Theorem 6.7 to find a (not relabeled) subse-
quence such that @), — 1 strongly in H' (B, |2|*dx) for a function ¢ satisfying (6.16)-(6.17)
with f = 0 and b = 1. Then we deduce from Lemma 6.9 that

©,(0) > lim ©,,(0) = lim ©,,(0,0,1) = ©4(0,0,1).

In turn, Corollary 6.3 shows that ®,(0) = ©,/(0,0,1), and thus ¢ is 0-homogeneous by
Lemma 6.14, and ©,,(0) = lim;, ©,, (0) < A. Consequently, ¢ is a nonlocal stationary cone,
and it remains to show that dim S(¢) > j.

Extracting a further subsequence if necessary, we may assume that dim S(¢y,) is a constant
integer d > j, and S(¢xr) — V in the Grassmannian G(d,n) of all d-dimensional linear
subspaces of R™. For an arbitrary y € V' N Dy, there exists a sequence {yx }reny € D1 such
that yx € S(px) and yr — y. By Lemma 6.9, we have

Oy(y) > lim Oy, (yx) = lim O, (0) = ©y(0),

and we deduce from Lemma 6.18 that y € S(). Therefore V. C S(¢), and in particular
dim S(¢) > d. O

6.5. Quantitative stratification. In this subsection, we are back again to the analysis of the
function v € H(G, |z|%dx) N L>(G) solving (6.5)-(6.6). We are interested in regularity
properties of the open subset E,, C 9°G satisfying u = g, — XooG\E, On 9°G (provided
by Corollary 6.5). To this purpose, we introduced the following (standard) stratification of the
singular set of u,

Sing’ (u) := {x € 9°G : dim S(p) < j forall p € Tz(u)}, j=0,....n—1.



ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION 49

Obviously,
Sing’ (u) C Sing’ ™ (u)
and by Remark 6.20,
OB, Nd°G = Sing™ ' (u). (6.22)
We also introduce the “regular part” 3,04 (u) of E, N 9°G,
Yreg(u) = (0B, N 0°G) \ Sing™ *(u).

The terminology regular part is motivated by the following proposition showing that all blow-
up limits of E,, at points of ¥, (1) are hyperplanes.

Proposition 6.24. For every x € Yieg(u) and ¢ € Ty (u), we have dim S(¢) = n — 1. In
particular, if x € yeg(u), then every sequence py, | 0 admits a subsequence {p).}ren and a
half space P C R™, with 0 € OP, such that the rescaled boundaries

OEy := (0EN3°G — z)/p),

converge locally uniformly to the hyperplane OP, i.e., for every compact set K C R™ and
everyr > 0,

OE,NK C Z.(0P) and OPNK C Z,(0E))

whenever k is large enough.

Proof. By the very definition of X,es(u) and (6.22), if © € X,cq(u), then there exists g €
T (u) such that dim S(pg) = n — 1. By Lemma 6.13 and Remark 6.21, we have ©,,(z) =
0,,(0) = 6, , as defined in (6.21).

Let p;, | 0 be an arbitrary sequence. By the results in Subsection 6.3, there exists a subse-
quence {p} }ren such that u, ,, — ¢ strongly in HY(B;,|z|*dx) for every r > 0, for some
nonlocal stationary cone ¢ € T, (u) satisfying ©®,(0) = ©,(0) = 6, ,. By Lemma 6.22,
there is an open half-space P C R", with 0 € 0P, such that ¢ = (xp — xrn\p)°. Then the
conclusion follows from Corollary 6.10. 0

We are now ready to prove one of the main result of this section: the optimal estimate for
the dimension of OF,, N 2 (here, dim_, denotes the Minkowski dimension).

Theorem 6.25. We have dim_4 (OE, NQ') = n— 1 for every open subset ' C 9°G such that
' C 0°G and DE, N QY # 0. In addition, dim - Sing’ (v) < j for each j € {1,...,n — 2},
and Sing® (u) is countable.

We will prove Theorem 6.25 usnig the abstract stratification principle of [29], originally
introduced in [19]. To fit the setting of [29], we first need to introduce some notations.
For a radius » > 0, we set

Q" :={zeR": B} ((,0) CG}. (6.23)

In what follows, we fix three constants rq > 0, Hy > 0, and Ag > 0 such that

”f”v'vl,q(aog) < Hp, (6.24)
and
sup{@u(f,x,p):erT“, 0<p<r0} < Ag. (6.25)
Note that the supremum above is indeed finite by (6.12), and for 0 < p < o,
1 n.ob (di 0)bq
Ou(f7,p) < 75 Blu, G) + =1 ( 1Zma 2l Hy VzeQm.
TO q
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For each j € {0,...,n}, p € (0,79), 29 € 2 and x¢9 = (20, 0), we now introduce the
function d; (-, zo, p) : H' (B} (x0),|2|*dx) — [0, 00) defined by

d; (0,20, p) i= inf { [0a0p = ¢l gy + 9 € Gi(Ao) }

where vy, ,(x) := v(xg + px). Note that the infimum above is well defined by Remark 2.4,
and it is always achieved by Lemma 6.23. Moreover,

dO('v Zo, p) < dl('v Zo, p) <...< dn(a Zo, p) )
and
d, (v, o, p) 1= min{”vmo,p - 1HL1(31+)7 l[vao,p + 1HL1(31+)} :

Observe that each functional d;; (-, z, p) is a (rescaled) L'-distance function, and consequently
they are p~"-Lipschitz functions with respect to the L' (B (xo))-norm. In particular, each
functional d; (-, zo, p) is continuous with respect to strong convergence in L' (B} (xo)).

In the terminology of [29, Section 2.1], the functions ®,,(f, -, p) and d; (u, -, -) will play the
roles of density function and control functions, respectively (thanks to Lemma 6.2). We need

to show that they satisfy the structural assumptions of [29, Section 2.2]. This is the purpose of
the following lemmas.

Lemma 6.26. There exists a constant
do(ro) = do(ro, Ho, Ao, b,n, 5,q) € (0,1)
(independent of u and f) such that for every for every x € Q" and p € (0,19),
O,(z)>0 = dy(u,z,p)=do.

Proof. Assume by contradiction that there exist sequences of functions { (u, fx)}xen solving
(6.5)-(6.6) and satisfying (6.24)-(6.25), points {zj }ren € Q7°, and radii {pg }ren € (0,70)
such that ©,, (zx) > 0 and d,, (ug, zx, pr) < 27

We continue with a general first step that we shall use again in the sequel.

Step 1, general compactness. We consider the rescaled maps ug = (ux)q,,p, and fr =
P2 (i) 2, as defined in (6.10). By our choice of A, a simple change of variables yields

= = 0
G)ﬂk(fka(Ll) <A0 and ||kaW1,q(D1) <r0qH0-
By Theorem 6.7, we can find a (not relabeled) subsequence such that u; — wu, weakly in
HY(Bj,|z|*dx) and strongly in H!(B;,|z|*dx) for every 0 < r < 1, and f, — f. weakly
in Wh4(Dy), where (u., f.) satisfies (6.16)-(6.17). By Remark 2.4, u — wu. strongly in

LY(B"), so that
d;(ux,0,1) = d;(us,0,1) foreachj € {0,...,n}.

)
In addition, by lower semicontinuity of E(-, B;") and Fatou’s lemma, we have

0.(f,0,1) < 1ikminf®ak(fk,0,1) <Ao and [|fllyiap,) < 7o Ho- (6.26)
—00

Step 2, conclusion. Since d,, (71, 0,1) < 27%, we have d,, (u4, 0, 1) = 0. In other words, either
u, = 1 or u, = —1, and consequently ®,,, (0) = 0. On the other hand, by Corollary 6.5,
0z,.(0) = ©,,(0) > ny > 0. Then Lemma 6.9 yields ®,,,(0) > limsup, ©,,(0) > 0,
which contradicts ©,,, (0) = 0. O

Lemma 6.27. For every § > 0, there exist constants
m (55 TO) =N (57 To, HO) A07 ba n,s, Q) € (07 1/4)

and
)‘1(6) TO) = )‘1(6) rOaH07A07ban757Q) € (Oa 1/4)
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(independent of w and f) such that for every x € Q™ and p € (0,rg),
Ou(f,x,p) = Ou(f,z,ip) <M = do(u,z,p) < 9.

Proof. Assume by contradiction that for some § > 0, there exist sequences of functions
{(uk, fr)}ren solving (6.5)-(6.6) and satisfying (6.24)-(6.25), points {xj }ren € 27, and
radii {pr }ren C (0,70) such that

euk(fkaxlwpk) - euk (fk7xk7)‘kpk) < 2_k and dO(ukwrkapk) 2 67

where A\, — 0 as & — oo. We consider the rescaled maps uy := (uk)xk,pk and f~’k =
P25 (fk)ar,pe as defined in (6.10), so that

®ak(ﬁ5071)7®ﬁk(f}€70;)\k) g 2_k and do(’ljk,o,l) 25

Then we apply Step 1 in the proof of Lemma 6.26 to find a (not relabeled) sequence along
which uy and fk converge to u, and f,, respectively. As consequence of the established
convergences, we first deduce that do(u.,0,1) > 4.

On the other hand, by Lemma 6.2 we can estimate for 0 < r < 1 and k large enough (in
such a way that \;, < 7),

(4
~ 1 _ Cp.abrn?
®’Ek (fkv Oa 1) - Tn—QSE(uk’ B;r) - 7(]970[{07’&1
q

<Oz, (f,0,1) — Oz, (fi,0,7) <27%.

Using (6.26) and the strong convergence of uy, in H'(B,", |2|%dx), we can let k — oo to

deduce that
+ Cn,qu(e)q 0
@u*(f*,o,l)* :E(u*aBr)< THOT ‘.
q

Letting » — 0, we infer from Corollary 6.3 that @, (f«,0,1) = ©,,(0). By Lemma 6.14,
f« = 0 and u, is a nonlocal stationary cone. Moreover, (6.26) yields the estimate ©,,, (0) <

Tn—QS

Ag, so that u, € %p(Ao). Hence do(u.,0,1) = 0, which contradicts the previous estimate
do(u.,0,1) > 6. O

Lemma 6.28. Forevery 6,7 € (0, 1), there exists a constant
n2(9,7,70) = n2(0, 7,70, Ho, Ao, b,n, 8, q) € (0,6]
(independent of u and f) such that the following holds for every p € (0,7/5) and x € Q™. If
d;(u,z,4p) <m2 and dji1(u,z,4p) =6,

hold for some j € {0,...,n — 1}, then there exists a j-dimensional linear subspace V. C R"
for which

do(u,y,4p) >n2 Yy € Dy(x)\ Frp(x+ V).

Proof. The proof is again by contradiction. Assume that for some 6,7 € (0,1) and some
j €{0,...,n — 1}, there exist sequences of functions {(ug, fx)}ren solving (6.5)-(6.6) and
satisfying (6.24)-(6.25), points {x } ren C Q7°, and radii {pg }ren C (0,70/5) such that

dj(Uk,$k,4pk) < 2_k and dj+1(uka$k74pk) P 6;

and such that the conclusion of the lemma does not hold. Now we consider the rescaled
functions U, := (uk)a,,4px and fj, := (4p8)% (fr)wr 4ps

Step 1. For each k, we select ¢ € %;(Ao) such that ||uy, — <Pk||L1(Bl+) < 27% (which is
possible by Lemma 6.23). Since

A1 (P, 0,1) > dyjr (@, 0,1) — [T — @ll gy = 6 — 277, (6.27)
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we infer that dim S(¢r) = j for k large enough. Extracting a (not relabeled) subsequence
and rotating coordinates if necessary, we may assume that S(¢r) = V for some fixed linear
subspace V' of dimension j. Then, by Lemma 6.23 we can find a further (not relabeled) subse-
quence such that @), — ¢ strongly in H*(B,, |z|%dx) for every r > 0 and some ¢ € 6;(Ay).
In particular,

©,(0) = ©,(0,0,1) = lim ©,,(0,0,1) = lim O, (0).
On the other hand, by Lemma 6.9,
O, (y) = klggo Oy, (y) = klggo 0,,(0)=06,(0) vyeV.
Therefore, V. C S(p) by Lemma 6.18. But letting k& — oo in (6.27), we deduce that

d;+1(e,0,1) > 6, and thus S(p) = V. Since the conclusion of the lemma does not hold,
for each k we can find a point yp € D14 \ 77 /4(V) such that do (g, yx, 1) — 0 as k — oo.

Step 2. Consider the translated function @y, = (Ug)y, 1, and select ¥, € Go(Ao) such that
||@g — g ||L1(Bl+) = do(uk, yx, 1) — 0. By Lemma 6.23 and Remark 2.4, we can find a further

(not relabeled) subsequence such that 1, — 1 strongly in L*(B;") for some ¢ € %p(Ao).
Then 4, — 1 strongly in L' (Bfr ). Now we extract a further (not relabeled) subsequence such
that v — v, for some v, € 51/4 \ Z;/4(V'). Observe that

I — @ykJHLl(B;M) < - ak”Ll(B;M) + {1 (@) yi 1 — ‘Pyk,1||L1(B;/4)

<Y = Ukl pa gy + Uk — @l pipty -
By continuity of translations in L', and since 1y — ©, we infer that
I — ‘Py*,lHLl(B;M) = klggo I — (pykalHLl(B;/4) =0.

In other words, ¢ = ¢,, 1 on B;r/4. As a consequence, setting y,. = (yx,0), for every

x € B ,andt € (0,1),

p(x+ty. —x)) = (1 - t)x+ (t — Dy.) = ¢(y« —x).
Differentiating first this identity with respect to ¢, and then letting ¢ — 0, we discover that
0= (y« —x) - Vo(x) = y. - Vio(x) for every x € B;F/Q. By homogeneity of ¢, it implies
thaty. - Vio(x) = 0 forevery x € R?r“. Arguing as in the proof of Lemma 6.18, we deduce
that y, € S(¢) =V, which contradicts the fact that y. € D14\ Z;/4(V). O

We finally prove the following corollary whose importance will be revealed in Section 7.
Corollary 6.29. For every 6,7 € (0, 1), there exists a constant
n3(0,7,70) = n3(d, 7,70, Ho, Ao, by 1, 8,q) € (0, ]
(independent of u and f) such that for every p € (0,7/5] and x € Q"°, the conditions
do(u,z,4p) <n3 and d,(u,z,4p) =9,
imply the existence of a linear subspace V-.C R™, with dim'V < n — 1, for which
dou, 3, 4p) > 15 Wy € Dy(w)\ Trpla + V).

Proof. We argue by induction on the dimension j € {1,...,n} assuming that there exists a
constant 7, ; (4, 7,79) € (0, 6] such that for every p € (0,ry/5] and z € Q", the conditions

do(u,z,4p) <n.; and d;(u,x,4p) =6,
imply the existence of a linear subspace V', with dim V' < j — 1, for which

do(u,y,4p) > ns; Yy € Dy(x)\ Trp(x+V).
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By Lemma 6.28 this property holds for j = 1 with 7, 1(5,7) = n2(6, 7).
Now we assume that the property holds at step j, and we prove that it also holds at step
7 + 1. To this purpose, we choose

Najt1(6,7,70) := 1 (04,5 (8,7,70), 7, 70) € (0,74,5(8,7)] C (0,6].
Then we distinguish two cases.
Case 1). If d;(u, x,4p) < 14, then d;(u, z,4p) < 12 and we can apply Lemma 6.28 to find
the required linear subspace V' of dimension j = (j + 1) — 1.
Case 2). If d;(u, xz,4p) > 1. ;. then we apply the induction hypothesis to find the required
linear subspace V' of dimension less than j7 — 1.
Now the conclusion follows for 773(8, 7, 70) := 14 (0, T, T0). O

We now introduce the so-called singular strata of w. For § € (0,1), 0 < r < 79, and
j€{0,....,n—1}, we set

8.7

70,70

(u) == {xeﬂ”’ : Oy (z) > 0and djiq (u, z, p) 26forallr<p<r0},

.7
’l“05 ﬂ Tgr5u and 8 U ’l“05

0<r<ro 0<o<1
According to [29], we have the following result.

Theorem 6.30. For every ko € (0, 1), there exists a constant
C= C(K’Ov To, HO) AO) b7 n,s, q) >0
such that
" (ﬂ, (Sf(fl(u))) <Crire Wr e (0,7). (6.28)
In addition, dim (87 (u)) < j foreachj € {1,...,n— 2}, and S (u) is countable.
Proof. By Lemma 6.27 and Lemma 6.28, the functions ®,(f, -, ) and d;(u, -, -) satisfy the
assumptions in [29, Section 2.2]. Then the dimension estimate on S,ZO (u) for each j €

{1,...,n — 2}, and the fact that S, (u) is countable, follow from [29, Theorem 2.3].
According to Lemma 6.26, Sff(;sl( ) =38"1 )(u) for every & € (0,d0(ro)]. Since the

70,00(T0)
sets S, Tél (u) are decreasing with respect to d, we deduce that S~ (u) = S 510(T0 (u). Then,
estimate (6.28) follows from [29, Theorem 2.2]. O

Proof of Theorem 6.25. We choose ro > 0 in such a way that Q' C Q™. By Corollary 6.5
and Lemma 6.26, we have 0F, N ) C Sfofl(u). According to estimate (6.28), for every
a € (0, 1) there exists a constant C' = C(«, 1) such that

LT (0E,NQ)) <Cr* Vre (0,r0). (6.29)

Hence,

log (£ (7,(0B, N Q)
limsup | n —

<n-— Va € (0,1),
s Tog T n—a Yae (0,1)

and we obtain that the upper Minkowski dimension dim_, (9E, N €) is less than n — 1. On
the other hand, since E, N Q’ is a not empty open subset of ', distinct from €/, we have
dim - (0E, N ) > n — 1. Since the lower Minkowski dimension dim , (0E, N Q') is
greater than than the Hausdorff dimension, we conclude that dim 4 (0F, N Q') =n — 1.

To complete the proof, we show that

Sing’ (u) N Q" C 87 (u) foreachj € {0,...,n—2}, (6.30)

so that the conclusion follows from Theorem 6.30 (letting 7o — 0 along a decreasing se-
quence). To prove (6.30), we argue by contradiction assuming that there exists a point x €
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Sing’ (u) N Q70 \ 87 (u). Then, = & Sfo i (u) forevery k € N. Hence, for each k € N, there
exists a radius r, € (0, 7] such that © ¢ Sfo P
such that djy1(u, z, pg) < 2% Now we extract a (not relabeled) subsequence such that

(u), and therefore a radius py, € [ry, ro]

pr — px« for some p, € [0, 79]. We distinguish the two following cases:

Case 1). If p,, = 0, then we can extract a further subsequence such that (u), ,, — ¢ strongly
in H(B], |2|%dx) for some ¢ € T, (u) (by Lemma 6.11). In addition,

derl((Pa 07 1) = kli}ﬂgo derl(uI,pkaOv 1) = klinolo derl(ua z, pk) =0 5

so that ¢ € €j11(Ao). Then dim S(¢) > j + 1 which contradicts = € Sing” (u).
Case 2). If p, > 0, then

dji1(ug,p,.,0,1) = kl;ngo djt1(ug,p,,0,1) = klglgo dj1(u,z,pr) =0.

Hence there exists ¢ € €j+1(Ao) such that u,, ,, = ¢ on By . Clearly, it implies that 7}, (u) =
{0}, which contradicts z € Sing’ (u) as in Case 1). O

6.6. Application to the prescribed nonlocal mean curvature equation. In this subsection,
we apply the previous results to a weak solution £ C R™ of the prescribed nonlocal 2s-
mean curvature equation (6.1). In order to do so, we may consider an increasing sequence of
admissible bounded open sets {G; };cn such that G, C O, U, G = R’}FH, and |J, 0°G, =
Q. In view of (6.3)-(6.4), we can apply to the extended function (vg)® the different results
from Subsection 6.1 to Subsection 6.5 to reach the following main conclusions:

(1) The set £ N is essentially open. More precisely, £ ((E N Q)AE(UE)U) = 0 where
E(yy)e C (2is the open set provided by Corollary 6.5. From now on, we will identify
the set £'NQ with F(,,,)e.

(2) dim_yz (0E NSY) < n — 1 for every open subset €’ such that 0 C € (with equality if
if OE N € is not empty).

(3) There is a subset Yging € OE N Q with dim jzXgng < 7 — 2 (countable if n = 2)
such that the following holds: if zg € (OE N Q) \ Egine, then every sequence py, | 0
admits a (not relabeled) subsequence such that

o Ey:=(FE —x0)/pr — Pin L _(R") for some half-space P C R", 0 € 9P;

e JFE) converges locally uniformly to the hyperplane 0P, i.e., for every compact
set K C R™and everyr > 0, 0E, N K C ,(0P) and 0PN K C Z,.(0Ey)
whenever £ is large enough.

Remark 6.31. In the case of minimizing nonlocal minimal surfaces (i.e., solutions of (1.10)),
or minimizing solutions of (6.1) for f # 0 (i.e., solutions of (1.19)), the set Xging is a closed
subset of OE N Q, and (OE N Q) \ Tging is locally the graph of a O function (at least), see
[16, 18]. The minimality condition allows one to prove that equation (6.1) holds in a suitable
viscosity sense. This is a key point to prove the improvement of flatness of [16]. Combined
with property (3) above, it leads to the regularity at points of (0EN§)\Xgine. The improvement
of flatness property also implies the existence of a constant & > 0 such that ©,(0) > 6,, s + 0
for every minimizing nonlocal cone ¢ such that dim S(¢) < n — 2, and the closeness of Xgj,g
can be deduced from the upper semicontinuity of the density function ®. In the stationary
case, it remains unclear whether or not an improvement of flatness holds. It is even unclear if
this there an energy gap between hyperplanes and other nonlocal stationary cones.

Remark 6.32. In the minimizing case, we have the improved estimate dim sy Ygng < n — 3
as shown in [46]. In the stationary case, the estimate dim y¥gins < 1 — 2 is optimal. Indeed,
in the plane R2, the boundary of the open set E := {z122 > 0} is an entire stationary nonlocal
minimal surface with Xg,s = {0}.
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Our objective for the rest of this subsection is to show that the Minkowski dimension esti-
mate on OF N € leads to the following higher regularity result.

Theorem 6.33. For every s' € (0,1/2) and every open subset Q' C  such that ¥ C €,
PQS/ (E, QI) < 0.

The proof of Theorem 6.33 (postponed to this end of the subsection) rests on a general
regularity result, which might be of independent interest.

Proposition 6.34. Let v € H*(Q) be such that v € L2 () and (—A)*v € LY, (Q) for some
exponent p € (1,00). Then, for every s’ € (0, s) and every open subsets ', Q" of Q) such that
Q" C QY and Y C 9,

Ju(z) —v(y)l? Y \
(//XQ szyl’”?sp dxdy) <C(|\(—A) UH”(Q/“LHU”LW(”'))’ ©:3D)

Sor some constant C' = C(n, s, s, p, Q' , Q") independent of v.

Proof. Step 1. We fix a cut-off function { € C2°(';[0,1]) such that ¢ = 1 in . Define
w := (v, and notice that w € H, (') N L>°('). In particular, (—A)*w € H~*(R™). The
objective of this first step is to show that (—A)*w € LP(R™) with

1(=A)*w|| Lr@ny < C(I[(=A)0| Loy + vl @) » (6.32)

for some constant C' independent of v.
We start writing for ¢ € Z(R™),

(Ao, ) = 2t //XQ 2 (y)zA(i(;v) - () dedy
(w(z) —w(y)) (p(z) - ¢(y))
+ Yn,s //(/X(]Rn\(z/) |$ — y|n+2s dzdy .
Since spt w C €/, we have
(Ao, gy = T // . |z(y))|(f+(i)s&(y)) dxder/n sode,
where
9@ = e @) [ e e @ [ T

and g; € LP(R™) N L°°(R™). Now we write

to realize that

Yns (w(z) —w(y))(elz) —o(y))
2 //Q/XQ/ dxdy

2 |z —y|rt2e

dxdy

o(y) (¢(x) — C(y))e(x)
+'Yn,s //Q/XQ/ dxdy

|z —y|t+2e

_ s (v(z) —v(¥) C(@)e(@) — C(Y)ey))
B //’XQ’




56 VINCENT MILLOT, YANNICK SIRE, AND KELEI WANG

Consquently,
A _ Yns (v(z) —v(y)) (C(2)e(@) — C(y)e(y)) .
(-arwpr =22 [ P drdy
+/n(91 + g2)pdz,
where

92(=73) = %,sXQ’(x)/ v(y|):£<(zy)|n+§s(y))

and go € LP(R™) N L°°(R™). Since (p € 2(), we have

(v(z) —v(y))¢(@)¢(@)

|z —y|t2e

dy,

’

(~A)*w,0) = {(~A)*0,Co)r — Yo / / dady

Q% (RM\Q)
+/ (91 + g2)pdu,

so that
(=A)"w, ) = ((=A)%v, Cp)or +/ (91 + 92+ g3)pda,

where
v(z) —v(y)
) = o) [ Ty,
re\Q [T —y|"H3e
and g3 € LP(R™)N L (R™) (recall that spt ¢ C Q). By assumption, there exists g4 € LP(Q')
such that ((—A)%v,¥)q = [, gt da for all ¢ € Z(€'). Extending g4 by zero outside ',
we conclude that

(=A)w, p) = / gpdz,

n

with g := g1+g2+93+(gs € LP(R™). Clearly, ||g|| Lo rn) < C(II(—Av]| o)+ 0]l L)
for some constant C' independent of v, and (6.32) is proved.

Step 2. We now claim that (I — A)w € LP(R™) with
(7 = ) w|| ygny < CUI=A] Loy + 0]l =(@r)) (6.33)

for some constant C' independent of v. Indeed, by [53, proof of Lemma 2, Section 3.2] there
exists @, € L'(R™) such that

(1+4m?[¢?)” = 1+ B,(€) + (2m|€]) > + (2m|¢)) D4 (€)

where ®, denotes the Fourier transform of ®,. Since (1+472¢]?) * is the symbol of (I — A)*
in Fourier space, we infer that

(I-APw=w+Psxw+ g+ Psxge LP(R"),

and (6.33) follows.

Step 3. By Step 2, the function w belongs to the Bessel potential space ,,%p; (R™). According to
[58, Section 2.3.5], %5, (R™) coincides with the Triebel-Lizorkin space F%(R™) (notice that
ZP (R") is denoted by HZ2*(R™) in [58]). Then we use the continuous embeddings between
Triebel-Lizorkin spaces and Besov spaces (recall that s” < s)

Fp3(R") € By

p,max(p,2)

(R") € By5(R™),

see [58, Proposition 2, p. 47], to deduce that w belongs to the Besov space Bgf’zg(R"). Recalling
that B2 (R™) = W?2*"7(R") (the Slobodeckij-Sobolev space, see [58, Section 2.3.5]), we
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have thus proved that

/P
Jw(@) —wy) '
[[wllyyas, B(RN) T = |wllzr@n) + (//ann |z — y|n+25p dzdy

C(I1(=A)*v| Loy + vl @) »

for some constant C' independent of v. Since w = v on ", this estimate implies (6.31). [

We continue with a simple observation (that we already made implicitly during the proof of
Theorem 5.1).

Lemma 6.35. Ler FF C R™ be a Borel set such that Pys(F,Q) < oo. Then the function
Vp = XF — Xgn\p belongs to H*(2), and (—A)Svp € L'(2) with

(—A)*vp(z) = <VL / [or (@) —ve(y)I* dy) vp(z) forae x €.

2 |z —y|nt?s

Proof. Argue as in (5.10)-(5.11). O

Back to our original set £/, we combine Lemma 6.35 with the estimate on the Minkowski
dimension to obtain

Proposition 6.36. We have (—A)*vp € L () for every p < 1/2s.

Proof. Let us fix two open subsets €', Q" of Q such that Q7 C Q' and & C Q. By
Lemma 6.35, we have (—A)*vg € LY(Q). We claim that
C(Q/ Q//)
—A)* < >
|(=8)*vs ()] dist(z, 0E N Q)25

forae. v € Q" \0F, (6.34)
for some constant C(€2', ") independent of E. For z € Q" \ OF, we set
1 —
e =g min (dist(z,@Eﬁ '), min {|z —yl:z2€Q’, ye R\ Q’}) .

Since D, (z) C ¥ \ OE, we can deduce from Lemma 6.35 that

1 C
_A)SUE z)| < 2’771,5/ dy = — )
|( ( )| R™\D,., (x) |1. _ y|n+25 (TI)QS

and (6.34) follows.

Let us now fix an exponent o € (2sp,1). Since dim_4,(OE N Q') < n — 1, we can find
a radius R, € (0,1) such that £"(7,.(0E N Q)) < r* for every rr € (0,2R,). Then, we
estimate for an arbitrary integer k > 1

/ |(=A)*vplPdz < / |(—A)*vp|P dx
QN\T,y kg, (DENQ) Q\ T, (OEND)
k—1
+ / (—A)*vgp|Pdx.

where we have set «7; := Z5-ip (OE N Q) \ To-grvp, (OE N Q). Inserting (6.34), we
derive

s p —2sp
‘(7A) ’L)E|pd$<CRa p 1+Zm < 0.
]:

/Q”\ﬁsza (DENQY)

Letting £ — oo, we can now conclude by dominated convergence. (]
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Proof of Theorem 6.33. Fix two open subsets €', Q" of € such that Q7 C €’ and O/ C Q.
We choose a number § > 2 such that max(s,s’) < 1/6. We set p := 1/(6s) < 1/2s, and
5:=s'/p < s. By Proposition 6.36, (—A)*vg € LY (), and in turn, Proposition 6.34 yields

loc

1 1 — P
B x(@\E) [T — Y 2p oxq T -yt

Then we observe that

1
P (B, Q") < // e dady + O,
Bnax@\E) [T —y|"t?s

for a constant C' depending only ' and Q”, n, and s’. O

7. VOLUME OF TRANSITION SETS AND IMPROVED ESTIMATES

In this section, we apply the quantitative stratification principle of the previous section in
order to improve the convergence results of Theorem 5.1. In few words, we obtain a quantita-
tive volume estimate on the transition set (i.e., where the solution takes values close to zero).
This estimate, combined with Lemma 4.11, leads to further estimates on the potential in the
case where f. is uniformly bounded. We stress again that the general framework of [29] does
not apply stricto sensu to Allen-Cahn type equations, and non trivial adjustments need to be
made. As before, we start with estimates on the degenerate boundary Allen-Cahn equation.

7.1. Quantitative estimates for the Allen-Cahn boundary equation. In this subsection, we
are considering a bounded admissible open set G C R’fr“, e € (0,1), and a weak solution
us € HY(G,|2|%dx) N L>=(G) of

div(z*Vue) =0 inG,
. 7.1
d0%)u. = E§V[/'(u€) —f- ondG,
for some given function f- € C%1(0°G). We fix constants 19 > 0,b > 1, q € (455 1)
Hy > 0,and Ag > 0 such that
lluell L@y <0, (7.2)
e\ fell L @oc) + [ fellyirraoa) < Ho. (73)
and
sup { @3, (o, p) 1w € 2, 0< p <o b < Ao, (7.4)

where the domain €27 is defined in (6.23).

Our aforementioned volume estimate is the following theorem, cornerstone of the section.

Theorem 7.1. For each « € (0,1), there exist k., = k. («,ro, Ho, Ao, W, b,n, s,q) > 0 and
C = C(a, 79, Ho, Ao, W, diam(0°G), b, n, s, q) such that

z" (%({|u5| <1l-=46w}n Q”’)) < Cre Vr € (kie, o), (7.5)
where dy € (0,1/2] is given by (4.12).

The proof of Theorem 7.1 follows in some sense the lines of [29, Theorem 2.2] with a
different set of structural assumptions adjusted to our setting. Since the solution . is smooth,
there is of course no singular set, and no strict analogue to [29, Theorem 2.2]. However, if we
don’t look at . at too small scales, then the transition set {|uc| < 1 — dy } can play the role
of singular set. As one may guess, the threshold scale is ¢, explaining the restriction on the
admissible radii in (7.5). The same threshold appears of course in our “structural assumptions”,
provided by Lemmas 7.2, 7.3, and 7.4 below.
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Lemma 7.2. There exist constants

50(T0) = 50(T07H05A05 VV,b,TL,S,q) € (07 1)

and
kO(TO) = kO(T()v HO) AO) VV7 ba n,s, Q) Z 1
(independent of ¢, u., and f.) that for every x € Q" and p € (0,719),

luc(x,0)] <1—=0w and kee<p = dp(ue,z,p)=0d0.

Proof. Assume by contradiction that there exist sequences {e }ren C (0, 1), {(uk, fr)}ken
satisfying (7.1)-(7.2)-(7.3)-(7.4), points {zx }reny € Q7°, and radii {pg}ren C (0,70) such
that |uk(zk, 0)| <1-dw, Ek/pk < 27k, and dn(uk,xk,pk) — 0.

Setting €, := €1/ pi. consider the rescaled maps @y = (ug)z,,,p, and fk = P2 (fi)wn, on
as defined in (6.10). Rescaling variables, we derive that

div(z*Vuy) =0 in B,
1.0, = W'(ig) — fx on Dy 7o
ST EE |
and
el o ) b0 G filieon < Hoo filliran, <70°Ho, — (77)
as well as
O (fr,0,1) = O (fr, 7k, pr) < Ao (7.8)

By Theorem 4.1, we can find a (not relabeled) subsequence such that uy — wu, weakly in
HY(Bj,|z|*dx) and strongly in H'(B,,|z|*dx) for every » € (0,1). Then uy — u.
strongly in L!(D,.) for every r € (0,1) by Remark 2.4. On the other hand, d,, (i, 0,1) =
d,, (ug, zk, pr) — 0, so that either u, = 1 or u, = —1 on D;. Without loss of gener-
ality, we may assume that u, = 1 on D;. Then Theorem 4.1 tells us that u; — 1 uni-
formly on D, for every r € (0,1). In particular @5 (0) — 1 which contradicts our assumption
|ﬂk(0)| = |uk($k,0)| <1-—9ow. O

Lemma 7.3. For every § > 0, there exist constants
m(0,70) = (0,70, Ho, Ao, W, b,mn, s,q) € (0,1/4),
M1(8,70) = M (8,70, Ho, Ao, W, b, n, s, q) € (0,1/4),
and
ky(d,70) = k1 (9,70, Ho, Ao, W, b,m,8,q) > 1
(independent of u. and f.) such that for every p € (0,70/5) and x € Q",
©%_ (for2,p) — O (fe,x,hip) <1 and kie <p = dolus,z,p) <9.

Proof. We choose

~ 1
m (67 TO) = 5771 (6/27 2/55 quHQ, A07 ba n,s, q) 5

where 7; is given by Lemma 6.27. Then we argue again by contradiction assuming that for
some constant 6 > 0, there exist sequences {ex }ren C (0,1), {(uk, fx) }ren satisfying (7.1)-
(7.2)-(7.3)-(7.4), points {xj }ren C Q™, radii {px}ren € (0,70/5), and A\ — 0 such that
ex/pr < 27,

O (fr, Trs pr) — O (frs x, Mepr) <y, and  do(uk, Tk, pi) = 0.
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Next we proceed as in the proof of Lemma 7.2 rescaling variables as £, := &1, /(5px), U =
(Uk)ap,5pr> and f := (Spk)Qs(fk)mk;,pk. Then, (7.6), (7.7), and (7.8) hold, as well as

sup{@%(ﬁ,x,p):xeDl/s, 0<p<2/5}<A0. (7.9)
Now our assumptions lead to
O (fr,0,1/5) — OF (f5,0,\/5) <7, and do(iix,0,1/5) > 4.

By Theorem 4.1, we can find a (not relabeled) subsequence such that u; — wu, strongly in
HY(B}, |2|*dx) for every r € (0,1), and f;, — f, in W19(D;), where the pair (u,, f.)
solves (6.16)-(6.17). Note that, by lower semicontinuity, we have | flyi1.0(p,) < rquO. In
addition, by Theorem 4.1 and Fatou’s lemma, we deduce from (7.9) that

sup{@u*(f*,x,p):xeDl/s, 0<p<2/5} <Ap. (7.10)

By means of Lemma 4.2, we now estimate for 0 < r < 1/5 and k large enough (in such a
way that A\ < r),

0
-~ 1 ~ nabro
0% (f¢,0,1/5) — ——Ex, (i, B} ) — 2210 1,0
Uk rn 2s 9(]
< Oz, (fr,0,1/5) — Ox, (fr, 0,7) < 7y -

Using Theorem 4.1, we can let & — oo in this inequality to derive

1
—SE(u*,Bj)

- 7’"72

G)u*(f*voal/5) - eu*(f*aovr) < eu*(f*70a1/5)

~ Cn,qu(e)q 0
<m+ Hor™ .
q

Choosing r small enough in such a way that

(%
n,q0 70" _ 1
CﬁqafTOHOTGq < m and r < g)\1(6/27 2/5; rquOa AO) b7n) S, q)7

q

where \; is given Lemma 6.27, we infer from Lemma 6.2 that
G‘)u* (f*, 0, 1/5) — @u* (f*, 0, )\1/5) < 2771 = 771 .

Then Lemma 6.27 yields dg(us, 0,1/5) < §/2. On the other hand, by Remark 2.4, uj, — u.
in L*(D1 /5), and thus do (us,0,1/5) = limy do(t, 0,1/5) > 6, contradiction. O

Lemma 7.4. For every 6,7 € (0,1), there exist two constants
12(6,7,70) = 12(8, 7,70, Ho, Ao, W, b, 1, 5,q) € (0,0]
and
ko (8, 7,70) = ka(6, 7,70, Ho, Ao, W, b,m, 8,q) > 1
(independent of u. and f.) such that for every p € (0,70/25) and x € Q", the conditions
koe < p, do(ue,z,4p) <12 and d,(ue,xz,4p) =9,
imply the existence of a linear subspace V. C R™, with dimV < n — 1, for which
do(ue,y,4p) > 12 Yy € Dy(x) \ Trp(z +V).
Proof. We choose

~ 1 0
772(67 T, TO) = 5773(65 T, 2/57 TOqHO7 A07 ba n,s, q) 5
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where 73 is given by Corollary 6.29. We still argue by contradiction assuming that for some
constants 0,7 € (0, 1), there exist sequences {e;}tren C (0,1), {(ug, f) tren satisfying

(7.1)-(7.2)-(7.3)-(7.4), points {xy }reny C Q7, and radii {px }ren C (0,79/25) such that
Ek/pk < 2_k7 dO(uka$k74pk) < ﬁQ and dn(uka$k74pk) 2 6)

and such that the conclusion of the lemma fails.

Once again, we rescale variables setting €, := €1/(25p%), Uk = (Uk )z, 25p, > and fk =
(2505)%% (f&)wx, 2505+ SO that (7.6), (7.7), (7.8), and (7.9) hold. Then we reproduce the proof
of Lemma 7.3 to find a (not relabeled) subsequence along which (wy, fk) converges to some
limiting pair (u., f«) solving (6.16)-(6.17), and satisfying (7.7)-(7.8)-(7.10). In particular,
Uk, — Uy strongly in Ll(Dl/s). As a consequence,

do(us,0,4/25) <72 and  dj,(u.,0,4/25) > 6.
By Corollary 6.29, there exists a linear subspace V' C R”, with dim V' < n — 1, such that
do(us,y,4/25) >3 Yy € Dyjas \ Trja5(V) - (7.11)

Since the conclusion of the lemma does not hold, we can find for each integer k a point y;, €
D195 \ 7 25(V) such that do(ug, yx,4/25) < 7j2. Then extract a further subsequence such
that v, — v, for some v, € 51/25 \ I+ /25(V'). Noticing that

”(u*)y*J - (ak)ykquLl(D4/25) < H(u*)y*,l - (u*)ykquLl(D4/25) + Hu* - ak||L1(D1/5) 9

by continuity of translations in L', we have [|(u.)y. 1 — (U )y, 1llL1(D, 0s) — 0. Conse-
quently,

do(u*a y*? 4/25) = dO((u*)y*,lv 05 4/25)
= lim do((ﬂk)yk,1,0,4/25) = lim do(ag,yx,4/25),
k—o0 k—o0

and thus do (s, y«, 4/25) < 72. However (7.11) yields do (u, ys, 4/25) > n3 = 21, contra-
diction. 0

Proof of Theorem 7.1. For 0 < r < rq, we consider the set
Sy = {w € dy(ue,a, p) = do(ro) Vr < p < 7‘0} ,

where 0o(ro) > 0 is given by Lemma 7.2. We fix the exponent o € (0,1), and we set
Ko:=1—a€ (0,1).

We will prove that there exist constants k. = k. (ko, 70, Ho, Ao, W, b,n,8,q) = ko(ro)
and C' = C(ko, ro, Ho, Ao, W, b, n, s, q) such that

LTS, ) < OrtTre Ve e (kae, o), (7.12)

T0,T

where ko () is given by Lemma 7.2. Note that, since k.. > ko(ro), we have
{luel <1=00w}nNQ™ CS; . Vre (ke m),

by Lemma 7.2. In other words, estimates (7.12) implies Theorem 7.1.

Now the proof follows closely the arguments in [29, proof of Theorem 2.2] once adjusted
to our setting, but for the sake of clarity we partially reproduce it.

We start fixing a number 7 = 7 (9, n) € (0,1) such that 750/2 < 20~". We consider the
following constants according to Lemma 7.2, Lemma 7.3, and Lemma 7.4:

(1) 772 = 772 (50(7’0), T, 7’0) and kQ = k2 (50(7"0),7', To);

(11) 771 = 771 (772,7‘0), Xl = Xl (ﬁg, TQ), and k1 = k1 (772,7‘0);
(iii) k3 := max{ko(ro), ki, ka}.
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Next we fix an integer ¢o € N such that 7% < Xl, and we set M := |qoAo/7 ] (the integer
part of). Set pg := qo + M + 1 and define

TQTPO-H | K, ﬁ '

251{3 T

Without loss of generality, we may assume that ¢ € (0, &) (since (7.12) is straightforward
for e > &g). Let ky = ky(e) be defined by the relation ro7%4/98 ¢l = 25kse, and set p; =
p1(e) = |ky|loge|| (the integer part of). Note that our choice of €y and k. insures that
p1 = po + 1and kse < ’”027;1 < kye.

€p := min {1,

Step 1. Reduction to T-adic radii. We argue exactly as in [29, Proof of Theorem 2.2, Step 1]

to show that it suffices to prove (7.12) for each radius r of the form r = T‘)T

satisfying po < k < p1.

for an integer k

Step 2. Selection of good scales. We fix an integer k with pg < k < p; and setr = TOT . For
an arbitrary = € Q"°, we have

Z % (fo,z,4ro7") — ©F_(fe, m,4ro7' )

l=qo0
k l4+qo—1
= Z Z 925 (faa$;4r07i) - G)Eug (f87x74T07i+1)

l=qo0 1=l

k+qo—1
Z o] (fz, 4ro7! ) —©5_(fe,x, 47’07'1"'1)
l=qo0
and thus

>0 (form, drorh) = OF_(fe, 1, 4rm ) < qoOF_(fer 2, 4r07™) < oo

l=qo0
Hence there exists a (possibly empty) subset A(z) C {qo, ..., k} with Card(A(z)) < M such
that forevery I € {qo,...,k} \ A(z)
O (fe,z,4rom") — ©F_(fe, 2, 4rom90) < 7y . (7.13)
Next define 2 := {A C {qo,...,k} : Card(A) = M}, and set for A € 2,

Sa = {:L' €Sy, ¢ (7.13) holds foreach I € {qo, ..., Kk} \ A} .
By our previous discussion, we have S7 . C Uaco Sa. In the next step, we shall prove that

forany A € 2,

L(T(Sa)) < Crimrol2, (7.14)
Since Card(2A) < kM < C’| log r|™, the conclusion follows from this estimate, i.e.,
" ( 70 7 Z g" CllOgT|M 1=ro/2 < Crl o 5
Ae

for some constants C' = C(kg, 7o, Ho, Ag, W, diam(9°G), b, n, s, q).

Step 3. Proof of (7.14). Again we follow [29, Proof of Theorem 2.2, Step 3]. We first consider

a finite cover of .7, 140 /25(S.4) made of discs { Dy ra0 (mi,qo)}ie]qo with 2; , € Sa, and
Card(I,,) < 5"r "7, " (diam(0°G) + 1)

We argue now by iteration on the integer j € {qo + 1,. .., k}, assuming that we already have
a cover { D, -i-1(xij-1)}ier,_, of Ty ri-1/25(Sa) such that z; ;1 € A. We select the
next cover { D, i (x;,;) }ier, (still centered at points of S4) of .7, -5 /25(Sa) according to the
following two cases: j —1 € Aorj—1¢ A.
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Case 1)If j—1 € A, then we proceed exactly as in [29, Proof of Theorem 2.2, Step 3, Case (a)]
to produce the new cover { D, - (x; ;) }icr; in such a way that
Card(I;) < 20"Card(L—1)T~".

Case 2)1f j — 1 ¢ A, then (7.13) holds with [ = j — 1. By our choice of ¢gg and Lemma 4.2,
we infer that

625 (fer mi, 47’07—]-71) - @Z{ (fe, x4, 47’0X1Tj71)
< O (fo, i, drom? 1) — O (fo, wiy drom? T1TO) iy Vo € Sy

Then Lemma 7.3 yields do(ue, x, 4ro77~1) < 7) for every & € S4. On the other hand, by the
definition of S4 we have d,, (uc, z, 4rg7i=1) > &, for every # € S4. Applying Lemma 7.4
at each point x; ;_1, we infer that for each ¢ € I;_;, there is a linear subspace V;, with
dim V; < n—1,such that Sa N D, ri—1 (x5 j-1) € Fpyri(zij—1 + V;). From this inclusion,
we estimate for eachi € I;_1,

zn (%-07—1 (SA N Droijl (zi,jl))> < 2n+1wn717ﬂ617_nj—n+1 .

By the covering lemma in [29, Lemma 3.2]), we can find a cover of .7, i /25(Sa) by discs
{Dyyri (i) }ier, centered on S4 such that
2y
Card(I;) < 1O"L0ard(lj_1)7_("_1) < 20"Card([;_y)r~ (V.
Wn
The iteration procedure stops at j = k, and it yields a cover {D,. (i) }ier, of Z.(Sa).
Collecting the estimates from Case 1 and Case 2 (and using Card A = M), we derive

k—qo—M

Card(Ix) < 5"7"0rg " (diam(8°G) + 1)"(20"7~")M (207" 1))

< CTfk(nflJrng/Q) ,

where C' depends on the announced parameters (recall that 7°°/2 < 20~™). Consequently,
f”(fr(SA)) < wpCard(I)r"™ < Crki=ro/2) < Cpl=ro/2
and the proof is complete. 0

Corollary 7.5. Forevery a € (0,1),
W(’U/g) dz < C&_min(zls,oz) ,
Q2ro

for some constant C' = C(a, 7o, || fe|| L~ (a0c), Ho, Ao, W, b, 1, 5, q).

Proof. Without loss of generality, we may assume that & # 4s. We use the notation of the
proof of Theorem 7.1, and we assume (without loss of generality) that e € (0, &g). Let us set

Ve i ={|us| <1—0w},and py := T%gk for k € N. Notice that

Pp1(e)—1 S (k*s,k*f_ls) .
Hence, by Theorem 7.1, we have
LT, (V-NQ0) < Cp <Ct°% fork =0,...,pi(e) — 1, (7.15)

where the constant C' may depend on the announced parameters. In particular,

W(ue) dz < CW | Lo (—p,p) Py ()1 < O™ (7.16)

7, (VenQro)

Ppi(e)—1
On the other hand, by Lemma 4.11, we have
C 4s C 4s
W (us(,0)) < E < = = inQXo\V.. (717
(dist(z, Vz)) (dist(z, V. N Qo))
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Writing &7, := (F,,_, (V- N Q) \ (F,, (V- N Q™)), we have

W(u.) da :/

W (ue) dz + / W (ue) dz
Q270N Ty (Ve)

7, (VenQro)nQ2ro

2
Q2ro Py ()1

p1(e)—1

+ / W (ue) dz,
]; 20}, Q270 :

We may now estimate by (7.15), (7.16), and (7.17),
p1(e)—1
W(us)de < O | e 4% & Z rhla—ds) | (7.18)

QO2ro 1

If o > 4s, then Z,@l Th(@=4s) < 0, and the result is proved. If o < 4s, then

p1(8)—1
Z Tk(a—4s) <o (g)(a—4s) < CEa_4S )
k=1

Inserting this estimate in (7.18) still yields the announced result. (]
Corollary 7.6. Foreveryp < 1/2s,

||W/(u€)||L15(QQTU) < Ce*,
for some constant C = C(p, o, || fe| =20y, Ho, Ao, W, b, 1, 5, q).

Proof. We proceed as in the proof Corollary 7.5, using « € (2sp,1). Keeping the same
notations, we first derive as in (7.16),

/ W (u.)|” dz < Ce®. (7.19)
9”131(5)71 (Ven@2ro)

Then Lemma 4.11 yields,

0525

(dist(z, Ve N Qo)) %

(W (ue(z,0))] < in Q%0 \ V.. (7.20)

Writing

/ ‘W’(u5)|ﬁdx:/ ‘W’(ug)‘ﬁdx
Q270

Q20N Ty (Ve)

p1(e)—

1
—|—/ (W' (ue)|” da + Z / W (ue)|” da,
QPPI(E)A (VenQro)nQ2ro 1 o}, NQ2T0

we estimate by means of (7.15), (7.19), and (7.20),

p1(e)—1

/ ’W/(ua)‘ﬁ dr < C €2Sﬁ ey €2Sﬁ Z Tk(a725f)) < 0525;37
Q2o k=1
and the proof is complete. 0

7.2. Application to the fractional Allen-Cahn equation. Applying the estimates obtained in
the previous section to the fractional Allen-Cahn equation, we obtain the following improve-
ment of Theorem 5.1. Together with Theorem 5.1, it completes the proof of Theorem 1.1 in
the special case f = 0.

Theorem 7.7. In addition to Theorem 5.1, if supy, || x|l o () < 00, then for every open subset
QO C Q such that Q' C 9,

() vp — vs strongly in H* (Q) forevery s’ € (0, min(2s, 1/2));
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n(4s,o)
(i) [ W(vy)de = O(5k ) for every a € (0,1);

- 2
(i) fu(z) — E—%SW(vk(z)) ~ <%T / % dy) v, () weakly in LP()

foreveryp < 1/2s.

Proof. The proof departs from the end of the proof of Theorem 5.1. We apply the results
of Subsection 7.1 to the extended function vj,. Then items (ii) and (iii) are straightforward
consequences of Corollaries 7.5 and 7.6 (together with item (iii) in Theorem 5.1).

Let us now fix an open subset 2/ C € with Lipschitz boundary such that Q"7 C V.
Since s’ < 2s, we can find a number 6 > max(2,1/2s) such that max(s,s’) < 1/6. We set
p:=1/(0s) <min(1/2s,2),and 5 := s’ /p < s. Since { fi } ken is assumed to be bounded in
L*>(Q), we infer from item (iii) that {(—A)*vy } yen remains bounded in LP(’). On the other
hand, we already proved that {vj, }ren remains bounded in L>°(R™). Hence Proposition 6.34
shows that

|vk (@) — v (y)]?
dzdy
S0

2— |Uk vk(y)lﬁ
<2 pHUkHLOO R") ////XQN dedy < C,

for some constant C' independent of k. The sequence {vy }ren is thus bounded in H* ().
Finally, for an arbitrary s” € (0, ), the embedding H*" (") C H* (') is compact, and
consequently {vy }ren is strongly relatively compact in H*" (€2”) which proves (i). O
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