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INTRODUCTION

In the van der Waals-Cahn-Hilliard theory of phase transitions, two-phase systems are driven by energy functionals of the form

Ω ε|∇u| 2 + 1 ε W (u) dx , ε ∈ (0, 1) , (1.1) 
where u : Ω ⊆ R n → R is a normalized density distribution of the two phases, and the (smooth) potential W : R → [0, ∞) has exactly two global minima at ±1 with W (±1) = 0 (see e.g. [START_REF] Gurtin | On a theory of phase transitions with interfacial energy[END_REF]). Here and after Ω denotes a smooth and bounded open set in dimension n 2.

Critical points satisfy the so-called elliptic Allen-Cahn (or scalar Ginzburg-Landau) equation

-∆u ε + 1 ε 2 W ′ (u ε ) = 0 in Ω . (1.2)
When ε is small, a control on the potential implies that u ε ≃ ±1 away from a region whose volume is of order ε. Formally, the transition layer from the phase -1 to the phase +1 has a characteristic width of order ε. It should take place along an hypersurface which is expected to be a critical point of the area functional, i.e., a minimal surface. More precisely, the region 1 {u ε ≃ 1}, which is essentially delimited by this hypersurface and the container Ω, should be a stationary set in Ω of the perimeter functional, at least as ε → 0.

For energy minimizing solutions (under their own boundary condition), this picture has been justified first in [START_REF] Modica | MORTOLA : Un esempio di Γ-convergenza, Boll[END_REF] through one of the first examples of Γ-convergence. The result shows that if the energy is equibounded, then u ε → u * in L 1 (Ω) as ε → 0 for some function u * ∈ BV (Ω; {±1}) (up to subsequences). The set {u * = 1} minimizes (locally) its perimeter in Ω, and up to a multiplicative constant, the energy converges to the relative perimeter of {u * = 1} in Ω. The analogous analysis concerning global minimization of the energy under a volume constraint has been addressed in [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF][START_REF] Sternberg | The effect of a singular perturbation onnonconvex variational problems[END_REF].

The case of general critical points has been treated more recently in [START_REF] Hutchinson | Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory[END_REF]. It presents a slightly different feature. Namely, if the energy is equibounded, then the energy density converges in the sense of measures as ε → 0 to a stationary integral (n -1)-varifold, i.e., a generalized minimal hypersurface with integer multiplicity. The multiplicity of the limiting hypersurface comes from an eventual folding of the diffuse interface {|u ε | 1/2} as ε → 0. In such a case, the interface between the two regions {u * = 1} and {u * = -1} can be strictly smaller than the support of the limiting varifold. In fact, the boundary of the region {u * = 1} corresponds to the set of points where the varifold has odd multiplicity. In particular, the perimeter of {u * = 1} can be strictly smaller than the the limit of the energy. This energy loss effect is in strong analogy with the lack of strong compactness as ε → 0 of solutions of the (vectorial) Ginzburg-Landau system with a potential well {W = 0} given by a smooth and compact manifold M ⊆ R d , see [START_REF] Lin | Harmonic and quasi-harmonic spheres[END_REF][START_REF] Lin | Harmonic and quasi-harmonic spheres[END_REF].

In the last few years, there have been many studies on nonlocal or fractional versions of equation (1.2) and energy (1.1) (see e.g. [START_REF] Alberti | A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies[END_REF][START_REF] Alberti | Un résultat de perturbations singulières avec la norme H 1/2[END_REF][START_REF] Alberti | Phase transition with the line-tension effect[END_REF][START_REF] Cabr É | Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian[END_REF][START_REF] Cabr É | Sharp energy estimates for nonlinear fractional diffusion equations[END_REF][START_REF] Cabr É | Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates[END_REF][START_REF] Cabr É | Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions[END_REF][START_REF] Cabr É | SOL À-MORALES : Layer solutions in a halfspace for boundary reactions[END_REF][START_REF] Palatucci | Local and global minimizers for a variational energy involving a fractional norm[END_REF][START_REF] Savin | Density estimates for a nonlocal variational model via the Sobolev inequality[END_REF][START_REF] Savin | VALDINOCI : Γ-convergence for nonlocal phase transitions[END_REF][START_REF] Savin | Density estimates for a variational model driven by the Gagliardo norm[END_REF][START_REF] Sire | Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result[END_REF]). Many of them are motivated by physical problems such as stochastic Ising models from statistical mechanics, or the Peirls-Nabarro model for dislocations in crystals [START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF][START_REF] Imbert | Level set approach for fractional mean curvature flows[END_REF][START_REF] Imbert | Phase field theory for fractional reaction-diffusion equations and applications[END_REF]. In this article, we consider one of the simplest fractional version of equation (1.2) where the Laplace operator is replaced by the fractional Laplacian (-∆) s , i.e., the Fourier multiplier of symbol (2π|ξ|) 2s , with exponent s ∈ (0, 1/2). In details, we are interested in the asymptotic behavior as ε → 0 of weak solutions v ε : R n → R of the fractional Allen-Cahn equation

(-∆) s v ε + 1 ε 2s W ′ (v ε ) = 0 in Ω , (1.3) 
subject to an exterior Dirichlet condition of the form

v ε = g ε on R n \ Ω , (1.4) 
where g ε : R n → R is a given smooth and bounded function. For s ∈ (0, 1), the action of the integro-differential operator (-∆) s on a smooth bounded function v : R n → R is defined by

(-∆) s v(x) := p.v. γ n,s R n v(x) -v(y) |x -y| n+2s dy with γ n,s := s2 2s π -n 2 Γ n+2s 2 Γ(1 -s) , (1.5) 
where the notation p.v. means that the integral is taken in the Cauchy principal value sense. In terms of distributions, the action of (-∆) s v on a test function ϕ ∈ D(Ω) is defined by More precisely, if (1.7) holds, then (-∆) s v belongs to H -s (Ω). To include the Dirichlet condition (1.4), one considers the restricted class of functions given by the affine space H s gε (Ω) := g ε + H s 00 (Ω). Since E(•, Ω) is exactly the quadratic form induced by (1.6), the functional E(•, Ω) can be thought as fractional Dirichlet energy in Ω associated to (-∆) s . Integrating the potential in (1.3), we obtain the fractional Allen-Cahn energy in Ω associated to equation (1.3), i.e.,

(-∆) s v, ϕ Ω := γ n,s 2 Ω×Ω v ( 
E ε (v, Ω) := E(v, Ω) + 1 ε 2s Ω W (v) dx . (1.8) 
In this way, we define weak solutions of (1.3) as critical points of E ε (•, Ω) with respect to perturbations supported in Ω.

Concerning minimizers of E ε (•, Ω) over H s gε (Ω), their asymptotic behavior as ε → 0 has been investigated quite recently in [START_REF] Savin | VALDINOCI : Γ-convergence for nonlocal phase transitions[END_REF] through a Γ-convergence analysis. The result reveals a dichotomy between the two cases s 1/2 and s < 1/2. In the case s 1/2, the normalized energies

E ε (•, Ω) := ε 2s-1 E ε (•, Ω) if s ∈ (1/2, 1) , | ln ε| -1 E ε (•, Ω) if s = 1/2 ,
Γ L 1 (Ω) -converge as ε → 0 to the functional E 0 (•, Ω) defined on BV (Ω; {±1}) by E 0 (v, Ω) := σ Per {v = 1}, Ω , where σ = σ(W, n, s) is a positive constant, and Per(E, Ω) denotes the distributional (relative) perimeter of the set E in Ω. In other words, for s 1/2, fractional Allen-Cahn energies (and thus minimizers) behave essentially as in the classical case, and area-minimizing hypersurfaces arise in the limit ε → 0. For s ∈ (0, 1/2), the variational convergence of E ε (•, Ω) appears to be much simpler since H s -regularity does not exclude (all) characteristic functions. In particular, there is no need in this case to normalize E ε (•, Ω). Assuming that g ε → g in L 1 loc (R n \ Ω) for some function g satisfying |g| = 1 a.e. in R n \ Ω, the functionals E ε (•, Ω) (restricted to H s gε (Ω)) converge as ε → 0 both in the variational and pointwise sense to

E 0 (v, Ω) := E(v, Ω) if v ∈ H s g (Ω; {±1}) , +∞ otherwise .
Now it is worth noting that

E(v, Ω) = 2γ n,s P 2s {v = 1}, Ω ∀v ∈ H s g (Ω; {±1}) , (1.9) 
where P 2s (E, Ω) is the so-called fractional 2s-perimeter in Ω of a set E ⊆ R n , i.e., As a consequence of this Γ-convergence result, a sequence {v ε } of minimizing solutions of (1.3)-(1.4) with s ∈ (0, 1/2) converges as ε → 0 (up to subsequences) to some function v * ∈ H s g (Ω) of the form v * = χ E *χ R n \E * , and the limiting set E * ⊆ R n is minimizing its 2s-perimeter in Ω, i.e., P 2s (E * , Ω) P 2s (F, Ω) ∀F ⊆ R n , F \ Ω = E * \ Ω .

(1.10)

Sets satisfying the minimality condition (1.10) have been introduced in [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]. Their boundary ∂E * ∩ Ω are referred to as (minimizing) nonlocal (2s-)minimal surfaces in Ω. By the minimality condition (1.10), the first inner variation of the 2s-perimeter vanishes at E * , i.e., for any vector field X ∈ C 1 (R n ; R n ) compactly supported in Ω, where {φ t } t∈R denotes the flow generated by X. If the boundary ∂E ∩ Ω of a set E ⊆ R n is smooth enough (e.g. a C 2 -hypersurface), the first variation of the 2s-perimeter at E can be computed explicitly (see e.g. [START_REF] Figalli | Isoperimetry and stability properties of balls with respect to nonlocal energies[END_REF]Section 6]), and it gives

δP 2s (E, Ω)[X] = ∂E∩Ω H (2s) ∂E (x) X • ν E dH n-1 , (1.12) 
where ν E denotes the unit exterior normal field on ∂E, and H

∂E is the so-called nonlocal (or fractional) (2s-)mean curvature of ∂E, defined by

H (2s) ∂E (x) := p.v. R n χ R n \E (y) -χ E (y)
|x -y| n+2s dy , x ∈ ∂E .

(See [START_REF] Abatangelo | VALDINOCI : A notion of nonlocal curvature[END_REF] for its geometric interpretation.) Therefore, a set E * whose boundary is a minimizing nonlocal 2s-minimal surface in Ω (i.e., such that (1.10) holds) satisfies in the weak sense the Euler-Lagrange equation H

∂E * = 0 on ∂E * ∩ Ω .

(1.13)

The weak sense here being precisely relation (1.11). It has been proved in [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF] that minimizing nonlocal 2s-minimal surfaces also satisfies (1.13) in a suitable viscosity sense. This is one of the key ingredient in the regularity theory of [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]. It states that a minimizing nonlocal minimal surface is a C 1,α -hypersurface away from a (relatively) closed subset of Hausdorff dimension less than (n -2). Since then, the C 1,α regularity has been improved to C ∞ in [START_REF] Barrera | Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces[END_REF], and the size of the singular set reduced to (n -3) in [START_REF] Savin | Regularity of nonlocal minimal cones in dimension 2[END_REF]. Whether or not the singular set can be further reduced remains an open question (see [START_REF] Ávila | Nonlocal s-minimal surfaces and Lawson cones[END_REF][START_REF] Figalli | Regularity and Bernstein-type results for nonlocal minimal surfaces[END_REF] in this direction).

One of the main objective of this article is to extend the results of [START_REF] Savin | VALDINOCI : Γ-convergence for nonlocal phase transitions[END_REF] on the fractional Allen-Cahn equation (1.3) to the case of arbitrary critical points for s ∈ (0, 1/2), i.e., in the regime of nonlocal minimal surfaces. Since we do not assume any kind of minimality, the geometrical objects arising in the limit ε → 0 are not the "minimizing" nonlocal minimal surfaces of [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF] (i.e., solutions of (1.10)). Our main theorem shows that the limiting equation is in fact relation (1.11), which can be interpreted as a weak formulation of the zero nonlocal 2s-mean curvature equation (1.13). We shall referred to as stationary nonlocal 2s-minimal surface in Ω, the boundary ∂E * ∩ Ω of a set E * ⊆ R n satisfying relation (1.11) (i.e., a critical point under inner variations in Ω of the 2s-perimeter).

In all our results, we make use of the following set of structural assumptions on the double well potential W : R → [0, ∞).

(H1) W ∈ C 2 R; [0, ∞) .
(H2) {W = 0} = {±1} and W ′′ (±1) > 0.

(H3) There exist p ∈ (1, ∞) and a constant c W > 0 such that for all t ∈ R,

1 c W |t| p-1 -1 |W ′ (t)| c W |t| p-1 + 1 .
Those assumptions are of course satisfied by the prototypical potential W (t) = (1t 2 ) 2 /4. Notice that assumption (H3) implies that W has a p-growth at infinity so that finite energy solutions of (1.3) belongs to L p (Ω). Assuming that (H1)-(H2)-(H3) hold, we will prove that any weak solution of (1.3)-(1.4) actually belongs to C 1,α loc (Ω) ∩ C 0 (R n ) for some α ∈ (0, 1).

Theorem 1.1. Assume that s ∈ (0, 1/2) and that (H1)-(H2)-(H3) hold. Let Ω ⊆ R n be a smooth and bounded open set. For a given sequence ε k ↓ 0, let {g k } k∈N ⊆ C 0,1 loc (R n ) be such that sup k g k L ∞ (R n \Ω) < ∞ and g k → g in L 1 loc (R n \ Ω) for a function g satisfying |g| = 1 a.e. in R n \ Ω . For each k ∈ N, let v k ∈ H s g k (Ω) ∩ L p (Ω) be a weak solution of

   (-∆) s v k + 1 ε 2s k W ′ (v k ) = 0 in Ω , v k = g k in R n \ Ω .
(1.14) In addition, for every smooth open set Ω ′ ⊆ Ω such that Ω ′ ⊆ Ω,

If sup k E ε k (v k , Ω) < ∞,
(iv) E(v k , Ω ′ ) → 2γ n,s P 2s (E * , Ω ′ ); (v) Ω ′ W (v k ) dx = O(ε min(4s,α) k
) for every α ∈ (0, 1);

(vi) -1 ε 2s k W ′ (v k ) → γ n,s 2 R n |v * (x) -v * (y)| 2
|x -y| n+2s dxdy v * (x) strongly in H -s (Ω ′ ) and weakly in L p(Ω ′ ) for every p < 1/2s ;

(vii) v k → v * in C 1,α loc (Ω \ ∂E * ) for some α = α(n, s) ∈ (0, 1); (viii) for each t ∈ (-1, 1), the level set L t k := {v k = t} converges locally uniformly in Ω to ∂E * ∩ Ω, i.e., for every compact set K ⊆ Ω and every r > 0,

L t k ∩ K ⊆ T r (∂E * ∩ Ω) and ∂E * ∩ K ⊆ T r (L t k ∩ Ω)
whenever k is large enough. Here, T r (A) represents the open tubular neighborhood of radius r of a set A.

Comparing this result to what is known on the classical Allen-Cahn equation (1.2), we can now say that the main difference lies in the strong compactness of solutions (at and above the energy regularity level), and the resulting continuity of the energy. In some sense, such compactness is not really surprising as one may guess that H s ′ -regularity with s ′ ∈ (0, 1/2) is not strong enough to capture folding of interfaces. The key argument in proving compactness in the energy space rests on the fractional scaling of the equation and the Marstrand's Theorem (see e.g. [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]), a purely measure theoretic result. In the same flavour, strong convergence of solutions to the p-Ginzburg-Landau system (involving the p-Laplacian) towards stationary p-harmonic maps has been proved in [START_REF] Wang | Limits of solutions to the generalized Ginzburg-Landau functional[END_REF] for non-integer values of the exponent p. Compactness at the H s ′ -level with s ′ < min(2s, 1/2) is in turn a much more delicate issue. We establish such compactness combining fine elliptic estimates in the region |v k | ≃ 1 together with quantitative estimates on the volume of the sublevel sets {|v k | 1/2}. To derive these volume estimates, we apply the quantitative stratification principle of singular sets introduced in [START_REF] Cheeger | Quantitative stratification and the regularity of harmonic maps and minimal currents[END_REF] (in the context of harmonic maps and minimal currents) and generalized to an abstract framework in [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]. We point out that this stratification principle does not apply verbatim to our setting since solutions of (1.3) are smooth, and non trivial adjustments have to be made. To the best of our knowledge, this is the first time that the quantitative stratification principle is applied to an Allen-Cahn (or Ginzburg-Landau) type equation.

Remark 1.2. We emphasize that Theorem 1.1 applies to minimizing solutions of (1.14) since the function χ Ωg k χ R n \Ω is an admissible competitor of uniformly bounded energy. In particular, this theorem extend the result of [START_REF] Savin | VALDINOCI : Γ-convergence for nonlocal phase transitions[END_REF] for s ∈ (0, 1/2) to arbitrary solutions (with uniformly bounded energy) together with a full set of new estimates. However, if we assume that each v k is minimizing, i.e., E ε k (v k , Ω) E ε k (w, Ω) for every w ∈ H s g k (Ω), then [START_REF] Savin | VALDINOCI : Γ-convergence for nonlocal phase transitions[END_REF] shows that the limiting set E * is a minimizing nonlocal minimal surface in Ω in the sense of [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF], i.e., E * satisfies (1.10).

Remark 1.3. Non trivial examples of (entire) stationary nonlocal minimal surfaces have been constructed in [START_REF] Ávila | Nonlocal s-minimal surfaces and Lawson cones[END_REF]. These examples are nonlocal analogues of classical minimal surfaces such as catenoids, or Lawson cones (see also [START_REF] Cabr É | Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay[END_REF][START_REF] Cabr É | Delaunay hypersurfaces with constant nonlocal mean curvature[END_REF] for Delaunay type surfaces with constant nonlocal mean curvature). It would be very interesting to construct solutions of the fractional Allen-Cahn equation concentrating as ε → 0 on such surfaces.

In proving Theorem 1.1, we actually investigate the more general case where (1.3) is replaced by

(-∆) s v ε + 1 ε 2s W ′ (v ε ) = f ε in Ω , (1.15) 
with a smooth right hand side f ε controlled (with respect to ε) in a suitable Sobolev space.

Considering such inhomogeneous equation is a way to analyse the asymptotic behavior of an arbitrary sequence of (smooth

) functions v ε ∈ H s gε (Ω) satisfying E ε (v ε , Ω) = O(1) and (-∆) s v ε + ε -2s W ′ (v ε ) W 1,q (Ω) = O(1) as ε → 0 ,
for some suitable exponent q.

In the classical case s = 1, such analysis has been pursued in [START_REF] Tonegawa | Phase field model with a variable chemical potential[END_REF][START_REF] Tonegawa | A diffuse interface whose chemical potential lies in a Sobolev space[END_REF] (in continuation to [START_REF] Hutchinson | Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory[END_REF]). For s = 1, one considers a sequence {u ε } of (uniformly bounded) smooth functions on Ω with uniformly bounded energy (1.1), and satisfying

-ε∆u ε + ε -1 W ′ (u ε ) W 1,q (Ω) = O(1)
for some q > n/2 .

(1.16)

Under this assumption, there is still a well defined limiting interface as ε → 0, which is given by an (n -1)-integral varifold with bounded first variation. In addition, the measure theoretic mean curvature of this varifold is given by the weak W 1,q -limit of -ε∆u ε + ε -2 W ′ (u ε ), and it belongs to L r , r := q(n -1)/(nq) > (n -1), with respect to the (n -1)-dimensional measure on the interface. The range of exponents in (1.16) thus leads to the maximal range of integrability exponents in Allard's regularity theory [START_REF] Allard | On the first variation of a varifold[END_REF][START_REF] Simon | Lectures on geometric measure theory[END_REF], and the limiting interface is (partially) regular, see [START_REF] Ätzle | Hypersurfaces with mean curvature given by an ambiant Sobolev function[END_REF].

Considering the inhomogeneous equation (1.15) (complemented with the exterior Dirichlet condition (1.4)), we assume that f ε ∈ C 0,1 (Ω) satisfies

ε 2s f ε L ∞ (Ω) + f ε W 1,q (Ω) = O(1) for some q > n/(1 + 2s) .
In this setting, we have proved that the main conclusions in Theorem 1.1 hold (see Theorem 5.1 and Theorem 7.7 for precise statements) with a limiting set E * satisfying

δP 2s (E * , Ω)[X] = 1 γ n,s E * ∩Ω div(f X) dx ∀X ∈ C 1 c (Ω; R n ) , (1.17) 
where f is the weak limit of f ε in W 1,q (Ω) as ε → 0. In view of (1.12), the boundary of E * satisfies in the weak sense

H (2s) ∂E * = 1 γ n,s f on ∂E * ∩ Ω . (1.18)
We shall refer to this equation as the prescribed nonlocal (2s-)mean curvature equation in Ω, and to weak solutions as surfaces of prescribed nonlocal (2s-)mean curvature.

Our analysis of the fractional Allen-Cahn equation naturally leads to the regularity problem for stationary nonlocal minimal surfaces, or more generally, for weak solutions of (1.18) with f ∈ W 1,q (Ω) and q > n/(1 + 2s). In this direction, we have obtained partial results (compare to [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]), and some of the main conclusions can be summarized in the following theorem (see Section 6.6 for the complete set of results).

Theorem 1.4. For s ∈ (0, 1/2), let E * ⊆ R n be a Borel set satisfying P 2s (E * , Ω) < ∞ and (1.17) for some function f ∈ W 1,q (Ω) and q > n/(1 + 2s). Then,

(i) E * ∩ Ω is (essentially) open; (ii) if ∂E * ∩ Ω is not empty, it has a Minkowski codimension equal to 1; (iii) P 2s ′ (E * , Ω ′ ) < ∞ for every s ′ ∈ (0, 1/2) and every open set Ω ′ such that Ω ′ ⊆ Ω.
This theorem is obtained through a blow-up analysis for solutions of (1.17). Such analysis rests on a preliminary result stating that solutions of (1.17) are compact in the energy space. This is of course the sharp interface analogue of the compactness property for the fractional Allen-Cahn equation, and it relies again on Marstrand's Theorem. Note that such compactness doesn't hold if P 2s is replaced by the usual (distributional) perimeter of sets (see [START_REF] Ätzle | Hypersurfaces with mean curvature given by an ambiant Sobolev function[END_REF]). With this compactness at hand, we have applied the quantitative stratification principle of [START_REF] Cheeger | Quantitative stratification and the regularity of harmonic maps and minimal currents[END_REF][START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF] to solutions of (1.17), leading to conclusions (ii) and (iii).

Remark 1.5. Theorem 1.4 is new even in the case f = 0, i.e., in the case of stationary nonlocal minimal surfaces. Whether or not solutions to (1.11) or (1.17) are more regular (in the spirit of the minimizing case [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]) remains an open question. Let us mention that, in the recent article [START_REF] Cinti | VALDINOCI : Quantitative flatness results and BV -estimates for stable nonlocal minimal surfaces[END_REF], it has been proved that (some) stable solutions of (1.11) have locally finite perimeter in Ω. In particular, their boundary are rectifiable. Note that item (iii) in Theorem 1.4 goes somehow in this direction. Indeed, if we knew that (1 -2s ′ )P 2s ′ (E * , Ω ′ ) = O(1) as s ′ ↑ 1/2, then it would say that E * has finite perimeter in the open set Ω ′ since (1 -2s ′ )P 2s (•, Ω ′ ) converges to the usual perimeter functional as s ′ → 1/2, see [START_REF] Ambrosio | Gamma-convergence of nonlocal perimeter functionals[END_REF][START_REF] Ávila | On an open question about functions of bounded variation[END_REF]. Unfortunately, the bound P 2s ′ (E * , Ω ′ ) < ∞ is obtained by a compactness argument (hinged on the quantitative stratification principle), and no explicit dependence on s ′ seems to follow.

Remark 1.6. A set E * ⊆ R n satisfying P 2s (E * , Ω) - 1 γ n,s E * ∩Ω f dx P 2s (F, Ω) - 1 γ n,s F ∩Ω f dx ∀F ⊆ R n , F \ Ω = E * \ Ω , (1.19)
provides a solution of (1.17). It corresponds to a minimizing solution of the prescribed nonlocal 2s-mean curvature equation. Since f ∈ W 1,q (Ω) with q > n/(1 + 2s), we have f ∈ L r (Ω) with r := nq/(nq) > n/2s. Hence we can apply in this case the regularity theory for nonlocal almost minimal surfaces of [START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF]. Combined with [START_REF] Savin | Regularity of nonlocal minimal cones in dimension 2[END_REF], it shows that ∂E * ∩ Ω is a C 1,α -hypersurface for every α < (1 + 2sn/q)/(n + 2s) away from a relatively closed subset of Hausdorff dimension less then (n -3) (and discrete for n = 3).

Remark 1.7. The notion of stationary nonlocal minimal surface is strongly related to stationary fractional s-harmonic maps into a sphere. With this respect, this article is natural continuation to the analysis of the fractional Ginzburg-Landau equation and 1/2-harmonic maps [START_REF] Millot | SIRE : On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF] by the two first authors. Fractional harmonic maps into a sphere were originally introduced in [START_REF] Lio | RIVI ÈRE : Three-term commutator estimates and the regularity of 1 2 -harmonic maps into spheres[END_REF] for s = 1/2 and n = 1. A mapping v : R n → S d-1 (of finite fractional Dirichlet energy) is called a weakly s-harmonic map in Ω if

d dt E v + tϕ |v + tϕ| , Ω t=0 = 0 ∀ϕ ∈ D(Ω; R d ) .
As shown in [START_REF] Millot | SIRE : On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF] for s = 1/2, this condition leads (in the weak sense) to the Euler-Lagrange equation

(-∆) s v(x) = γ n,s 2 R n |v(x) -v(y)| 2 |x -y| n+2s dxdy v(x) in Ω . (1.20)
For any set E ⊆ R n of finite 2s-perimeter in Ω, the function v = χ Eχ R n \E turns out to satisfy equation (1.20) (see Lemma 6.35). In other words, if we identify

{±1} with {±1} × {0} ⊆ R × R d-1 , the function χ E -χ R n \E is a weakly s-harmonic map into S d-1
in the open set Ω (explaining in particular item (vi) in Theorem 1.1). As a consequence, no regularity can be expected for weakly s-harmonic maps for s < 1/2. This is of course in analogy with the non-regularity result of [START_REF]RIVI ÈRE : Everywhere discontinuous harmonic maps into spheres[END_REF] for usual weakly harmonic maps into a manifold (for n 3). Stationary s-harmonic maps into S d-1 are defined as weakly s-harmonic maps satisfying the additional stationarity condition δE(v, Ω) = 0 (where δE(•, Ω) denotes the first inner variation of E(•, Ω)). One may expect that, for such s-harmonic maps, some partial regularity holds (see [START_REF] Lio | RIVI ÈRE : Three-term commutator estimates and the regularity of 1 2 -harmonic maps into spheres[END_REF][START_REF] Millot | SIRE : On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF] in the case s = 1/2). In view of (1.9), if a set E * ⊆ R n satisfies (1.11) (i.e., whose boundary is a stationary nonlocal 2s-minimal surface in Ω), then the function χ E *χ R n \E * is a stationary s-harmonic map in Ω. It shows that, for general stationary s-harmonic maps into a sphere, the singular set (or discontinuity set) can have a positive H n-1 -measure if s < 1/2 (compare to the vanishing H n-1 -measure of the singular set for stationary 1/2-harmonic maps, see [START_REF] Millot | SIRE : On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres[END_REF]).

As it is customary by now, our analysis rely on the Caffarelli-Silvestre extension procedure [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] to the open upper half space R n+1 + := R n × (0, ∞). This extension allows us to represent (-∆) s as the Dirichlet-to-Neumann operator associated to the degenerate elliptic operator L s := -div(z 1-2s ∇•) on R n+1 + , where z ∈ (0, ∞) denotes the extension variable. In this way, we rewrite solutions to the fractional Allen-Cahn equation or the prescribed nonlocal 2s-mean curvature equation as L s -harmonic functions in R n+1 + satisfying nonlinear boundary conditions. In the spirit of [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF], this extension leads to fundamental monotonicity formulas. All the functional and variational aspects surrounding the fractional Laplacian (-∆) s and the Caffarelli-Silvestre extension are presented in Section 2. In Section 3, we prove some basic (but necessary) regularity estimates on solutions to the fractional Allen-Cahn equation and L s -harmonic functions with Allen-Cahn degenerate boundary reaction. A first part of the asymptotic analysis as ε → 0 is performed in Section 4 for Allen-Cahn degenerate boundary reactions. Consequences for the fractional Allen-Cahn equation are then given in Section 5. Section 6 is devoted to the analysis of surfaces of prescribed nonlocal mean curvature. Finally, we prove in Section 7 the aforementioned volume estimate on transition sets, and complete our asymptotic analysis of the fractional Allen-Cahn equation.

Notation. Throughout the paper, R n is identified with ∂R n+1 + = R n × {0}. More generally, sets A ⊆ R n are identified with A × {0} ⊆ ∂R n+1
+ . Points in R n+1 are written x = (x, z) with x ∈ R n and z ∈ R. We shall denote by B r (x) the open ball in R n+1 of radius r centered at x = (x, z), while D r (x) := B r (x) ∩ R n is the open ball (or disc) in R n centered at x. For an arbitrary set G ⊆ R n+1 , we write

G + := G ∩ R n+1 + and ∂ + G := ∂G ∩ R n+1 + . If G ⊆ R n+1 +
is a bounded open set, we shall say that G is admissible whenever

• ∂G is Lipschitz regular; • the (relative) open set ∂ 0 G ⊆ R n defined by ∂ 0 G := x ∈ ∂G ∩ ∂R n+1 + : B + r (x) ⊆ G for some r > 0 ,
is non empty and has Lipschitz boundary;

• ∂G = ∂ + G ∪ ∂ 0 G .
Finally, we shall always denote by C a generic positive constant which may only depend on the dimension n, and possibly changing from line to line. If a constant depends on additional given parameters, we shall write those parameters using the subscript notation.

FUNCTIONAL SPACES AND THE

FRACTIONAL LAPLACIAN 2.1. H s -spaces for s ∈ (0, 1/2). For an open set Ω ⊆ R n , the fractional Sobolev space H s (Ω) is made of functions v ∈ L 2 (Ω) such that 1 [v] 2 H s (Ω) := γ n,s 2 Ω×Ω |v(x) -v(y)| 2 |x -y| n+2s dxdy < ∞ , γ n,s := s 2 2s π -n 2 Γ n+2s 2 Γ(1 -s) .
It is a separable Hilbert space normed by 

• 2 H s (Ω) := • 2 L 2 (Ω) +[•]
(Ω), [v] 2 H s (R n ) = 2E(v, Ω) (2.1) 
= γ n,s 2 Ω×Ω |v(x) -v(y)| 2 |x -y| n+2s dxdy + γ n,s Ω×Ω c |v(x)| 2 |x -y| n+2s dxdy = [v] 2 H s (Ω) + Ω ρ Ω (x)|v(x)| 2 dx ,
where E(•, Ω) is the fractional Dirichlet energy defined in (1.7), and

ρ Ω (x) := γ n,s R n \Ω 1 |x -y| n+2s dy .
Since s ∈ (0, 1/2), if Ω is bounded and its boundary is smooth enough (e.g. if ∂Ω is Lipschitz regular), then

Ω ρ Ω (x)|v(x)| 2 dx C Ω v 2 H s (Ω) ∀v ∈ H s (Ω) , for a constant C Ω = C Ω (s) > 0. As a consequence, if v ∈ H s (Ω) and v denotes the extension of v by zero outside Ω, then v H s (Ω) v H s (R n ) (C Ω + 1) 1 2 v H s (Ω) .
In particular, if ∂Ω is smooth enough, then 

H s 00 (Ω) = v : v ∈ H s (Ω) (see [
H s 00 (Ω) = D(Ω) • H s (R n ) . (2.2)
The topological dual space of H s 00 (Ω) is denoted by H -s (Ω). We are interested in the class of functions

H s (Ω) := v ∈ L 2 loc (R n ) : E(v, Ω) < ∞ .
The following properties hold for any bounded open subsets Ω and Ω ′ of R n :

• H s (Ω) is a linear space; 1 The normalization constant γn,s is chosen in such a way that

[v] 2 H s (R n ) = R n (2π|ξ|) 2s |v| 2 dξ . • H s (Ω) ⊆ H s (Ω ′ ) whenever Ω ′ ⊆ Ω, and E(v, Ω ′ ) E(v, Ω) ; • H s (Ω) ∩ H s loc (R n ) ⊆ H s (Ω ′ ) ; • H s loc (R n ) ∩ L ∞ (R n ) ⊆ H s (Ω)
. From Lemma 2.1 below, it is straightforward to show that H s (Ω) is actually a Hilbert space for the scalar product induced by the norm v → v 2 L 2 (Ω) + E(v, Ω) Lemma 2.1. Let x 0 ∈ Ω and ρ > 0 be such that D ρ (x 0 ) ⊆ Ω. There exists a constant C ρ > 0, independent of x 0 , such that

R n |v(x)| 2 (|x -x 0 | + 1) n+2s dx C ρ E v, D ρ (x 0 ) + v 2 L 2 (Dρ(x0)) for every v ∈ H s (Ω). Remark 2.2. If v ∈ H s (Ω), then v + H s 00 (Ω) ⊆ H s (Ω). Conversely, if v = g a.e
. in R n \ Ω for some functions v and g in H s (Ω), then v-g ∈ H s 00 (Ω). As a consequence, for g ∈ H s (Ω),

H s g (Ω) := v ∈ H s (Ω; R m ) : v = g a.e. in R n \ Ω = g + H s 00 (Ω) . Note that H s g (Ω) ⊆ H s loc (R n ) whenever g ∈ H s (Ω) ∩ H s loc (R n ).
2.2. The fractional Laplacian. Let Ω ⊆ R n be a bounded open set. We define the fractional Laplacian (-∆) s : H s (Ω) → ( H s (Ω)) ′ as the continuous linear operator induced by the quadratic form E(•, Ω). More precisely, given a function v ∈ H s (Ω), we define its distributional fractional Laplacian (-∆) s v through its action on H s (Ω) by setting

(-∆) s v, ϕ Ω := γ n,s 2 Ω×Ω v(x) -v(y) ϕ(x) -ϕ(y) |x -y| n+2s dxdy + γ n,s Ω×Ω c v(x) -v(y) ϕ(x) -ϕ(y) |x -y| n+2s dxdy . (2.3)
If v is a smooth bounded function, then the distribution (-∆) s v can be rewritten from (2.3) as a pointwise defined function which coincides with the one given by formula (1.5). Notice also that the restriction of the linear form (-∆) s v to the subspace H s 00 (Ω) belongs to H -s (Ω) with the estimate

(-∆) s v 2 H -s (Ω) 2E(v, Ω) .
(2.4)

In this way, (-∆) s v appears to be the first outer variation of E(•, Ω) at v with respect to pertubations supported in Ω, i.e.,

(-∆) s v, ϕ Ω = d dt E(v + tϕ, Ω) t=0 (2.5) for all ϕ ∈ H s 00 (Ω). Remark 2.3. If Ω ′ ⊆ Ω are two open sets and v ∈ H s (Ω), then (-∆) s v, ϕ Ω = (-∆) s v, ϕ Ω ′ for all ϕ ∈ H s 00 (Ω ′ ).

Weighted Sobolev spaces.

For an open set G ⊆ R n+1 , we define the weighted L 2 -space

L 2 (G, |z| a dx) := u ∈ L 1 loc (G) : |z| a 2 u ∈ L 2 (G) with a := 1 -2s , normed by u 2 L 2 (G,|z| a dx) := G |z| a |u| 2 dx .
Accordingly, we introduce the weighted Sobolev space

H 1 (G, |z| a dx) := u ∈ L 2 (G, |z| a dx) : ∇u ∈ L 2 (G, |z| a dx) , normed by u H 1 (G,|z| a dx) := u L 2 (G,|z| a dx) + ∇u L 2 (G,|z| a dx) .
Both L 2 (G, |z| a dx) and H 1 (G, |z| a dx) are separable Hilbert spaces when equipped with the scalar product induced by their respective Hilbertian norm.

If Ω denotes a (relatively) open subset of ∂R n+1

+ ≃ R n such that Ω ⊆ ∂G, we set L 2 loc (G ∪ Ω, |z| a dx) := u ∈ L 1 loc (G) : |z| a 2 u ∈ L 2 loc (G ∪ Ω) , and 
H 1 loc (G ∪ Ω, |z| a dx) := u ∈ L 2 loc (G ∪ Ω, |z| a dx) : ∇u ∈ L 2 loc (G ∪ Ω, |z| a dx) .
Remark 2.4. For a bounded admissible open set G ⊆ R n+1 + , the space L 2 (G, |z| a dx) embeds continuously into L γ (G) for every 1 γ < 1 1-s by Hölder's inequality. In particular,

H 1 (G, |z| a dx) ֒→ W 1,γ (G) (2.6) 
continuously for every 1 < γ < 1 1-s . As a first consequence, H 1 (G, |z| a dx) ֒→ L 1 (G) with compact embedding. Secondly, for such γ's, the compact linear trace operator

u ∈ W 1,γ (G) → u |∂ 0 G ∈ L 1 (∂ 0 G) (2.7)
induces a compact linear trace operator from H 1 (G, |z| a dx) into L 1 (∂ 0 G), extending the usual trace of smooth functions. We may denote by u |∂ 0 G the trace of u ∈ H 1 (G, |z| a dx) on ∂ 0 G, or simply by u if it is clear from the context. Finally, we write

H 1 (G, |z| a dx) ∩ L p (∂ 0 G) the class of functions u ∈ H 1 (G, |z| a dx) such that u |∂ 0 G ∈ L p (∂ 0 G).
Lemma 2.5. There exists a constant λ n,s > 0 depending only on n and s such that for every r > 0, and every u ∈

H 1 (B + r , |z| a dx), u -[u] r L 1 (Dr ) λ n,s r n+2s 2 ∇u L 2 (B + r ,|z| a dx)
, where [u] r denotes the average of u over D r .

Proof. By scaling it suffices to consider the case r = 1. We claim that there exists a constant c n > 0 such that for every u ∈ W 1,1 (B + 1 ),

u -[u] 1 L 1 (D1) c n B + 1 |∇u| dx . (2.8)
Then the conclusion follows from Hölder's inequality. To prove (2.8) it is enough to consider functions u ∈ W 1,1 (B + 1 ) satisfying [u] 1 = 0. Then we argue by contradiction assuming that there exists a sequence

{u k } k∈N ⊆ W 1,1 (B + 1 ) such that [u k ] 1 = 0 and u k L 1 (D1) > k ∇u k L 1 (B + 1 ) for every k ∈ N. Replacing u k by u k / u k L 1 (B + 1 )
if necessary, we can assume that u k L 1 (B + 1 ) = 1 for each k ∈ N. The trace operator being continuous, we can find a constant t n > 0 such that

u k L 1 (D1) t n ( ∇u k L 1 (B + 1 ) + u k L 1 (B + 1 ) ) . Therefore u k L 1 (D1)
2t n whenever k is large enough. Then

∇u k L 1 (B + 1 )
2t n /k.

By the compact embedding W If the function u ∈ H 1 (G, |z| a dx) is compactly supported in G ∪ Ω for some smooth and bounded open set Ω ⊆ R n such that Ω ⊆ ∂ 0 G, the sequence {u k } k∈N can be chosen in such a way that each u k is compactly supported in G ∪ Ω. Indeed, by a diagonal argument, it is enough to show that u can be approximated in the H 1 (G, |z| a dx)-norm by a sequence { u k } k∈N ⊆ H 1 (G, |z| a dx) made of functions compactly supported in the set G ∪ Ω. To this purpose, we first reduce the problem to the case of a bounded function u through the usual truncation argument. From the smoothness assumption on ∂Ω, and since ∂Ω is a set of codimension 2 in R n+1 , it has a vanishing H 1 -capacity in R n+1 . Hence, we can find a sequence of cut-off functions 

:= (x, z) ∈ R n+1 : (x, |z|) ∈ G ∪ ∂ 0 G is open in R n+1
ζ k : R n+1 → [0, 1] such that ζ k = 1 in a neighborhood of ∂Ω, ζ k → 0 a.e. in R n+1 and ζ k → 0 strongly in H 1 (R n+1 ) (see e.
u k -u 2 H 1 (G,|z| a dx) C G z a ζ 2 k |∇u| 2 dx + u 2 L ∞ (G) ζ k 2 H 1 (G) -→ k→∞ 0 ,
by dominated convergence.

2.4.

The Dirichlet-to-Neumann operator. Consider the function K n,s : R n+1

+ → [0, ∞) defined by K n,s (x) := σ n,s z 2s |x| n+2s , σ n,s := π -n 2 Γ( n+2s 2 ) Γ(s)
,

where x := (x, z) ∈ R n+1 + := R n × (0, ∞).
The choice of the constant σ n,s is made in such a way that 2 R n K n,s (x, z) dx = 1 for every z > 0. As shown in [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF], the function K n,s solves

div(z a ∇K n,s ) = 0 in R n+1 + , K n,s = δ 0 on ∂R n+1 + ,
where δ 0 is the Dirac distribution at the origin. In other words, the function K n,s can be interpreted as the "fractional Poisson kernel" by analogy with the standard case s = 1/2. From now on, for a measurable function v defined over R n , we shall denote by v e its extension to the half-space R n+1 + given by the convolution (in the x-variables) of v with the 2 Indeed, changing variables one obtains

R n 1 (|x| 2 + 1) n+2s 2 dx = |S n-1 | ∞ 0 r n-1 (r 2 + 1) n+2s 2 dr = |S n-1 | 2 ∞ 0 t n 2 -1 (t + 1) n+2s 2 dt = |S n-1 | 2 B(n/2, s) ,
where B(•, •) denotes the Euler Beta function.

fractional Poisson kernel K n,s , i.e.,

v e (x, z) := σ n,s R n z 2s v(y) (|x -y| 2 + z 2 ) n+2s 2
dy .

(2.9)

Notice that v e is well defined if v belongs to the Lebesgue space L q over R n with respect to the probability measure

m := σ n,s (1 + |y| 2 ) -n+2s 2 dy (2.10)
for some 1 q ∞. In particular, v e can be defined whenever v ∈ H s (Ω) for some bounded open set

Ω ⊆ R n by Lemma 2.1. Moreover, if v ∈ L ∞ (R n ), then v e ∈ L ∞ (R n+1 + ) and v e L ∞ (R n+1 + ) v L ∞ (R n ) .
(2.11)

For an admissible function v, the extension v e has a pointwise trace on ∂R n+1 + = R n which is equal to v at every Lebesgue point. In addition, v e solves the equation

div(z a ∇v e ) = 0 in R n+1 + , v e = v on ∂R n+1 + .
(2.12)

By analogy with the standard case s = 1/2 (for which (2.12) reduces to the Laplace equation), we may say that v e is the fractional harmonic extension of v.

The following continuity property is elementary and can be obtained exactly as in [39, Lemma 2.5].

Lemma 2.7. For every R > 0, the restriction operator R R :

L 2 (R n , m) → L 2 (B + R , |z| a dx) defined by R R (v) := v e |B + R , (2.13) 
is continuous.

It has been proved in [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] that v e belongs to the weighted space H 1 (R n+1 + , |z| a dx) whenever v ∈ H s (R n ). In addition, the H s -seminorm of v coincides with the weighted L 2 -norm of ∇v e , extending a well known identity for s = 1/2. Lemma 2.8 ( [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]). Let v ∈ H s (R n ), and let v e be its fractional harmonic extension to R n+1 + given by (2.9). Then v e belongs to H 1 (R n+1 + , |z| a dx) and

[v] 2 H s (R n ) = d s ∇v e 2 L 2 (R n+1 + ,|z| a dx) = inf d s ∇u 2 L 2 (R n+1 + ,|z| a dx) : u ∈ H 1 (R n+1 + , |z| a dx) , u = v on R n , (2.14)
where

d s := 2 2s-1 Γ(s) Γ(1-s) . Remark 2.9. Let G ⊆ R n+1 + be an admissible bounded open set. For any function u ∈ H 1 (R n+1 + , |z| a dx) compactly supported in G ∪ ∂ 0 G, the trace u |R n belongs to H s 00 (∂ 0 G). Indeed, if u is smooth in R n+1
+ , then we can apply identity (2.14). In the general case, it suffices to apply the approximation procedure in Remark 2.6 to reach the conclusion.

If v ∈ H s (Ω) for a bounded open set Ω ⊆ R n , we have the following estimates on v e extending Lemma 2.8 to the local setting. The proof follows closely the arguments in [39, Lemma 2.7], and we shall omit it. Lemma 2.10. Let Ω ⊆ R n be a bounded open set. For every v ∈ H s (Ω), the extension v e given by (2.9) belongs to H 1 loc (R n+1 + ∪Ω, |z| a dx)∩L 2 loc R n+1 + , |z| a dx . In addition, for every x 0 ∈ Ω, R > 0, and ρ > 0 such that D 3ρ (x 0 ) ⊆ Ω, there exist constants C s,R,ρ > 0 and C s,ρ > 0, independent of v and x 0 , such that

v e 2 L 2 (B + R (x0),|z| a dx) C s,R,ρ E v, D 2ρ (x 0 ) + v 2 L 2 (D2ρ(x0)) ,
and ∇v e 2

L 2 (B + ρ (x0),|z| a dx) C s,ρ E v, D 2ρ (x 0 ) + v 2 L 2 (D2ρ(x0)) .
Remark 2.11. By the previous lemma, for any v ∈ H s (Ω)∩H s loc (R n ), the fractional harmonic extension v e belongs to H 1 loc (R n+1 + , |z| a dx), and for any R > 0,

v e 2 H 1 (B + R ,|z| a dx) C s,R E v, D 2R + v 2 L 2 (D2R) . If v ∈ H s (Ω)
for some bounded open set Ω ⊆ R n with Lipschitz boundary, the divergence free vector field z a ∇v e admits a distributional normal trace on Ω, that we denote by Λ (2s) v. More precisely, we define Λ (2s) v through its action on a test function ϕ ∈ D(Ω) by setting

Λ (2s) v, ϕ Ω := R n+1 + z a ∇v e • ∇Φ dx , (2.15) 
where Φ is any smooth extension of ϕ compactly supported in R n+1

+

∪ Ω. Note that the right hand side of (2.15) is well defined by Lemma 2.10. Using equation (2.12) and the divergence theorem, it is routine to check that the integral in (2.15) does not depend on the choice of the extension Φ. In the light of (2.2) and Lemma 2.8, we infer that Λ (2s) : H s (Ω) → H -s (Ω) defines a continuous linear operator. It can be thought as a fractional Dirichlet-to-Neumann operator. Indeed, whenever v is smooth, the distribution Λ (2s) v is the pointwise defined function given by

Λ (2s) v(x) = -lim z↓0 z a ∂ z v e (x, z) = 2s lim z↓0 v e (x, 0) -v e (x, z) z 2s
for x ∈ Ω.

In the case Ω = R n , it has been proved in [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] that Λ (2s) coincides with (-∆) s , up to a constant multiplicative factor. In our localized setting, this identity still holds, and it can be obtained essentially as in [39, Lemma 2.9]. Lemma 2.12. If Ω ⊆ R n is a bounded open set with Lipschitz boundary, then

(-∆) s = d s Λ (2s) on H s (Ω) .
A local counterpart of Lemma 2.8 concerning the minimality of v e can be obtained from the above identity. This is the purpose of Corollary 2.13 below, which is inspired from [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]Lemma 7.2]. From now on, we use the notation

E(u, G) := d s 2 G z a |∇u| 2 dx , (2.16) 
for an open set

G ⊆ R n+1 + and u ∈ H 1 (G, |z| a dx). We shall refer to E(•, G) as the weighted Dirichlet energy in the domain G. Corollary 2.13. Let Ω ⊆ R n be a bounded open set, and G ⊆ R n+1 + be an admissible bounded open set such that ∂ 0 G ⊆ Ω. Let v ∈ H s (Ω)
, and let v e be its fractional harmonic extension to R n+1 + given by (2.9). Then,

E(u, G) -E(v e , G) E(u, Ω) -E(v, Ω) (2.17) for all u ∈ H 1 (G, |z| a dx) such that u -v e is compactly supported in G ∪ ∂ 0 G. In the right hand side of (2.17), the trace of u on ∂ 0 G is extended by v outside ∂ 0 G. Proof. Let u ∈ H 1 (G, |z| a dx) such that u-v e is compactly supported in G∪∂ 0 G. We extend u by v e outside G. Then w := u -v e ∈ H 1 (R n+1 + , |z| a dx) and w is compactly supported in G ∪ ∂ 0 G. Hence w |R n ∈ H s 00 (∂ 0 G) by Remark 2.9. Since v ∈ H s (∂ 0 G), we deduce from Remark 2.2 that the trace of u on R n belongs to H s (∂ 0 G).
Using Lemma 2.8 and Lemma 2.12, we estimate

E(u, G) -E(v e , G) = d s 2 R n+1 + z a |∇w| 2 dx + d s R n+1 + z a ∇v e • ∇w dx = d s 2 R n+1 + z a |∇w| 2 dx + (-∆) s v, w |R n ∂ 0 G w |R n 2 H s (R n ) + (-∆) s v, w |R n ∂ 0 G = E(w |R n , ∂ 0 G) + (-∆) s v, w |R n ∂ 0 G . (2.18) Using the fact that u |R n , v ∈ H s (∂ 0 G), we derive that E(w |R n , ∂ 0 G) = E(u |R n , ∂ 0 G) + E(v, ∂ 0 G) -(-∆) s v, u |R n ∂ 0 G , (2.19) 
and

(-∆) s v, w |R n ∂ 0 G = (-∆) s v, u |R n ∂ 0 G -2E(v, ∂ 0 G) .
(2.20)

Gathering (2.18)-(2.19)-(2.20) yields E(u, G) -E(v e , G) E(u |R n , ∂ 0 G) -E(v, ∂ 0 G) . Since u |R n = v outside ∂ 0 G, we infer that E(u |R n , ∂ 0 G) -E(v, ∂ 0 G) = E(u |R n , Ω) -E(v, Ω) ,
and the conclusion follows.

The crucial observation for us is that (2.17) leads to a local representation (in terms of v e ) of the first inner variation of E(•, Ω) at a function v ∈ H s (Ω). We recall that, given X ∈ C 1 (R n ; R n ) compactly supported in Ω, the first inner variation δE(v, Ω) evaluated at X is defined by

δE(v, Ω)[X] := d dt E(v • φ -t , Ω) t=0 ,
where {φ t } t∈R denotes the flow on R n generated by X, i.e., for x ∈ R n , the map t → φ t (x) is defined as the unique solution of the ordinary differential equation

   d dt φ t (x) = X φ t (x) , φ 0 (x) = x .
Now we can state our representation result.

Corollary 2.14. Let Ω ⊆ R n be a bounded open set, and

G ⊆ R n+1 + be an admissible bounded open set such that ∂ 0 G ⊆ Ω. For each v ∈ H s (Ω), and each X ∈ C 1 (R n ; R n ) compactly supported in ∂ 0 G, we have δE(v, Ω)[X] = d s 2 G z a |∇v e | 2 div X -2(∇v e ⊗ ∇v e ) : ∇X dx + d s a 2 G z a-1 |∇v e | 2 X n+1 dx , where X = (X 1 , . . . , X n+1 ) ∈ C 1 (G; R n+1 ) is any vector field compactly supported in G ∪ ∂ 0 G satisfying X = (X, 0) on ∂ 0 G. Proof. Let X = (X 1 , . . . , X n+1 ) ∈ C 1 (G; R n+1
) be an arbitrary vector field compactly supported in G∪∂ 0 G and satisfying X = (X, 0) on ∂ 0 G. Then consider a compactly supported C 1 -extension of X to the whole space R n+1 , still denoted by X, such that X = (X, 0) on R n .

We define {Φ t } t∈R to be the flow on R n+1 generated by X, i.e., for x ∈ R n+1 , the map t → Φ t (x) is defined as the unique solution of the differential equation

   d dt Φ t (x) = X Φ t (x) , Φ 0 (x) = x . Noticing that Φ t = (φ t , 0) on R n and that supp Φ t -id R n+1 ∩ R n+1 + ⊆ G ∪ ∂ 0 G, we infer from Corollary 2.13 that E(v e • Φ -t , G) -E(v e , G) E v • φ -t , Ω -E(v, Ω) .
Dividing both sides of this inequality by t = 0, and then letting t ↓ 0 and t ↑ 0, we obtain

d dt E(v e • Φ -t , G) t=0 = d dt E v • φ t , Ω t=0 .
On the other hand, standard computations (see e.g. [51, Chapter 2.2]) yield

d dt E(v e • Φ -t , G) t=0 = d s 2 G z a |∇v e | 2 div X -2(∇v e ⊗ ∇v e ) : ∇X dx + d s a 2 G z a-1 |∇v e | 2 X n+1 dx , (2.21)
and the conclusion follows. 

∂ 0 G of E(•, G) at u as δE u, G ∪ ∂ 0 G [X] := d dt E(u • Φ -t , G) t=0 ,
where (as in the previous proof) {Φ t } t∈R denotes the flow on R n+1 generated by a given vector field X = (X,

X n+1 ) ∈ C 1 (G; R n+1 ) compactly supported in G ∪ ∂ 0 G and satisfying X n+1 = 0 on ∂ 0 G. Then, one obtains δE u, G ∪ ∂ 0 G [X] = d s 2 G z a |∇u| 2 div X -2(∇u ⊗ ∇u) : ∇X dx + d s a 2 G z a-1 |∇u| 2 X n+1 dx . (2.22)
Hence, we can rephrased the conclusion of Corollary 2.14 as δE(v, Ω) = δE v e , G ∪ ∂ 0 G .

THE FRACTIONAL ALLEN-CAHN EQUATION: A PRIORI ESTIMATES

We consider in this section a bounded open set Ω ⊆ R n with (at least) Lipschitz boundary. We are interested in weak solutions v ε ∈ H s (Ω)∩L p (Ω) of the fractional Allen-Cahn equation

(-∆) s v ε + 1 ε 2s W ′ (v ε ) = f in Ω , (3.1) 
with a source term f belonging to either L ∞ (Ω) or C 0,1 (Ω). The notion of weak solution is understood in the duality sense according to the formulation (2.3) of the fractional Laplacian, i.e.,

(-∆) s v ε , ϕ Ω + 1 ε 2s Ω W ′ (v ε ) ϕ dx = Ω f ϕ dx ∀ϕ ∈ H s 00 (Ω) ∩ L p (Ω) .
Such solutions correspond to critical points in Ω of the functional

F ε (v, Ω) := E ε (v, Ω) - Ω f v dx ,
where E ε (•, Ω) is the fractional Allen-Cahn energy in (1.8). In other words, we are interested in maps

v ε ∈ H s (Ω) ∩ L p (Ω) satisfying d dt F ε (v ε + tϕ, Ω) t=0 = 0 ∀ϕ ∈ H s 00 (Ω) ∩ L p (Ω) . (3.2) Remark 3.
1. An elementary way to construct solutions of (3.1) is of course to minimize F ε (•, Ω) under an exterior Dirichlet condition. Indeed, given g ∈ H s (Ω) ∩ L p (Ω), the minimization problem

min F ε (v, Ω) : v ∈ H s g (Ω) ∩ L p (Ω) , (3.3) 
is easily solved using the Direct Method of Calculus of Variations, and it obviously returns a solution of (3.2).

Degenerate Allen-Cahn boundary reactions.

To obtain a priori estimates on weak solutions of (3.1), we rely on the fractional harmonic extension to R n+1 + introduced in Section 2. According to Lemmas 2.10 & 2.12, and (2.15), if v ε ∈ H s (Ω) ∩ L p (Ω) is a weak solution of (3.1), then its fractional harmonic extension v e ε given by (2.9) satisfies

d s R n+1 + z a ∇v e ε • ∇φ dx + 1 ε 2s Ω W ′ (v e ε ) φ dx = Ω f φ dx
for every smooth function φ : R n+1

+ → R compactly supported in R n+1 + ∪ Ω, or equivalently, for every φ ∈ H 1 (R n+1 + , |z| a dx) ∩ L p (Ω) compactly supported in R n+1 + ∪ Ω (by Remark 2.

6). In particular, given an admissible bounded open set

G ⊆ R n+1 + such that ∂ 0 G ⊆ Ω, the extension v e ε obviously satisfies d s G z a ∇v e ε • ∇φ dx + 1 ε 2s ∂ 0 G W ′ (v e ε ) φ dx = ∂ 0 G f φ dx (3.4) for every φ ∈ H 1 (G, |z| a dx) ∩ L p (∂ 0 G) compactly supported in G ∪ ∂ 0 G.
In other words, the extension v e ε is a critical point of the functional F ε (•, G) defined on the weighted space

H 1 (G, |z| a dx) ∩ L p (∂ 0 G) by F ε (u, G) := E ε (u, G) - ∂ 0 G f u dx , (3.5) 
with

E ε (u, G) := E(u, G) + 1 ε 2s ∂ 0 G W (u) dx , where E(•, G) is the weighted Dirichlet energy defined in (2.16). In general, if a function u ε is a critical point of F ε (•, G) such that both u ε and z a ∂ z u ε are continuous in G up to ∂ 0 G, then u ε satisfies in the pointwise sense the Euler-Lagrange equation      div(z a ∇u ε ) = 0 in G , d s ∂ (2s) z u ε = 1 ε 2s W ′ (u ε ) -f on ∂ 0 G , (3.6) 
where we have set for x = (x, 0) ∈ ∂ 0 G,

∂ (2s) z u ε (x) := lim z↓0 z a ∂ z u ε (x, z) .
We shall refer to as weak solution of equation (3.6) a critical point of F ε (•, G).

3.2.

Regularity for degenerate boundary reactions. Our strategy now consists in deriving a priori estimates for weak solutions of (3.6). Concerning regularity, the starting point is the following linear estimate given in [13, proof of Lemma 4.5].

Lemma 3.2 ([13]). Let f ∈ L ∞ (D 2 ) and u ∈ H 1 (B + 2 , |z| a dx) ∩ L ∞ (B + 2 ) be a weak solution of      div(z a ∇u) = 0 in B + 2 , ∂ (2s) 
z u = f on D 2 .
(3.7)

There exist β * = β * (n, s) ∈ (0, 1), and a positive constant c n,s depending only on n and s such that

u C 0,β * (B1 + ) c n,s f L ∞ (D2) + u L ∞ (B + 2 ) . (3.8) In addition, if f ∈ C 0,σ (D 2 ) with σ ∈ (0, 1), then z a ∂ z u ∈ C 0,γ (B + 1
) for some γ ∈ (0, 1). For f ∈ C 0,1 (D 2 ), bootstrapping estimate (3.8) yields the following interior regularity for bounded weak solutions of (3.6).

Theorem 3.3. Let f ∈ C 0,1 (D 2 ) and u ε ∈ H 1 (B + 2 , |z| a dx) ∩ L ∞ (B + 2 ) be a weak solution of      div(z a ∇u ε ) = 0 in B + 2 , d s ∂ (2s) z u ε = 1 ε 2s W ′ (u ε ) -f on D 2 .
(3.9)

Then u ε ∈ C ∞ (B + 2 ), u ε ∈ C 0,β * B + 1 , ∇ x u ε ∈ C 0,β * (B + 1 ), and z a ∂ z u ε ∈ C 0,γ (B + 1
) for some γ ∈ (0, 1) (with β * given by Lemma 3.2).

Proof. Regularity in the interior of the half ball B + 2 follows from the usual elliptic theory. Then, to prove the announced regularity near D 1 , we first apply Lemma 3.2 to deduce that

u ε ∈ C 0,β * loc B + 2 ∪ D 2 and z a ∂ z u ε ∈ C 0,γ loc (B + 2 ∪ D 2 )
. Now it only remains to show that ∇ x u ε is Hölder continuous up to D 1 . Denote by k * ∈ N the integer part of 1/β * . Choosing the universal constant β * slightly smaller if necessary, we may assume without loss of generality that k * < 1/β * . Then (k * + 1)β * ∈ (1, 2).

Fix an arbitrary point x 0 ∈ D 1 , and for x = (x, z) ∈ B + 1 ∪D 1 define the translated function ū(x) := u ε (x + x 0 , z) .

Given a non vanishing

h ∈ D 1/8 , we set for x ∈ B + 7/8 ∪ D 7/8 , w h (x) := ū(x + h, z) -ū(x) |h| β * . (3.10) Then w h ∈ H 1 (B + 7/8 , |z| a dx) ∩ L ∞ (B + 7/8 ) and w h L ∞ (B + 7/8
) is bounded independently of h. In addition, w h weakly solves equation (3.7) in B + 7/8 with right hand side

f h (x) := W ′ ū(x + h, 0) -W ′ ū(x, 0) ε 2s ū(x + h, 0) -ū(x, 0) w h (x, 0) - f (x 0 + x + h) -f (x 0 + x) |h| β * . By assumption W ∈ C 2 (R) and f ∈ C 0,1 (D 2 ), so that f h L ∞ (D 7/8 ) is bounded indepen- dently of h. Hence Lemma 3.2 yields w h ∈ C 0,β * (B + 7/16
), and

w h C 0,β * (B + 7/16 ) is bounded independently of h. In particular, |w h (x, z) -w h (x -h, z)| |h| β * C 1 ∀(x, z) ∈ D 1/8 × [0, 1/8] ,
for some constant C 1 independent of h. In view of the arbitrariness of h, we deduce that

sup x∈D 1/8 ū(x + h, z) -2ū(x, z) + ū(x -h, z) C 1 |h| 2β * (3.11) for every h ∈ D 1/8 and z ∈ [0, 1/8]. Let us now fix a cut-off function ζ ∈ C ∞ (R n ; [0, 1]) such that ζ(x) = 1 for |x| 1/16 and ζ(x) = 0 for |x| 1/8. Given z ∈ [0, 1/8], we define for x ∈ R n , ϑ z (x) := ζ(x)ū(x, z) .
For h ∈ R n , we denote by D 2 h ϑ z the second order difference quotient of ϑ z on R n given by

D 2 h ϑ z (x) := ϑ z (x + h) -2ϑ z (x) + ϑ z (x -h) .
From (3.11), it is elementary to show that

ϑ z L ∞ (R n ) + sup |h|>0 D 2 h ϑ z L ∞ (R n ) |h| 2β * C 2 , for a constant C 2 independent of z ∈ [0, 1/8].
We now have to distinguish two cases.

Case 1)

.

If k * = 1 (i.e., β * > 1/2), then we infer from [53, Proposition 9 in Chapter V.4] that ϑ z ∈ C 1,α * (R n ) with α * = 2β * -1, and ϑ z C 1,α * (R n ) C 2 for a constant C 2 independent of z ∈ [0, 1/8]. As a consequence ū(•, z) ∈ C 1,α * (D 1/16 ), and ū(•, z) C 1,α * (D 1/16 ) C 2 for every z ∈ [0, 1/8].
We fix j ∈ {1, . . . , n}, δ ∈ (0, 1/32), and we define for

x = (x, z) ∈ B + 1/32 ∪ D 1/32 , w δ (x) := ū(x + δe j , z) -ū(x) δ .
Then

w δ ∈ H 1 (B + 1/32 , |z| a dx) ∩ L ∞ (B + 1/32 ) and w δ L ∞ ((B + 1/32
) is bounded independently of δ. In addition, w δ weakly solves equation (3.2) in B + 1/32 with right hand side

f δ (x) := W ′ (ū(x + δe j , 0)) -W ′ (ū(x, 0)) ε 2s (ū(x + δe j , 0) -ū(x, 0)) w δ (x, 0) - f (x 0 + x + δe j ) -f (x 0 + x) δ . Again, since W ∈ C 2 (R) and f ∈ C 0,1 (D 2 ), we have f δ ∈ L ∞ (D 1/32 ) and f δ L ∞ (D 1/32
) is bounded independently of δ. Then Lemma 3.2 yields w δ ∈ C 0,β * (B + 1/64 ), and

| w δ (x 1 ) -w δ (x 2 )| |x 1 -x 2 | β * C 3 ∀x 1 , x 2 ∈ B + 1/64 , x 1 = x 2 ,
for a constant C 3 independent of δ. Letting δ → 0, we finally deduce that

|∂ j ū(x 1 ) -∂ j ū(x 2 )| |x 1 -x 2 | β * C 3 ∀x 1 , x 2 ∈ B + 1/64 , x 1 = x 2 .
Since the index j is arbitrary, it shows that ∇ x u ε is indeed of class C 0,β * in a neighborhood of the point (x 0 , 0).

Case 2)

. We now assume that k * 2 (i.e., β * < 1/2). Then we infer from [53, Proposition 8 in Chapter

V.4] that ϑ z ∈ C 0,2β * (R n ) and ϑ z C 0,2β * (R n ) C 2 for a constant C 2 independent of z ∈ [0, 1/8]. As a consequence, for every z ∈ [0, 1/8], we have ū(•, z) ∈ C 0,2β * (D 1/16 ), and ū(•, z) C 0,2β * (D 1/16 ) C 2 .
We then repeat the argument starting with the function w h given in (3.10) with β * replaced by 2β * and the point x lying in a smaller half ball. After iterating k * times this procedure we are back to Case 1, and we conclude that ∇ x u ε is of class C 0,β * in a neighborhood of (x 0 , 0). Remark 3.4. Note that for ε 1/2, Lemma 3.2 also shows that any weak solution

u ε ∈ H 1 (B + 2 , |z| a dx) ∩ L ∞ (B + 2 ) of (3.9) satisfies u ε C 0,β * (B1 + ) c * for some constant c * > 0 depending only on n, s, W , f L ∞ (D2) , and u ε L ∞ (B + 2 ) .
A fundamental consequence of the previous regularity result is that bounded weak solutions of (3.6) with f ∈ C 0,1 (∂ 0 G) are stationary points of F ε (•, G), i.e., critical points with respect to inner variations up to ∂ 0 G. In other words, we have 

f ∈ C 0,1 (∂ 0 G). If u ε ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) is a weak solution of (3.6), then δE u ε , G ∪ ∂ 0 G [X] + 1 ε 2s ∂ 0 G W (u ε ) divX dx = ∂ 0 G u ε div(f X) dx for every vector field X = (X, X n+1 ) ∈ C 1 (G; R n+1 ) compactly supported in G ∪ ∂ 0 G such that X n+1 = 0 on ∂ 0 G. Proof. Let X = (X, X n+1 ) ∈ C 1 (G; R n+1
) be an arbitrary vector field compactly supported in G ∪ ∂ 0 G and satisfying X n+1 = 0 on ∂ 0 G. For δ 0, we set

V δ := d s 2 G∩{z>δ} z a |∇u ε | 2 div X -2(∇u ε ⊗ ∇u ε ) : ∇X dx + d s a 2 G∩{z>δ} z a-1 |∇u ε | 2 X n+1 dx , so that V 0 = lim δ↓0 V δ .
For each δ > 0 we can use equation (3.6) and integrate by parts to find

V δ = d s G∩{z=δ} z a ∂ z u ε X • ∇ x u ε dx + d s δ 2s 2 G∩{z=δ} z a ∂ z u ε 2 X n+1 z dx - d s 2 G∩{z=δ} z a |∇ x u ε | 2 X n+1 dx .
By the regularity estimates in Theorem 3.3, we can let δ ↓ 0 to derive

V 0 = ∂ 0 G ∂ (2s) z u ε X • ∇ x u ε dx = 1 ε 2s ∂ 0 G W ′ (u ε )X • ∇ x u ε dx - ∂ 0 G f X • ∇ x u ε dx .
Integrating this last term by parts, we conclude that

V 0 = - 1 ε 2s ∂ 0 G W (u ε ) divX dx + ∂ 0 G u ε div(f X) dx ,
which, in view of Remark 2.15, is the announced identity. 

3.6. Let v ε ∈ H s (Ω)∩L ∞ (R n ) be a weak solution of (3.1) with f ∈ L ∞ (Ω). Then v ε ∈ C 0,β * loc (Ω) with β * given by Lemma 3.2. In addition, if f ∈ C 0,1 (Ω), then v ε ∈ C 1,β * loc (Ω).
The regularity issue then reduces to prove that a given weak solution of the fractional equation (3.1) is bounded. If we complement (3.1) with a smooth exterior Dirichlet condition, this is indeed the case.

Lemma 3.7. Let g ∈ C 0,1 loc (R n ) ∩ L ∞ (R n ), f ∈ L ∞ (Ω), and let v ε ∈ H s g (Ω) ∩ L p (Ω) be a weak solution of (3.1). Then v ε ∈ L ∞ (R n ).
Let us start with an elementary lemma concerning the potential W . Lemma 3.8. Let W : R → [0, ∞) satisfying (H1)-(H2)-(H3). Then, for all δ > 0,

W ′ (t)t -δ|t| 0 whenever |t| (1 + c W δ) 1 p-1 .
(3.12)

Proof. From the lower bound in (H3), it follows that |W ′ (t)| > 0 for |t| > 1. Since W achieves its minimum value at ±1, we deduce that W ′ (t) 0 for t -1, and W ′ (t) 0 for t 1. Hence the lower bound in (H3) yields

W ′ (t)t 1 c W |t| p-1 -1 |t| δ|t| for |t| (1 + c W δ) 1 p-1 .
Proof of Lemma 3.7. We fix for the whole proof a radius R > 0 such that Ω ⊆ D R .

Step 

G = B + R . By elliptic regularity we have v e ε ∈ C ∞ (R n+1 + ).
Since g is locally Lipschitz continuous and dist(∂ + B R , Ω) > 0, we easily infer from formula (2.9) that the function

x ∈ ∂ + B R → |v e ε (x)| + z a |∇v e ε (x)| is bounded. We set M := v e ε L ∞ (∂ + BR) + z a ∇v e ε L ∞ (∂ + BR) < ∞ . Let us consider a cut-off function χ R ∈ C ∞ (R; [0, 1]) such that χ R (t) = 1 for |t|
R and χ R (t) = 0 for |t| 3R/2. We introduce the scalar function

η := χ R (|x|) |v e ε | 2 + λ 2 ∈ H 1 (B + 2R , |z| a dx) ∩ L p (Ω) , with λ := max 1 + c W ε 2s f L ∞ (Ω) 1 p-1 , 1 + g L ∞ (R n \Ω) ,
and c W the constant given in assumption (H3). Fix a nonnegative function φ

∈ C 1 (B + 2R ) with compact support in B + 2R ∪ Ω. Noticing that v e ε /η ∈ H 1 (B + R , |z| a dx), we obtain B + R z a ∇η • ∇φ dx = B + R z a ∇v e ε • ∇ v e ε η φ dx - B + R z a φ η 1 - (v e ε ) 2 η 2 |∇v e ε | 2 dx .
On the other hand φ 0, so that

B + R z a ∇η • ∇φ dx B + R z a ∇v e ε • ∇ v e ε η φ dx .
Using equation (3.6), we infer that

B + R z a ∇η•∇φ dx ∂ + BR z a ∂v e ε ∂ν v e ε φ η dH n - 1 ε 2s Ω W ′ (v e ε )v e ε -ε 2s f v e ε φ η dx . (3.13)
Then we conclude by approximation (see Remark 2.6) that (3.13) actually holds for any non-

negative φ ∈ H 1 (B + 2R , |z| a dx) ∩ L p (Ω) with compact support in B + 2R ∪ Ω.
Step 2. Given T > 0 and γ > 0, we define the functions

ρ := max{η - √ 2λ, 0} , ρ T := min(ρ, T ) , ψ T,γ := ρ γ T ρ , φ T,γ := ρ 2γ T ρ . which all belong to H 1 (B + 2R , |z| a dx) ∩ L p (Ω). Setting G T := {0 < ρ < T } ∩ B + R , straight- forward computations yield B + R z a |∇ψ T,γ | 2 dx = B + R z a ρ 2γ T |∇η| 2 dx + (γ 2 + 2γ) GT z a ρ 2γ |∇η| 2 dx , and 
B + R z a ∇η • ∇φ T,γ dx = B + R z a ρ 2γ T |∇η| 2 dx + 2γ GT z a ρ 2γ |∇η| 2 dx .
From this two last equalities, we infer that

B + R z a |∇ψ T,γ | 2 dx (γ + 1) B + R z a ∇η • ∇φ T,γ dx .
Next we want to use φ T,γ as a test function in (3.13). To this purpose it is enough to show that ρ has compact support in

B + 2R ∪ Ω. Obviously, ρ has compact support in B + 2R ∪ D 2R . Since v e ε = g ε on D 2R \ Ω, we have |v e ε | λ -1 on D 2R \ Ω. Consider a point x 0 = (x 0 , 0) with x 0 ∈ D 2R \ Ω.
From the smoothness of g ε and (2.9), we derive that v e ε is continous at x 0 . Therefore there exists a radius δ > 0 such that |v e ε | < λ in B + δ (x 0 ). Then ρ = 0 in B + δ (x 0 ), and hence ρ has compact support in B + 2R ∪ Ω. Then, finally using φ T,γ as a test function in (3.13), we deduce that

B + R z a |∇ψ T,γ | 2 dx (γ + 1) ∂ + BR z a ∂v e ε ∂ν v e ε η ρ 2γ T ρ dH n - γ + 1 ε 2s Ω W ′ (v e ε )v e ε -ε 2s f v e ε ρ 2γ T ρ η dx .
Noting that |v e ε | λ on {ρ > 0}, we have

W ′ (v e ε )v e ε -ε 2s f v e ε W ′ (v e ε )v e ε -ε 2s f L ∞ (Ω) |v e ε | 0 on {ρ > 0} ∩ Ω ,
by Lemma 3.8. Since ρ |v e ε |, the previous estimate leads to

∇(ρ γ T ρ) 2 L 2 (B + R ,|z| a dx) (γ + 1)H n (∂ + B R )M 2γ+2 .
By the continuous embedding (2.6), ρ γ T ρ ∈ W 1,1 (B + R ). Moreover, since ρ γ T ρ vanishes on D R \ Ω, we can apply the Poincaré inequality in [60, Corollary 4.5.2] and the continuity of the trace operator (2.7) to deduce that

ρ γ T ρ 2 L 1 (DR) C R,Ω ∇(ρ γ T ρ) 2 L 1 (B + R )
, for a constant C R,Ω > 0 which only depends on R and Ω. From the two previous inequality and (2.6), we derive

ρ γ T ρ 2 L 1 (DR) C s,R,Ω (γ + 1)M 2γ+2 .
Next we let T → ∞ in this last inequality to obtain

ρ 2 L γ+1 (DR) C 1/(γ+1) s,R,Ω (γ + 1) 1/(γ+1) M 2 . Letting now γ → ∞ leads to ρ L ∞ (DR) M , which in turn implies v ε ∈ L ∞ (Ω). Since v ε = g outside Ω, we have thus proved that v ε ∈ L ∞ (R n ).
In the case where equation (3.1) is complemented with a smooth exterior Dirichlet condition, weak solutions are thus bounded. Then we can apply [START_REF] Servadei | Weak and viscosity solutions of the fractional Laplace equation[END_REF]Theorem 2] to deduce continuity across the boundary ∂Ω, and finally obtain the following regularity result.

Theorem 3.9. Assume that ∂Ω is smooth. Let g ∈ C 0,1 loc (R n ) ∩ L ∞ (R n ), f ∈ L ∞ (Ω), and let v ε ∈ H s g (Ω) ∩ L p (Ω) be a weak solution of (3.1). Then v ε ∈ C 0,β * loc (Ω) ∩ C 0 (R n ) with β * given by Lemma 3.2.
By means of the Hopf boundary lemma in [START_REF] Cabr É | Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates[END_REF]Proposition 4.11], we now derive the following maximum principle for equation (3.1).

Corollary 3.10. Let Ω, g, and f be as in Theorem 3.9. Let v ε ∈ H s g (Ω) ∩ L p (Ω) be a weak solution of (3.1). Then,

v ε L ∞ (R n ) max 1 + c W ε 2s f L ∞ (Ω) 1 p-1 , g L ∞ (R n \Ω) , (3.14) 
where c W is the constant given in assumption (H3).

Proof. We consider the function m ε := λ 2 -|v e ε | 2 with λ being the constant in the right hand side of (3.14). By Theorem 3.9, m ε is continuous in R n+1 + , and z a ∂ z m ε is continuous up to Ω. Moreover, m ε satisfies (in the pointwise sense)

       -div z a ∇m ε = 2z a |∇v e ε | 2 0 in R n+1 + , d s ∂ (2s) z m ε = - 2 ε 2s W ′ (v e ε )v e ε + 2f v e ε on Ω m ε 0 on R n \ Ω .
Assume that m ε achieves its minimum over R n at a point x 0 ∈ Ω. Then x 0 is a point of maximum of |v ε |, and hence 

x 0 = (x 0 , 0) is an absolute minima of m ε over R n+1 + by (2.11). If m ε (x 0 ) < 0, then |v e ε (x 0 )| > λ,
m ε > m ε (x 0 ) in R n+1 + .
Then, the Hopf boundary lemma of [START_REF] Cabr É | Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates[END_REF]Proposition 4.11] yields ∂ (2s) z m ε (x 0 ) > 0 which gives a contradiction.

ASYMPTOTICS FOR DEGENERATE ALLEN-CAHN BOUNDARY REACTIONS

In this section, our objective is to perform the asymptotic analysis as ε ↓ 0 of the degenerate boundary reaction equation (4.1). As described in Section 3, any solution of the fractional Allen-Cahn equation yields a solution of (4.1) after applying the extension procedure (2.9). Here again, the strategy is to first analyse equation (4.1) and then to apply the results to the fractional equation. The main theorem here is Theorem 4.1 below. Its application to the fractional equation will be the object of Section 5. 

ε k ↓ 0 a given sequence. Let {f k } k∈N ⊆ C 0,1 (∂ 0 G) satisfying sup k ε 2s k f k L ∞ (∂ 0 G) + f k W 1,q (∂ 0 G) < ∞ for some q ∈ ( n 1 + 2s , n) . Let {u k } k∈N ⊆ H 1 (G, |z| a dx) ∩ L ∞ (G) satisfying sup k u k L ∞ (G) < ∞, and such that each u k weakly solves        div z a ∇u k ) = 0 in G , d s ∂ (2s) z u k = 1 ε 2s k W ′ (u k ) -f k on ∂ 0 G . (4.1) If sup k F ε k (u k , G) < ∞, then there exist a (not relabeled) subsequence, u * ∈ H 1 (G, |z| a dx) and an open subset E * ⊆ ∂ 0 G such that u * = χ E * -χ ∂ 0 G\E * on ∂ 0 G, u k ⇀ u * weakly in H 1 (G, |z| a dx), and u k → u * strongly in H 1 loc (G ∪ ∂ 0 G, |z| a dx) as k → ∞. In addition, (i) ε -2s k W (u k ) → 0 in L 1 loc (∂ 0 G); (ii) u k → u * in C 0 loc (∂ 0 G \ ∂E * ); (iii) if sup k f k L ∞ (∂ 0 G) < ∞, then u k → u * in C 0,α loc (∂ 0 G \ ∂E * )
for every α ∈ (0, β * ) with β * given by Lemma 3.2;

(iv) if sup k f k C 0,1 (∂ 0 G) < ∞, then u k → u * in C 1,α loc (∂ 0 G \ ∂E * ) for every α ∈ (0, β * ); (v) for each t ∈ (-1, 1), the level set L t k := {u k = t} converges locally uniformly in ∂ 0 G to ∂E * ∩ ∂ 0 G, i.e., for every compact set K ⊆ ∂ 0 G and every r > 0, L t k ∩ K ⊆ T r (∂E * ∩ ∂ 0 G) and ∂E * ∩ K ⊆ T r (L t k ∩ ∂ 0 G) ,
whenever k is large enough;

(vi) if f k ⇀ f * weakly in W 1,q (∂ 0 G), then the function u * satisfies δE u * , G ∪ ∂ 0 G [X] = ∂ 0 G u * div(f * X) dx for every vector field X = (X, X n+1 ) ∈ C 1 (G; R n+1 ) compactly supported in G ∪ ∂ 0 G such that X n+1 = 0 on ∂ 0 G.
We have divided the proof of this theorem in several steps according to the following subsections.

4.1. Energy monotonicity and the clearing-out property. In this subsection, we prove two of the main ingredients, an energy monotonicty, and a clearing-out property reminiscent of Ginzburg-Landau theories. We start with the fundamental monotonicity formula.

Lemma 4.2. Let q ∈ ( n 1+2s , n), R > 0, and ε > 0. Given f ∈ C 0,1 (D R ), let u ε ∈ H 1 (B + R , |z| a dx) ∩ L ∞ (B + R ) be a weak solution of      div(z a ∇u ε ) = 0 in B + R , d s ∂ (2s) z u ε = 1 ε 2s W ′ (u ε ) -f on D R . (4.2)
There exists a constant c n,q > 0 (depending only on n and q) such that for every point

x 0 = (x 0 , 0) ∈ D R × {0}, the function r ∈ (0, R -|x 0 | ] → Θ ε uε (f, x 0 , r) defined by Θ ε uε (f, x 0 , r) := 1 r n-2s E ε u ε , B + r (x 0 ) + c n,q u ε L ∞ (DR) r 0 t θq-1 f Ẇ 1,q (Dt(x0)) dt
with θ q := 1 + 2sn/q, is non-decreasing.

Remark 4.3. In the statement above, f Ẇ 1,q (A) denotes the following W 1,q -homogeneous norm of f in A,

f Ẇ 1,q (A) := f L q * (A) + ∇f L q (A) ,
where q * := nq/(nq).

Proof of Lemma 4.2. Without loss of generality we may assume that x 0 = 0. By Theorem 3.

3 the function r ∈ (0, R) → E ε (u ε , B + r ) is of class C 1
, and then it is enough to seek for a constant L such that for r ∈ (0, R),

- (n -2s) r n+1-2s E ε (u ε , B + r ) + 1 r n-2s d dr E ε (u ε , B + r ) + Lr θq-1 f Ẇ 1,q (Dr ) 0 ,
or equivalently,

(n -2s)E ε (u ε , B + r ) -r d dr E ε (u ε , B + r ) Lr n+1-n/q f Ẇ 1,q (Dr) . (4.3) 
Note that for r ∈ (0, R),

d dr E ε (u ε , B + r ) = d s 2 ∂ + Br z a ∇u ε 2 dH n + 1 ε 2s ∂Dr W (u ε ) dH n-1 . (4.4) 
To prove (4.3), we first consider an arbitrary even function η ∈ C ∞ (R; [0, 1]) with compact support in (-R, R). Using the vector field X(x) := η(|x|)x in Corollary 3.5 and formula (2.22), we find that

(n -2s)d s 2 B + R z a |∇u ε | 2 η(|x|) dx + d s 2 B + R z a |∇u ε | 2 η ′ (|x|)|x| dx -d s B + R z a x |x| • ∇u ε 2 η ′ (|x|)|x| dx + n ε 2s DR W (u ε ) η(|x|) dx + 1 ε 2s DR W (u ε ) η ′ (|x|)|x| dx = DR nf + x • ∇f u ε η(|x|) dx + DR f u ε η ′ (|x|)|x| dx . (4.5)
Given r ∈ (0, R), we can consider a sequence {η k } k∈N of functions as above such that η k converges weakly* in BV as k → ∞ to the characteristic function of the interval [-r, r].

Using such sequences {η k } k∈N as test functions in (4.5) and letting k → ∞, we infer that

(n -2s)E ε (u ε , B + r ) -r d dr E ε (u ε , B + r ) + d s r ∂ + Br z a x |x| • ∇u ε 2 dH n + 2s ε 2s Dt W (u ε ) dx = Dr nf + x • ∇f u ε dx -r ∂Dr f u ε dH n-1 . (4.6)
Therefore,

(n -2s)E ε (u ε , B + r ) -r d dr E ε (u ε , B + r ) u ε L ∞ (DR) I(r) , (4.7) 
with

I(r) := Dr |f | + r|∇f | dx + r ∂Dr |f | dH n-1 . (4.8) 
By Sobolev embedding and trace inequality, we have

I(r) c n,q r n+1-n q f Ẇ 1,q (Dr) , (4.9) 
for a constant c n,q depending only on n and q. Combining (4.7) and (4.9) leads to (4.3), with L = c n,q u ε L ∞ (DR) .

Lemma 4.4. Let q ∈ ( n 1+2s , n). Given b 1 and T 0, there exists a non-decreasing function η b,T : (0, 1) → (0, ∞) depending only n, s, b, T , and W , such that the following holds. Let R ∈ (0, 1], ε ∈ (0, R), and

f ∈ C 0,1 (D R ) such that ε 2s f L ∞ (DR) T . If u ε ∈ H 1 (B + R , |z| a dx) ∩ L ∞ (B + R ) is a weak solution of (4.2) satisfying u ε L ∞ (B + R )
b, and for some δ ∈ (0, 1),

Θ ε uε (f, 0, R) η b,T (δ) , (4.10 
)

then |u ε | -1 δ on D R/2 .
Proof.

Step 1. We assume in this first step that ε R/2. We claim that we can find a constant η b,T (δ) > 0 depending only on δ, n, s, b, T , and W , such that the condition

Θ ε uε (f, 0, R) η b,T (δ) implies |u ε | -1 δ in B + R/2 .
To this purpose, we consider the rescaled function

u ε (x) := u ε (Rx), which satisfies      div(z a ∇ u ε ) = 0 in B + 1 , d s ∂ (2s) z u ε = R 2s ε 2s W ′ ( u ε ) -f R on D 1 , with ε/R ∈ [1/2, 1), and f R (x) := R 2s f (Rx) satisfying f R L ∞ (D1) 2 2s ε 2s f L ∞ (DR) 2 2s T . Since u ε L ∞ (B + 1 )
b, we infer from Remark 3.4 that

u ε C 0,β * (B + 1/2 ) C b,T , (4.11) 
for a constant C b,T depending only on n, s, b, T , and W . We now argue by contradiction assuming that for some sequences

{R k } k∈N ⊆ (0, 1], {ε k } k∈N ⊆ [R k /2, R k ), {f k } k∈N ⊆ C 0,1 (D R k ) with ε 2s k f k L ∞ (DR k )
T , and points

{x k } k∈N ⊆ B + 1/2 , the function u k := u ε k satisfies | u k (x k )| -1 > δ for every k , and 
E ε k /R k ( u k , B + 1 ) = 1 R n-2s k E ε k (u ε k , B + R k ) Θ ε k uε k (f k , 0, R k ) → 0 as k → ∞ .
By the Arzelà-Ascoli Theorem and (4.11), we can find a (not relabeled) subsequence such that u k converges uniformly on

B + 1/2 . Since E ε k /R k ( u k , B + 
1 ) → 0, the limit has to be a constant of modulus one. In particular,

| u k | → 1 uniformly on B + 1/2 , which contradicts our assumption | u k (x k )| -1 > δ.
Step 2. Define

η b,T (δ) := 2 2s-n inf t∈[δ,1) η b,T (t) .
Let δ ∈ (0, 1) and assume that (4.10) holds for R ∈ (0, 1] and ε ∈ (0, R). We fix an arbitrary point

x 0 ∈ D R/2 × {0}. If ε R/2, then |u ε (x 0 )| -1 δ by Step 1. If ε < R/2, then ε < R -|x 0 | and by Lemma 4.2 we have Θ ε uε (f, x 0 , ε) Θ ε uε f, x 0 , R -|x 0 | 2 2s-n Θ ε uε (f, 0, R) .
Our choice of η b,T (δ) then implies Θ ε uε (f, x 0 , ε) η b,T (δ), and we infer from Step 1 that 4.2. Small energy compactness. Our objective in this subsection is to prove that the small energy assumption (4.10) implies strong compactness in a half ball of smaller radius, and uniform convergence to either +1 or -1 on the bottom disc. By Lemma 4.4, it suffices to prove such compactness assuming that the solution is already very close to ±1 on the disc. In this situation, the main ingredient to use is the convexity of the potential W near {±1} to show the minimality of the solution. Then compactness can be deduced by classical cut and paste arguments. To quantify the convexity of W near {±1}, we introduce a structural constant δ W ∈ (0, 1/2] (whose existence is ensured by assumptions (H1)-(H2)) such that

|u ε | -1 δ in B + ε/2 (x 0 ).
W ′′ (t) 1 2 min W ′′ (1), W ′′ (-1) > 0 for |t| -1| δ W . (4.12) 
In this way, the restriction of W to each interval

I κ := (κ -δ W , κ + δ W ), κ ∈ {±1}, is ( 
strictly) convex. We now consider the modified potentials defined for κ ∈ {±1} by

W κ (t) :=        W (t) for t ∈ I κ , W (κ -δ W ) + W ′ (κ -δ W )(t -κ + δ W ) for t κ -δ W , W (κ + δ W ) + W ′ (κ + δ W )(t -κ -δ W ) for t κ + δ W .
By construction, we have

W κ ∈ C 1 (R) and W κ is convex for each κ ∈ {±1}. Lemma 4.6. Let R > 0, f ∈ L ∞ (D R ), and let u ε ∈ H 1 (B + R , |z| a dx) ∩ L p (D R ) be a weak solution of (4.2). If |u ε -κ| δ W on D R with κ ∈ {±1}, then E(u ε , B + R ) + 1 ε 2s DR W κ (u ε ) dx - DR f u ε dx E(w, B + R ) + 1 ε 2s DR W κ (w) dx - DR f w dx , for every w ∈ H 1 (B + R , |z| a dx)∩L p (D R ) such that w-u ε is compactly supported in B + R ∪D R . Proof. Set φ := w -u ε , so that φ is compactly supported in B + R ∪ D R
. By convexity of the potential W κ , we have

W κ (u ε + φ) W κ (u ε ) + W ′ κ (u ε )φ on D R . Since |u ε -κ| δ W on D R , we have W ′ κ (u ε ) = W ′ (u ε ) on D R .
Then we derive from equation (4.2),

E(u ε + φ, B + R ) + 1 ε 2s DR W κ (u ε + φ) dx E(u ε , B + R ) + 1 ε 2s DR W κ (u ε ) dx + d s B + R z a ∇u ε ∇φ dx + 1 ε 2s DR W ′ (u ε )φ dx E(u ε , B + R ) + 1 ε 2s DR W κ (u ε ) dx + DR f φ dx ,
and the lemma is proved.

We now prove the announced compactness in energy space under the closeness assumption to {±1} on the bottom disc.

Corollary 4.7. Let R > 0, ε k ↓ 0 a given sequence, and

{f k } k∈N ⊆ L ∞ (D R ) satisfying sup k f k L q (DR) < ∞ for some q > 1. Let {u k } k∈N ⊆ H 1 (B + R , |z| a dx) ∩ L ∞ (B + R ) satisfy- ing |u k -κ| δ W on D R with κ ∈ {±1}
, and such that u k solves in the weak sense

     div(z a ∇u k ) = 0 in B + R , d s ∂ (2s) z u k = 1 ε 2s k W ′ (u k ) -f k on D R . (4.13) If sup k E ε k (u k , B + R ) + u k L ∞ (B + R ) < ∞, then there exist a (not relabeled) subsequence and u * ∈ H 1 (B + R , |z| a dx) satisfying u * = κ on D R such that (i) u k → u * strongly in H 1 (B + r , |z| a dx) for every r ∈ (0, R); (ii) ε -2s k Dr W (u k ) dx → 0 for every r ∈ (0, R).
Proof. We may assume without loss of generality that R = 1 and |u k -1| δ W on D 1 (i.e., κ = +1). Let us set

M := sup k E ε k (u k , B + 1 ) + u k L ∞ (B + 1 )
. From the assumption that M is finite, we first deduce that the sequence {u k } k∈N is bounded in

H 1 (B + 1 , |z| a dx).
Hence we can find a (not relateled) subsequence such that u k ⇀ u * weakly in H 1 (B + 1 , |z| a dx). On the other hand, since |u k -1| δ W on D R , we infer from (4.12) that

D1 |u k -1| 2 dx C D1 W (u k ) dx CM ε 2s k → 0 , so that u k → 1 strongly in L 2 (D 1
), and therefore in L q/(q-1) (D 1 ). By continuity of the linear trace operator, it also follows that u * = 1 on D 1 .

Let us now fix r ∈ (0, 1). We start selecting a subsequence {u kj } j∈N such that

lim sup k→+∞ E ε k (u k , B + r ) = lim j→+∞ E ε k j (u kj , B + r ) .
For θ ∈ (0, 1), we set r θ := 1θ + θr and L θ := r θr. Given an arbitrary integer m 1, we define r i := r + iδ m where i ∈ {0, . . . , m} and δ m := L θ /m. Since

m-1 i=0 E ε k j (u kj , B + ri+1 \ B + ri ) M ,
we can find a good index i m ∈ {0, . . . , m -1} and a (not relabeled) further subsequence of {u kj } j∈N such that

E ε k j (u kj , B + ri m+1 \ B + ri m ) M + 1 m ∀j ∈ N .
From the weak convergence of u kj towards u * and the lower semicontinuity of E, we deduce that

E u * , B + ri m+1 \ B + ri m M + 1 m . Now consider a smooth cut-off function χ ∈ C ∞ c (B 1 , [0, 1]) such that χ = 1 in B ri m , χ = 0 in B 1 \ B ri m+1 ,

and satisfying |∇χ|

Cδ -1 m for a constant C only depending on n. Then define

w j := χu * + (1 -χ)u kj , so that w j ∈ H 1 (B + 1 , |z| a dx) and w j -u kj is compactly supported in B + 1 ∪ D 1 . Since |w j -1| δ W on D 1 , we infer from Lemma 4.6 that F ε k j (u kj , B + 1 ) F ε k j (w j , B + 1 ) , which leads to E ε k j (u kj , B + r ) E(u * , B + r θ ) + E ε k j (w j , B + ri m+1 \ B + ri m ) + f kj L q (D1) u kj -1 L q/(q-1) (D1) .
Using the convexity of W (t) near t = 1, we estimate

E ε k j (w j , B + ri m+1 \ B + ri m ) E u * , B + ri m+1 \ B + ri m + E ε k j u kj , B + ri m+1 \ B + ri m + Cδ -2 m B + r im+1 \B + r im z a |u kj -u * | 2 dx .
From the compact embedding H 1 (B + 1 , |z| a dx) ֒→ L 1 (B + 1 ) and the fact that

|u kj | M in B + 1 , we infer that u kj → u * strongly in L 2 (B + 1 , |z| a dx). Consequently, lim sup j→∞ E ε k j (w j , B + ri m+1 \ B + ri m ) 2(M + 1) m .
Therefore,

lim j→∞ E ε k j (u kj , B + r ) E(u * , B + r θ ) + 2(M + 1) m .
Finally, letting first m → ∞ and then θ → 1, we conclude that

lim j→+∞ E ε k j (u kj , B + r ) E(u * , B + r ) .
On the other hand, lim inf j E(u kj , B + r ) E(u * , B + r ) by lower semicontinuity, and consequently,

lim j→∞ E(u kj , B + r ) = E(u * , B + r ) and lim j→∞ 1 ε 2s kj Dr W (u kj ) dx = 0 .
From the weak convergence of u kj , it classically follows that the sequence {u kj } j∈N converges strongly in

H 1 (B + r , |z| a dx) towards u * . Lemma 4.8. If u * ∈ H 1 (B + 1 , |z| a dx) ∩ L ∞ (B + 1 ) satisfies div z a ∇u * ) = 0 in B + 1 , u * = 1 on D 1 , then u * ∈ C 0,α loc (B + 1 ∪ D 1 ), ∇ x u * ∈ C 0,α loc (B + 1 ∪ D 1 )
, and z a ∂ z u * ∈ C 0,α loc (B + 1 ∪ D 1 ) for some α = α(n, s) ∈ (0, 1). Moreover, for every r ∈ (0, 1), u * C 0,α (B + r ) , ∇ x u * C 0,α (B + r ) , and z a ∂ z u * C 0,α (B + r ) only depends n, s, r, and u * L ∞ (B + 1 ) . In particular,

lim r→0 1 r n-2s E u * , B + r (x 0 ) = 0 (4.14)
locally uniformly with respect to x 0 ∈ D 1 × {0}.

Proof. Considering u * -1 instead of u * , we can assume that u * = 0 on D 1 . Then we extend u * to the whole ball B 1 by odd symmetry, i.e., u * (x, z) := -u * (x, -z) for z < 0. Since u * = 0 on D 1 , we have . Then the regularity result in [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF] (see also [13, Section 3.2]) tells us that u * ∈ C 0,α loc (B 1 ) for some exponent α ∈ (0, 1) depending only n and s. And for r ∈ (0, 1), u * C 0,α (Br ) only depends on n, s, r, and u * L ∞ (B + 1 ) . By the argument used in the proof of Theorem 3.3 (based on finite difference quotients), we show that ∇ x u * ∈ C 0,α loc (B 1 ), and ∇ x u * C 0,α (Br ) only depends on n, s, r ∈ (0, 1), and u * L ∞ (B + 1 ) . Let us now fix a radius r ∈ (0, 1) and an index j ∈ {1, . . . , n}. We set for δ ∈ (0, 1r), w δ (x, z) := u * (x + δe j , z)u * (x, z) δ .

u * ∈ H 1 (B 1 , |z| a dx) ∩ L ∞ (B 1
The function w δ belongs to H 1 (B r , |z| a dx) ∩ L ∞ (B r ), and it satisfies (in the weak sense)

div(|z| a ∇w δ ) = 0 in B r .
Consider a cut-off χ ∈ C 1 c (B r ) such that χ ≡ 1 in B r-τ for some τ ∈ (0, r). Using the test function φ = χ 2 w δ , we obtain

0 = Br |z| a ∇w δ • ∇φ dx = Br |z| a χ 2 |∇w δ | 2 dx + 2 Br |z| a (χ∇w δ ) • (w δ ∇χ) dx .
From Cauchy-Schwarz Inequality we infer that

Br |z| a χ 2 |∇w δ | 2 dx 4 Br |z| a w 2 δ |∇χ| 2 dx C ,
for a constant C independent of δ. Letting δ → 0, we obtain by lower semicontinuity that

Br-τ |z| a |∇(∂ j u * )| 2 dx C .
In view of the arbitrariness of τ and r, we conclude that

∂ j u * ∈ H 1 loc (B 1 , |z| a dx) ∩ L ∞ loc (B 1
). In addition, ∂ j u * satisfies div(|z| a ∇(∂ j u * )) = 0 in B 1 (in the weak sense). By the regularity results in [START_REF] Fabes | The local regularity of solutions of degenerate elliptic equations[END_REF] and the consideration above, we infer that ∇ x (∂ j u * ) ∈ C 0,α loc (B 1 ), and ∇ x (∂ j u * ) C 0,α (Br) only depends on n, s, r ∈ (0, 1), and u * L ∞ (B + 1 ) (since ∂ j u * L ∞ (Br) only depends on n, s, r, and u * L ∞ (B + 1 ) ).

From the arbitrariness of j, we conclude that ∆ x u * ∈ C 0,α loc (B 1 ), and ∆ x u * C 0,α (Br ) only depends on n, s, r ∈ (0, 1), and u * L ∞ (B + 1 ) . On the other hand,

∂ z z a ∂ z u * = z a ∆ x u * in B + 1 .
Consequently, given r ∈ (0, 1) and writing

z a ∂ z u * (x, z) = r a ∂ z u * (x, r) - r z t a ∆ x u * (x, t) dt
for (x, z) ∈ B + 1 such that (x, r) ∈ B + 1 , we deduce that z a ∂ z u * is actually Hölder continuous up to D 1 for some exponent α = α(n, s) ∈ (0, 1) (perhaps smaller then α), and z a ∂ z u * C 0, α(B + r ) only depends on n, s, r, and u L ∞ (B + 1 ) . Finally, if x 0 ∈ D R × {0} for some R ∈ (0, 1), we now have for 0

< r < 1/2(1 -|x 0 |) the estimate z a |∇u * | C R in B +
r (x 0 ) with a constant C R independent of x 0 and r. Hence,

B + r (x0) z a |∇u * | 2 dx C R B + r (x0) z -a dx C R r n+2s ,
and (4.14) follows.

Combining Lemma 4.4 with Corollary 4.7 leads to the following Proposition 4.9. Let q ∈ ( n 1+2s , n), b 1, T > 0, and

ε k ↓ 0 a given sequence. Let R ∈ (0, 1] and {f k } k∈N ⊆ C 0,1 (D R ) such that ε 2s k f k L ∞ (DR) + f k Ẇ 1,q (DR) T . (4.15) 
There exist two constants θ b,T > 0 and R b,T > 0 (depending only on n, s, q, b, T , and W ) such that the following holds. Let

{u k } k∈N ⊆ H 1 (B + R , |z| a dx) ∩ L ∞ (B + R ) be such that u k L ∞ (B + R )
b, and u k solves (4.13) in the weak sense. If R R b,T and

lim inf k→∞ E ε k (u k , B + R ) < θ b,T R n-2s , (4.16) 
then there exist a (not relabeled) subsequence and u * ∈ H 1 (B + R , |z| a dx) satisfying either u * = 1 on D R/4 , or u * = -1 on D R/4 , such that

(i) u k → u * strongly in H 1 (B + R/4 , |z| a dx) ; (ii) u k → u * uniformly on D R/4 ; (iii) ε -2s k D R/4 W (u k ) dx → 0 . Proof. Let θ b,T := 1 2 η b,T (δ W )
where the constant δ W is given by (4.12), and η b,T given by Lemma 4.4. Then we choose R b,T := min 1,

θ q η b,T (δ W ) 2b c n,q T 1/θq . If R R b,T , then the a priori bound (4.15) yields c n,q u k L ∞ (B + R ) R 0 t θq-1 f k Ẇ 1,q (Dt(xj )) dt 1 2 η b,T (δ W ) , so that lim inf k→∞ Θ ε k u k (f k , 0, R) < η b,T (δ W ) . (4.17)
Select a (not relabeled) subsequence which achieves the lim inf in (4.17). By the uniform energy bound, we can find a (not relabeled) subsequence such that u k ⇀ u * weakly in Now fix δ ∈ (0, δ W ) arbitrary. By Lemma 4.8, we can find a radius r δ R/8 such that

H 1 (B + R , |z| a dx). From the compact embedding H 1 (B + R , |z| a dx) ֒→ L 1 (B + R ), we deduce that |u * | b in B + R . Since Θ ε k u k (f k , 0, R) θ b,
E u * , B + r δ (x) η b,T (δ) 3 r n-2s δ for every x ∈ D R/4 × {0}.
Then consider a finite covering of D R/4 × {0} by balls of radius r δ /2 centered at points of D R/4 × {0}. We denote by x 1 = (x 1 , 0), . . . , x L = (x L , 0) the centers of these balls. From the strong convergence of {u k } k∈N and (4.18), we deduce that for k large enough,

1 r n-2s δ E ε k (u k , B + r δ (x j ))
η b,T (δ) 2 ∀j ∈ {1, . . . , L} .

On the other hand,

c n,q u k L ∞ (B + R ) r δ 0 t θq-1 f k Ẇ 1,q (Dt(xj )) dt b c n,q θ q T r θq δ .
Hence, choosing a smaller value for r δ if necessary, we have

Θ ε k u k (f k , x j , r δ ) η b,T (δ) ∀j ∈ {1, . . . , L} .
Then Lemma 4.4 shows that |u k -1| δ in D r δ /2 (x j ) for every j = 1, . . . , L. Hence |u k -1| δ in D R/4 whenever k is large enough.

We now improve the previous convergence result under stronger assumptions on the sequence {f k } k∈N . Proposition 4.10. In addition to the conclusions of Proposition 4.9,

(i) if sup k f k L ∞ (DR) < ∞, then u k → u * in C 0,α (D R/16
) for every α ∈ (0, β * );

(ii) if sup k f k C 0,1 (DR) < ∞, then u k → u * in C 1,α (D R/32 ) for every α ∈ (0, β * );
where β * is given by Lemma 3.2 Proof. Step 1. We start proving item (i). Assume that u * = 1 on D R/4 . By Proposition 4.9, we have for k large enough, |u k -1| δ W on D R/4 . We shall prove that

u k -1 L ∞ (D R/8 ) Cε 2s k , (4.19) 
for some constant C independent of ε k . Note that the conclusion follows from this estimate. Indeed, if holds (4.19), then the C 2 -assumption on W implies that

W ′ (u k ) L ∞ (D R/8 ) Cε 2s k ,
and we can thus apply Lemma 3.2 to infer that u k is bounded in C 0,β * (B + R/16 ). To prove (4.19) we proceed as follows. Fix an arbitrary parameter η ∈ (0, 1), and consider the nonnegative smooth convex function

ψ η (t) := t 2 + η 2 -η . Set υ η := ψ η (u k -1) ∈ H 1 (B + R/4 , |z| a dx) ∩ L ∞ (B + R/4
), and we observe that υ η satisfies in the weak sense

     div(z a ∇υ η ) = z a ψ ′′ (u k -1)|∇u k | 2 in B + R/4 , d s ∂ (2s) z υ η = ψ ′ (u k -1) ε 2s k W ′ (u k ) -ψ ′ (u k -1)f k on D R/4 .
On the other hand, (4.12) implies that

(t -1)W ′ (t) κ W (t -1) 2 for |t -1| δ W ,
where κ W := 1 2 min W ′′ (1), W ′′ (-1) > 0. Noticing that tψ ′ (t) ψ(t) for every t ∈ R, we thus have

ψ ′ (t -1)W ′ (t) = (t -1)ψ ′ (t -1) (t -1) 2 (t -1)W ′ (t) κ W ψ(t -1) for |t -1| δ W . Therefore υ η satisfies      div(z a ∇υ η ) 0 in B + R/4 , d s ∂ (2s) z υ η κ W ε 2s k υ η -f k L ∞ (DR) on D R/4 .
By [55, Lemma 3.5] it implies

υ η L ∞ (D R/8 ) (1 + f k L ∞ (DR) )ε 2s k κ W (1 + b) 2 + η 2 .
Letting η → 0, we deduce that (4.19) holds with

C = κ -1 W (1 + b)(1 + sup k f k L ∞ (DR) ).
Step 2. To prove the C 1,α -convergence, we shall rely on the regularity argument developed in the proof of Theorem 3.3 (that we partially reproduce for clarity reason). To simplify the notation, we assume here (without loss of generality) that R = 32. Fix an arbitrary point x 0 ∈ D 1 , and for x = (x, z) ∈ B + 1 ∪ D 1 consider the translated function ūk (x) := u k (x + x 0 , z).

For h ∈ D 1/8 , h = 0, we set for x ∈ B + 7/8 ∪ D 7/8 , w h (x) := ūk (x + h, z) -ūk (x) |h| β * .
By

Step 1, we have w h L ∞ (B + 7/8 ) C for a constant C independent of h and ε k . Given η ∈ (0, 1), we can argue as in Step 1 to infer that the function

ζ η := ψ η (w h ) ∈ H 1 (B + 7/8 , |z| a dx)∩ L ∞ (B + 7/8 ) satisfies      div(z a ∇ζ η ) 0 in B + 7/8 , d s ∂ (2s) z ζ η κ W ε 2s k ζ η -f k C 0,β * (D1) on D 7/8 .
Then [55, Lemma 3.5] yields w h L ∞ (D 7/16 ) Cε 2s k once we let η → 0, for a constant C independent of h and ε k . From the equation satisfied by w h , it implies through Lemma 3.2 that w h is bounded in C 0,β * (B + 7/32 ) independently of h and ε k . As a consequence,

sup x∈D 1/16 ūk (x + h, z) -2ū k (x, z) + ūk (x -h, z) C|h| 2β * for every h ∈ D 1/16 , z ∈ [0, 1/16],
and a constant C independent of h and ε k . At this stage, we can reproduce the iteration scheme of Theorem 3.3 by means of the above argument (relying on [55, Lemma 3.5]) to conclude that ∇ x u k is bounded in C 0,β * in a (uniform in size) neighborhood of (x 0 , 0).

Note that (for later use) the proof above leads to the following estimate on the potential for a right hand side f which is bounded.

Lemma 4.11. Let R > 0, f ∈ L ∞ (D R ), and let u ε ∈ H 1 (B + R , |z| a dx) ∩ L ∞ (D R ) be a weak solution of (4.2). If |u ε | -1 δ W on D R , then W (u ε ) C W (1 + f L ∞ (DR) ) 2 (1 + u ε L ∞ (B + R ) ) 2 ε 4s R 4s on D R/2 ,
and

W ′ (u ε ) C W (1 + f L ∞ (DR) )(1 + u ε L ∞ (B + R ) ) ε 2s R 2s on D R/2
, for a constant C W > 0 depending only on the potential W .

Proof. By rescaling equation (4.2), it is enough to consider the case R = 1. Then, observe that u ε ∈ C 0 (B + 1 ∪ D 1 ) by Remark 3.4. Hence, either |u ε -1| δ W or |u ε + 1| δ W on the disc D 1 . Without loss of generality, we may assume that the first case occurs. Then the proof of Proposition 4.10 (Step 1) shows that

|u ε -1| 1 κ W (1 + f L ∞ (D1) )(1 + u ε L ∞ (B + 1 
) )ε 2s on D 1/2 . Expanding W near t = 1 yields the announced result. 

Proof. Step 1: Compactness

. Let b 1 such that b sup k u k L ∞ (G)
. By the assumptions on {u k } k∈N , we have

sup k E ε k (u k , G) sup k F ε k (u k , G) + b f k L 1 (∂ 0 G) < ∞ .
Hence there is a (not relabeled) subsequence such that u k ⇀ u * weakly in H 1 (G, |z| a dx). By the compact embedding H 1 (G, |z| a dx) ֒→ L 1 (G), we also have

u k → u * strongly in L 1 (G). Since |u k | b, it implies that |u * | b in G, and u k → u * strongly in L 2 (G, |z| a dx).
Moreover, by equation (4.1) and standard elliptic regularity, u k → u * in C ℓ loc (G) for all ℓ ∈ N, so that div z a ∇u * ) = 0 in G. On the other hand, the uniform energy bound implies |u k | → 1 in L 1 (∂ 0 G), and we infer from the continuity of the trace operator that |u * | = 1 on ∂ 0 G.

We now wish to analyse the asymptotic behavior of u k near ∂ 0 G. For this we consider the measures

µ k := d s 2 z a |∇u k | 2 L n+1 G + 1 ε 2s k W (u k )H n ∂ 0 G . Since sup k µ k (G ∪ ∂ 0 G) < ∞,
we can find a further subsequence such that

µ k ⇀ µ := d s 2 z a |∇u * | 2 L n+1 G + µ sing , (4.20) 
weakly* as Radon measures on G ∪ ∂ 0 G for some finite nonnegative measure µ sing . Notice that the local smooth convergence of

u k to u * in G implies that spt(µ sing ) ⊆ ∂ 0 G (4.21) 
(here spt(µ sing ) denotes the relative support of

µ sing in G ∪ ∂ 0 G). Since ∂ 0 G is a Lipschitz domain of R n , there exits a constant C depending only on ∂ 0 G such that f k Ẇ 1,q (∂ 0 G) C f k W 1,q (∂ 0 G) . Then we set T := sup k (2ε k ) 2s f k L ∞ (∂ 0 G) + f k Ẇ 1,q (∂ 0 G) < ∞ . Noticing that r ρ t θq-1 f k Ẇ 1,q (Dt(x)) dt T θ q (r θq -ρ θq ) ,
we can apply Lemma 4.2 to deduce that

ρ 2s-n µ k (B ρ (x)) + b c n,q θ q T ρ θq r 2s-n µ k (B r (x)) + b c n,q θ q T r θq (4.22)
for every x ∈ ∂ 0 G and every 0 < ρ < r < min 1, dist(x, ∂ + G) . Therefore,

ρ 2s-n µ(B ρ (x)) + b c n,q θ q T ρ θq r 2s-n µ(B r (x)) + b c n,q θ q T r θq (4.23)
for every x ∈ ∂ 0 G and every 0 < ρ < r < min 1, dist(x, ∂ + G) . As a consequence, the (n -2s)-dimensional density

Θ n-2s (µ, x) := lim r↓0 µ(B r (x)) ω n-2s r n-2s (4.24)
exists 3 and is finite at every point x ∈ ∂ 0 G. Note that (4.20) and (4.22) yield

Θ n-2s (µ, x) C dist(x, ∂ + G) n-2s sup k E ε k (u k , G) + b c n,q θ q T (diam ∂ 0 G) θq < ∞ (4.25)
for all x ∈ ∂ 0 G. On the other hand, by the smooth convergence of u k toward u * in G,

Θ n-2s (µ, x) = 0 for all x ∈ G .
In addition, we observe that x ∈ ∂ 0 G → Θ n-2s (µ, x) is upper semicontinuous 4 .

Next we define the concentration set

Σ := x ∈ ∂ 0 G : inf r lim inf k→∞ r 2s-n µ k (B r (x)) : 0 < r < min 1, dist(x, ∂ + G) θ b,T , (4.26)
where θ b,T > 0 is the constant given by Proposition 4.9. From (4.22) and (4.23) we infer that

Σ = x ∈ ∂ 0 G : lim r↓0 lim inf k→∞ r 2s-n µ k (B r (x)) θ b,T = x ∈ ∂ 0 G : lim r↓0 r 2s-n µ(B r (x)) θ b,T ,
and consequently,

Σ = x ∈ ∂ 0 G : Θ n-2s (µ, x) θ b,T ω n-2s . (4.27)
In particular, Σ is a relatively closed subset of ∂ 0 G since Θ n-2s (µ, •) is upper semicontinuous. Moreover, by a well known property of densities (see e.g. [7, Theorem 2.56]), we have

θ b,T ω n-2s H n-2s (Σ) µ(Σ) < ∞ . (4.28)
On the other hand, it follows from (4.25) and [START_REF] Ambrosio | PALLARA : Functions of Bounded Variation and Free Discontinuity Problems[END_REF]Theorem 2.56] that µ sing Σ is absolutely continuous with respect to H n-2s Σ.

We now claim that spt(µ sing ) ⊆ Σ. Indeed, for x 0 ∈ ∂ 0 G \ Σ, we can find a radius

0 < r < min R b,T , dist(x 0 , ∂ + G ∪ Σ)
(with R b,T given by Proposition 4.9) such that r 2s-n µ(B r (x 0 )) < θ b,T and µ(∂B r (x 0 )) = 0.

Then

lim k→∞ E ε k (u k , B + r (x 0 )) = µ(B r (x 0 )) < θ b,T r n-2s ,
and we deduce from Proposition 4.9 that µ sing (B r/4 (x 0 )) = 0. Hence

µ sing (∂ 0 G \ Σ) = 0 ,
and thus µ sing is supported by Σ. In conclusion, we thus proved that µ sing is absolutely continuous with respect to the Radon measure H n-2s Σ. 3 Here we have set ω n-2s := π n-2s 2

Γ(1 + n-2s 2 )
. 4 Indeed, assume that We are now ready to show that µ sing ≡ 0. We argue by contradiction assuming that µ sing (Σ) > 0. By [60, Corollary 3.2.3], we can find a Borel subset Σ ⊆ Σ such that H n-2s (Σ \ Σ) = 0 and lim r↓0 1 r n-2s E u * , B + r (x 0 ) = 0 for every x 0 ∈ Σ .

x j → x ∈ ∂ 0 G,
Then µ sing ( Σ) = µ sing (Σ) > 0. Moreover, by our choice of Σ, the density

Θ n-2s (µ sing , x 0 ) := lim r↓0 µ sing (B r (x 0 )) ω n-2s r n-2s
exists at every x 0 ∈ Σ, and 

Θ n-2s (µ sing , x 0 ) = Θ n-2s (µ, x 0 ) ∈ (0,
G ′ such that G ′ ⊆ G ∪ ∂ 0 G, E(u * , G ′ ) lim inf k→∞ E(u k , G ′ ) lim k→∞ E ε k (u k , G ′ ) = E(u * , G ′ ) . Therefore u k → u * strongly in H 1 loc (G ∪ ∂ 0 G, |z| a dx), and ε -2s k W (u k ) → 0 in L 1 loc (∂ 0 G).
Step 2: Uniform convergence. Let us define

E + := x = (x, 0) ∈ ∂ 0 G : u * = 1 a.e. on D r (x) for some r ∈ (0, dist(x, ∂ + G)) , and 
E -:= x = (x, 0) ∈ ∂ 0 G : u * = -1 a.e. on D r (x) for some r ∈ (0, dist(x, ∂ + G)) .
By construction, E + and E -are disjoint relatively open subsets of ∂ 0 G.

We claim that E ± ∩ Σ = ∅. Indeed, assume for instance that x 0 = (x 0 , 0) ∈ E + . Then we can find r > 0 such that u * = 1 on D r (x 0 ). By Lemma 4.8 we have

Θ n-2s (µ, x 0 ) = lim ρ→0 1 ρ n-2s E u * , B + ρ (x 0 ) = 0 , whence x 0 ∈ Σ. Next we claim that ∂ 0 G = E + ∪ Σ ∪ E -. Indeed, if x 0 = (x 0 , 0) ∈ ∂ 0 G \ Σ, then we can find a radius r > 0 such that lim k E ε k (u k , B + r (x 0 )) < θ b,T r n-2s
. By Proposition 4.9, either u k → 1 or u k → -1 uniformly in D r/4 (x 0 ). Therefore, either u * = 1 or u * = -1 on D r/4 (x 0 ). Hence

x 0 ∈ E + ∪ E -.
Since L n (Σ) = 0, it implies in particular that

u * = χ E + -χ ∂ 0 G\E + on ∂ 0 G .

Now we show that

∂E + ∩ ∂ 0 G = Σ = ∂E -∩ ∂ 0 G . Indeed, if x 0 = (x 0 , 0) ∈ ∂E + ∩ ∂ 0 G, then D r (x 0 ) ∩ E + = ∅ for every r > 0. Since E + is open, D r (x 0
) ∩ E + contains a small disc for every r > 0. Thus D r (x 0 ) ⊆ E -for every r > 0, and thus x 0 ∈ Σ. This shows that ∂E + ∩ ∂ 0 G ⊆ Σ. The other way around, if

x 0 ∈ Σ, then x 0 ∈ E -. Thus L n ({u * = -1} ∩ D r (x 0 )) < L n (D r (x 0 )) for every r > 0.
Since L n (Σ) = 0, we deduce that for every r > 0 there exists

x ∈ E + ∩ D r (x 0 ). Hence Σ ⊆ ∂E + ∩ ∂ 0 G.
We claim that u k → ±1 locally uniformly in E ± (respectively). We only show that u k → 1 locally uniformly in E + , the other case being completely analogous. Fix an arbitrary compact set K ⊆ E + . By Lemma 4.8, we can find a radius r K min dist(K, ∂E + ), R b,T such that E u * , B + rK (x) < θ b,T r n-2s K for every x ∈ K × {0}. Then we deduce from Step 1 that

lim k→∞ E ε k u k , B + rK (x) < θ b,T r n-2s K
for every x ∈ K × {0}. By Proposition 4.9 and a standard covering argument, it implies that u k → u * = 1 uniformly on K. Then items (iii) and (iv) follow from Proposition 4.10.

Step 3: Convergence of level sets. We now prove (v). We fix t ∈ (-1, 1), a compact set K ⊆ ∂ 0 G, and a radius r > 0. First, from (iii) we deduce that

|u k | → 1 uniformly on K \ T r (Σ). Therefore, L t k ∩ K ⊆ T r (Σ)
for k large enough. Then we consider a covering of Σ ∩ K made by finitely many discs D r/2 (x 1 ), . . . , D r/2 (x J ) (included in ∂ 0 G, choosing a smaller radius if necessary). Then, for each j we can find a point x + j ∈ D r/2 (x j ) ∩ E + and a point x - j ∈ D r/2 (x j ) ∩ E -. From (ii) we infer that for k large enough,

u k (x + j ) 1/2(1 + t) and u k (x - j ) 1/2(-1 + t) ∀j ∈ {1, . . . , J} .
Then, by the mean value theorem, for k large enough we can find for each j a point

x k j ∈ [x - j , x j ] ∪ [x j , x + j ] ⊆ D r/2 (x j ) such that u k (x k j ) = t. Now, if
x is an arbitrary point in Σ ∩ K, then x ∈ D r/2 (x jx ) for some j x ∈ {1, . . . , J}, and thus |x-

x k jx | |x-x jx |+|x jx -x k jx | < r. Hence Σ ∩ K ⊆ T r (L t k ) whenever k is sufficiently large. Step 4: Proof of (vi). Let X = (X, X n+1 ) ∈ C 1 (G; R n+1 ) be a compactly supported vector field in G ∪ ∂ 0 G such that X n+1 = 0 on ∂ 0 G. By Corollary 3.5, we have δE u k , G ∪ ∂ 0 G [X] + 1 ε 2s k ∂ 0 G W (u k ) divX dx = ∂ 0 G u k div(f k X) dx .
From formula (2.22) and the convergences established in Step 1, we can pass to the limit k → ∞ in this identity to infer that

δE u * , G ∪ ∂ 0 G [X] = ∂ 0 G u * div(f X) dx ,
and the proof is complete.

ASYMPTOTICS FOR THE FRACTIONAL ALLEN-CAHN EQUATION

The object of this section is to prove a general convergence result as ε ↓ 0 for the fractional equation (5.1). As we already explained, we rely on the results obtained in Theorem 4.1 for the degenerate equation with boundary reaction. In Section 7, we will improve some of the convergences below under stronger assumptions on the sequence of right hand sides {f k } k∈N .

Theorem 5.1. Let Ω be a smooth bounded open set, and

ε k ↓ 0 a given sequence. Let {g k } k∈N ⊆ C 0,1 loc (R n ) be such that sup k g k L ∞ (R n \Ω) < ∞ and g k → g in L 1 loc (R n \ Ω) for a function g satisfying |g| = 1 a.e. in R n \ Ω . Let {f k } k∈N ⊆ C 0,1 (Ω) satisfying sup k ε 2s k f k L ∞ (Ω) + f k W 1,q (Ω) < ∞ for some n/(1 + 2s) < q < n ,
and such that

f k ⇀ f weakly in W 1,q (Ω). Let {v k } k∈N ⊆ H s g k (Ω) ∩ L p (Ω) be a sequence such that v k weakly solves    (-∆) s v k + 1 ε 2s k W ′ (v k ) = f k in Ω , v k = g k in R n \ Ω .
(5.1) 

If sup k F ε k (v k , Ω) < ∞,
δP 2s (E * , Ω)[X] = 1 γ n,s E * ∩Ω div(f X) dx for every X ∈ C 1 c (Ω; R n ) . (5.2)
In addition, for every smooth open subset

Ω ′ ⊆ Ω such that Ω ′ ⊆ Ω, (i) E(v k , Ω ′ ) → 2γ n,s P 2s (E * , Ω ′ ); (ii) 1 ε 2s k W (v k ) → 0 in L 1 (Ω ′ ); (iii) f k (x)- 1 ε 2s k W ′ (v k (x)) → γ n,s 2 R n |v * (x) -v * (y)| 2 |x -y| n+2s dy v * (x) strongly in H -s (Ω ′ ); (iv) v k → v * in C 0 loc (Ω \ ∂E * ); (v) if sup k f k L ∞ (Ω) < ∞, then v k → v * in C 0,α loc (Ω \ ∂E * )
for every α ∈ (0, β * ) with β * given by Lemma 3.2;

(vi) if sup k f k C 0,1 (Ω) < ∞, then v k → v * in C 1,α loc (Ω \ ∂E * )
for every α ∈ (0, β * ); (vii) for each δ ∈ (-1, 1), the level set L δ k := {v k = δ} converges locally uniformly in Ω to ∂E * ∩ Ω, i.e., for every compact set K ⊆ Ω and every r > 0,

L δ k ∩ K ⊆ T r (∂E * ∩ Ω) and ∂E * ∩ K ⊆ T r (L δ k ∩ Ω)
whenever k is large enough.

Proof.

Step 1. First we recall that, under the assumptions of the theorem, we have proved in Section 3 that

v k ∈ C 1,β * loc (Ω) ∩ C 0 (R n ) and sup k v k L ∞ (R n ) < ∞. Then the assumption sup k F ε k (v k , Ω) < ∞ clearly implies sup k E ε k (v k , Ω) < ∞.
In turn, Lemma 2.1 shows that the sequence {v k } k∈N is bounded in L 2 (R n , m), where the measure m is defined in (2.10). Therefore, we can find a (not relabeled) subsequence and

v * ∈ L 2 (R n , m) such that v k ⇀ v * weakly in L 2 (R n , m). In particular, v k ⇀ v * weakly in L 2 loc (R n ).
On the other hand, the uniform energy bound shows that |v k | → 1 in L 1 (Ω), and {v k } k∈N is bounded in H s (Ω). Hence v k ⇀ v * weakly in H s (Ω), and from the compact embedding H s (Ω) ֒→ L 2 (Ω), it implies that v k → v * strongly in L 2 (Ω). By assumption we have

g k → g in L 1 loc (R n \ Ω) and sup k g k L ∞ (R n \Ω) < ∞, so that g k → g in L 2 loc (R n \ Ω). Since v k = g k in R n \ Ω, we conclude that v * = g in R n \ Ω and v k → v * strongly in L 2 loc (R n ).
Extracting a further subsequence if necessary, we may assume that v k → v * a.e. in R n . Since |g| = 1 a.e. in R n , we derive that |v * | = 1 a.e. in R n . Hence we can find a Borel set

F ⊆ R n such that v * = χ F -χ R n \F a.e. in R n .
Moreover, we easily infer from Fatou's lemma that ∪ Ω, |z| a dx), whence the announced weak convergence.

E(v * , Ω) lim inf k→∞ E(v k , Ω) < ∞ . ( 5 
Step 2. Let us now consider an increasing sequence {G l } l∈N of bounded admissible open sets such that ∂ 0 G l ⊆ Ω for every l ∈ N, ∪ l G l = R n+1 + , and

∪ l ∂ 0 G l = Ω. By (2.11), Step 1,
and the results in Section 3,

v e k ∈ H 1 (G l , |z| a dx) ∩ L ∞ (G l ) satisfies sup k v e k L ∞ (G l ) sup k v k L ∞ (R n ) < ∞, and each v k solves        div(z a ∇v e k ) = 0 in G l , d s ∂ (2s) z v e k = 1 ε 2s k W ′ (v e k ) -f on ∂ 0 G l ,
for every l ∈ N. In addition, 

sup k E ε k (v e k , G l ) < ∞
Ω := ∪ l E l , so that E Ω is an open subset of Ω, E l = E Ω ∩ ∂ 0 G l for every l ∈ N, and v * = χ EΩ -χ Ω\EΩ a.e. in Ω. Setting E * := (F \ Ω) ∪ E Ω , it follows that v * = χ E * -χ R n \E * a.e. in R n . In particular, E * has finite 2s-perimeter in Ω since E(v * , Ω) = 2γ n,s P 2s (E * , Ω) .
Finally, the conclusions of Theorem 4.1 in each G l clearly imply the announced results stated in (ii), (iv), (v), (vi), and (vii).

Step 3. Now we show items (i), (iii), and the strong convergence of v k in H s loc (Ω). To this purpose, we fix a smooth open set Ω ′ ⊆ Ω such that Ω ′ ⊆ Ω. Setting for an arbitrary function v ∈ H s (Ω),

e s v(x), Ω := γ n,s 2 Ω |v(x) -v(y)| 2 |x -y| n+2s dy + γ n,s R n \Ω |v(x) -v(y)| 2 |x -y| n+2s dy , we claim that e s (v k , Ω) L n Ω ⇀ e s (v * , Ω) L n Ω
weakly* as Radon measures on Ω. Indeed, by the uniform energy bound, we can extract a subsequence such that e s (v k , Ω) L n Ω * ⇀ ν for some finite Radon measure ν on Ω. Then we fix ϕ ∈ D(Ω) arbitrary. Notice that

Ω e s (v k , Ω)ϕ dx = (-∆) s v k , ϕv k Ω - γ n,s 2 Ω×Ω (v k (x) -v k (y))v k (y)(ϕ(x) -ϕ(y)) |x -y| n+2s dxdy -γ n,s Ω×Ω c (v k (x) -v k (y))v k (y)ϕ(x) |x -y| n+2s dxdy =: I k -II k -III k . We consider a function Φ ∈ C ∞ (R n+1 + ) compactly supported in G ∪ ∂ 0 G for some bounded admissible open set G ⊆ R n+1 + such that ∂ 0 G ⊆ Ω and Φ |R n = ϕ. Since ϕv k ∈ H s 00 (Ω) and Φv e k ∈ H 1 (G, |z| a dx) is compactly supported in G ∪ ∂ 0 G, Lemma 2.12 yields (-∆) s v k , ϕv k Ω = d s G z a |∇v e k | 2 Φ dx + d s G z a ∇v e k • (v e k ∇Φ) dx .
Since v e k → v e * strongly in H 1 (G, |z| a dx), we obtain

(-∆) s v k , ϕv k Ω -→ k→∞ d s G z a |∇v e * | 2 Φ dx + d s G z a ∇v e * • (v e * ∇Φ) dx = d s R n+1 + z a ∇v e * • ∇(Φv e * ) dx .
By Lemma 2.12 again, we have thus proved that

(-∆) s v k , ϕv k Ω -→ k→∞ (-∆) s v * , ϕv * Ω . (5.4) 
On the other hand, we easily deduce by dominated convergence that

II k → γ n,s 2 Ω×Ω (v * (x) -v * (y))v * (y)(ϕ(x) -ϕ(y)) |x -y| n+2s dxdy (5.5) 
and

III k → γ n,s Ω×Ω c (v * (x) -v * (y))v * (y)ϕ(x) |x -y| n+2s dxdy (5.6)
as k → ∞. Gathering (5.4), (5.5), and (5.6) leads to

Ω e s (v k , Ω)ϕ dx -→ k→∞ Ω e s (v * , Ω)ϕ dx ,
and thus ν = e s (v * , Ω) L n Ω by the arbitrariness of ϕ.

Since ν(∂Ω ′ ) = 0, we now derive that

Ω ′ e s (v k , Ω) dx → Ω ′ e s (v * , Ω) dx . (5.7) 
Then, since Ω ′ is smooth and bounded, it has finite 2s-perimeter in R n , and thus

Ω ′ Ω\Ω ′ 1 |x -y| n+2s dxdy Ω ′ R n \Ω ′ 1 |x -y| n+2s dxdy = P 2s (Ω ′ , R n ) < ∞ . (5.8)
It now follows by dominated convergence and (5.7) that

E(v k , Ω ′ ) = 1 2 Ω ′ e s (v k , Ω) dx + γ n,s 4 Ω ′ Ω\Ω ′ |v k (x) -v k (y)| 2 |x -y| n+2s dxdy -→ k→∞ 1 2 Ω ′ e s (v * , Ω) dx + γ n,s 4 Ω ′ Ω\Ω ′ |v * (x) -v * (y)| 2 |x -y| n+2s dxdy = E(v * , Ω ′ ) = 2γ n,s P 2s (E * , Ω ′ ) . (5.9) 
Using (5.7) again, the same argument shows that

[v k ] 2 H s (Ω ′ ) → [v * ] 2 H s (Ω ′ ) , and thus v k → v * strongly in H s (Ω ′ ), since we already know that v k ⇀ v * weakly in H s (Ω ′ ). In turn, the strong convergence in H s (Ω ′ ) and (5.8) easily imply (-∆) s v k , v * Ω ′ → (-∆) s v * , v * Ω = 2E(v * , Ω ′ ) by dominated convergence. Consequently, E(v k -v * , Ω ′ ) = E(v k , Ω ′ ) + E(v * , Ω ′ ) -(-∆) s v k , v * Ω ′ -→ 0 . Next we infer from (2.4) that (-∆) s v k → (-∆) s v * strongly in H -s (Ω ′ ).
Then, fix some ϕ ∈ D(Ω ′ ). Since v 2 * = 1, we have the identity

v * (x) -v * (y))(ϕ(x) -ϕ(y) = 1 2 |v * (x) -v * (y)| 2 v * (x)ϕ(x) + v * (y)ϕ(y) , (5.10) 
that we may insert in (2.3) to obtain

(-∆) s v * , ϕ Ω ′ = Ω ′ γ n,s 2 R n |v * (x) -v * (y)| 2 |x -y| n+2s dy v * (x)ϕ(x) dx . (5.11) 
Using this equation and (5.1), item (iii) follows.

Step 4. Now it only remains to show that E * satisfies (5.2). Let

X ∈ C 1 (R n ; R n ) com- pactly supported in Ω, and X = (X 1 , . . . , X n+1 ) ∈ C 1 (R n+1 + ; R n+1 ) compactly supported in R n+1 +
∪ Ω satisfying X = (X, 0) on Ω. Setting {φ t } t∈R to be the flow on R n generated by X, we notice that

P 2s φ t (E * ), Ω = 1 2γ n,s E(v * • φ -t , Ω) . (5.12) 
Since the support of X is contained in G l ∪ ∂ 0 G l for l large enough, we can apply (vi) in Theorem 4.1. In view of Remark 2.15 and (5.12), we obtain

δP 2s (E * , Ω)[X] = 1 2γ n,s δE(v * , Ω)[X] = 1 2γ n,s δE v e * , G l ∪ ∂ 0 G l [X] = 1 2γ n,s Ω v * div(f X) dx = 1 γ n,s E * ∩Ω div(f X) dx ,
by the divergence theorem, and the proof is complete.

SURFACES OF PRESCRIBED NONLOCAL MEAN CURVATURE

In this section, we investigate regularity properties in a Lipschitz bounded open set

Ω ⊆ R n of a (Borel) set E ⊆ R n which is a weak solution in Ω of the prescribed nonlocal 2s-mean curvature equation H (2s) ∂E = 1 γ n,s f on ∂E ∩ Ω , (6.1) 
where f is a given Sobolev function in W 1,q (Ω) with q ∈ ( n 1+2s , n). The notion of weak solution corresponds to the following weak formulation of (6.1): Definition 6.1. A set E ⊆ R n is a weak solution of (6.1) if P 2s (E, Ω) < ∞ and

δP 2s (E, Ω)[X] = 1 γ n,s E∩Ω div(f X) dx ∀X ∈ C 1 c (Ω; R n ) .
Introducing the "phase function" v E := χ Eχ R n \E ∈ H(Ω), this equation rewrites (as in the proof of Theorem 5.1, Step 4)

δE(v E , Ω)[X] = Ω v E div(f X) dx ∀X ∈ C 1 c (Ω; R n ) . (6.2) 
As we already did for the fractional Allen-Cahn equation, we rely on the fractional harmonic extension (v E ) e defined in (2.9) which satisfies

       div(z a ∇(v E ) e ) = 0 in R n+1 + , |(v E ) e | 1 in R n+1 + , |(v E ) e | = 1 on R n , (6.3) 
and (by Remark 2.15 and (6.2))

δE (v E ) e , G ∪ ∂ 0 G [X] = ∂ 0 G (v E ) e div(f X) dx (6.4) for every vector field X = (X, X n+1 ) ∈ C 1 (G; R n+1 ) compactly supported in G ∪ ∂ 0 G satisfying X n+1 = 0 on ∂ 0 G, whenever G ⊆ R n+1 + is an admissible bounded open set such that ∂ 0 G ⊆ Ω.
Similarly to Section 4, instead of investigating only the regularity of (v E ) e from (6.3) and (6.4), we deal with the following more general situation. We consider an admissible bounded

open set G ⊆ R n+1 + and a function u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) satisfying        div(z a ∇u) = 0 in G , |u| b in G , |u| = 1 on ∂ 0 G , (6.5) 
for a given parameter b 1 (whose importance will only appear in Section 7), and

δE u, G ∪ ∂ 0 G [X] = ∂ 0 G u div(f X) dx , (6.6) 
where, again, f belongs to W 1,q (∂ 0 G) with q ∈ ( n 1+2s , n). Regularity estimates on the function u at the boundary ∂ 0 G will be our main concern in this section. The application to weak solutions of (6.1) is the object of the very last subsection with some specific results.

6.1. Energy monotonicity and clearing-out. In this subsection, we consider an arbitrary solution u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) of (6.5)-(6.6). We begin with the fundamental monotonicity formula involving the following density function: for a point

x 0 = (x 0 , 0) ∈ ∂ 0 G and r > 0 such that B + r (x 0 ) ⊆ G, we set Θ u (f, x 0 , r) := 1 r n-2s E u, B + r (x 0 ) + c n,q b r 0 t θq-1 f Ẇ 1,q (Dt(x0)) dt ,
where the constants θ q and c n,q are given by Lemma 4.2.

Lemma 6.2. For every

x 0 = (x 0 , 0) ∈ ∂ 0 G and r > ρ > 0 such that B + r (x 0 ) ⊆ G, Θ u (f, x 0 , r) -Θ u (f, x 0 , ρ) d s B + r (x0)\B + ρ (x0) z a |(x -x 0 ) • ∇u| 2 |x -x 0 | n+2-2s dx .
Moreover, equality holds if f = 0.

Proof. We proceed exactly as in the proof of Lemma 4.2, assuming without loss of generality that x 0 = 0. Using (6.6) and formula (2.22), we infer that

(n -2s)E(u, B + r ) -r d dr E(u, B + r ) + d s r ∂ + Br z a x |x| • ∇u 2 dH n bI(r) , since u L ∞ (∂ 0 G) b
, where I(r) is given by (4.8). Note that equality actually holds for f = 0. In view of (4.9), dividing by r n+1-2s and integrating the resulting inequality (or equality if f = 0), the conclusion follows. Corollary 6.3. For every x = (x, 0) ∈ ∂ 0 G × {0}, the limits

Θ u (x) := lim r↓0 Θ u (f, x, r) = lim r↓0 1 r n-2s E u, B + r (x 0 )
exist, and the function

Θ u : ∂ 0 G → [0, ∞) is upper semicontinuous. In addition, Θ u (f, x 0 , r) -Θ u (x 0 ) d s B + r (x0) z a |(x -x 0 ) • ∇u| 2 |x -x 0 | n+2-2s dx , (6.7) 
and equality holds if f = 0.

Proof. The existence of first limit defining Θ u (x) is of course a direct consequence of the monotonicity of the density function established in Lemma 6.2. Existence and equality for the second one follows from the existence of the first one and the estimate

r 0 t θq-1 f Ẇ 1,q (Dt(x0)) dt f Ẇ 1,q (∂ 0 G) θ q r θq .
Then Θ u is upper semicontinuous as a pointwise limit of a decreasing family of continuous functions. Finally, letting ρ → 0 in Lemma 6.2 yields (6.7).

We continue with the following clearing-out property which can be seen as a small-energy regularity result. Lemma 6.4. There exist a constant η 0 > 0 (depending only on n and s) such that the following holds. For

x 0 = (x 0 , 0) ∈ ∂ 0 G and r > 0 such that B + r (x 0 ) ⊆ G, the condition Θ u (f, x 0 , r) η 0 implies that either u = 1 on D r/2 (x 0 ), or u = -1 on D r/2 (x 0 ).
Proof. Let us fix some y = (y, 0) ∈ D r/2 (x 0 ) × {0}. By Lemma 6.2, for 0 < ρ < r/2,

Θ u (y, ρ) Θ u (y, r/2) 2 n-2s Θ u (x 0 , r) 2 n-2s η 0 .
By the Poincaré inequality in Lemma 2.5, we deduce that

A ρ (y) := 1 ρ n Dρ(y) u -[u] y,ρ dx 2 n/2-s λ n,s √ η 0 ,
where [u] y,ρ denotes the average of u over D ρ (y).

Since |u| = 1 on ∂ 0 G, we can find a Borel subset E ⊆ ∂ 0 G such that u = χ E -χ ∂ 0 G\E a.e. on ∂ 0 G. Then, A ρ (y) = 4ω n 1 - |E ∩ D ρ (y)| |D ρ | |E ∩ D ρ (y)| |D ρ | .
Choosing

η 0 := 9ω 2 n 2 n+4-2s λ 2 n,s
leads to A ρ (y) 3ω n /4. In turn, this inequality implies

|E ∩ D ρ (y)|/|D ρ | ∈ [0, 1/4] ∪ [3/4, 1] . Since the function (y, ρ) ∈ D r/2 (x 0 ) × (0, r/2) → |E ∩ D ρ (y)|/|D ρ | is continuous, we infer that either |E ∩ D ρ (y)| |D ρ | ∈ [0, 1/4]
for every y ∈ D r/2 (x 0 ) and every 0 < ρ < r/2 ,

or |E ∩ D ρ (y)| |D ρ | ∈ [3/4, 1]
for every y ∈ D r/2 (x 0 ) and every 0 < ρ < r/2 . (

Now assume that (6.8) holds (the other case being analogous). Then, by the Lebesgue differentiation theorem, we deduce that a.e. y ∈ D r/2 (x 0 ) is a point of density 1 for E. Consequently, u = 1 a.e. on D r/2 (x 0 ), and the lemma is proved.

Corollary 6.5. For every

(x, 0) ∈ ∂ 0 G, either Θ u (x) = 0 or Θ u (x) η 0 . As a consequence, there is an open subset E u ⊆ ∂ 0 G such that ∂E u ∩ ∂ 0 G = Θ u η 0 and u = χ Eu -χ ∂ 0 G\Eu a.e. on ∂ 0 G .
Proof. The alternative Θ u (x) = 0 or Θ u (x) η 0 is a direct consequence of Lemma 6.4 together with Lemma 4.8. By upper semicontinuity of Θ u , the set Σ := {Θ u η 0 } is relatively closed in ∂ 0 G, and

E u := x = (x, 0) ∈ ∂ 0 G : u = 1 on D r (x) for some r ∈ (0, dist(x, ∂ + G))
is open and disjoint from Σ. Arguing as in the proof of Theorem 4.1, Step 4, we obtain that u = χ Euχ ∂ 0 G\Eu a.e. on ∂ 0 G, and ∂E u ∩ ∂ 0 G = Σ. Remark 6.6. By [60, Corollary 3.2.3], we also have H n-2s (∂E u ∩ ∂ 0 G) = 0. We will improve this a priori estimate later on. 6.2. Compactness. In this subsection, we are dealing with compactness issues for sequences

{u k } k∈N ⊆ H 1 (G, |z| a dx) ∩ L ∞ (G) satisfying        div(z a ∇u k ) = 0 in G , |u k | b in G , |u k | = 1 on ∂ 0 G , and 
δE u k , G ∪ ∂ 0 G [X] = ∂ 0 G u k div(f k X) dx , (6.9) 
for some f k ∈ W 1,q (∂ 0 G) with q ∈ ( n 1+2s , n), and a parameter b 1 independent of k.

Theorem 6.7.

If sup k E(u k , G) + f k W 1,q (∂ 0 G) < ∞, then there exist a (not relabeled) subsequence and a function u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) satisfying (6.5) such that u k ⇀ u weakly in H 1 (G, |z| a dx), and 
u k → u strongly in H 1 loc (G ∪ ∂ 0 G, |z| a dx). In addition, if f k ⇀ f weakly in W 1,q (∂ 0 G), then u satisfies (6.6).
Proof. Since the argument essentially follows the proof of Theorem 4.1 (Step 1), we only sketch the main points. First, by assumption on the energy, we can find a subsequence and u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) satisfying (6.5) such that u k ⇀ u weakly in H 1 (G, |z| a dx) and strongly in H 1 loc (G, |z| a dx) . Consider the sequence of measures µ k := ds 2 z a |∇u k | 2 L n+1 G which admits a weakly* convergent (not relabeled) subsequence towards a limiting measure µ = ds 2 z a |∇u| 2 L n+1 G + µ sing with spt(µ sing ) ⊆ ∂ 0 G. From Lemma 6.2, we infer that µ satisfies the monotonicity inequality (4.23) with T = sup k f k Ẇ 1,q (∂ 0 G) . As a consequence, the density Θ n-2s (µ, x) (as defined in (4.24)) exists, is finite for every x ∈ ∂ 0 G, and defines an upper semicontinuous function on ∂ 0 G. We define the concentration set Σ as in (4.26) with θ b,T replaced by η 0 /2. Then Σ = Θ n-2s (µ, •) η 0 /(2ω n-2s ) ⊆ ∂ 0 G, and H n-2s (Σ) is finite. We continue exactly as Theorem 4.1 to show that µ sing is absolutely continuous with respect H n-2s Σ, and that Θ n-2s (µ sing , x) ∈ [0, ∞) exists at H n-2s -a.e. x ∈ Σ. By Marstrand's Theorem, we must have µ sing ≡ 0. In other words, u k → u strongly in H 1 loc (G ∪ ∂ 0 G, |z| a dx). In view of (2.22), if f k ⇀ f weakly in W 1,q (∂ 0 G), this strong convergence allows us to pass to the limit k → ∞ in (6.9) and obtain (6.6).

Remark 6.8. If u k → u strongly in H 1 loc (G ∪ ∂ 0 G, |z| a dx), f k → f strongly in W 1,q (∂ 0 G), x k → x and r k → r > 0, then Θ u k (f k , x k , r k ) → Θ u (f, x, r).
Lemma 6.9. In addition to the conclusion of Theorem 6.7,if 

{x k } k∈N ⊆ ∂ 0 G is a sequence converging to x ∈ ∂ 0 G, then lim sup k→∞ Θ u k (x k ) Θ u (x) .
Proof. Assume for simplicity that x = 0. Applying Corollary 6.3, we obtain for r > 0 sufficiently small and r

k := |x k | < r, Θ u k (x k ) Θ u k (f k , x k , r) 1 r n-2s E(u k , B + r+r k ) + T r θq , with T := (c n,q b/θ q ) sup k f k Ẇ 1,q (∂ 0 G) < ∞. Since r k → 0 and u k converges strongly to u in H 1 (B + 2r , |z| a dx), we have E(u k , B + r+r k ) → E(u, B + r ). Hence lim sup k→∞ Θ u k (x k ) 1 r n-2s E(u, B + r ) + T r θq .
Letting r ↓ 0 now leads to the conclusion.

Corollary 6.10. In addition to the conclusion of Theorem 6.7, the boundaries ∂E u k ∩ ∂ 0 G converge locally uniformly in ∂ 0 G to ∂E u ∩ ∂ 0 G, i.e., for every compact subset K ⊆ ∂ 0 G and every r > 0,

∂E u k ∩ K ⊆ T r (∂E u ∩ ∂ 0 G) and ∂E u ∩ K ⊆ T r (∂E u k ∩ ∂ 0 G)
for k large enough.

Proof. We start proving the first inclusion. By Corollary 6.5, Θ u (x) = 0 for every point

x ∈ K \ T r (∂E u ∩ ∂ 0 G). Since Θ u k is upper semicontinuous, we can find a point x k ∈ K \ T r (∂E u ∩ ∂ 0 G) such that Θ u k (x k ) = sup x∈K\Tr(∂Eu∩∂ 0 G) Θ u k (x) .
Then select a subsequence {k j } j∈N such that lim j Θ u k j (x kj ) = lim sup k Θ u k (x k ). Extracting a further subsequence if necessary, we can assume that

x kj → x * ∈ K \ T r (∂E u ∩ ∂ 0 G).
Since Θ u (x * ) = 0, we infer from Lemma 6.9 that lim sup k Θ u k (x k ) = 0. Consequently, Θ u k (x k ) η 0 /2 for k large enough, and Corollary 6.5 shows that, for such integers k,

(∂E u k ∩ K) \ T r (∂E u ∩ ∂ 0 G) = ∅.
To prove the second inclusion, we consider a covering of ∂E u ∩ K made by finitely many discs D r/2 (x 1 ), . . . , D r/2 (x J ) (included in ∂ 0 G, choosing a smaller radius if necessary). Then, for each j, we can find a point x + j ∈ D r/2 (x j ) ∩ E u and a point x - j ∈ D r/2 (x j ) \ E u . Since D r/2 (x j ) ∩ E u and D r/2 (x j ) \ E u are open sets, we can find a radius ̺ > 0 such that

D 2̺ (x + j ) ⊆ D r/2 (x j ) ∩ E u and D 2̺ (x - j ) ⊆ D r/2 (x j
) \ E u for each j ∈ {1, . . . , J}. Hence, u = ±1 on D 2̺ (x ± j ) for each j ∈ {1, . . . , J}. In particular, Θ u (x) = 0 for every x ∈ D ̺ (x ± j ) and each j ∈ {1, . . . , J}. Arguing as before (for the first inclusion), we infer from Lemma 6.9 that lim k→∞ sup x∈D̺(x ± j )

Θ u k (x) = 0 ∀j ∈ {1, . . . , J} .

Then Corollary 6.5 implies that Θ u k (x) = 0 for every x ∈ D ̺ (x ± j ) and j ∈ {1, . . . , J}, whenever k is large enough. Since each D ̺ (x ± j ) is connected, we must have either u k = +1 or u k = -1 on D ̺ (x ± j ) (otherwise D ̺ (x ± j ) could be written as the disjoint union of two non empty open sets). On the other hand, u k → u in L 1 (D ̺ (x ± j )) by Remark 2.4, and we conclude that u k = u = ±1 on D ̺ (x ± j ) for each j ∈ {1, . . . , J}, whenever k is large enough. Hence, D r/2 (x j ) ∩ E u k = ∅ and D r/2 (x j ) \ E u k = ∅, and we have thus proved that ∂E u k ∩ D r/2 (x j ) = ∅ for each j ∈ {1, . . . , J}, whenever k is large enough. Therefore, ∂E u ∩ K ⊆ j D r/2 (x j ) ⊆ T r (∂E u k ∩ ∂ 0 G) for k sufficiently large. 6.3. Tangent maps. We now return back a given solution u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) of (6.5) and (6.6), and we apply the results of Subsection 6.2 to define the so-called "tangent maps" of u at a given point. To this purpose, we fix the point of study x 0 = (x 0 , 0) ∈ ∂ 0 G and a reference radius ρ 0 > 0 such that B + ρ0 (x 0 ) ⊆ G. We introduce the rescaled functions u x0,ρ (x) := u(x 0 + ρx) and f x0,ρ (x) := f (x 0 + ρx) , (6.10) which are defined for 0 < ρ < ρ 0 /r, x ∈ B + r and x ∈ D r , respectively. Changing variables, we observe that Θ ux 0 ,ρ (ρ 2s f x0,ρ , 0, r) = Θ u (f, x 0 , ρr) . (6.11) This identity, together with Lemma 6.2, leads to

1 r n-2s E(u x0,ρ , B + r ) Θ u (f, x 0 , ρr) Θ u (f, x 0 , ρ 0 ) 1 ρ n-2s 0 E(u, G) + c n,q b ρ θq 0 θ q f Ẇ 1,q (∂ 0 G) . (6.12)
Given a sequence ρ k → 0, we deduce that lim sup k→∞ E(u x0,ρ k , B + r ) < ∞ for every r > 0 . (6.13)

As a consequence of Theorem 6.7, we have the following Lemma 6.11. Every sequence ρ k → 0 admits a subsequence {ρ ′ k } k∈N such that u x0,ρ ′ k → ϕ strongly in H 1 (B + r , |z| a dx) for every r > 0, where ϕ satisfies

       div(z a ∇ϕ) = 0 in R n+1 + , |ϕ| b in R n+1 + , |ϕ| = 1 on R n , (6.14) 
and for each r > 0, δE(ϕ, B + r ∪ D r )[X] = 0 (6.15)

for every vector field X = (X,

X n+1 ) ∈ C 1 (B + r , R n+1 ) compactly supported in B + R ∪ D r such that X n+1 = 0 on D r .
Proof. In view of (6.13), Theorem 6.7 yields the announced convergence and (6.14). Then observe that u x0,ρ satisfies

δE(u x0,ρ , B + r ∪ D r )[X] = Dr u x0,ρ div(ρ 2s f x0,ρ X) dx .
Rescaling variables, we obtain

ρ 2s f x0,ρ Ẇ 1,q (Dr ) = ρ θq f Ẇ 1,q (Dρr (x0)) -→ ρ→0 0 .
Hence ρ 2s f x0,ρ → 0 strongly in W 1,q (D r ), and the conclusion follows from Theorem 6.7. Definition 6.12. Every function ϕ obtained by this process will be referred to as tangent map of u at the point x 0 . The family of all tangent maps of u at x 0 will be denoted by T x0 (u). Lemma 6.13. If ϕ ∈ T x0 (u), then

Θ ϕ (0, 0, r) = Θ ϕ (0) = Θ u (x 0 ) ∀r > 0 ,
and ϕ is 0-homogeneous, i.e., ϕ(λx) = ϕ(x) for every λ > 0 and every x ∈ R n+1 + .

Proof. From the strong convergence of u x0,ρ ′ k toward ϕ and the identity in (6.11), we first infer that Θ ϕ (0, 0, r) = lim

k→∞ Θ u x 0 ,ρ ′ k (ρ ′ k ) 2s f x0,ρ ′ k , 0, r = Θ u (x 0 ) ∀r > 0 .
Then the monotonicity formula in Lemma 6.2 applied to ϕ implies that x • ∇ϕ(x) = 0 for every x ∈ R n+1 + , and the conclusion follows.

6.4. Homogeneous solutions. In view of Lemma 6.13, the study of tangent maps leads to the study of 0-homogeneous solutions, which is the purpose of this subsection. We start with the following observation.

Lemma 6.14.

Let ϕ ∈ H 1 (B + 1 , |z| a dx) ∩ L ∞ (B + 1 ) be a solution of        div(z a ∇ϕ) = 0 in B + 1 , |ϕ| b in B + 1 , |ϕ| = 1 on D 1 , (6.16) 
for some constant b 1. Assume that there exists f ∈ W 1,q (D 1 ) with n/(1 + 2s) < q < n such that

δE ϕ, B + 1 ∪ D 1 [X] = D1 ϕ div(f X) dx , (6.17) 
Inserting this inequality in (6.18) and letting ρ → ∞, we deduce that

Θ ϕ (y) + d s R n+1 + z a |(x -y) • ∇ϕ(x)| 2 |x -y| n+2-2s dx Θ ϕ (0) .
Next, if Θ ϕ (y) = Θ ϕ (0), then (xy) • ∇ϕ(x) = 0 for every x ∈ R n+1 + . By homogeneity of ϕ, we deduce that y • ∇ϕ(x) = 0 for every x ∈ R n+1 + , i.e, ϕ(x + y) = ϕ(x) ∀x ∈ R n+1 + .

(6.19)

The other way around, if y = (y, 0) satisfies (6.19), then (xy) • ∇ϕ(x) = 0 for every x ∈ R n+1 + (using again the homogeneity of ϕ). By (6.18) and (6.19), it implies that for each radius ρ > 0, for some solution u of (6.5)-(6.6), then Θ u (x 0 ) = Θ ϕ (0) = 0. Now Corollary 6.5 yields x 0 ∈ ∂E u ∩ ∂ 0 G. In other words,

Θ ϕ (y) = Θ ϕ (0, y, ρ) = Θ ϕ (0, 0, ρ) = Θ ϕ (0) ,
x 0 ∈ ∂E u ∩ ∂ 0 G ⇐⇒ dim S(ϕ) n -1 for all ϕ ∈ T x0 (u) .
Remark 6.21. If ϕ is a nonlocal stationary cone such that dim S(ϕ) = n-1, then C ϕ is a halfspace. Indeed, up to a rotation, we may assume that S(ϕ) = {0} × R n-1 , and Lemma 6.18 yields ϕ(x) = ϕ(x 1 , z) for all x = (x 1 , . . . , x n , z) ∈ R n+1 + . As a consequence, either

C ϕ = {x 1 > 0} or C ϕ = {x 1 < 0}.
In view of the remark above, we introduce the half-space P 1 ⊆ R n defined by Proof. Step 1. Since ϕ is not trivial, by Corollary 6.5, Remark 6.19, and Lemma 6.18, we can find a point y ∈ S n-1 such that Θ ϕ (0) Θ ϕ (y) > 0. Rotating coordinates if necessary, we may assume that y = e n , where (e 1 , . . . , e n ) denotes the canonical basis of R n . Let ψ n be a tangent map of ϕ at e n . We claim that ψ n is independent of the x n -variable, i.e., ∂ xn ψ n (x) = 0 for every x ∈ R n+1 + . To prove this claim, we consider a sequence of radii ρ k ↓ 0 such that ϕ en,ρ k → ψ n strongly in H 1 (B + r , |z| a dx) for every r > 0. By homogeneity of ϕ, we have for every

P 1 := {x 1 > 0} , (6.20 
x = (x, z) ∈ R n+1 + , ∂ xn ϕ en,ρ k (x) = -ρ 2 k x • ∇ϕ(e n + ρ k x, ρ k z) = -ρ k x • ∇ϕ en,ρ k (x) . Consequently, 1 r n-2s B + r z a |∂ xn ϕ en,ρ k | 2 dx r 2 ρ 2 k Θ ϕ (0, e n , rρ k ) -→ k→∞ 0 ,
and the claim follows. As a consequence,

C ψn = C n-1 × R for some open cone C n-1 ⊆ R n-1 ,
and Θ ψn (0) = Θ ϕ (y) > 0. Since ψ n is not trivial, we can now find a point y ∈ S n-2 × {0} such that Θ ϕ (0) Θ ψn (y) > 0. Rotating coordinates if necessary, we may assume that y = e n-1 , and we consider a tangent map ψ n-1 of ψ n at e n-1 . Then, such a tangent map is independent of the x n and x n-1 variables. Iterating this process, we produce for each k ∈ {n-1, . . . , 2}, a non trivial tangent map ψ k of ψ k+1 at e k such that

C ψ k = C k-1 ×R n+1-k for some open cone C k-1 ⊆ R k-1 , and Θ ϕ (0) Θ ψ k (0) > 0.
At the last step of the process (i.e., k = 2), we have either C 1 = (0, +∞) or C 1 = (-∞, 0). In other words, either C ψ2 = {x 1 > 0} or C ψ2 = {x 1 < 0}. Without loss of generality, we may assume that C ψ2 = {x 1 > 0}. Then, by Corollary 6.16 we have ψ 2 = (χ P1χ R n \P1 ) e where P 1 is the reference half space (6.20). By Lemma 6.13, we conclude that Θ ψ2 (0) = θ n,s , and we have thus proved that Θ ϕ (0) θ n,s .

Step 2. Assume that Θ ϕ (0) = θ n,s . From Step 1, Corollary 6.5, and Lemma 6.18 we infer that Θ ϕ (x) = θ n,s for every x ∈ ∂C ϕ . In view of Remark 6.19, it leads to S(ϕ) = ∂C ϕ . Since ϕ is not trivial, we must have dim S(ϕ) = n -1, and Remark 6.21 tells us that C ϕ is a half-space.

For a constant Λ 0 and j ∈ {0, . . . , n}, we now introduce the following class of nonlocal stationary cones C j (Λ) := nonlocal stationary cones ϕ such that dim S(ϕ) j and Θ ϕ (0) Λ .

Note that C j+1 (Λ) ⊆ C j (Λ), and C n (Λ) = {+1, -1} by Remark 6.20. Lemma 6.23. For each j ∈ {0, . . . , n} and r > 0, the set

ϕ |B + r : ϕ ∈ C j (Λ) is strongly compact in H 1 (B + r , |z| a dx).
Proof. By homogeneity, it is enough to consider the case r = 1. Let {ϕ k } k∈N ⊆ C j (Λ) be an arbitrary sequence. Still by homogeneity, we have Θ ϕ k (0, 0, 2) = Θ ϕ k (0) Λ, so that

E(ϕ k , B + 2 ) 2 n-2s Λ .
Since |ϕ k | 1 by Lemma 6.16, we can apply Theorem 6.7 to find a (not relabeled) subsequence such that ϕ k → ψ strongly in H 1 (B + 1 , |z| a dx) for a function ψ satisfying (6.16)-(6.17) with f = 0 and b = 1. Then we deduce from Lemma 6.9 that

Θ ψ (0) lim k→∞ Θ ϕ k (0) = lim k→∞ Θ ϕ k (0, 0, 1) = Θ ψ (0, 0, 1) .
In turn, Corollary 6.3 shows that Θ ψ (0) = Θ ψ (0, 0, 1), and thus ψ is 0-homogeneous by Lemma 6.14, and Θ ψ (0) = lim k Θ ϕ k (0) Λ. Consequently, ψ is a nonlocal stationary cone, and it remains to show that dim S(ψ) j.

Extracting a further subsequence if necessary, we may assume that dim S(ϕ k ) is a constant integer d j, and S(ϕ k ) → V in the Grassmannian G(d, n) of all d-dimensional linear subspaces of R n . For an arbitrary y ∈ V ∩ D 1 , there exists a sequence {y k } k∈N ⊆ D 1 such that y k ∈ S(ϕ k ) and y k → y. By Lemma 6.9, we have

Θ ψ (y) lim k→∞ Θ ϕ k (y k ) = lim k→∞ Θ ϕ k (0) = Θ ψ (0) ,
and we deduce from Lemma 6.18 that y ∈ S(ψ). Therefore V ⊆ S(ψ), and in particular dim S(ψ) d.

6.5. Quantitative stratification. In this subsection, we are back again to the analysis of the function u ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) solving (6.5)-(6.6). We are interested in regularity properties of the open subset E u ⊆ ∂ 0 G satisfying u = χ Euχ ∂ 0 G\Eu on ∂ 0 G (provided by Corollary 6.5). To this purpose, we introduced the following (standard) stratification of the singular set of u, Sing j (u) := x ∈ ∂ 0 G : dim S(ϕ) j for all ϕ ∈ T x (u) , j = 0, . . . , n -1 .

Obviously,

Sing j (u) ⊆ Sing j+1 (u) ,

and by Remark 6.20,

∂E u ∩ ∂ 0 G = Sing n-1 (u) . (6.22) 
We also introduce the "regular part"

Σ reg (u) of ∂E u ∩ ∂ 0 G, Σ reg (u) := ∂E u ∩ ∂ 0 G \ Sing n-2 (u) .
The terminology regular part is motivated by the following proposition showing that all blowup limits of ∂E u at points of Σ reg (u) are hyperplanes.

Proposition 6.24. For every x ∈ Σ reg (u) and ϕ ∈ T x (u), we have dim S(ϕ) = n -1. In particular, if x ∈ Σ reg (u), then every sequence ρ k ↓ 0 admits a subsequence {ρ ′ k } k∈N and a half space P ⊆ R n , with 0 ∈ ∂P , such that the rescaled boundaries

∂E k := (∂E ∩ ∂ 0 G -x)/ρ ′ k
converge locally uniformly to the hyperplane ∂P , i.e., for every compact set K ⊆ R n and every r > 0,

∂E k ∩ K ⊆ T r (∂P ) and ∂P ∩ K ⊆ T r (∂E k ) whenever k is large enough.
Proof. By the very definition of Σ reg (u) and (6.22), if x ∈ Σ reg (u), then there exists ϕ 0 ∈ T x (u) such that dim S(ϕ 0 ) = n -1. By Lemma 6.13 and Remark 6.21, we have Θ u (x) = Θ ϕ0 (0) = θ n,s as defined in (6.21).

Let ρ k ↓ 0 be an arbitrary sequence. By the results in Subsection 6.3, there exists a subsequence {ρ ′ k } k∈N such that u x,ρ ′ k → ϕ strongly in H 1 (B + r , |z| a dx) for every r > 0, for some nonlocal stationary cone ϕ ∈ T x (u) satisfying Θ ϕ (0) = Θ u (0) = θ n,s . By Lemma 6.22, there is an open half-space P ⊆ R n , with 0 ∈ ∂P , such that ϕ = (χ Pχ R n \P ) e . Then the conclusion follows from Corollary 6.10.

We are now ready to prove one of the main result of this section: the optimal estimate for the dimension of ∂E u ∩ Ω (here, dim M denotes the Minkowski dimension). Theorem 6.25. We have dim

M (∂E u ∩ Ω ′ ) = n -1 for every open subset Ω ′ ⊆ ∂ 0 G such that Ω ′ ⊆ ∂ 0 G and ∂E u ∩ Ω ′ = ∅.
In addition, dim H Sing j (u) j for each j ∈ {1, . . . , n -2}, and Sing 0 (u) is countable.

We will prove Theorem 6.25 usnig the abstract stratification principle of [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF], originally introduced in [START_REF] Cheeger | Quantitative stratification and the regularity of harmonic maps and minimal currents[END_REF]. To fit the setting of [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF], we first need to introduce some notations.

For a radius r > 0, we set

Ω r := x ∈ R n : B + 2r ((x, 0)) ⊆ G . (6.23) 
In what follows, we fix three constants r 0 > 0, H 0 0, and Λ 0 0 such that

f Ẇ 1,q (∂ 0 G) H 0 , (6.24) 
and

sup Θ u (f, x, ρ) : x ∈ Ω r0 , 0 < ρ r 0 Λ 0 . (6.25)
Note that the supremum above is indeed finite by (6.12), and for 0 < ρ r 0 ,

Θ u (f, x, ρ) 1 r n-2s 0 E(u, G) + c n,q b (diam ∂ 0 G) θq θ q H 0 ∀x ∈ Ω r0 .
Sing j (u) ∩ Ω r0 \ S j r0 (u). Then, x ∈ S j r0,2 -k (u) for every k ∈ N. Hence, for each k ∈ N, there exists a radius r k ∈ (0, r 0 ] such that x ∈ S j r0,r k ,2 -k (u), and therefore a radius ρ k ∈ [r k , r 0 ] such that d j+1 (u, x, ρ k ) < 2 -k . Now we extract a (not relabeled) subsequence such that ρ k → ρ * for some ρ * ∈ [0, r 0 ]. We distinguish the two following cases: Case 1). If ρ * = 0, then we can extract a further subsequence such that (u) x,ρ k → ϕ strongly in H 1 (B + 1 , |z| a dx) for some ϕ ∈ T x (u) (by Lemma 6.11). In addition,

d j+1 (ϕ, 0, 1) = lim k→∞ d j+1 (u x,ρ k , 0, 1) = lim k→∞ d j+1 (u, x, ρ k ) = 0 , so that ϕ ∈ C j+1 (Λ 0 ). Then dim S(ϕ) j + 1 which contradicts x ∈ Sing j (u). Case 2). If ρ * > 0, then d j+1 (u x,ρ * , 0, 1) = lim k→∞ d j+1 (u x,ρ k , 0, 1) = lim k→∞ d j+1 (u, x, ρ k ) = 0 .
Hence there exists ϕ ∈ C j+1 (Λ 0 ) such that u x,ρ * = ϕ on B + 1 . Clearly, it implies that T x (u) = {ϕ}, which contradicts x ∈ Sing j (u) as in Case 1). 6.6. Application to the prescribed nonlocal mean curvature equation. In this subsection, we apply the previous results to a weak solution E ⊆ R n of the prescribed nonlocal 2smean curvature equation (6.1). In order to do so, we may consider an increasing sequence of admissible bounded open sets

{G l } l∈N such that ∂ 0 G l ⊆ Ω, l G l = R n+1
+ , and l ∂ 0 G l = Ω. In view of (6.3)-(6.4), we can apply to the extended function (v E ) e the different results from Subsection 6.1 to Subsection 6.5 to reach the following main conclusions: 

) dim M (∂E ∩ Ω ′ ) n -1 for every open subset Ω ′ such that Ω ′ ⊆ Ω (with equality if if ∂E ∩ Ω ′ is not empty). ( 2 
) There is a subset Σ sing ⊆ ∂E ∩ Ω with dim H Σ sing n -2 (countable if n = 2) such that the following holds: if x 0 ∈ (∂E ∩ Ω) \ Σ sing , then every sequence ρ k ↓ 0 admits a (not relabeled) subsequence such that

• E k := (E -x 0 )/ρ k → P in L 1 loc (R n
) for some half-space P ⊆ R n , 0 ∈ ∂P ; • ∂E k converges locally uniformly to the hyperplane ∂P , i.e., for every compact set K ⊆ R n and every r > 0, ∂E k ∩ K ⊆ T r (∂P ) and ∂P ∩ K ⊆ T r (∂E k ) whenever k is large enough.

Remark 6.31. In the case of minimizing nonlocal minimal surfaces (i.e., solutions of (1.10)), or minimizing solutions of (6.1) for f = 0 (i.e., solutions of (1.19)), the set Σ sing is a closed subset of ∂E ∩ Ω, and (∂E ∩ Ω) \ Σ sing is locally the graph of a C 1,α function (at least), see [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF][START_REF] Caputo | Regularity for non-local almost minimal boundaries and applications[END_REF]. The minimality condition allows one to prove that equation (6.1) holds in a suitable viscosity sense. This is a key point to prove the improvement of flatness of [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]. Combined with property (3) above, it leads to the regularity at points of (∂E∩Ω)\Σ sing . The improvement of flatness property also implies the existence of a constant δ > 0 such that Θ ϕ (0) θ n,s + δ for every minimizing nonlocal cone ϕ such that dim S(ϕ) n -2, and the closeness of Σ sing can be deduced from the upper semicontinuity of the density function Θ. In the stationary case, it remains unclear whether or not an improvement of flatness holds. It is even unclear if this there an energy gap between hyperplanes and other nonlocal stationary cones.

Remark 6.32. In the minimizing case, we have the improved estimate dim H Σ sing n -3 as shown in [START_REF] Savin | Regularity of nonlocal minimal cones in dimension 2[END_REF]. In the stationary case, the estimate dim H Σ sing n -2 is optimal. Indeed, in the plane R 2 , the boundary of the open set E := {x 1 x 2 > 0} is an entire stationary nonlocal minimal surface with Σ sing = {0}.

Our objective for the rest of this subsection is to show that the Minkowski dimension estimate on ∂E ∩ Ω leads to the following higher regularity result. Theorem 6.33. For every s ′ ∈ (0, 1/2) and every open subset Ω ′ ⊆ Ω such that Ω ′ ⊆ Ω,

P 2s ′ (E, Ω ′ ) < ∞ .
The proof of Theorem 6.33 (postponed to this end of the subsection) rests on a general regularity result, which might be of independent interest. Proposition 6.34. Let v ∈ H s (Ω) be such that v ∈ L ∞ loc (Ω) and (-∆) s v ∈ L p loc (Ω) for some exponent p ∈ (1, ∞). Then, for every s ′ ∈ (0, s) and every open subsets

Ω ′ , Ω ′′ of Ω such that Ω ′′ ⊆ Ω ′ and Ω ′ ⊆ Ω, Ω ′′ ×Ω ′′ |v(x) -v(y)| p |x -y| n+2s ′ p dxdy 1/ p C (-∆) s v L p (Ω ′ ) + v L ∞ (Ω ′ ) , (6.31 
)

for some constant C = C(n, s, s ′ , p, Ω ′ , Ω ′′ ) independent of v. Proof. Step 1. We fix a cut-off function ζ ∈ C ∞ c (Ω ′ ; [0, 1]) such that ζ = 1 in Ω ′′ . Define w := ζv, and notice that w ∈ H s 00 (Ω ′ ) ∩ L ∞ (Ω ′ ). In particular, (-∆) s w ∈ H -s (R n ). The objective of this first step is to show that (-∆) s w ∈ L p(R n ) with (-∆) s w L p (R n ) C (-∆) s v L p(Ω ′ ) + v L ∞ (Ω ′ ) (6.32) 
for some constant C independent of v.

We start writing for ϕ

∈ D(R n ), (-∆) s w, ϕ = γ n,s 2 
Ω ′ ×Ω ′ w(x) -w(y) (ϕ(x) -ϕ(y)) |x -y| n+2s dxdy + γ n,s Ω ′ ×(R n \Ω ′ )
w(x)w(y) (ϕ(x)ϕ(y)) |x -y| n+2s dxdy .

Since spt w ⊆ Ω ′ , we have

(-∆) s w, ϕ = γ n,s 2 
Ω ′ ×Ω ′ w(x) -w(y) (ϕ(x) -ϕ(y)) |x -y| n+2s dxdy + R n g 1 ϕ dx , where g 1 (x) := γ n,s χ Ω ′ (x)ζ(x)v(x) R n \Ω ′ dy |x -y| n+2s -γ n,s χ R n \Ω ′ (x) Ω ′ ζ(y)v(y) |x -y| n+2s dy , and g 1 ∈ L p(R n ) ∩ L ∞ (R n ). Now we write w(x) -w(y) ϕ(x) -ϕ(y) = v(x) -v(y) ζ(x)ϕ(x) -ζ(y)ϕ(y) + v(y) ζ(x) -ζ(y) ϕ(x) -v(x) ζ(x) -ζ(y) ϕ(y) to realize that γ n,s 2 
Ω ′ ×Ω ′ w(x) -w(y) (ϕ(x) -ϕ(y)) |x -y| n+2s dxdy = γ n,s 2 
Ω ′ ×Ω ′ v(x) -v(y) (ζ(x)ϕ(x) -ζ(y)ϕ(y)) |x -y| n+2s dxdy + γ n,s Ω ′ ×Ω ′ v(y) ζ(x) -ζ(y) ϕ(x) |x -y| n+2s dxdy .
Consquently,

(-∆) s w, ϕ = γ n,s 2 
Ω ′ ×Ω ′ v(x) -v(y) (ζ(x)ϕ(x) -ζ(y)ϕ(y)) |x -y| n+2s dxdy + R n (g 1 + g 2 )ϕ dx , where g 2 (x) := γ n,s χ Ω ′ (x) Ω ′ v(y) ζ(x) -ζ(y) |x -y| n+2s dy , and 
g 2 ∈ L p(R n ) ∩ L ∞ (R n ). Since ζϕ ∈ D(Ω ′ ), we have (-∆) s w, ϕ = (-∆) s v, ζϕ Ω ′ -γ n,s Ω ′ ×(R n \Ω ′ ) v(x) -v(y) ζ(x)ϕ(x) |x -y| n+2s dxdy + R n (g 1 + g 2 )ϕ dx , so that (-∆) s w, ϕ = (-∆) s v, ζϕ Ω ′ + R n (g 1 + g 2 + g 3 )ϕ dx , where g 3 (x) := -γ n,s ζ(x) R n \Ω ′ v(x) -v(y) |x -y| n+2s dy , and 
g 3 ∈ L p(R n )∩L ∞ (R n ) (recall that spt ζ ⊆ Ω ′ ).
By assumption, there exists

g 4 ∈ L p(Ω ′ ) such that (-∆) s v, ψ Ω ′ = Ω ′ g 4 ψ dx for all ψ ∈ D(Ω ′ ).
Extending g 4 by zero outside Ω ′ , we conclude that

(-∆) s w, ϕ = R n gϕ dx , with g := g 1 +g 2 +g 3 +ζg 4 ∈ L p(R n ). Clearly, g L p(R n ) C (-∆v L p(Ω ′ ) + v L ∞ (Ω ′ )
for some constant C independent of v, and (6.32) is proved.

Step 2. We now claim that (I -∆) s w ∈ L p(R n ) with

(I -∆) s w L p(R n ) C (-∆v L p(Ω ′ ) + v L ∞ (Ω ′ ) , (6.33) 
for some constant C independent of v. Indeed, by [53, proof of Lemma 2, Section 3.2] there exists

Φ s ∈ L 1 (R n ) such that 1 + 4π 2 |ξ| 2 s = 1 + Φ s (ξ) + (2π|ξ|) 2s + (2π|ξ|) 2s Φ s (ξ) ,
where Φ s denotes the Fourier transform of Φ s . Since 1 + 4π 2 |ξ| 2 s is the symbol of (I -∆) s in Fourier space, we infer that

(I -∆) s w = w + Φ s * w + g + Φ s * g ∈ L p(R n ) ,
and (6.33) follows.

Step 3. By Step 2, the function w belongs to the Bessel potential space L p 2s (R n ). According to [58, Section 2.3.5], L p 2s (R n ) coincides with the Triebel-Lizorkin space [START_REF] Triebel | Theory of function spaces[END_REF]). Then we use the continuous embeddings between Triebel-Lizorkin spaces and Besov spaces (recall that s ′ < s) 

F 2s p,2 (R n ) (notice that L p 2s (R n ) is denoted by H 2s p (R n ) in
F 2s p,2 (R n ) ⊆ B 2s p,max( p,2) (R n ) ⊆ B 2s ′ p, p (R n ) , see [ 
W 2s ′ , p (R n ) := w L p(R n ) + R n ×R n |w(x) -w(y)| p |x -y| n+2s ′ p dxdy 1/ p C (-∆) s v L p(Ω ′ ) + v L ∞ (Ω ′ ) ,
for some constant C independent of v. Since w = v on Ω ′′ , this estimate implies (6.31).

We continue with a simple observation (that we already made implicitly during the proof of Theorem 5.1). Lemma 6.35. Let F ⊆ R n be a Borel set such that P 2s (F, Ω) < ∞. Then the function v 

F := χ F -χ R n \F belongs to H s (Ω), and (-∆) s v F ∈ L 1 (Ω) with (-∆) s v F (x) = γ n,s 2 R n |v F (x) -v F (y)| 2 |x -y| n+2s dy v F (x)
-∆) s v E ∈ L 1 (Ω ′ ). We claim that (-∆) s v E (x)| C(Ω ′ , Ω ′′ ) dist(x, ∂E ∩ Ω ′ ) 2s for a.e. x ∈ Ω ′′ \ ∂E , (6.34) 
for some constant C(Ω ′ , Ω ′′ ) independent of E. For x ∈ Ω ′′ \ ∂E, we set

r x := 1 2 min dist(x, ∂E ∩ Ω ′ ), min |z -y| : z ∈ Ω ′′ , y ∈ R n \ Ω ′ .
Since D rx (x) ⊆ Ω ′ \ ∂E, we can deduce from Lemma 6.35 that

(-∆) s v E (x)| 2γ n,s R n \Dr x (x) 1 |x -y| n+2s dy = C n,s (r x ) 2s ,
and (6.34) follows.

Let us now fix an exponent α ∈ (2sp, 1).

Since dim M (∂E ∩ Ω ′ ) n -1, we can find a radius R α ∈ (0, 1) such that L n (T r (∂E ∩ Ω ′ ))
r α for every r ∈ (0, 2R α ). Then, we estimate for an arbitrary integer k 1,

Ω ′′ \T 2 -k Rα (∂E∩Ω ′ ) (-∆) s v E | p dx Ω ′′ \TR α (∂E∩Ω ′ ) (-∆) s v E | p dx + k-1 j=0 Ω ′′ ∩Aj (-∆) s v E | p dx .
where we have set A j := T 2 -j Rα (∂E ∩ Ω ′ ) \ T 2 -(j+1) Rα (∂E ∩ Ω ′ ). Inserting (6.34), we derive

Ω ′′ \T 2 -k Rα (∂E∩Ω ′ ) (-∆) s v E | p dx CR -2sp α   1 + ∞ j=0 1 2 (α-2sp)j   < ∞ .
Letting k → ∞, we can now conclude by dominated convergence.

Proof of Theorem 6. [START_REF] Hutchinson | Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory[END_REF]. Fix two open subsets Ω ′ , Ω ′′ of Ω such that Ω ′′ ⊆ Ω ′ and Ω ′ ⊆ Ω. We choose a number θ > 2 such that max(s, s ′ ) < 1/θ. We set p := 1/(θs) < 1/2s, and s := s ′ /p < s. By Proposition 6.36, (-∆) s v E ∈ L p loc (Ω), and in turn, Proposition 6.34 yields

E∩Ω ′ ×(Ω ′ \E) 1 |x -y| n+2s ′ dxdy = 1 2 p+1 Ω ′ ×Ω ′ |v E (x) -v E (y)| p |x -y| n+2sp dxdy < ∞ .
Then we observe that P 2s ′ (E, Ω ′′ ) E∩Ω ′ ×(Ω ′ \E) 1 |x -y| n+2s ′ dxdy + C , for a constant C depending only Ω ′ and Ω ′′ , n, and s ′ .

VOLUME OF TRANSITION SETS AND IMPROVED ESTIMATES

In this section, we apply the quantitative stratification principle of the previous section in order to improve the convergence results of Theorem 5.1. In few words, we obtain a quantitative volume estimate on the transition set (i.e., where the solution takes values close to zero). This estimate, combined with Lemma 4.11, leads to further estimates on the potential in the case where f ε is uniformly bounded. We stress again that the general framework of [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF] does not apply stricto sensu to Allen-Cahn type equations, and non trivial adjustments need to be made. As before, we start with estimates on the degenerate boundary Allen-Cahn equation. + , ε ∈ (0, 1), and a weak solution

u ε ∈ H 1 (G, |z| a dx) ∩ L ∞ (G) of      div(z a ∇u ε ) = 0 in G , d s ∂ (2s) z u ε = 1 ε 2s W ′ (u ε ) -f ε on ∂ 0 G , (7.1) 
for some given function f ε ∈ C 0,1 (∂ 0 G). We fix constants r 0 > 0, b 1, q ∈ ( n 1+2s , n), H 0 0, and Λ 0 0 such that u ε L ∞ (G) b , (7.2)

ε 2s f ε L ∞ (∂ 0 G) + f ε Ẇ 1,q (∂ 0 G) H 0 , (7.3) 
and sup Θ ε uε (f ε , x, ρ) : x ∈ Ω r0 , 0 < ρ r 0 Λ 0 , (

where the domain Ω r0 is defined in (6.23).

Our aforementioned volume estimate is the following theorem, cornerstone of the section.

Theorem 7.1. For each α ∈ (0, 1), there exist k * = k * (α, r 0 , H 0 , Λ 0 , W, b, n, s, q) > 0 and C = C(α, r 0 , H 0 , Λ 0 , W, diam(∂ 0 G), b, n, s, q) such that

L n T r {|u ε | < 1 -δ W } ∩ Ω r0 Cr α ∀r ∈ (k * ε, r 0 ) , (7.5) 
where δ W ∈ (0, 1/2] is given by (4.12).

The proof of Theorem 7.1 follows in some sense the lines of [29, Theorem 2.2] with a different set of structural assumptions adjusted to our setting. Since the solution u ε is smooth, there is of course no singular set, and no strict analogue to [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]Theorem 2.2]. However, if we don't look at u ε at too small scales, then the transition set {|u ε | < 1δ W } can play the role of singular set. As one may guess, the threshold scale is ε, explaining the restriction on the admissible radii in (7.5). The same threshold appears of course in our "structural assumptions", provided by Lemmas 7.2, 7.3, and 7.4 below.

Next we proceed as in the proof of Lemma 7.2 rescaling variables as ε k := ε k /(5ρ k ), u k := (u k ) x k ,5ρ k , and f k := (5ρ k ) 2s (f k ) x k ,5ρ k . Then, (7.6), (7.7), and (7.8) hold, as well as sup Θ ε k u k ( f k , x, ρ) : x ∈ D 1/5 , 0 < ρ 2/5 Λ 0 . (7.9)

Now our assumptions lead to Θ ε k u k ( f k , 0, 1/5) -Θ ε k u k ( f k , 0, λ k /5) η 1 , and d 0 ( u k , 0, 1/5) δ .

By Theorem 4.1, we can find a (not relabeled) subsequence such that u k → u * strongly in H 1 (B + r , |z| a dx) for every r ∈ (0, 1), and f k ⇀ f * in W 1,q (D 1 ), where the pair (u * , f * ) solves (6.16)-(6.17). Note that, by lower semicontinuity, we have f * Ẇ 1,q (D1) r θq 0 H 0 . In addition, by Theorem 4.1 and Fatou's lemma, we deduce from (7.9) that sup Θ u * (f * , x, ρ) : x ∈ D 1/5 , 0 < ρ 2/5 Λ 0 . (7.10)

By means of Lemma 4.2, we now estimate for 0 < r < 1/5 and k large enough (in such a way that λ k < r),

Θ ε k u k ( f k , 0, 1/5) - 1 r n-2s E ε k ( u k , B + r ) - c n,q b r θq 0 θ q H 0 r θq Θ u k ( f k , 0, 1/5) -Θ u k ( f k , 0, r) η 1 .
Using Theorem 4.1, we can let k → ∞ in this inequality to derive Θ u * (f * , 0, 1/5) -Θ u * (f * , 0, r) Θ u * (f * , 0, 1/5) -1 r n-2s E(u * , B + r ) η 1 + c n,q b r θq 0 θ q H 0 r θq .

Choosing r small enough in such a way that c n,q b r θq 0 θ q H 0 r θq η 1 and r 1 5 λ 1 (δ/2, 2/5, r θq 0 H 0 , Λ 0 , b, n, s, q) , where λ 1 is given Lemma 6.27, we infer from Lemma 6.2 that Θ u * (f * , 0, 1/5) -Θ u * (f * , 0, λ 1 /5) 2 η 1 = η 1 .

Then Lemma 6.27 yields d 0 (u * , 0, 1/5) δ/2. On the other hand, by Remark 2.4, u k → u * in L 1 (D 1/5 ), and thus d 0 (u * , 0, 1/5) = lim k d 0 ( u k , 0, 1/5) δ, contradiction.

Lemma 7.4. For every δ, τ ∈ (0, 1), there exist two constants η 2 (δ, τ, r 0 ) = η 2 (δ, τ, r 0 , H 0 , Λ 0 , W, b, n, s, q) ∈ (0, δ] and k 2 (δ, τ, r 0 ) = k 2 (δ, τ, r 0 , H 0 , Λ 0 , W, b, n, s, q) 1 (independent of u ε and f ε ) such that for every ρ ∈ (0, r 0 /25) and x ∈ Ω r0 , the conditions k 2 ε ρ , d 0 (u ε , x, 4ρ) η 2 and d n (u ε , x, 4ρ) δ , imply the existence of a linear subspace V ⊆ R n , with dim V n -1, for which d 0 (u ε , y, 4ρ) > η 2 ∀y ∈ D ρ (x) \ T τ ρ (x + V ) .

Proof. We choose η 2 (δ, τ, r 0 ) := 1 2 η 3 (δ, τ, 2/5, r θq 0 H 0 , Λ 0 , b, n, s, q) , where η 3 is given by Corollary 6.29. We still argue by contradiction assuming that for some constants δ, τ ∈ (0, 1), there exist sequences {ε k } k∈N ⊆ (0, 1), {(u k , f k )} k∈N satisfying (7.1)-(7.2)-(7.3)-(7.4), points {x k } k∈N ⊆ Ω r0 , and radii {ρ k } k∈N ⊆ (0, r 0 /25) such that ε k /ρ k 2 -k , d 0 (u k , x k , 4ρ k ) η 2 and d n (u k , x k , 4ρ k ) δ , and such that the conclusion of the lemma fails.

Once again, we rescale variables setting ε k := ε k /(25ρ k ), u k := (u k ) x k ,25ρ k , and f k := (25ρ k ) 2s (f k ) x k ,25ρ k , so that (7.6), (7.7), (7.8), and (7.9) hold. Then we reproduce the proof of Lemma 7.3 to find a (not relabeled) subsequence along which ( u k , f k ) converges to some limiting pair (u * , f * ) solving (6.16)-(6.17 Proof of Theorem 7.1. For 0 < r r 0 , we consider the set S ε r0,r := x ∈ Ω r0 : d n (u ε , x, ρ) δ 0 (r 0 ) ∀ r ρ r 0 , where δ 0 (r 0 ) > 0 is given by Lemma 7.2. We fix the exponent α ∈ (0, 1), and we set κ 0 := 1α ∈ (0, 1). We will prove that there exist constants k * = k * (κ 0 , r 0 , H 0 , Λ 0 , W, b, n, s, q) k 0 (r 0 ) and C = C(κ 0 , r 0 , H 0 , Λ 0 , W, b, n, s, q) such that L n T r (S ε r0,r ) Cr 1-κ0 ∀r ∈ (k * ε, r 0 ) , (7.12)

where k 0 (r 0 ) is given by Lemma 7.2. Note that, since k * k 0 (r 0 ), we have

{|u ε | < 1 -δ W } ∩ Ω r0 ⊆ S ε r0,r
∀r ∈ (k * ε, r 0 ) , by Lemma 7.2. In other words, estimates (7.12) implies Theorem 7.1. Now the proof follows closely the arguments in [29, proof of Theorem 2.2] once adjusted to our setting, but for the sake of clarity we partially reproduce it.

We start fixing a number τ = τ (κ 0 , n) ∈ (0, 1) such that τ κ0/2 20 -n . We consider the following constants according to Lemma 7.2, Lemma 7.3, and Lemma 7.4: (i) η 2 := η 2 δ 0 (r 0 ), τ, r 0 and k 2 := k 2 δ 0 (r 0 ), τ, r 0 ; (ii) η 1 := η 1 η 2 , r 0 , λ 1 := λ 1 η 2 , r 0 , and k 1 := k 1 η 2 , r 0 ; (iii) k 3 := max{k 0 (r 0 ), k 1 , k 2 }.

Next we fix an integer q 0 ∈ N such that τ q0 λ 1 , and we set M := ⌊q 0 Λ 0 / η 1 ⌋ (the integer part of). Set p 0 := q 0 + M + 1 and define ε 0 := min 1, r 0 τ p0+1 25k 3 , k * := k 3 τ .

Without loss of generality, we may assume that ε ∈ (0, ε 0 ) (since (7.12) is straightforward for ε ε 0 ). Let k 4 = k 4 (ε) be defined by the relation r 0 τ k4| log ε| = 25k 3 ε, and set p 1 = p 1 (ε) := ⌊k 4 | log ε|⌋ (the integer part of). Note that our choice of ε 0 and k * insures that p 1 p 0 + 1 and k 3 ε r0τ p 1 25 k * ε.

Step 1. Reduction to τ -adic radii. We argue exactly as in [29, Proof of Theorem 2.2, Step 1] to show that it suffices to prove (7.12) for each radius r of the form r = r0τ k 25 for an integer k satisfying p 0 k p 1 .

Step 2. Selection of good scales. We fix an integer k with p 0 k p 1 and set r = r0τ k 25 . For an arbitrary x ∈ Ω r0 , we have

k l=q0 Θ ε uε (f ε , x, 4r 0 τ l ) -Θ ε uε (f ε , x, 4r 0 τ l+q0 ) = k l=q0 l+q0-1 i=l Θ ε uε (f ε , x, 4r 0 τ i ) -Θ ε uε (f ε , x, 4r 0 τ i+1 ) q 0 k+q0-1 l=q0
Θ ε uε (f ε , x, 4r 0 τ l ) -Θ ε uε (f ε , x, 4r 0 τ l+1 ) , and thus k l=q0 Θ ε uε (f ε , x, 4r 0 τ l ) -Θ ε uε (f ε , x, 4r 0 τ l+q0 ) q 0 Θ ε uε (f ε , x, 4r 0 τ q0 ) q 0 Λ 0 .

Hence there exists a (possibly empty) subset A(x) ⊆ {q 0 , . . . , k} with Card(A(x)) M such that for every l ∈ {q 0 , . . . , k} \ A(x), Θ ε uε (f ε , x, 4r 0 τ l ) -Θ ε uε (f ε , x, 4r 0 τ l+q0 ) η 1 . (7.13)

Next define A := {A ⊆ {q 0 , . . . , k} : Card(A) = M }, and set for A ∈ A, S A := x ∈ S ε r0,r : (7.13) holds for each l ∈ {q 0 , . . . , k} \ A .

By our previous discussion, we have S ε r0,r ⊆ A∈A S A . In the next step, we shall prove that for any A ∈ A, L n T r (S A ) Cr 1-κ0/2 . (7.14)

Since Card(A) k M C| log r| M , the conclusion follows from this estimate, i.e.,

L n T r (S ε r0,r ) A∈A L n T r (S A ) C| log r| M r 1-κ0/2 Cr 1-κ0 , for some constants C = C(κ 0 , r 0 , H 0 , Λ 0 , W, diam(∂ 0 G), b, n, s, q).

Step 3. Proof of (7.14). Again we follow [29, Proof of Theorem 2.2, Step 3]. We first consider a finite cover of T r0τ q 0 /25 (S A ) made of discs {D r0τ q 0 (x i,q0 )} i∈Iq 0 with x i,q0 ∈ S A , and Card(I q0 ) 5 n τ -nq0 r -n 0 (diam(∂ 0 G) + 1) n . We argue now by iteration on the integer j ∈ {q 0 + 1, . . . , k}, assuming that we already have a cover {D r0τ j-1 (x i,j-1 )} i∈Ij-1 of T r0τ j-1 /25 (S A ) such that x i,j-1 ∈ A. We select the next cover {D r0τ j (x i,j )} i∈Ij (still centered at points of S A ) of T r0τ j /25 (S A ) according to the following two cases: j -1 ∈ A or j -1 ∈ A. Proof. The proof departs from the end of the proof of Theorem 5.1. We apply the results of Subsection 7.1 to the extended function v e k . Then items (ii) and (iii) are straightforward consequences of Corollaries 7.5 and 7.6 (together with item (iii) in Theorem 5.1).

Let us now fix an open subset Ω ′′ ⊆ Ω ′ with Lipschitz boundary such that Ω ′′ ⊆ Ω ′ . Since s ′ < 2s, we can find a number θ > max(2, 1/2s) such that max(s, s ′ ) < 1/θ. We set p := 1/(θs) < min(1/2s, 2), and s := s ′ /p < s. Since {f k } k∈N is assumed to be bounded in L ∞ (Ω), we infer from item (iii) that {(-∆) s v k } k∈N remains bounded in L p(Ω ′ ). On the other hand, we already proved that {v k } k∈N remains bounded in L ∞ (R n ). Hence Proposition 6.34 shows that

Ω ′′ ×Ω ′′ |v k (x) -v k (y)| 2 |x -y| n+2s ′ dxdy 2 2-p v k 2- p L ∞ (R n ) Ω ′′ ×Ω ′′ |v k (x) -v k (y)| p |x -y| n+2sp dxdy C ,
for some constant C independent of k. The sequence {v k } k∈N is thus bounded in H s ′ (Ω ′′ ).

Finally, for an arbitrary s ′′ ∈ (0, s ′ ), the embedding H s ′′ (Ω ′′ ) ⊆ H s ′ (Ω ′ ) is compact, and consequently {v k } k∈N is strongly relatively compact in H s ′′ (Ω ′′ ) which proves (i).
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  x)v(y) (ϕ(x)ϕ(y) |x -y| n+2s dxdy + γ n,s Ω×(R n \Ω) v(x)v(y) ϕ(x) |x -y| n+2s dxdy . (1.6)This formula defines indeed a distribution onΩ whenever v ∈ L 2 loc (R n ) satisfies E(v, Ω) := γ n,s 4 Ω×Ω |v(x)v(y)| 2 |x -y| n+2s dxdy + γ n,s2Ω×(R n \Ω) |v(x)v(y)| 2 |x -y| n+2s dxdy < ∞ . (1.7)

P

  2s (E, Ω) := E∩Ω E c ∩Ω dxdy |x -y| n+2s + E∩Ω E c \Ω dxdy |x -y| n+2s + E\Ω E c ∩Ω dxdy |x -y| n+2s .

  δP 2s (E * , Ω)[X] := d dt P 2s φ t (E * ), Ω

  . The symmetrized function u(x, z) := u(x, |z|) then belongs to H 1 ( G, |z| a dx), and has compact support in G. By classical (convolution) arguments, we can find a sequence { u k } k∈N of smooth functions with compact support in G converging to u in the H 1 ( G, |z| a dx)-norm sense. Then we obtain the required sequence {u k } k∈N by considering the restriction of u k to G ∪ ∂ 0 G.

  g. [25, Theorem 3, p.154]). Setting u k := (1ζ k )u, we observe that u k has compact support in G ∪ Ω, and

Remark 2 . 15 .

 215 For an admissible bounded open set G ⊆ R n+1 + and u ∈ H 1 (G, |z| a dx), we can define the first inner variation up to the boundary

Corollary 3 . 5 .

 35 Let G ⊆ R n+1 + be an admissible bounded open set, and

3. 3 .

 3 Regularity and Maximum Principle for the fractional equation. By estimate (2.11), a bounded weak solution of the fractional equation (3.1) yields a bounded weak solution of (3.6) after extension. Hence Theorem 3.3 and Remark 3.4 provide the following interior regularity for bounded weak solutions of the fractional equation.

Corollary

  

Theorem 4 . 1 .

 41 Let G ⊆ R n+1 + be an admissible bounded open set, and

Remark 4 . 5 .

 45 By Theorem 3.3, u ε is continuous up to D R . Hence the conclusion of Lemma 4.4 implies that either |u ε -1| δ on D R/2 , or |u ε + 1| δ on D R/2 .

4. 3 .

 3 Proof of Theorem 4.1. We are now ready to give the proof of Theorem 4.1.

  and choose a sequence rm ↓ 0 such that µ(∂Br m (x)) = 0. By (4.23), we have lim sup j Θ n-2s (µ, x j ) ω -1 n-2s r n-2s m µ(Br m (x)) + Cr θq m , and the conclusion follows letting rm → 0.

  for every l ∈ N, still by Step 1. Therefore, we can find a further subsequence such that the conclusions of Theorem 4.1 hold in every G l , and v e * is the limiting function in each G l by Step 1. In particular, v e k → v e * strongly in H 1 loc (R n+1 + ∪ Ω, |z| a dx). For each l ∈ N, denote by E l the limiting open subset of ∂ 0 G l provided by Theorem 4.1, and observe that E l = E l+1 ∩ ∂ 0 G l for every l ∈ N (see the proof of Theorem 4.1, Step 2). Then we define E

( 1 )

 1 The set E ∩ Ω is essentially open. More precisely, L n (E ∩ Ω)△E (vE ) e = 0 where E (vE ) e ⊆ Ω is the open set provided by Corollary 6.5. From now on, we will identify the set E ∩ Ω with E (vE ) e . (

7. 1 .

 1 Quantitative estimates for the Allen-Cahn boundary equation. In this subsection, we are considering a bounded admissible open set G ⊆ R n+1

  ), and satisfying (7.7)-(7.8)-(7.10). In particular, u k → u * strongly in L 1 (D 1/5 ). As a consequence, d 0 (u * , 0, 4/25) η 2 and d n (u * , 0, 4/25) δ .By Corollary 6.29, there exists a linear subspace V ⊆ R n , with dim V n -1, such thatd 0 (u * , y, 4/25) > η 3 ∀y ∈ D 1/25 \ T τ /25 (V ) . (7.11)Since the conclusion of the lemma does not hold, we can find for each integer k a pointy k ∈ D 1/25 \ T τ /25 (V ) such that d 0 ( u k , y k , 4/25) η 2 .Then extract a further subsequence such that y k → y * for some y * ∈ D 1/25 \ T τ /25 (V ). Noticing that(u * ) y * ,1 -( u k ) y k ,1 L 1 (D 4/25 ) (u * ) y * ,1 -(u * ) y k ,1 L 1 (D 4/25 ) + u *u k L 1 (D 1/5 ) , by continuity of translations in L 1 , we have (u * ) y * ,1 -( u k ) y k ,1 L 1 (D 4/25 ) → 0. Consequently,d 0 (u * , y * , 4/25) = d 0 (u * ) y * ,1 , 0, 4/25 = lim k→∞ d 0 ( u k ) y k ,1 , 0, 4/25) = lim k→∞ d 0 ( u k , y k , 4/25) , and thus d 0 (u * , y * , 4/25) η 2 . However (7.11) yields d 0 (u * , y * , 4/25) η 3 = 2 η 2 , contradiction.

(

  ii) Ω ′ W (v k ) dx = O ε min(4s,α) kfor every α ∈ (0, 1);(iii) f k (x) -1 ε 2s k W (v k (x)) ⇀ γ n,s 2 R n |v * (x)v * (y)| 2 |x -y| n+2s dy v * (x) weakly in L p(Ω ′ )for every p < 1/2s.

  then there exist a (not relabeled) subsequence and a set E

* ⊆ R n of finite 2s-perimeter in Ω such that (i) v k → v * := χ E * -χ R n \E * strongly in H s ′ loc (Ω)∩L 2 loc (R n ) for every s ′ < min(

2s, 1/2); (ii) the set E * ∩ Ω is open; (iii) the boundary ∂E * ∩ Ω is a stationary nonlocal 2s-minimal surface in Ω (i.e., relation (1.11) holds).

  2 H s (Ω) . The space H s loc (Ω) denotes the class of functions whose restriction to any relatively compact open subset Ω ′ of Ω belongs to H s (Ω ′ ). The linear subspace H s 00(Ω) ⊆ H s (R n ) is defined by H s 00 (Ω) := v ∈ H s (R n ) : v = 0 a.e. in R n \ Ω .Endowed with the induced norm, H s 00 (Ω) is also an Hilbert space, and for v ∈ H s 00

  H 1 (G, |z| a dx) with compact support in G ∪ ∂ 0 G can be approximated in the H 1 (G, |z| a dx)-norm sense by a sequence {u k } k∈N of smooth functions compactly supported in G ∪ ∂ 0 G. To construct such a sequence, one can proceed as follows. First notice that the set G

	1 ), which is in contraction with our normalization choice that u k → 0 strongly in W 1,1 (B + u k L 1 (B + 1 ) = 1.
	+ Remark 2.6 (Smooth approximation). If G ⊆ R n+1 function u ∈	is an admissible bounded open set, any
	1,1 (B + 1 ) ֒→ L 1 (B + 1 ) and the condition [u k ] 1 = 0, we deduce

  1. By Remarks 2.2 & 2.11, v e ε ∈ H 1 loc (R n+1 + , |z| a dx) and v e ε weakly solves (3.6) with

  and we obtain ∂(2s) 

	z	m ε (x 0 )	0 from (3.12). On the
	other hand, the strong maximum maximum principle of [26, Corollary 2.3.10] implies that

  ). In addition, u * solves div(|z| a ∇u

* ) = 0 in the ball B 1 (in the weak sense), i.e., B1 |z| a ∇u * • ∇φ dx = 0 for all φ ∈ H 1 (B 1 , |z| a dx) compactly supported in B 1 . Standard elliptic regularity yields u * ∈ C ∞ (B 1 \ D 1 ), and for every compact set K ⊆ B 1 \ D 1 , ∇u * L ∞ (K) only depends on n, s, K, and u * L ∞ (B + 1 )

  Extracting another subsequence if necessary, we can assume without loss of generality that |u k -1| δ W on the disc D R/2 . Then Corollary 4.7 yields u * = 1 on D R/2 , u k → u * strongly in H 1 (B + 3R/8 , |z| a dx), and

	1 ε 2s k	D 3R/8	W (u k ) dx → 0 .	(4.18)

T for k sufficiently large, Lemma 4.4 shows that |u k | -1 δ W on D R/2 for such k's.

  ∞) .By Marstrand's Theorem (see e.g.[START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF] Theorem 14.10]), it implies that (n -2s) is an integer, which is an obvious contradiction. Hence µ sing ≡ 0.Note that (4.28) now yields H n-2s (Σ) = 0. Moreover, we infer from (4.20) that for every admissible open set

  then there exist a (not relabeled) subsequence and a Borel setE * ⊆ R n of finite 2s-perimeter in Ω such that v k → v * := χ E *χ R n \E * strongly in H s loc (Ω) and L 2 loc (R n ).Moreover, E

* ∩ Ω is an open set, and

  and thus y ∈ S(ϕ). From (6.[START_REF] Cheeger | Quantitative stratification and the regularity of harmonic maps and minimal currents[END_REF]) it now follows that S(ϕ) is a linear subspace of R n . Remark 6.19. If ϕ is a non constant nonlocal stationary cone, then Θ ϕ (0) > 0 by Lemma 6.4. In turn, we infer from Corollary 6.5 that S(ϕ) ⊆ ∂C ϕ . Remark 6.20. If ϕ is a nonlocal stationary cone such that dim S(ϕ) = n, then either C ϕ = R n or C ϕ = ∅, i.e., either ϕ = 1 or ϕ = -1, respectively. As a consequence, if ϕ ∈ T x0 (u)

  ) and its extension to R n+1 + , ϕ ref := (χ P1χ R n \P1 ) e . Then we set Lemma 6.22. If ϕ is a non constant nonlocal stationary cone, then Θ ϕ (0) θ n,s . In addition, equality holds if and only if C ϕ is an open half-space.

	θ n,s :=	d s 2 B + 1	z a |∇ϕ ref | 2 dx .	(6.21)

  for a.e. x ∈ Ω . Back to our original set E, we combine Lemma 6.35 with the estimate on the Minkowski dimension to obtain Proposition 6.36. We have (-∆) s v E ∈ L p

	Proof. Argue as in (5.10)-(5.11).

loc (Ω) for every p < 1/2s.

Proof. Let us fix two open subsets Ω ′ , Ω ′′ of Ω such that Ω ′′ ⊆ Ω ′ and Ω ′ ⊆ Ω. By Lemma 6.35, we have (

for every vector field X = (X, X n+1 ) ∈ C 1 (B + 1 , R n+1 ) compactly supported in B + 1 ∪ D 1 such that X n+1 = 0 on D 1 . If Θ ϕ (f, 0, 1) = Θ ϕ (0), then ϕ is 0-homogeneous and f = 0.

Proof. As in the proof Lemma 6.13, Corollary 6.3 applied at x 0 = 0 leads to the homogeneity of ϕ. In turn, the homogeneity of ϕ implies that T 0 (ϕ) = {ϕ}, and the conclusion follows from Lemma 6.11. Definition 6. [START_REF] Cabr É | SOL À-MORALES : Layer solutions in a halfspace for boundary reactions[END_REF]. We say that a function ϕ ∈ L 1 loc (R n+1 + ) is a nonlocal stationary cone if ϕ is 0-homogeneous, ϕ ∈ H 1 (B + 1 , |z| a dx) ∩ L ∞ (B + 1 ), and ϕ satisfies (6.14)-(6.15) (for some constant b 1).

Summing up the results of the previous subsection, tangent maps to a solution of (6.5)- (6.6) are thus nonlocal stationary cones. We shall present in details the main properties of those "cones". We start with the following lemma explaining somehow the terminology. Lemma 6. [START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF]. If ϕ is a nonlocal stationary cone, then there is an open cone

as defined in (2.9). In particular, |ϕ| 1 in R n+1 + .

Proof. By Corollary 6.5, there is an open set C ϕ ⊆ R n such that ϕ = χ Cϕχ R n \Cϕ a.e. on R n . Since ϕ is 0-homogeneous, we easily infer that C ϕ is an open cone. We set

Since w is 0-homogeneous, w ∈ H

) , and w satisfies div(z a ∇w) = 0 in R n+1 + , w = 0 on ∂R n+1

+ .

Note that, as in the proof of Lemma 4.8, w and z a ∂ z w are Hölder continuous up to ∂R n+1 + , and smooth in R n+1 + by elliptic regularity. Since w is bounded, the Liouville type theorem in [START_REF] Cabr É | Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates[END_REF]Corollary 3.5] tells us that w ≡ 0. Remark 6.17. If ϕ is a nonlocal stationary cone, then Θ ϕ (λy) = Θ ϕ (y) for every y ∈ R n \ {0} and λ > 0. Indeed, by homogeneity of ϕ we have for each ρ > 0, Θ ϕ (0, λy, ρ) = Θ ϕ (0, y, ρ/λ) , and the assertion follows letting ρ → 0. Lemma 6.18. Let ϕ be a nonlocal stationary cone. Then,

In addition, the set

is a linear subspace of R n , and ϕ(x + y) = ϕ(x) for every y ∈ S(ϕ) × {0} and x ∈ R n+1 + .

Proof. By Corollary 6.3, we have for every y = (y, 0) ∈ ∂R n+1

+ and every ρ > 0,

On the other hand, by homogeneity of ϕ,

For each j ∈ {0, . . . , n}, ρ ∈ (0, r 0 ), x 0 ∈ Ω r0 and x 0 = (x 0 , 0), we now introduce the function d j (•, x 0 , ρ) :

, where v x0,ρ (x) := v(x 0 + ρx). Note that the infimum above is well defined by Remark 2.4, and it is always achieved by Lemma 6.23. Moreover,

. Observe that each functional d j (•, x 0 , ρ) is a (rescaled) L 1 -distance function, and consequently they are ρ -n -Lipschitz functions with respect to the L 1 (B + ρ (x 0 ))-norm. In particular, each functional d j (•, x 0 , ρ) is continuous with respect to strong convergence in L 1 (B + ρ (x 0 )). In the terminology of [29, Section 2.1], the functions Θ u (f, •, ρ) and d j (u, •, •) will play the roles of density function and control functions, respectively (thanks to Lemma 6.2). We need to show that they satisfy the structural assumptions of [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]Section 2.2]. This is the purpose of the following lemmas. Lemma 6.26. There exists a constant δ 0 (r 0 ) = δ 0 (r 0 , H 0 , Λ 0 , b, n, s, q) ∈ (0, 1) (independent of u and f ) such that for every for every x ∈ Ω r0 and ρ ∈ (0, r 0 ),

Proof. Assume by contradiction that there exist sequences of functions {(u k , f k )} k∈N solving (6.5)-(6.6) and satisfying (6.24)-(6.25), points {x k } k∈N ⊆ Ω r0 , and radii {ρ k } k∈N ⊆ (0, r 0 )

We continue with a general first step that we shall use again in the sequel.

Step 1, general compactness. We consider the rescaled maps u k := (u k ) x k ,ρ k and f k := ρ 2s k (f k ) x k ,ρ k as defined in (6.10). By our choice of Λ 0 , a simple change of variables yields Θ u k ( f k , 0, 1) Λ 0 and f k Ẇ 1,q (D1) r θq 0 H 0 . By Theorem 6.7, we can find a (not relabeled) subsequence such that u k → u * weakly in H 1 (B + 1 , |z| a dx) and strongly in H 1 (B + r , |z| a dx) for every 0 < r < 1, and f k ⇀ f * weakly in W 1,q (D 1 ), where (u * , f * ) satisfies (6.16)-(6.17). By Remark 2.4, u k → u * strongly in L 1 (B + 1 ), so that d j ( u k , 0, 1) → d j (u * , 0, 1) for each j ∈ {0, . . . , n} .

In addition, by lower semicontinuity of E(•, B + 1 ) and Fatou's lemma, we have

Step 2, conclusion. Since d n ( u k , 0, 1) 2 -k , we have d n (u * , 0, 1) = 0. In other words, either u * = 1 or u * = -1, and consequently Θ u * (0) = 0. On the other hand, by Corollary 6.5,

Then Lemma 6.9 yields Θ u * (0) lim sup k Θ u k (0) > 0, which contradicts Θ u * (0) = 0. Lemma 6.27. For every δ > 0, there exist constants

(independent of u and f ) such that for every x ∈ Ω r0 and ρ ∈ (0, r 0 ),

Proof. Assume by contradiction that for some δ > 0, there exist sequences of functions {(u k , f k )} k∈N solving (6.5)-(6.6) and satisfying (6.24)-(6.25), points {x k } k∈N ⊆ Ω r0 , and radii {ρ k } k∈N ⊆ (0, r 0 ) such that

where λ k → 0 as k → ∞. We consider the rescaled maps

x k ,ρ k as defined in (6.10), so that

Then we apply Step 1 in the proof of Lemma 6.26 to find a (not relabeled) sequence along which u k and f k converge to u * and f * , respectively. As consequence of the established convergences, we first deduce that d 0 (u * , 0, 1) δ.

On the other hand, by Lemma 6.2 we can estimate for 0 < r < 1 and k large enough (in such a way that λ k < r),

Using (6.26) and the strong convergence of

Letting r → 0, we infer from Corollary 6.3 that Θ u * (f * , 0, 1) = Θ u * (0). By Lemma 6.14, f * = 0 and u * is a nonlocal stationary cone. Moreover, (6.26) yields the estimate Θ u * (0) Λ 0 , so that u * ∈ C 0 (Λ 0 ). Hence d 0 (u * , 0, 1) = 0, which contradicts the previous estimate d 0 (u * , 0, 1) δ.

Lemma 6.28. For every δ, τ ∈ (0, 1), there exists a constant

(independent of u and f ) such that the following holds for every ρ ∈ (0, r 0 /5) and x ∈ Ω r0 . If

hold for some j ∈ {0, . . . , n -1}, then there exists a j-dimensional linear subspace V ⊆ R n for which

Proof. The proof is again by contradiction. Assume that for some δ, τ ∈ (0, 1) and some j ∈ {0, . . . , n -1}, there exist sequences of functions {(u k , f k )} k∈N solving (6.5)-(6.6) and satisfying (6.24)-(6.25), points {x k } k∈N ⊆ Ω r0 , and radii {ρ k } k∈N ⊆ (0, r 0 /5) such that

and such that the conclusion of the lemma does not hold. Now we consider the rescaled functions

Step 1. For each k, we select

2 -k (which is possible by Lemma 6.23). Since

we infer that dim S(ϕ k ) = j for k large enough. Extracting a (not relabeled) subsequence and rotating coordinates if necessary, we may assume that S(ϕ k ) = V for some fixed linear subspace V of dimension j. Then, by Lemma 6.23 we can find a further (not relabeled) subsequence such that ϕ k → ϕ strongly in H 1 (B + r , |z| a dx) for every r > 0 and some ϕ ∈ C j (Λ 0 ). In particular,

On the other hand, by Lemma 6.9,

Therefore, V ⊆ S(ϕ) by Lemma 6.18. But letting k → ∞ in (6.27), we deduce that d j+1 (ϕ, 0, 1) δ, and thus S(ϕ) = V . Since the conclusion of the lemma does not hold, for each k we can find a point

Step 2. Consider the translated function u k := ( u k ) y k ,1 , and select

By Lemma 6.23 and Remark 2.4, we can find a further (not relabeled) subsequence such that ψ k → ψ strongly in L 1 (B + 1 ) for some ψ ∈ C 0 (Λ 0 ). Then u k → ψ strongly in L 1 (B + 1 ). Now we extract a further (not relabeled) subsequence such that y k → y * for some

. By continuity of translations in L 1 , and since u k → ϕ, we infer that

In other words, ψ = ϕ y * ,1 on B + 3/4 . As a consequence, setting y * := (y * , 0), for every x ∈ B + 1/2 and t ∈ (0, 1),

Differentiating first this identity with respect to t, and then letting t → 0, we discover that 0 = (y *x) • ∇ϕ(x) = y * • ∇ϕ(x) for every x ∈ B + 1/2 . By homogeneity of ϕ, it implies that y * • ∇ϕ(x) = 0 for every x ∈ R n+1 + . Arguing as in the proof of Lemma 6.18, we deduce that y * ∈ S(ϕ) = V , which contradicts the fact that y * ∈ D 1/4 \ T τ /4 (V ).

We finally prove the following corollary whose importance will be revealed in Section 7. Corollary 6.29. For every δ, τ ∈ (0, 1), there exists a constant η 3 (δ, τ, r 0 ) = η 3 (δ, τ, r 0 , H 0 , Λ 0 , b, n, s, q) ∈ (0, δ] (independent of u and f ) such that for every ρ ∈ (0, r 0 /5] and x ∈ Ω r0 , the conditions d 0 (u, x, 4ρ) η 3 and d n (u, x, 4ρ) δ , imply the existence of a linear subspace V ⊆ R n , with dim V n -1, for which

Proof. We argue by induction on the dimension j ∈ {1, . . . , n} assuming that there exists a constant η * ,j (δ, τ, r 0 ) ∈ (0, δ] such that for every ρ ∈ (0, r 0 /5] and x ∈ Ω r0 , the conditions d 0 (u, x, 4ρ) η * ,j and d j (u, x, 4ρ) δ , imply the existence of a linear subspace V , with dim V j -1, for which

By Lemma 6.28 this property holds for j = 1 with η * ,1 (δ, τ ) = η 2 (δ, τ ). Now we assume that the property holds at step j, and we prove that it also holds at step j + 1. To this purpose, we choose η * ,j+1 (δ, τ, r 0 ) := η * ,j η * ,j (δ, τ, r 0 ), τ, r 0 ∈ 0, η * ,j (δ, τ ) ⊆ (0, δ] .

Then we distinguish two cases. Case 1). If d j (u, x, 4ρ) η * ,j , then d j (u, x, 4ρ) η 2 and we can apply Lemma 6.28 to find the required linear subspace V of dimension j = (j + 1) -1. Case 2). If d j (u, x, 4ρ) > η * ,j , then we apply the induction hypothesis to find the required linear subspace V of dimension less than j -1.

Now the conclusion follows for η 3 (δ, τ, r 0 ) := η * ,n (δ, τ, r 0 ).

We now introduce the so-called singular strata of u. For δ ∈ (0, 1), 0 < r r 0 , and j ∈ {0, . . . , n -1}, we set S j r0,r,δ (u) := x ∈ Ω r0 : Θ u (x) > 0 and d j+1 (u, x, ρ) δ for all r ρ r 0 , S j r0,δ (u) := 0<r r0

S j r0,r,δ (u) and S j r0 (u) := 0<δ<1 S j r0,δ (u) .

According to [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF], we have the following result.

Theorem 6.30. For every κ 0 ∈ (0, 1), there exists a constant

In addition, dim H S j r0 (u) j for each j ∈ {1, . . . , n -2}, and S 0 r0 (u) is countable.

Proof. By Lemma 6.27 and Lemma 6.28, the functions Θ u (f, •, •) and d j (u, •, •) satisfy the assumptions in [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]Section 2.2]. Then the dimension estimate on S j r0 (u) for each j ∈ {1, . . . , n -2}, and the fact that S 0 r0 (u) is countable, follow from [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]Theorem 2.3]. According to Lemma 6.26, S n-1 r0,δ (u) = S n-1 r0,δ0(r0) (u) for every δ ∈ (0, δ 0 (r 0 )]. Since the sets S n-1 r0,δ (u) are decreasing with respect to δ, we deduce that S n-1 r0 (u) = S n-1 r0,δ0(r0) (u). Then, estimate (6.28) follows from [START_REF] Focardi | Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result[END_REF]Theorem 2.2].

Proof of Theorem 6.25. We choose r 0 > 0 in such a way that Ω ′ ⊆ Ω r0 . By Corollary 6.5 and Lemma 6.26, we have ∂E u ∩ Ω ′ ⊆ S n-1 r0 (u). According to estimate (6.28), for every α ∈ (0, 1) there exists a constant C = C(α, r 0 ) such that

Cr α ∀r ∈ (0, r 0 ) . (6.29)

Hence,

and we obtain that the upper Minkowski dimension dim M (∂E u ∩ Ω ′ ) is less than n -1. On the other hand, since

To complete the proof, we show that Sing j (u) ∩ Ω r0 ⊆ S j r0 (u) for each j ∈ {0, . . . , n -2} , (6.30) so that the conclusion follows from Theorem 6.30 (letting r 0 → 0 along a decreasing sequence). To prove (6.30), we argue by contradiction assuming that there exists a point x ∈ Lemma 7.2. There exist constants δ 0 (r 0 ) = δ 0 (r 0 , H 0 , Λ 0 , W, b, n, s, q) ∈ (0, 1) and k 0 (r 0 ) = k 0 (r 0 , H 0 , Λ 0 , W, b, n, s, q) 1 (independent of ε, u ε , and f ε ) that for every x ∈ Ω r0 and ρ ∈ (0, r 0 ),

Proof. Assume by contradiction that there exist sequences (6.10). Rescaling variables, we derive that

and

as well as

By Theorem 4.1, we can find a (not relabeled) subsequence such that u k → u * weakly in H 1 (B + 1 , |z| a dx) and strongly in H 1 (B + r , |z| a dx) for every r ∈ (0, 1). Then u k → u * strongly in L 1 (D r ) for every r ∈ (0, 1) by Remark 2.4. On the other hand, d n ( u k , 0, 1) = d n (u k , x k , ρ k ) → 0, so that either u * = 1 or u * = -1 on D 1 . Without loss of generality, we may assume that u * = 1 on D 1 . Then Theorem 4.1 tells us that u k → 1 uniformly on D r for every r ∈ (0, 1). In particular u k (0) → 1 which contradicts our assumption

Lemma 7.3. For every δ > 0, there exist constants η 1 (δ, r 0 ) = η 1 (δ, r 0 , H 0 , Λ 0 , W, b, n, s, q) ∈ (0, 1/4) , λ 1 (δ, r 0 ) = λ 1 (δ, r 0 , H 0 , Λ 0 , W, b, n, s, q) ∈ (0, 1/4) , and k 1 (δ, r 0 ) = k 1 (δ, r 0 , H 0 , Λ 0 , W, b, n, s, q) 1 (independent of u ε and f ε ) such that for every ρ ∈ (0, r 0 /5) and x ∈ Ω r0 ,

Proof. We choose

where η 1 is given by Lemma 6.27. Then we argue again by contradiction assuming that for some constant δ > 0, there exist sequences {ε k } k∈N ⊆ (0, 1), {(u k , f k )} k∈N satisfying (7.1)-(7.2)-( 7.3)-(7.4), points {x k } k∈N ⊆ Ω r0 , radii {ρ k } k∈N ⊆ (0, r 0 /5), and

Case 1) If j -1 ∈ A, then we proceed exactly as in [29, Proof of Theorem 2.2, Step 3, Case (a)] to produce the new cover {D r0τ j (x i,j )} i∈Ij in such a way that Card(I j ) 20 n Card(I j-1 )τ -n .

Case 2) If j -1 ∈ A, then (7.13) holds with l = j -1. By our choice of q 0 and Lemma 4.2, we infer that

) η 1 ∀x ∈ S A . Then Lemma 7.3 yields d 0 (u ε , x, 4r 0 τ j-1 ) η 2 for every x ∈ S A . On the other hand, by the definition of S A we have d n (u ε , x, 4r 0 τ j-1 ) δ 0 for every x ∈ S A . Applying Lemma 7.4 at each point x i,j-1 , we infer that for each i ∈ I j-1 , there is a linear subspace V i , with dim V i n -1, such that S A ∩ D r0τ j-1 (x i,j-1 ) ⊆ T r0τ j (x i,j-1 + V i ). From this inclusion, we estimate for each i ∈ I j-1 ,

By the covering lemma in [29, Lemma 3.2]), we can find a cover of T r0τ j /25 (S A ) by discs {D r0τ j (x i,j )} i∈Ij centered on S A such that 1) .

The iteration procedure stops at j = k, and it yields a cover

Collecting the estimates from Case 1 and Case 2 (and using Card A = M ), we derive

where C depends on the announced parameters (recall that τ κ0/2 20 -n ). Consequently,

and the proof is complete.

Corollary 7.5. For every α ∈ (0, 1),

Proof. Without loss of generality, we may assume that α = 4s. We use the notation of the proof of Theorem 7.1, and we assume (without loss of generality) that ε ∈ (0, ε 0 ). Let us set

Hence, by Theorem 7.1, we have

where the constant C may depend on the announced parameters. In particular,

On the other hand, by Lemma 4.11, we have

W (u ε ) dx + Tρ p 1 (ε)-1 (Vε∩Ω r 0 )∩Ω 2r 0 W (u ε ) dx

We may now estimate by (7.15), (7.16), and (7.17 τ k(α-4s) Cτ p1(ε)(α-4s) Cε α-4s .

Inserting this estimate in (7.18) still yields the announced result.

Corollary 7.6. For every p < 1/2s, W ′ (u ε ) L p(Ω 2r 0 ) Cε 2s , for some constant C = C(p, r 0 , f ε L ∞ (∂ 0 G) , H 0 , Λ 0 , W, b, n, s, q).

Proof. We proceed as in the proof Corollary 7.5, using α ∈ (2sp, 1). Keeping the same notations, we first derive as in (7.16), W ′ (u ε ) p dx , we estimate by means of (7.15), (7.19), and (7.20),

and the proof is complete.