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Abstract—This paper proposes a new steganographic scheme relying
on the principle of “cover-source switching”, the key idea being that the
embedding should switch from one cover-source to another. The proposed
implementation, called Natural Steganography considers the sensor noise
naturally present in the raw images and uses the principle that, by the
addition of a specific noise the steganographic embedding tries to mimic
a change of ISO sensitivity. The embedding methodology consists in 1)
designing the stego-signal that enable to switch from one source to another
the raw domain, 2) computing the statistical distribution of the stego-
signal in the processed domain, 3) embedding the payload in the processed
domain. We show that this methodology is easily tractable whenever
the processes are known and enables to embed large and undetectable
payloads.

I. INTRODUCTION

Image steganography consists in embedding an undetectable mes-
sage into a cover image to generate a stego image, the application
being the transmission of sensitive information. As Cachin proposed
in [1], one theoretical approach proposed for steganography is to
minimize a statistical distortion, and the author proposes to use
the Kullback-Leibler divergence. It is interesting to note that this
line of research has been rarely used as a steganographic guideline
with few notable exceptions such as model-based steganography [2]
which mimics the Laplacian distributions of DCT coefficients during
the embedding, HUGO [3] whose model-correction mode tries to
minimize the difference between the model of the cover image and the
stego image, and more recently the mi-pod steganographic scheme [4]
which minimizes a statistical distortion (a deflection coefficient)
between normal distributions of cover and stego content.

The large majority of steganographic algorithms are currently
based on the use of a distortion (also called a cost) which is computed
for each pixel, and which is combined with a coding scheme that
minimizes the global distortion while embedding a given payload.
Classical distortions functions such as the ones proposed by S-
UNIWARD [5] or by HILL [6] try to infer the detectability of each
pixel by assigning small costs to pixels that are difficult to predict
(usually textural parts of the image) and by assigning large costs to
pixels that are easy to predict (belonging to homogeneous areas and
to some extend to edges).

Once the distortion is computed, a steganographic scheme can
either simulate the embedding by sampling according to the mod-
ifications probabilities 7, k € [1,...,Q)] for a Q-arry embedding,
or can directly embed the message using Syndrome Trellis Codes
(STCs) [7] or multilayer STCs [7], [8]. The size of the embedding
payload N is computed as N = > 7y log 7y for each pixel of the
image, and in practice the STCs succeed to reach 90% to 95% of the
capacity [7] and consequently are close to optimal.

Another ingredient to tend to undetectable steganography is to use
the information contained in a “pre-cover”, i.e. the high resolution
image that is used to generate the cover at a lower resolution, in
order to weight the cost w.r.t the rounding error. For quantization or
interpolation operations, a pixel of the pre-cover at equal distance
between two quantization cells will have a lower cost than a pre-

cover pixel very close to one given quantization cell. This strategy
has been used in Perturbed-Quantization [9] but also adapted in more
recent schemes using side information [10].

The proposed paper uses similar ingredients shared by modern
steganographic methods, namely model-based steganography, Q-arry
embedding and the associated modification probabilities 7y, and side-
information. The main originality of this paper relies on the possible
definitions of cover sources and the use of cover-source switching to
generate stego content whose statistical distributions are very close
to cover content.

A. Steganography via cover-source switching

The key idea of this paper is to propose a steganographic scheme
where the message embedding will be equivalent to switching from
one source S to another source So; this practically can be done
by designing an embedding that, when applied on S, mimics the
statistical properties of Sz. More specifically in this paper we have
decided to use the sensor noise to model a given source because its
statistical model is rather simple, and we perform the embedding in
such a way that the statistical properties of stego images mimic the
sensor noise of source S. As we shall see in Sections II and III, the
difference between &1 and Sz will come from the ISO sensitivity.
One can argue that this parameter is reported in the EXIF file of the
image, but EXIF information can be easily edited or even removed
using software such as exiftool [11].

Note that this idea of steganography based on mimicking sensor
noise is far from being new. In 1999 Franz and Pfitzmann [12]
propose a paradigm for a stego-system “simulating a usual process
of data processing” where the usual process is defined by the scan
process, in this paper the authors study the properties of scanning
noise coming from different scanners. A practical implementation of
this concept is proposed in 2005 by Franz and Schneidewind [13],
where the authors model the sensor noise for each pixel by a Normal
distribution and perform the embedding by first estimating the noise-
less scan, and secondly adding a noise mimicking the sensor noise.
The algorithm was benchmarked using features derived from wavelet
higher order statistics [14] and showed relatively good performance
compared with naive noise addition. It is important to notice that
contrary to the work presented here, if the idea of mimicking the
sensor noise is present in [14], it does not rely on neither cover-
source switching nor a sharp physical model of the noise in the RAW
domain. The scheme presented here aims at generating stego images
that are very close to a given source of cover images, the same way
the ASO embedding scheme [15], with the distinction that the source
is different than the one used during embedding.

An important requirement in order to achieve practical embedding
is to be able to compute the probability of embedding changes
7y in the developed domain, this in order to perform the practical
embedding but also in order to compute the embedding rate. This
particular aspect will be addressed in Section III and IV.



Because the embedding scheme relies on natural statistical noise
of the sensor, we decided to call this steganographic scheme “Natural
Steganography” (NS).

II. SENSOR NOISE ESTIMATION

We present in this section the different noise sources affecting the
sensor during a capture and then explain how to estimate the sensor
noise.

A. Sensor noise model

Camera sensor noise models have been extensively studied in
numerous publications [16], [17], [18] and have already been used
in image forensics for camera device identification [19], [20]. These
models can only be applied to linear sensors such as CDD or CMOS
sensors, but this encompasses the majority of modern digital cameras
at the date the paper is written. A camera sensor is decomposed into a
2D array of photo-sites and the role of each photo-site is to convert k),
photons hitting its surface during the exposure time into a digit. The
conversion involves the quantum efficiency of the sensor measuring
the ratio between k, and the number of charge units k. accumulated
by the photo-site during the exposure time. k. is then converted into
voltage, which is amplified by a gain K (where K is referred as the
system overall gain [18]) and then quantized.

For each photo-site at location (¢, 7), the converted signal x(3, j)
originates from two components:

- The “dark” signal z4(7, ) with expectation E[Xq(3,7)] = pa
which accounts for the number of electrons present without light and
depends on the exposure time and ambient temperature,

- The “electronic” signal z. (i, ) with expectation E[X.(i,7)] =
K te, which accounts for the number of electrons originating from
photons coming from the scene which is captured.

The expectation p of each photo-site response is equal to:

pig = EIX(2,5)] = E[Xa(i, )] + B[Xe (0, 5)] = pa + Kpe. (1)

Beside the signal components, there are three types of noise
affecting the acquisition:

o The “shot noise” associated with the electronic signal with
accounts for the fluctuation of the number of charge units.
Because the electronic signal comes from the variation of
counting events, it has a Poisson distribution X. (7, j) ~ P (ue)
and can be approximated in a continuous setting by a normal
distribution AV (pe, 02) with 62 = pie, hence the noise associated
to the electronic signal is distributed as A/(0, p.). This noise is
independently distributed for each photo-site.

o The noise related to the “read-out” and the amplifier circuit. The
read-out noise associated to the dark signal is independent and
normally distributed as A/(0, o3) and o3 is constant for a given
camera.

o The quantization noise, which is independent and uniformly
distributed with variance o7 = A®/12 where A denotes the
quantization step.

Since these noise sources are mutually independent, the variance
of the sensor noise can then be expressed as [18]:

ol =K%05+ 0. + K(u— pa)- 2)

In the sequel, we make the following approximations for a
given cover-source: we assume that the system gain K is constant
for a given ISO setting, that the dark signal is constant with

negligible variance (03 = 0,pq = cst), and that the quantization
noise is negligible w.r.t. the shot noise (Ug = 0). As we shall
see in V-D, the two first assumptions have negligible impact on
the performance of the scheme and the last assumption does not
impact the performance of the steganographic system whenever
16-bit quantization is considered as side-information. Finally, we
also assume that the spatial non-uniformity of the sensor, which is
associated with the photo response non-uniformity (PRNU) and the
dark signal non-uniformity (DSNU), is negligible.

For a given ISO setting 15O, the global sensor noise Ni(’lj)
can be approximated using both Eq. (2) and the above-mentioned
assumptions, as normally and independently distributed. We have
consequently a linear relation between the sensor noise variance and
the photo-site expectation

N~ N0, arpij + b). 3)
The acquired photo-site sample xilj) is given by:
2} = i +ni), @

and X ~ N(/.Liyj, aipij; + b1).

B. Sensor noise estimation

In order to estimate the model of the sensor noise (i.e. the couple of
parameters (a, b)) for a given camera model and a given ISO setting,
we adopt a similar protocol as the one proposed in [17].

We first capture a set of N, raw images of a printed photo picturing
a rectangular gradient going from full black to white. The camera is
mounted on a tripod and the light is controlled using a led lightning
system in a dark room. The raw images are then converted to PPM
format (for color sensor) or to PGM format (for B&W sensor) using
the dcraw open-source software [21] using the command:

dcraw -k 0 -4 file_name

which means that the dark signal is not automatically removed
(option -k =0), and that the captured photo-sites are not post-
processed and plainly converted to 16-bit (option —4).

In order to have a process independent of the quantization, the
photo-site outputs are first normalized by dividing them by ymaz =
2'6 _ 1. The range of possible outputs is divided into 1/§ segments
of width 6. Each normalized photo-site location is assigned to one
subset of photo-sites Sy according to its empirical expectation over
the acquired images 7);,; = Ef\i‘ll yff}/ymax) /Ng. The subset
index is £ = [f};,; /0] where [.] denotes the integer rounding operation.
Once the segmentation into subsets is performed, the empirical mean
is:

N 1 .
e = @ ;88(1), ©)

where S¢(i) denotes the value of a photo-site belonging to the
subset S¢ and |.| denotes the cardinal of a set.
The unbiased variance associated to each subset as:

[S(O)]

. 1 . .
62 = So1 ; (Se() — fie)* . (6)

As an illustration, Figure (1) plots the relation in solid lines
between /i, and 67 for N, = 20 raw images captured with a Leica M
Monochrome Type 230 at 1000 ISO and 1250 ISO for § = 51075,
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Fig. 1. Sensor noise estimation for the Leica Monochrome camera and
1000 ISO and 1250 ISO on normalized images. The estimated coefficients
of the linear model are respectively (a1,b1) = (8.36107°,1.1110~%) and
(az,b2) = (10.46 1072,1.9510~5) for this setup.

The last step consists of estimating the parameters (, b), this is
done by linear regression 63 = f() = G+ b. We see on the same
figure that the linear relation, depicted by the dashed lines, is rather
accurate.

III. EMBEDDING FOR OOC MONOCHROME PICTURES

We first propose in this section a steganographic system practically
working for a basic developing setup, this system is realistic for a
monochrome sensor where nor demosaicing neither colour transform
is possible. We also assume that the developed images do not undergo
gamma correction or further processing and only subjected to 8-
bit quantization. We can call this type of images “Out Of Camera”
(0O0C) Pictures.

A. Principle of the embedding

We propose to model the stego signal S; ; in such a way that it
mimics the model of images captured at SOz > I50;. Note that
this construction only simulate the embedding by computing the
embedding probabilities for each symbol. These probabilities can be
either used to simulate optimal embedding, or additive costs p; ; can
be derived and used to feed a multilayered Syndrome Trellis Code
using a Q-ary version of the “flipping lemma” [7] (see also Section
VI of [7] for Q-ary embedding and multi-layered constructions).

Based on the assumptions made in II-A, the equivalent of (3)
and (4) for a camera sensitivity parameter /SO, are Ni(?j)
N(0, azpi,; + b2) and x<2) =i+ n(2)

Since the sum of two mdependent s1gnals normally distributed is
normal with the variances summing up, we can write that mfj) =
i +n< ) 4 s = x(l) + s;; with S; ; ~ N(0, (a2 — a1)pij +
ba — b1) representmg the noise necessary to mimic image captured
at 1S0s.

Assuming that the observed photo-site is very close to its practical

expectation, i.e. that ju; j ~ xglj), xEZJ) can be approximated by:

2 1
o o) 4oy 2

Yijs @)

with:

Si; ~N(0,(az — a1z (>+b2 b1). ®)

Adoptmg the following notations @’ £ az — a1, b’ 2 by — by ,
ot &a m(l) -+, and the photo-site of the stego image is distributed
as:

Yig ~ N, 03).

Z]’

©)

Note that equation (7) shows explicitly the principle of cover-
source switching which is simply represented in this case by adding
an independent noise on each image photo-site to generate the stego
photo-site y; ;. The distribution of the stego signal in the continuous
domain (see (8)) takes into account the statistical model of the sensor
noise estimated for two ISO settings using the procedure presented
in Section II-A.

?,

B. 16-bit to 8-bit quantization

For OOC images, the only developing process lies in the 8-bit
quantization function, consequently the goal here is to compute the
embedding changes probabilities 7; ; (k) = Pr[S;; = k] after this
process.

We use the high resolution continuous assumption given by (10)
and then we compute the discretized probability mass function after
a quantization step of size A (typically A = 256 by quantizing from
16-bit resolution to 8-bit resolution).

The embedding probabilities are directly linked to the 8 bits
quantized value zsp = Qa(z16g) = round ((z16 +1)/A) -
where Qa(.) denotes the quantization function - and the pdf of the
Normal distribution f(.):

(k) = L0 f(yle = z168)dy,
(o () o ()
with ux = xsp — (0.5 — k’)A
Once the embedding probabilities are computed for each pixel, it’s
possible to derive the payload size using the entropy formula:

S) =— Zﬂ-i‘j(kj

4,4,k

) logy i, 5 (k). (11)

IV. GAMMA CORRECTION

The gamma correction is a sample-wise operation defined by
Yy £ I'(y) = ymagg(y/ymm)l/7 with ymae = 216 — 1, its inverse
transform given by I (4) = Ymaz (Y /Ymaz)”-

In order to compute the distribution of the stego signal after gamma
correction, one can simply compute the distribution of the transform
of a continuous variable as [22]:

wa(y'Y) = fY(ya,)%Ffl(y),
y'y—m(n 2 _
- \/22?6’(1’ (‘%) V(Y Ymaz) "

(12)
However, since in practice o5 < 2™ we can use a first order
Taylor expansion of the gamma correction, given by:

yr = D)+ (y—2D) @ fymaa) 77/,
)

= D(zM) + as, (13)

with @ = (2 /ymaz)/7"' /. This means that the gamma
correction acts as an affine transform on the stego signal.



Consequently, as a first approximation, the stego signal S, after
gamma correction can be considered as normally distributed:

S, ~ N(0,a°0%), (14)
and the distribution of the stego photo-site is given by:
Y, ~ N(D(2"), a’0%). (15)

Because gamma correction is a sample-wise operation, the stego
signal is independently distributed, and the embedding probabilities
after 8-bit quantization can be directly computed as:

7T'y(k) = f:;:c+1 f(y'y‘xzr(xlﬁ‘B))dy,
= 1 [erf (%rgwm) _erf(%)] |
) ) (16)
with u), = azig — (0.5 — B)A, ztp = Qa(T(zisn)).

The payload size 1is consequently given as
= ik i (k) logy myi 5 (k).

V. EXPERIMENTAL RESULTS

H(Sw) =

The goal of this section is to benchmark the detectability of NS, to
compare it with other steganographic schemes using same embedding
payload, but also to analyze the effects of developing operations w.r.t.
both detectability and embedding rates.

A. Generation of MonoBase

In order to benchmark the concept of embedding using cover-
source switching, we needed to acquire different sources providing
0OOC images. To do so we conducted the following experiment: using
a Leica M Monochrome Type 230 camera, we captured two sets of
172 pictures taken at 1000 ISO or 1250 ISO. In order to have large
diversity of content most of the pictures were captured using a 21mm
lens in a urban environment, or a 90mm lens capturing cluttered
places.

The exposure time was set to automatic, with exposure compensa-
tion set to -1 in order to prevent over-exposure. A tripod was used so
that pictures for the two sensitivity settings correspond to the same
scene. Each RAW picture was then converted into a 16-bit PGM
picture using the same conversion operation as the one presented in
Section II-B and each 5212 x 3472 picture was then cropped into
6 x 10 = 60 PGM pictures of size 512 x 512 to obtain two sets of
10320 16-bit PGM pictures. We consequently end up with a database
of a similar size than BOSSBase, with pictures of same size that
contrary to un-cropped pictures can be quickly processed either for
embedding or feature extraction. This database called MonoBase can
be downloaded here [23].

B. Benchmark setup

For all the following experiments, we adopt the Spatial Rich Model
feature sets [24] combined with the Ensemble Classifier (EC) [25]
and we report the average total error P = min((Pra + Pyup)/2)
obtained after training the EC on 10 different training/testing sets
divided in 50/50.

Using NS we use a non-standard but realistic benchmark built to
test if the cover source switching operation is undetectable: the stego
database consists of images captured at 1000 ISO perturbed with a
stego signal mimicking 1250 ISO, and the cover database consists of
images directly captured at 1250 ISO.

In order to have an effect equivalent with the principle of training
using pairs of cover and stego images, and to ease the steganalysis
since this is a worst-case scenario for the steganographer, the pairs
are constructed using one couple of images capturing the same scene.

The parameters of the stego signal are denoted a” and b” with
the relations a” = a/(2™ — 1) and b = ¥ (2™ — 1)?, where o’
and b’ are computed using normalized image values in order to be
resolution independent (see Section III-A). Ny, = 16 when the cover
image is coded in 16-bit is used and N, = 8 when the stego image is
directly generated from the 8-bit representation of the cover image.

C. Basic developing and comparison with S-Uniward
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Fig. 2. Histogram of the embedding rates for MonoBase with covers-source
switching from 1000 ISO to 1250 ISO. E[E,] = 1.24 bpp. .

We first benchmark the scheme proposed in Section III and
generate 8-bit stego images where the stego signal is generated
according to the embedding probabilities computed in (10). Like all
modern steganographic schemes, we forbid embeddings by attributing
wet pixels to cover pixels saturated at 0 or 2*°.

The python source codes to perform NS embedding can be
downloaded on Github [26].

The two first columns of Table I show the high undetectability of
the proposed scheme, and the small improvement associated to wet
the dark pixels. We note that we are still around 5% from random
guessing, and we think that it can be due to the different assumption
presented in Section III, particularly the fact that the quantization
noise is ignored.

Figure 2 depicts the histogram of the embedding rate (£,) on
MonoBase. We can see that most of the embedding rates are relatively
high for steganography with an average of 1.24 bpp for this base.
Note that on MonoBase, most of the images are under-exposed,
which means that the average embedding rate should be higher for
a “typical” database. It is important to point here that contrary to
most of the steganographic schemes, the current implementation of
NS does not enable an embedding at a constant payload, but this as
the price of high undetectability.

The two next columns of Figure 2 compare the performance of
NS with S-Uniward [5] (SUni) using ternary embedding. We chose
this steganographic scheme because of its excellent performance and
because it has recently been tuned to take into account the side-
information offered by the pre-cover after 16-bit to 8-bit conver-
sion [10] (SUni-SI). The two implementations of S-Uniward where



NS SUni-SI SUni 1000 ISO
1000 ISO | 1000 ISO | vs 1250 ISO
Pg, 44.8 % 18.2% 12.3% 26.0%
TABLE T
RESULTS AND COMPARISON WITH S-UNIWARD ON MONOBASE CODED
WITH 8 BPP.
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Fig. 3. Sensitivity w.r.t. the model parameters a” .

benchmarked on MonoBase 1000 ISO with the same embedding
rate as NS for each image but we saturate at log,(3) bits since
S-Uniward is restricted to ternary embedding. If the side-informed
implementation provides better performance, the two schemes cannot
compete with an embedding scheme like NS which is model-based
and which enables cover-source switching. We obtained similar
performance on MonoBase 1250 ISO (20.6% for SUni-SI), but also
by comparing stego images generated from covers at 1000 ISO with
covers at 1250 ISO (23.0% for SUni-SI).

The last column compares our steganalysis task with the
classification task of separating images captured at 1000 ISO from
images captured at 1250 ISO. We can see that this task using the
SRM is not an easy task since the error probability is still rather large.

Figure 3 depicts the sensitivity of our scheme to the estimation of
the sensor noise by computing the classification error for different
values of a”. We can see that the estimation of the sensor noise
is rather important, going from example from ¢” = 2.1107° to
a” = 107 increases the detectability by approximately 5%.

D. Results without pre-cover information

Table II presents the results when the sensor noise is estimated
from raw images but the the embedding is directly performed on
8-bit cover images without using the pre-cover, i.e. A =1 in (10).

We can notice that in this case the scheme becomes highly
detectable. We explain this problem by the fact that dark regions,
which undergo both stego signal and sensor noise of small variance,
are not modified correctly when the embedding does not take
into account the pre-cover. Indeed, the dark regions are especially
sensitive to steganalysis because they are less noisy than bright
regions, and because the initial value of the photo-site highly impacts
the sign of the embedding change in this case.

NS NS 8-bits

Pr | 44.8% 18.4%
TABLE IT
IMPACT OF USING THE PRE-COVER FOR NS.

Figure 4 shows the embedding change for a portion of a cover
image having dark areas and we can see that for the 8-bit embedding,
the number of embedding changes are less important since the
dithering effect offered by the use of the pre-cover image is lost here
(the sensor noise is in this case centered directly on the quantization
cell). Trying to improve NS in this practical setup is left for future
research.

E. Gamma correction

Table III shows the detectability results of NS once gamma
correction is performed during the developing step both on cover
and on stego images. 16-bit cover images are used. Since the
model of the stego signal is adapted to fit the model of the sensor
noise after the gamma correction (see IV) we can check that the
undetectability of NS is still high.

We see also that on MonoBase the embedding rate increases w.r.t.
the parameter . This is because for v > 1 the variance of the stego
signal increases for small photo-site values and decreases for large
photo-site values. The opposite occurs for v < 1. In the first case
this is due to the convexity of the transform, in the second case to the
concavity of the transform. On a database only composed of bright
images, the effect would be the opposite.

v [ 25 [ 2 [ 15 [ T [ 05 |
P 144% | 445% | 43.1% | 44.8% | 462%
E,(bpp) || 1.6 162 | 155 | 124 05

TABLE TII

PERFORMANCE OF NS AFTER GAMMA CORRECTION.

VI. CONCLUSION

We have proposed in this paper a new methodology for
steganography based on the principle of cover-source switching,
i.e. the fact that the embedding should mimic the transition from
one cover-source to another. The presented scheme (NS) uses the
sensor noise to model each source, and message embedding is
performed by generating a suited stego signal which enables the
transition between the first and the second source. This method, in
order to provide good undetectability performance while proposing
high embedding rates, has to use RAW images as inputs. Beside
quantization and gamma correction, we also show in a longer
version [27] how to handle different steps of image developing,
including color transforms, demosaicing and rescaling operations.

In future works we want also to investigate other setups for NS
steganography, such as choosing other ISO parameters and different
camera models. It will also be important to try to improve direct
embedding on 8-bit images and to address more practical implemen-
tation such as embedding in the JPEG-domain. From the adversary
point of view, we would like to see if more appropriate feature could
be designed for this category of schemes, this new kind of features
should not be only sensitive to image variation, but also to the sensor
noise whose variance is function of the pixel luminance. Finally we
hope that this methodology will pave the road for new directions in
steganography.



(a)

Fig. 4. Portion of an image (a) and locations of embedding changes when the pre-cover is used (see section III-B (b) and when it is not used (c) (for better
rendering, inactivate interpolation on your pdf viewer).

VII. ACKNOWLEDGMENTS

The author would like to thank Boris Valet for his work on sensor
noise estimation, Cyrille Toulet and Matthieu Marquillie for their
help on the Univ-lille HPC, Remi Bardenet for his help on sampling
strategies, Tomas Pevny and Andrew Ker for their inspiring conver-
sations of the definition of the source, the conferences reviewers for
their valuable comments and corrections, and CNRS for a supporting
grant on cyber-security.

[1]

[2

—

[3

=

H
B

[6

=

[7

—

[8

[t}

[9

—

[10]

(11]
(12]

[13]

REFERENCES

C. Cachin, “An information-theoretic model for steganography,” in
Information Hiding: Second International Workshop IHW’98, Portland,
Oregon, USA, April 1998.

P. Sallee, “Model-based steganography,” in International Workshop on
Digital Watermarking (IWDW), LNCS, vol. 2, 2003.

T. Pevny, T. Filler, and P. Bas, “Using high-dimensional image models
to perform highly undetectable steganography,” in Information Hiding
2010, 2010.

V. Sedighi, R. Cogranne, and J. Fridrich, “Content-adaptive steganogra-
phy by minimizing statistical detectability,” Information Forensics and
Security, IEEE Transactions on, vol. 11, no. 2, pp. 221-234, 2016.

V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function
for steganography in an arbitrary domain,” EURASIP Journal on Infor-
mation Security, vol. 2014, no. 1, pp. 1-13, 2014.

B. Li, M. Wang, J. Huang, and X. Li, “A new cost function for
spatial image steganography,” in Image Processing (ICIP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 4206-4210.

T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distortion in
steganography using syndrome-trellis codes,” Information Forensics and
Security, IEEE Transactions on, vol. 6, no. 3, pp. 920-935, 2011.

P. Wang, H. Zhang, Y. Cao, and X. Zhao, “Constructing near-optimal
double-layered syndrome-trellis codes for spatial steganography,” in
ACM workshop on Information hiding and multimedia security. ACM,
2016.

J. Fridrich, M. Goljan, and D. Soukal, “Perturbed quantization steganog-
raphy with wet paper codes,” in Proceedings of the 2004 workshop on
Multimedia and security. ACM, 2004, pp. 4-15.

T. Denemark and J. Fridrich, “Side-informed steganography with ad-
ditive distortion,” in Information Forensics and Security (WIFS), 2015
IEEE International Workshop on. 1EEE, 2015, pp. 1-6.
“https://sourceforge.net/projects/exiftool/.”

E. Franz and A. Pfitzmann, “Steganography secure against cover-stego-
attacks,” in Information Hiding. Springer, 1999, pp. 29-46.

E. Franz and A. Schneidewind, “Pre-processing for adding noise
steganography,” in Information Hiding, 7th International Workshop,
2005, pp. 189-203.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Holotyak, J. Fridrich, and S. Voloshynovskiy, “Blind statistical
steganalysis of additive steganography using wavelet higher order statis-
tics,” in Communications and Multimedia Security, vol. 3677, 2005, pp.
273-274.

S. Kouider, M. Chaumont, and W. Puech, “Adaptive steganography by
oracle (aso),” in Multimedia and Expo (ICME), 2013 IEEE International
Conference on. 1EEE, 2013, pp. 1-6.

A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
poissonian-gaussian noise modeling and fitting for single-image raw-
data,” Image Processing, IEEE Transactions on, vol. 17, no. 10, pp.
1737-1754, 2008.

A. Foi, S. Alenius, V. Katkovnik, and K. Egiazarian, “Noise measure-
ment for raw-data of digital imaging sensors by automatic segmentation
of nonuniform targets,” IEEE Sensors Journal, vol. 7, no. 10, pp. 1456—
1461, 2007.

E. M. V. Association et al., “Standard for characterization of image
sensors and cameras,” EMVA Standard, vol. 1288, 2010.

T. Qiao, F. Retraint, R. Cogranne, and T. H. Thai, “Source camera device
identification based on raw images,” in Image Processing (ICIP), 2015
IEEE International Conference on, Sept 2015, pp. 3812-3816.

T. H. Thai, R. Cogranne, and F. Retraint, “Camera model identification
based on the heteroscedastic noise model,” IEEE Transactions on Image
Processing, vol. 23, no. 1, pp. 250-263, Jan 2014.
“http://www.cybercom.net/ dcoffin/dcraw/.”

A. Papoulis and U. Pillai, Probability, Random Variables and Stochastic
Processes. Mac Graw Hill, 2002.

P. Bas, “Monobase,” http://patrickbas.ec-lille.fr/MonoBase/, July 2016.
J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital
images,” Information Forensics and Security, IEEE Transactions on,
vol. 7, no. 3, pp. 868-882, 2012.

J. Kodovsky, J. Fridrich, and V. Holub, “Ensemble classifiers for
steganalysis of digital media,” Information Forensics and Security, IEEE
Transactions on, vol. 7, no. 2, pp. 432-444, 2012.

P.  Bas, “Source  Codes  for  Natural  Steganography,”
https://github.com/patrickbas/NaturalSteganography, October 2016.
——, “Natural Steganography: Cover-source Switching For Better
Steganography,” Jul. 2016, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01360024



