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SLMRACE: A noise-free new RACE implementation with reduced
computational time

Juliet Chauvina, Edoardo Provenzia

aUniversité Paris Descartes, MAP5, 45 rue de Saints-Pères, Paris, France, 75006

Abstract. In this paper we present a faster and noise-free implementation of the RACE algorithm. RACE has mixed
characteristics between the famous Retinex model of Land and McCann and the ACE color-correction algorithm. The
original random spray-based RACE implementation suffers from two main problems: its computational time and the
presence of noise. Here we will show that it is possible to adapt a technique recently proposed by Banić et al. to
the RACE framework in order to drastically decrease the computational time and to avoid noise generation. The new
implementation will be called SRACE, for smart-RACE.
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1 Introduction

The Retinex theory of color vision proposed by Land and McCann1 aimed at providing a compu-

tational model to understand some essential features of color vision such as locality or robustness

with respect to illuminant changes. The Retinex theory has then been used for many other pur-

poses, one of them is perceptual-based color correction: given an input picture taken under any

illumination condition, one would like to transform it in order to induce a color sensation closer to

what a human observer would experience in the scene depicted by the image. This is the Retinex

use that will be considered in this paper.

The original version of Retinex used piecewise linear path to explore the image content around

a point of an image. Several works have been dedicated to the analysis of path geometry which

gives the best performances, see e.g.2–6 The mathematical analysis performed in7 allowed pointing

out intrinsic problems related with the use of paths and this led to their replacement with 2-D

sampling structures, called random sprays. This formulation of Retinex is known as RSR for

‘Random Spray Retinex’.8
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The spray technique has also been employed to reduce the computational time of another

perceptually-based color correction algorithm called ACE for ‘Automatic Color Equalization’.9

The possibility to use sprays as sampling structure for both ACE and RSR allowed to mix the two

algorithms into a single one with in-between features. The hybrid model is called RACE.10

Even if the spray-based technique is a noticeable improvement with respect to the path-based

one, it is still affected by a high computational time and generation of noise, which affects, in

particular, images characterized by large homogeneous areas.

To overcome these problems, some suitable methodologies has been proposed11, 12 and applied

to RSR-based algorithms. In this paper we will show that these techniques can be also be adopted

to provide a noise-free and faster implementation of RACE.

Tests and comparisons will show the efficiency of the new implementation with respect to the

original one.

Before starting with the technical content of the paper, let us fix the notation. We will denote

with Ω ⊂ Z2 the spatial domain of a digital image of size |Ω| and with x ≡ (x1, x2) and y ≡ (y1, y2)

the coordinates of two arbitrary pixels in Ω. We will always consider a normalized dynamic range

in [0, 1], so that a RGB image function will be denoted with ~I : Ω −→ [0, 1] × [0, 1] × [0, 1],

x 7→ (IR(x), IG(x), IB(x)), where each scalar component Ic(x) defines the intensity level of the

pixel x ∈ Ω in the red, green and blue channel, respectively.

We stress that we will perform every computation on the scalar components of the image, thus

treating each chromatic component separately as in the original Retinex paper.1 Therefore, we

will avoid the subscript c and write simply I(x) to denote the intensity of the pixel x in a given

chromatic channel.
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2 RSR, ACE and RACE

In this section we will describe the algorithms RSR, ACE and their fusion RACE. Let us start with

RSR. Fixed a pixel x, N different sprays Sk, k = 1, . . . , N , as the one depicted in Fig. 1, are

centered in x. For simplicity we will consider all the sprays to have the same number of pixels n.

The generic pixel in the spray Sk, different from the center, will be denotes with y and the notation

Hk will be used to indicate the pixel with highest intensity belonging to the spray Sk (notice that

Hk can coincide with the center pixel x).

Fig 1 A random spray used in RSR.

The re-computation of pixel intensity performed by RSR is the following:

I(x) 7−→ LRSR(x) = I(x)
1

N

N∑
k=1

1

I(Hk)
, (1)

for all pixel x ∈ Ω, and for the three chromatic channels separately. Due to the quotient over

the maximal intensity of each spray, RSR belongs to the category of white-patch color correction

algorithms.

By contrast, the ACE method uses a different approach inspired by the gray-world approach.13
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To describe ACE, we have to previously define the slope function sα : [−1, 1]→ [−1, 1] as follows:

sα(t) =


−1 if − 1 ≤ t ≤ −1

α

αt if −1
α
< t < 1

α

+1 if 1
α
≤ t ≤ 1,

where α > 1 is a slope parameter freely selected by a user. We must also consider a suitably

normalized weight functionw, i.e.
∑
x∈Ω

w(x, y) = 1, decreasing with the Euclidean distance ‖x−y‖

and such that w(x, x) = 0.

We can now define the first stage of ACE as the following intensity re-computation:

I(x) 7−→ R(x) =
∑
y∈Ω

w(x, y)sα(I(x)− I(y)), (2)

thanks to the slope function, small intensity differences are amplified and large ones are saturated.

The second, and final, step of the ACE computation is the following global re-mapping:

LACE(x) =
1

2
+
R(x)

2M
(3)

whereM = max
x∈Ω
{R(x)}. This last step performs a global white-patch mapping, which sets at least

one pixel to 1 in each separate chromatic channel.

The computational time of ACE formulated in this way is huge for high resolution images.

However, if the computation 2 is performed over a localized spray instead of over the entire image

domain, time computation can drastically decrease.

This is one of the reasons why in10 ACE has been recast in the spray framework. The other rea-
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son is that this also allows to easily combine RSR and ACE in a single algorithm with intermediate

features between the two models.

Let us show how to rewrite ACE by using localized sprays. First of all we re-define the slope

function in order to incorporate the global white-patch mapping: s̃α : [−1, 1]→ [0, 1]:

s̃α(I(x)− I(y)) =


0 if − 1 ≤ I(x)− I(y) ≤ −1

2α

1
2

+ α(I(x)− I(y)) if −1
2α
< I(x)− I(y) < 1

2α

+1 if 1
2α
≤ I(x)− I(y) ≤ 1.

Then, the spray-version of ACE can be defined as follows:

LACE
spray(x) =

1

N

N∑
k=1

1

ñk

∑
y∈Sk(x)\{x}

s̃α(I(x)− I(y)) (4)

for all x ∈ Ω, where ñk is the number of spray points which actually fall in the image domain.

The combination of RSR and ACE into RACE is given simply by the arithmetic average of

LRSR(x) and LACE
spray(x):

I(x) 7−→ LRACE(x) =
1

N

N∑
k=1

1

2

 I(x)

I(Hk)
+

1

ñk

∑
y∈Sk(x)\{x}

s̃α(I(x)− I(y))

 (5)

for all x ∈ Ω.

Even if the computational time of spray-based algorithms RSR and spray-ACE is drastically

inferior that of the original path-based Retinex and ACE, respectively, it is far from being accept-

able for high resolution images. In the following section, we will recall a technique to accelerate

spray-based algorithms recently proposed in,11, 12 which we will use in the subsequent section to
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accelerate RACE.

3 LRSR (Light Random Spray Retinex) and SLMRSR (Smart Light Random Memory

Spray Retinex).

In this section, we will discuss two techniques proposed in11, 12 that have been applied to RSR with

the aim of reducing the noise in the output image and of decreasing the computational time.

First of all we notice that, if we use small values of N and n within the RSR algorithm to

reduce the computational time, the output images are affected by a lot of noise, as it can be seen in

Fig. 2.

Fig 2 Left: original image. Right: output of RSR with N = 4 sprays and n = 5 pixels per spray.

Let us start by describing how to avoid noise formation when using small values of n and N by

using the technique proposed in.11 The corresponding method is called LRSR for ‘Light Random
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Sprays Retinex’. Consider an arbitrary input image I and apply RSR to it, obtaining the image R.

The ratio C = I
R

is called intensity change image.

In LRSR, the noise is reduced through a convolution with a kernel function k. This can be done

after the computation of C, obtaining C ′k = (C ∗ k)(x), ∀x ∈ Ω, or before it, i.e. applying the

blurring on I and R, obtaining C ′′k (x) = (I∗k)(x)
(R∗k)(x)

, ∀x ∈ Ω. By combining the two approaches, i.e

filtering before and after calculation with two (possibly identical) kernels k1 and k2, respectively,

one can define the new intensity change matrix: C∗k1,k2(x) = (C ′′k1(x) ∗ k2)(x).

Finally, the output image O of LRSR is calculated via the formula:

O(x) =
I(x)

C∗k1,k2(x)
∀x ∈ Ω, (6)

the size of kernels k1 and k2 is 25× 25 in.11

Now that we have seen how to reduce the noise, let us proceed by explaining how to reduce

the computation complexity with the method proposed in12 and called ‘SLRMSR’ for Smart Light

Random Memory Sprays Retinex.

The basic concept is that of ‘spray memory’, which consists in creating a single spray that will

be gradually modified while we browse the image. First of all, we extend the image by mirror

symmetry. This procedure is needed to correctly treat pixels that lie near the edge of the image

domain. We then consider the first pixel x ≡ (1, 1) ∈ Ω of the input image and we build a

spray S(x) with n pixels centered in x. We then pass to the subsequent pixel in the same row, i.e.

x′ ≡ (2, 1), and we modify just one pixel of S(x), by randomly selecting a pixel that lies in the

neighborhood of x′.

By iterating this procedure, we will gradually and smoothly modify the content of each spray.
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At a computational level, if we store the pixels of the spray in a hyper-matrix, for each new pixel

we will just modify the last element of this matrix. Thereby, the spray will be totally renewed

every n pixels.

Notice that, thanks to this idea, the computational complexity passes fromO(nN |Ω|) toO(n|Ω|)

because now we use only one spray.

When this technique is applied directly without the filtering strategy quoted above, it produces

results affected by horizontal lines, as those in Fig. 3 (middle). The main reason is to be found in

the great deal of information redundancy in natural images, i.e. the fact that nearby pixels are very

likely to have similar values, unless they lie in the proximity of a sharp edge, thus, if we change

only one pixel spray at the time and we browse the image horizontally, this kind of problem is to

be expected.

Fig 3 Left: original image. Middle: output of spray memory RSR without applying the filters of LRSR. Right: output
of SLMRSR.

4 SLMRACE (Smart Light Memory RACE) and its performances

If, instead of applying the light and spray memory techniques to RSR, we consider them in asso-

ciation with RACE, then we obtain an algorithm called SLMRACE.

Let us notice that, since only one spray with n points will be used in SLMRACE, formula (5)
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must be replaced with the following:

I(x) 7−→ LRACE(x) =
1

2

 I(x)

max
y∈S(x)

{I(y)}
+

1

n− 1

∑
y∈S(x)\{x}

s̃α(I(x)− I(y))

 ∀x ∈ Ω. (7)

Notice also that, due to mirror symmetry, all spray pixels correspond to an actual pixel value.

In Fig.4 we show a comparaison between the results of SLMRSR and SLMRACE with the

same kernel size of 25×25. It can be seen that images filtered with SLMRACE show much more

details than those filtered with SLMRSR without corrupting colors.

In Fig. 5 we present the influence of three kernel sizes on the results. It can be seen that a large

kernel size allows us to see more details and obtain an output image with more contrast. However,

with a large kernel size we can see a halo effect near the edges. Our tests have shown that the

intermediate choice of kernel size of 25× 25 is a good trade-off.

5 Conclusions

In this paper we have recalled the so-called spray-based implementations of some Retinex-inspired

color correction algorithms and pointed out their limits: high computational time and noise gen-

eration. We have also discussed a recent proposal to avoid this kind of problems and showed

that it can be applied to RACE, the algorithm obtained from the fusion of RSR, the random spray

Retinex implementation, and the perceptually-inspired color correction model ACE. Finally, we

have presented tests and comparisons to corroborate the good performances of this new RACE

implementation, called SLMRACE.
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Fig 4 Left: original image. Middle: output of SLMRSR. Right: output of SLMRACE with a slope α = 2 and a number
of spray pixel n equal to the integer part of the image diagonal of each image.
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Fig 5 Output of SLMRACE with different kernel sizes s Left: s = 5× 5. Middle: s = 25× 25. Right: s = 50× 50.
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