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Impact oscillators demonstrate interesting dynamical features. In particular, new types of bifurca
tions take place as such systems evolve from a nonimpacting to an impacting state (or vice versa), as a 
system parameter varies smoothly. These bifurcations are called grazing bifurcations. In this paper we 
analyze the different types of grazing bifurcations that can occur in a simple sinusoidally forced oscilla
tor system in the presence of friction and a hard wall with which the impacts take place. The general 
picture we obtain exemplifies universal features that are predicted to occur in a wide variety of impact 
oscillator systems. 

I. INTRODUCfiON 

We say that a system is an impact oscillator if it has an 
oscillating object that impacts frequently with some other 
object [1,2). Impact oscillators occur in many technolog
ical situations. For example, mechanical devices are 
often engineered with loose fitting joints to accommodate 
thermal expansion, and the dynamical behavior of such 
systems often leads to impacts in the joint. In addition, 
many machines inevitably suffer from effects of vibroim
pacts. A common feature shared by models of these sys
tems is the smoothness of the systems between the im
pacts. Shaw and Holmes studied a piecewise linear, 
sinusoidally forced impact oscillator for various values of 
the forcing frequency [3-6). Whiston originally showed 
the importance of grazing impacts (i.e., zero velocity im
pacts) of the global dynamics [7,8). Recently, Nordmark 
expanded (to first order) solutions in the neighborhood of 
a grazing orbit for a simple physical system (described 
below) and obtained a two dimensional map representing 
the dynamics of lm orbit in the neighborhood of the graz
ing state [9]. Nordmark also studied the dynamics of this 
map, obtaining several important results [9,10]; we will 
give details later. Nusse, Ott, and Yorke [11) obtained 
results for the dynamics of the one dimensional limit of a 
two dimensional map equivalent to the map derived by 
N ordmark. Budd, Dux, and Lamba considered 
sinusoidally forced impact oscillators, studying such 
features as chattering, intermittency, the effect of fre
quency and clearance variations, and the scaling of 
Lyapunov exponents at nonsmooth bifurations [12]. 

In this paper, we use the simple physical system shown 
in Fig. 1 as a prototype impact oscillator. This is the sys
tem considered in [9,10). A mass m is attached to a 
linear spring with spring constant k that is fixed to the 
wall on the right hand side. There is a sinusoidal external 
force F 0 sinwt acting on the mass. The friction force is 
proportional to the velocity of the mass with coefficient 
Jl· Here s represents the position of the mass m, and t is 
the time derivative of 5, which is the velocity of the mass 
m. A hard wall stands at the position Sc· When the am
plitude of oscillation is sufficiently small, there are no im
pacts between the mass m and the wall at Sc• and the dy
namics of the system is the same as that of a forced 
damped harmonic oscillator without the wall at Sc· As 
the amplitude of oscillation is increased, the mass m be
gins to have impacts with the wall, first with very low ve
locity. The bordering state between the impacting and 
nonimpacting is called a grazing impact, i.e., when the 
mass contacts with the wall at Sc with zero velocity. In
teresting new bifurcations are observed at grazing, and 
they are called grazing bifurcations [9,10). (Grazing bi
furcations are important physical examples of a general 
type of bifurcation called "border-collision bifurcations" 

friction ~ 
force =-JA 

FIG. 1. Our model physical system. 



considered in [11,13] and discussed in Sec. VI). The pur
pose of this paper is to present an analysis of grazing bi
furcations for the system in Fig. 1. It is anticipated that 
these results are universal in that they apply to many sys
tems in which impacts occur. 

The two dimensional map derived for the system in 
Fig. 1 by Nordmark in [9] is equivalent to the following 
map, which will henceforth be referred to as the Nord
mark map: 

{
Xn +I =axn +yn +p 

Y = _ yx for xn ::S 0 , 
n +I n 

(1) 

{
xn+I_= -vxn +yn +p 

_2 for Xn >0. 
Yn +I- -yrxn 

(2) 

Here xn and Yn are transformed coordinates in the 
position-velocity space (s,t> evaluat.ed at times tn, where 
wt n = 2n 1T, and w is the frequency of the external forcing 
(see Fig. 1). The quantity 71 is the restitution coefficient 
of the impacts. The relation of r and a to the intrinsic 
properties of the oscillator such as the quantities 
k,m,w,ll in Fig. 1 is given in Sec. II. The parameter pis 
related to F0 • Equations (1) govern the system if there is 
no impact between time tn and tn +I· Otherwise, if an im
pact takes place between tn and tn + I• then Eqs. (2) govern 
the system. Note that the Nordmark map is continuous 
at xn =0, but that its Jacobian matrix of partial deriva
tives is singular _at xn =0 [in particular, 
axn + ,Jaxn = -1 /(2y Xn) for Xn > 0]. This singularity 
at xn =0 is responsible for the new bifurcations studied in 
this paper. The map is normalized so that for fixed r and 
a, the long-time behavior is such that the orbit does not 
impact with the wall at Sc for p < 0, is in the grazing state 
for p=O, and may impact with the wall at Sc for p>O. 
Thus if we vary p through zero with fixed r and a, the 
Nordmark map describes the dynamics of an orbit in the 
neighborhood of the grazing state if lpl << 1. Since the 
map is obtained by expansion of solutions in the neigh
borhood of the grazing state, its dynamics is related to 
the physical system only for lp I << 1. However, since we 
are interested in the bifurcations at p=O (i.e., the grazing 
bifurcations), the map is expected to capture the univer
sal properties of impact oscillators near grazing. That is, 
other, physically different systems, when suitably normal
ized and expanded about the grazing state, should also 
yield Eqs. (1) and (2). 

In what follows we shall be concerned with the bifurca
tion phenomena for the Nordmark map that occur as the 
bifurcation parameter p is increased through p=O (graz
ing incidence) with r and a held fixed. Depending on the 
values of r and a ( 0 < r < l' a < l + r for physically ad
missible systems), we observe three basic bifurcation 
scenarios listed as cases l-3 below. One of our goals will 
be to give an analysis to delineate the ( r, a) parameter 
space into regions in which the bifurcations in each case 
take place. 

Case 1: Bifurcation from a stable period-] orbit in p < 0 
to a reversed infinite period adding cascade as p increases 

through zero. Depending on r and a, there are two possi
ble forms such a cascade can take: (a) a cascade where 
chaos appears in bands between successive windows of 
periodic behavior, and (b) a cascade with hysteresis. Sub
case (a) is illustrated by the example shown in Fig. 2(a), 
while subcase (b) is illustrated by the example shown in 
Fig. 2(b). (See the figure caption for Figs. 2 for a descrip
tion of how the bifurcation diagrams are made.) The line 
in the diagrams occurring for p < 0 represents the x loca
tion of an attracting period-1 orbit for the map. Since 
this period- I orbit is located in x < 0, it is determined 
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FIG. 2. (a) Bifurcation diagram for (y,a)=(0.05,0.65) and 
?= l. (b) Bifurcation diagram for (y,a)=(O.Ol,0.25) and 
?= l. We use the following steps to produce a bifurcation dia· 
gram. (i) Set p to the leftmost value Pmin in the figure. (In (a), 
we start with p=pmin = -0.05.) (ii) Set initial point (x 0 ,yo) to 
an arbitrary point. (iii) Iterate the map 10000 times without 
plotting anything, to eliminate transient behavior. (iv) Iterate 
the map another 300 times and plot the resulting 300 values of 
x. This is the x position of the points on the attractor. (v) In· 
crement p by a small amount (in this figure, p-+p+ ~),and 
set the new initial point (x 0 ,y0 ) to the last point produced in the 
last step, and return to step (iii). Continue until p reaches the 
rightmost value Pmar. in the figure (in (a), Pmax =0.10). (vi) If 
Pmaxis reached, go to step (v), except now decrease p by a small 
amount every time (here p-+p- ~) until Pmin is reached 
again. Step (vi) enables us to plot the x positions of coexisting 
attractors. The same steps are used to produce Figs. 3-5. The 
numbers of iterations in steps (iii) and (iv), and the amount of in
crement in steps (v) and (vi) are varied for each figure. 



solely by Eqs. (1). In terms of the system in Fig. 1, this 
period-1 attractor of the map corresponds to a forced 
periodic orbit where the mass never impacts the wall. 
Referring to Fig. 2(a) we see that for subcase (a), as p is 
decreased from positive values, we encounter windows of 
stable periodic behavior, and each such window is fol
lowed by a band of chaos and then a window of stable 
periodic behavior whose period is one higher than the 
period in the previous window. Asp decreases, there is 
an infinite cascade of such windows of ever decreasing 
width in p and ever increasing period, accumulating on 
p=O+. To make this phenomenology clearer we plot 
again in Fig. 3(a) the bifurcation diagram for the same 
values of ( r, a) as in Fig. 2(a), but now using the variables 
x /p vs lnp. We clearly see in this figure that there are six 
successive period addings with period 3 occurring on the 
right of the figure and period 9 occurring on the left. Nu
merically, we find no evidence of any stable periodic or
bits other than those in the reversed period adding cas
cade. Currently we believe that the p intervals between a 
period m window and a period m + 1 window are occu
pied entirely by a chaotic attractor. Now refer to Fig. 
2(b), which illustrates subcase (b). We see that the p in
tervals of stable period m and period m + 1 orbits over
lap, and chaotic attractors are not present in the cascade. 
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FIG. 3. (a) Bifurcation diagram for (y,a)=(0.05,0.65) and 
r = 1 for small positive p values. We plot X I p vs lnp to take a 
close look at the dymamics for small positive values of p. (b) Bi
furcation diagram for (y,a)=(0.01,0.25) and r= 1, X /p VS lnp. 

Again, this occurs as a reversed infinite period adding 
cascade. Figure 3(b) is a bifurcation diagram using the 
variables x I p vs lnp for the same ( r, a) as for Fig. 2(b). 
We see three successive period addings in this figure, with 
period 2 occurring at the right of the figure and period 5 
occurring at the left. We have derived a scaling rule for 
the widths of the periodic windows in terms of r and a, 
applicable to both subcases (a) and (b). The stable period
ic orbits in our period adding cascades are numerically 
observed to be of a very special type. In particular, if the 
period of the orbit is m, then the orbit spends one iterate 
in x > 0 and the other m -1 iterates in x < 0. We call 
such a periodic orbit maximal. In terms of the system in 
Fig. 1, a maximal periodic orbit of the map corresponds 
to a forced periodic orbit where the mass impacts with 
the wall exactly once per period. 

Case 2: Bifurcation from a stable period-I orbit in p < 0 
to a chaotic attractor as p increases through zero. An ex
ample of a bifurcation diagram for this case is shown in 
Fig. 4(a). We see that as soon asp is increased through 
zero (corresponding to the occurrence of impacts in Fig. 
1), chaos appears. Numerically, we find for Fig. 4(a) that 
there is no evidence of any window of stable periodic 
behavior throughout the entire range between p=O and 
the value of p at which the stable period-2 orbit first ap-
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FIG. 4. (a) Bifurcation diagram for (y,a)=(O.l5,1.0) and 
r = 1. The highest stable periodic orbit in p > 0 has period 
M 0 =2. (b) Bifurcation diagram for (y,a)=(0.15,0.95) and 
r = l. The highest stable periodic orbit in p > 0 has period 
M 0 =3. 



pears. In general, case 2 is defined as follows: as p in
creases from zero there is an interval of p values occupied 
entirely by a chaotic attractor, and this interval ter
minates at the appearance of a periodic orbit of some 
period M 0 • In Fig. 4(a), M 0 =2, but other values of the 
period M 0 occur depending on the values of r and a. 
Figure 4(b) shows a case where M 0 = 3. Indeed, we ob
served numerically that M 0 ~ oo as the boundary in 
( r, a) space between case 1 and case 2 is approached 
from the case 2 side. 

Case 3: Collision of an unstable period-M maximal or
bit (which is a regular saddle, and is created, together with 
a stable period-M maximal orbit, in a saddle-node bifurca
tion in p < 0) and the period-] orbit at p = 0. When plot
ting a bifurcation diagram, the regular saddle, of course, 
does not show up. One observes that the attractor is a 
stable period-1 orbit for p < 0 and it is a stable period-M 
maximal orbit (which is created in the saddle-node bifur
cation) for p > 0. Loosely speaking, we will say that there 
is a (discontinuous) "bifurcation" from a stable period-1 
orbit to a stable period-M maximal orbit as p increases 
through zero. To explain the basic phenomenology of 
this case, imagine that the orbit is initialized on the 
period-1 attractor for some negative value of p, and p is 
then increased very slowly with time. While p remains 
negative, the orbit tracks the location of the period-1 or
bit since the period-1 orbit is attracting for p < 0. How
ever, when p increases through zero, the period-1 orbit 
becomes unstable and the orbit goes to some other attrac
tor away from the period-1 orbit. We find that this other 
attractor is always a stable period-M maximal orbit, 
which is created in a saddle-node bifurcation in p < 0. 
The unstable period~M maximal orbit created in the same 
saddle-node bifurcation collides with the period-1 orbit at 
p=O. Furthermore, we :find that at p=O, depending on 
the parameters ( r, a), there exists either only one stable 
maximal periodic orbit or two stable maximal periodic 
orbits. When two stable maximal periodic orbits coexist, 
their periods differ by l. In the cases where two stable 
maximal orbits coexist, it is always the maximal orbit of 
lower period that the orbit goes to from the period-1 or
bit as p increases slowly from negative to positive values. 
We call this the "observed" maximal orbit and we say 
that the period-1 orbit "bifurcates" to this observed max
imal periodic orbit as p increases through zero. Figure 
5(a) shows a bifurcation diagram for ( r, a) in the region 
where only a single period-3 stable maximal orbit exists 
at p=O (this is typical of what happens for other periods). 
We see that the period-3 stable maximal orbit is born in a 
saddle-node bifurcation at some negative p value, 
p = p 3 < 0. (The location of the period-3 saddle is indicat
ed by the dashed lines in the figure.) For p 3 < p < 0, the 
stable period-1 orbit coexists with the pair of stable and 
unstable maximal period-3 orbits created at p=p3• As 
p~o-, the unstable period-3 maximal orbit collapses 
onto the period-1 orbit. The stable period-3 maximal or
bit continues to exist in p > 0 and the period-1 orbit be
comes a flip saddle in p > 0. In addition, we want to point 
out that the period-3 maximal saddle and the period-1 or
bit are involved in the local bifurcation that occurs at 
p=O, while the stable period-3 maximal orbit is not (since 

it is bounded away from the origin). On the other hand, 
for p > 0, the solutions will converge to the stable period-
3 maximal orbit that is created at p 3• Therefore, we call 
the bifurcation a "bifurcation" from a period-1 attractor 
to a period-3 attractor. Figure 5(b) shows a bifurcation 
diagram for ( r, a) in the region where period-3 and 
period-4 stable maximal orbits coexist at p=O. Now two 
stable maximal orbits are created in p < 0, the period 3 in 
a saddle-node bifurcation at p = p 3 < 0, and the period 4 in 
a saddle-node bifurcation at p=p4 <0, where p4 <p3• 

Both stable maximal orbits continue to exist asp becomes 
positive, but, as already discussed, only the period 3 will 
be observed to bifurcate from the period-one orbit as p in
creases through zero. Later on in Sec. VA, it will be ex
plained why this bifurcation to the lower period orbit is 
observed. 

It should be noted that in all three cases above, the 
stable period-1 orbit that exists in p < 0 becomes a flip 
saddle in p > 0. That is, suppose 11 and K are eigenvalues 
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FIG. 5. (a) Bifurcation diagram for ( y, a)= (0. 50, 0. 20) and 
~ = 1. A stable period-3 maximal orbit and an unstable period-
3 maximal orbit are simultaneously created in a saddle-mode bi
furcation at p = p 3 < 0. The dashed curves indicate the locations 
of the unstable period-3 orbit. The stable period-1 orbit and the 
stable period-3 orbit are on the solid curves. One can see that 
the unstable period-3 orbit collapses onto the stable period-1 or
bit atp=O. (b) Bifurcation diagram for (y,a)=(0.80,0.55) and 
-? = 1. A pair of stable and unstable period-3 maximal orbits 
are created in a saddle-node bifurcation at p = p3 < 0, and a pair 
of stable and unstable period-4 maximal orbits are created in a 
saddle-node bifurcation at p=p4 <0. The unstable periodic or
bits are not shown. 



of the Jacobian matrix at the period-one orbit; then both 
1771 < 1 and I Kl < 1 for p < 0 and 71 < -1 < K < 1 for p > 0. 

The region of ( r, a) space corresponding to systems 
with non-negative friction [JL ?:: 0 in Fig. 1 and v?:: 0 in 
Eq. (3)] is shown in Fig. 6, where the parameter values 
corresponding to the various cases in Figs. 2-5 are la
beled as points. (The region shown shaded is unphysical 
and corresponds to negative friction.) As shown subse
quently, the requirement of positive friction leads to the 
restrictions 0 < r < 1 and a < I + r. This region is divided 
into two parts by the parabolic curve K given by 
r =a2 /4. The part above curve K (i.e., regions I and II) 
corresponds to overdamping (i.e., the linear harmonic os
cillator that results from Fig. 1 with the wall removed is 
overdamped). This leads to real eigenvalues for the Jaco
bian matrix of the linear map in Eqs. (1). The part below 
curve K (i.e., region Ill) corresponds to underdamped 
systems [or systems that have complex conjugate eigen
values for the Jacobian matrix of the linear map in Eqs. 
(1)]. Systems with ( r ,a) in region I have grazing bifurca
tions from a period-1 attractor to a reversed infinite 
period adding cascade (case I). Systems with ( r, a) in re
gion II experience grazing bifurcations from a period-1 
attractor to a chaotic attractor (case 2). Regions I and II 
are separated by the straight line segment a= ( t )y + f 
extending downward and leftward from its tangency 
point with the curve Kat (y,a)=(~,f) (see Fig. 6). Case 
1, subcase (a) [Figs. 2(a) and 3(a)] occurs in the part of re
gion I above the dashed line; case 1, subcase (b) [Figs. 2(b) 
and 3(b)] occurs in the part of region I below the dashed 
line. The dashed line segment separating subcases (a) and 
(b) is given by a=4r+t, and extends downward and 
leftward from its point of tangency with the curve K at 
(y,a)=(-ft,fl. Underdamped systems (region Ill) have 
local grazing bifurcation from a period-1 attractor to a 
period-M attractor (case 3), as in Figs. 5. Recall that the 
actual bifurcation is a collision of an unstable period-M 
maximal orbit and the period-1 orbit when p traverses 
zero. Figure 7(a) shows regions of the ( r, a) space where 
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FIG. 6. Regions of the (y,a) parameter space (unshaded) 
corresponding to p~sical systems with positive friction. 

stable period-M maximal orbits exist at p=O for 
M = 3, 4, 5, 6 with -? = 1. As already noted, when two 
such orbits coexist, only the one of lower period will be 
observed to bifurcate from the period-1 orbit with slowly 
increasing p. Figure 7(b) [obtained by assigning the over
lap regions of the (y,a) space in Fig. 7(a) to the lower 
period] shows regions for which the observed bifurcating 
orbit has period M. Regions corresponding to higher M 
appear in a similar way and accumulate on the curve K as 
M- oo. It will become clear in Sees. IV and V that the 
delineation of the regions in Fig. 6 is valid for all 
0 ~ ?- ~ 1, while the results presented in Figs. 7 is ob
tained with?-= 1. 

Nordmark [9,10] has previously discussed scaling for 
case 1 and obtained case 2. The existence of the two sub
cases within case 1, like our treatment of the existence 
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FIG. 7. (a) Regions in the (y,a) parameter space correspond
ing to systems in which a stable period-M maximal orbit exists 
atp=O for ?=1. Here M=3,4,5,6. (b) Regions in the (y,a) 
parameter space obtained by incorporating the overlap regions 
in (a) into the regions of the lower period. For systems with 
( y ,a) in region M, the stable period-1 orbit is observed to bifur
cate to the stable period-M maximal orbit as p increases 
through zero. The boundary between the regions M and M + 1 
is given by Mf3=11'. 



and stability of maximal orbits for cases 1 and 2 (see Sec. 
IV), is new. All the results reported for case 3, and the 
delineation of the ( r, a ) parameter space corresponding 
to each case, are also new. 

In Sec. II, explicit relations between y, a, and the 
physical parameters of the model (Fig. 1) are obtained. 
Section III derives expressions for maximal periodic or
bits. Sections IV and V contain an analysis of the Nord
mark map for lp I << 1. This includes the existence and 
stability conditions of maximal periodic orbits for all 
( r, a) located in the physically allowed regions in Fig. 6. 
The analysis results in the division of ( r, a) space into re
gions corresponding to the different types of grazing bi
furcations in the system as explained above, as well as a 
scaling law for widths of the windows with high periods. 
Special attention is devoted to the limiting behavior as 
one approaches the boundaries in Fig. 6. This will, for 
example, show how an infinite period adding cascade re
sults as one approaches the boundary to region I from 
one of the other regions. In Sec. VI, we discuss the re
sults of this paper on grazing bifurcations in view of some 
general results on border-collision bifurcations obtained 
by Nusse and Yorke in [13]. Conclusions are presented 
in Sec. VII. 

II. RELATION BETWEEN PHYSICAL 
QUANTITIES AND PARAMETERS 

OF THE NORD MARK MAP 

In this section we study the relation between the pa
rameters r and a and the physical parameters of Fig. 1, 
namely the mass m, the spring constant k, the frequency 
of the external forcing {t), and the friction coefficient J.L· 
With these expressions we will be able to understand the 
physical meaning of results obtained from our analysis of 
the Nordmark map, which is in terms of y and a. 

For the physical system in Fig. 1, the equation of 
motion without impacts with the wall at 5, is 

d 2~ +v!!l_ +025=F0sin21Tf, (3) 
dT dT 

where we have introduced the quantities v=21TJ.L/m{t), 
0 2 =41T2k/m{t)2, and F0 =41T2F0 /m{t)2, and normalized 
time t so that the external forcing has frequency 21T and 
21Tt=(t)t. The mapping from T=n to T=n + 1 for integer 
n is a Poincare return map on the plane (5,~) with con
stant phase, and thus has the same set of eigenvalues as 
the Jacobian matrix of the linear map in Eqs. (1). Let P 
be a particular solution of the differential equation (3). 
Then the general solution of (3) is given by 

and 

where C1,C2 are real numbers and 

-v+v' v2-402 
St = 

2 

(4) 

From now on, we assume that ~-402*0. Then we also 
have the time derivative of 5 (i.e., velocity of the mass) 
from Eq. (4): 

. • slr s21 
5=P+C1s1e +C2s2e . 

Hence for T=n, the state vector in the (5,~) space is 

and for T=n + 1, we have 

Is< n + o j I 1 1 ] 
~(n+1) = St Sz 

where 

B= 
s e sl 

I 

[s<n l ] [P] =B ~(n) +(1-B) p , 

(5) 

The matrix B has the same set of eigenvalues as the Jaco
bian matrix 

(6) 

of the linear map in Eqs. (1). We denote the eigenvalues 
of matrices A and B by A. 1 and A.2 with I A.11 2: I A.21. From 
(5) we have 

s s 
At= e 1' Az = e 2 . (7) 

From (6) we have 

A. =a+v'~ 
I 2 (8) 

_a-v'~ 
Az- 2 (9) 

Combining these relations, we obtain explicit expressions 
of the parameters r and a in terms of the physical pa
rameters 

(10) 

a=A.t+A.z=e'l+/2=2e-vl2cosh [ v'v2~402]. 
(11) 

For positive friction v > 0, we have from (10) and (11) 
that 

O<r<1, O<a<1+r. (12) 

This also yields I A.11 < 1 by (8) and (9) and corresponds to 



the unshaded region of the ( y, a) space in Fig. 6. Points 
on the curve K in Fig. 6 satisfy the relation a 2-4y =0 
[or, equivalently, v-402=0 by Eqs. (7)-(11)] and corre
spond to systems with critical damping. Points above the 
curve K correspond to overdamped systems (i.e;, systems 
with real eigenvalues A1 and A2) and points below the 
curve K correspond to underdamped systems (i.e., sys
tems with complex conjugate eigenvalues A1 and A2 ). 

Also notice that y is related to the friction coefficient 
by Eq. (10). In the limit of large friction coefficient, 
v~ 00' we have r ~o. and the two dimensional map in 
Eqs. (1) and (2) reduces to the one dimensional map stud
ied in [11], 

{
axn +p for xn ::SO, 

Xn+I= -
-v'xn+P forxn>O. 

Case 1 [along with subcases (a) and (b)] and case 2 were 
found [ 11] to occur for this one dimensional map for the 
a value ranges evident by examining the a axis (i.e., 
r =0) in Fig. 6 [i.e., case l(a) occurs for t <a< f; case 
l(b) occurs for 0 <a< f; and case 2 occurs for t <a< 1 ]. 
In the opposite limit of zero dissipation (i.e., v=O and 
-?= 1 ), the map given by Eqs. (1) and (2) becomes area 
preserving. This case has been studied in [12]. 

III. MAXIMAL PERIODIC ORBITS 

We study the grazing bifurcations at p=O for Eqs. (1) 
and (2) in the physically admissible region of the ( r, a) 
parameter space as characterized in (12). For all these 
values of ( r, a), the system has a stable period-1 orbit for 
small negative p values, which becomes a flip saddle for 
small positive p values. 

Our numerical experiments indicate that only one type 
of stable periodic orbit is involved in the bifurcations at 
p=O. We call such orbits the maximal periodic orbits. 
Here a maximal periodic orbit is a periodic orbit for 
which exactly one point per period is in the region x > 0. 
Our strategy is to find the range of p values in which a 
period-m maximal orbit exists and the range of p values 
in which the same orbit is stable. 

Let ( x n ,y n ) represent a point on a trajectory of the 
N ordmark map. We use the notation 

(13) 

Then Eqs. ( 1) can be written as 

For a maximal orbit of period m with trajectory points 
~ 1.~2, ••• • ~m• we assume x 1 >0 so that x 2 ,x3 , ••• ,xm 
are negative and ~m +I =~1 • Thus 

~k+I= Ak-1~2+(1+ A+ A2+ ... + Ak-2)p, (14) 

where k = 2, 3, ... , m. The eigenvalues of A are given in 
Eqs. (8) and (9). Select, for example, the vectors 

and 

as eigenvectors corresponding to the eigenvalues A1 and 
A2, respectively. Write 

S= [ -~2 -
1Al] . (15) 

(16) 

and 

Hence, for every integer 1 ~ 0 we can write 

where 

(17) 

Since by Eqs. (2), 

-1-~+yl+p] 
~z- -r-?xi 

Eq. (14) can now be written as 

[Af-1 0 I -~ +yi +p 
~k+I=S o A~- 1 s-I -r-?xi 

+S'I'<k -2)g-Ip 

or 

[Af-l 0 ] -~ +yi 
s-~~k+I= o A~-~ s-I -r-?xi 

+'l'(k-l)g-Ip. (18) 



Now let then .k =So-k, and we have 

[xk l [ a~ll+a~2 l l 
Yk = -A2a~u-A1a~2 l 09) 

Using these notations, we rewrite Eq. (18) as follows: 

(20) 

This is the mapping from 

to 

[a~1~ 1 I 
a~2~1 

fork= 1,2, ... , m, where 

[an~] a (2) 
k +1 

is related to points on the period-m maximal orbit via Eq. (19). 

IV. ANALYSIS IN THE CASE 
OF REAL EIGENVALUES OF EQS. (1) 

In this section we assume that ( y, a) lie in the region where the eigenvalues At and A2 are real (i.e., in the unshaded 
region above curve Kin Fig. 6). 

By dividing both sides of (20) by Ar(k-u and using the notation &'kl=a/Ar(k-ll, with a standing for any variable, 
Eq. (20) takes the form 

a_(l)(k) 
k+! 

a-(2)(k) 
k +I 

0 

0 

r ~: r-1 
(21) 

From Eqs. (8) and (9), we have 0 < A2 < A1 < 1 for points that are not on the curve K. Thus (A2/A1 )k and (A1 )k both ap
proach zero ask goes to infinity. Also in the expression of\P'k -I l [cf. Eq. (17)], 

1-Ak 1 
tP(k-1)=1+A·+A2+ ... +Ak-1= __ 1 --+-- k--+ 00 ' 

I I I I 1-Ai 1-Ai' 

where i = 1,2. Hence for large k Eq. (21) reduces to 

0 

(22) 
0 

or, neglecting small terms fork>> 1, -(2)(k)_ -A2 p 
ak+l- (At-A2)(1-A2) AI(k-Il 

(24) 

By Eq. (19), Eqs. (23) and (24) give 

A -- ~kl x(k) = - 1 • / x(k) + _.£:.p __ 
k+l At-A2 v t 1-a+y 

(23) (25) 



For the period-m maximal orbit we have x~m~t =ximl, 
then Eq. (25) can be solved, yielding (for p 2: 0) 

Vx\ml = At Vl+4Rm-l 
At-A2 2 

(26) 

where 

R = _._if_m_l_ [ At ~tA2 ] 2 
m 1-a+r A 

Notice that Rm and p always have the same signs; see 
also (12). 

Equation (25) also indicates that for large m, the 
period-m maximal orbit is stable if 

I d -(m) I ' Xm+t At 1 - < 1 
dx\ml - At- 'A2 2-v'iF (27) 

Substituting Eq. (26) for V ximl into (27), we find that 
the stability condition (27) is equivalent to the inequality 

P>pst ~l_ [ At ]2(1-A )(1-A )}._2(m-ll (28) 
m 4 'At - A.2 t 2 t . 

Meanwhile, multiplying both sides of Eq. (25) by 
Aj<k -ll yields 

- At k-14 /- P 
xk+t--'At-'A2At vxt+l-a+r' 

which indicates that x 2 <x 3 < · · · <xm. Hence a 
period-m maximal orbit can exist only if xm < 0, or 
equivalently, by Eqs. (2), Ym+ 1 =-y~xm>O. By 
Eq.(19), for large m, the existence condition for a period
m maximal orbit is 

Ym+l =-A. O'(l)(m)_A 0'(2)(m)>O 
A.j(m-1) 2 m+l I m+l • 

Using the results from Eqs. (19), (23), (24), and (26) to 
evaluate the right hand side of the previous equation in 
terms of A1, A.2, and p, we find that the existence condi
tion above reduces to 

ex (l-A.l)2(1-A.2) 2(m-1) 
p<pm~ 2 At · 

(AI-'}..2) 
(29) 

The expressions (28) and (29) are key results for our 
subsequent discussions. We see that a period-m maximal 
orbit exists for p < p";, and is stable for p > p";,. Let I m 

denote the interval [p";, ,p"; ]. The stable period-m win
dow appears only if the interval I m exists, i.e., if p"; > p";,. 
From the expressions of p";, and p"; in (28) and (29), we 
see that the interval Im shifts to the left (but never 
reaches zero) for larger values of m. Thus windows of 
high period may appear as p---+0+. This is in agreement 
with the phenomena seen in Figs. 2-4. 

There are two distinct situations: case 1 in which Im 
exists for all large m, and case 2 in which for every in
teger m > M 0 (for some threshold M 0 ) the interval I m 

does not exist. The first case implies bifurcations from 
the period-1 attractor in p < 0 to a reversed infinite period 

adding cascade in p > 0, and the second case implies bi
furcations from the period-1 attractor in p < 0 to a chaot
ic attractor in p > 0. We discuss these two cases separate
ly as follows. 

A. Case 1: bifurcation from a period-1 attractor 
to a reversed infinite period adding cascade 

The interval I m exists for all large m if p"; > p";, for all 
large m. Then for any period m, there is an interval Im 
for which the period-m window appears if p E Im. Hence 
there is a reversed infinite cascade of period adding win
dows as p---+0+. Using the expressions of p";, and p"; in 
(28) and (29), we find that p"; > p";, for all m sufficiently 
large if At < }. By Eq. (8) this gives the upper border of 
region I as shown in Fig. 6, i.e., the straight line segment, 

a=tr+}' (30) 

extending leftward and downward from its point of 
tangency with the curve K, ( r, a)= ( f, t ). 

Furthermore, from (28) and (29), we can deduce a scal
ing law for the window widths as p---+0+. In particular, 

IIm+tl =A.2 (31) 
lim I 1 ' 

where I I m I = p";-p";, (assuming p"; > p";, for all large m) 
is the width of the period-m window. This scaling agrees 
accurately with our numerical results, and it applies (for 
large m) to all systems with ( y, a) in region I in Fig. 6. 
This scaling law was also obtained in [9]. 

As indicated in Figs. 2 and 3, there are two different 
types of reversed cascades of period adding windows. 
For the first type, the system is chaotic between succes
sive periodic windows in the bifurcation diagram, as in 
Figs. 2(a) and 3(a). Numerical experiments show no evi
dence of stable periodic orbits for the p values between 
the successive maximal periodic windows. For the 
second type, successive periodic windows overlap, and 
the system presumably does not have chaotic attractors, 
as in Figs. 2(b) and 3(b). The first type corresponds to the 
case in which the neighboring intervals I m and I m + 1 have 
no intersection, as schematically shown in Fig. 8(a). The 
system is presumably chaotic for p"; + 1 < p < p~. The 
second type corresponds to the case in which the neigh
boring intervals I m and I m + 1 overlap for large m, as 
schematically illustrated in Fig. 8(b). The period m and 
m + 1 orbits coexist for p~ <p <p"; +I• and we call this 
hysteresis. The border between these two types of cas
cades is p";, =p"; +I• which by (28) and (29) reduces to 
A.1 = t· By Eq. (8) we find that this border is given by the 
segment of the line 

a=4r+t, (32) 

extending leftward and downward from its point of 
tangency with the curve K, ( y, a)= ( i6, t ). This is the 
dashed line in region I in Fig. 6. Systems with (y,a) fal
ling in the part of region I above the dashed line have 
p"; + 1 < p~ for large m, and the grazing bifurcation at 
p=O is from a stable period-1 orbit to a reversed infinite 



(a} 

p 
0 

(b) 

p 
0 

FIG. 8. (a) Schematic illustration of the situation in which in
tervals Im+ 1 and Jm have no intersection. The system is 
presumably chaotic for p"; + 1 < p < p~. (b) Schematic illustra
tion of the situation in which intervals Im + 1 and Im overlap. 
Period m + 1 and period m orbits coexist for p~ < p < p"; + 1• 

This is called hysteresis. 

period adding cascade, with chaos between successive 
windows. Systems with ( y, a) falling in the part of region 
I below the dashed line have p'::, < p:': + 1 for large m, and 
the experience grazing bifurcations from a stable period- I 
orbit to a reversed infinite period adding cascade with 
hysteresis instead of chaos between successive windows. 

B. Case 2: bifurcation from a period-1 attractor 
to a chaotic attractor 

Assume there exists a smallest integer M 0 such that I m 

does not exist for m > M 0 • In this case, the reversed 
period adding phenomenon in the bifurcation diagram 
stops after period M 0 when the parameter p is decreased. 
The period of the last window in the bifurcation diagram 
(which is period M 0 ) is the largest value of m satisfying 
p:': > p'::,. The dynamics is presumably chaotic for all pos
itive p values to the left of that window. Our numerical 
experiments show no evidence of periodic windows for p 
values between zero and that window. Thus the bifurca
tion at p=O is from a stable period- I orbit to chaos as in 
Figs. 4. This type of grazing bifurcation from a period-1 
attractor to a chaotic attractor occur for systems satisfy
ing p:': <p'::, for large m, which, by (28) and (29), reduces 
to A.1 >f. By Eq. (8) this gives the lower border of region 

a_(l)(k) 
k+! 

,..(2)(k) 
u k+! 

II as shown in Fig. 6, i.e., the border between regions I 
and II. 

V. ANALYSIS FOR CASE 3 

The matrix A has complex conjugate eigenvalues if 
( y, a) falls below the curve K in Fig. 6. Let 

A.1 =rei0=r(cosO+i sinO), 

A.2 =re -;o=r(cosO-i sinO) , 

where 

r=Vy, O=sin-1 [ 4y4~a2 r/2 (33) 

Note that 8=0 on the curve K (given by y =a2 /4). 
In the region below the curve K in Fig. 6, we observe 

grazing bifurcations from a stable period-1 orbit to a 
stable period-M maximal orbit as p increases through 
zero (as described in case 3 in Sec. 1). Recall that the ac
tual bifurcation is a collision of an unstable period-M 
maximal orbit and the period-1 orbit. For ( r, a) values 
below but very close to the curve K, the grazing bifurca
tions involve orbits with high periods. In particular, 
M--+ oo as 8--+0 (i.e., as the curve K is approached from 
below). When e is not small (i.e., when M is not large), 
we concentrate only on the local bifurcation that occurs 
at x =y =0 as p--+0-; while for small e (i.e., near the 
curve K) we are able to do more. Asp increases from 
zero, the grazing bifurcation to the period-M maximal or
bit is either followed by chaos or by a reversed period 
adding cascade starting with a period M -I window. 
For large M, we thus also investigate the occurrence and 
scaling properties of stable maximal periodic orbits in 
p > 0. This allows us to obtain an understanding of how 
phenomena below the curve K match on to those above 
the curve K (in particular, how the bifurcation from a 
stable period-1 orbit to a stable period-M maximal orbit 
of case 3 goes over to the bifurcation to the reversed 
infinite period adding cascade of case 1 and the interval 
of chaos extending from p=O of case 2 as the curve K is 
crossed from below.) 

A. When 6 is not necessarily small 

Our goal in this section is to find the regions under the 
curve Kin Fig. 6 corresponding to different values of the 
integer M. In this case of complex conjugate eigenvalues, 
we divide both sides of Eq. (20) by r2<k -I l instead of by 
A.i<k-u. This time we use the notation a<kl=a/r2<k-n, 
where a stands for any variable. Thus Eq. (20) now takes 
the form 

(34) 



Since the integer M need not be large, we cannot make 
the approximation rM- 1-o. Thus the terms of order 
rk-l may not be dropped, and the quantity 
f/!~k-ll=1+A.;+A.r+ · · · +A.~- 1 (where i=1,2) in the 
expression w<k-1) [cf. Eq. (17)] may not be approximated 
by 1 /( 1 -A;). Then, substituting Eq. (34) into Eq. (19), 
we find that for a period-m maximal orbit with orbit 
points (x 1,y 1 ),(x 2 ,y2 ), ••• ,(xm,Yml where x 1 >0 and 
x 2 ,x 3, ••• ,xm <0, we have 

x<kl =- sinkO -Vx\kl + sinkO ( <k-UI2)y<kl 
k + 1 sinO 1 sinO y 1 

_ sin( k -1 )0 ( kl2-r2)x<kl 
sinO r I 

+ [ A.lf/!~k-I)_A.2f/!~k-1) }t~k), 
A. 1-A.2 

ylkl = vr sin(k -1 )0 -Vx'P 
k +! sinO 1 

_ sin(k -1)0 ( k/2)rr<kl 
sinO r J' I 

+ sin(k -2)0 ( <k+llll-r2>x<kl 
sinO r I 

I .t.<k -I)_ .t.<k -I) I 
'1'1 '1'2 .,.J.k) 

- A. -A. rP , 
I 2 

(35) 

(36) 

where again k = 1,2, ... , m. For the period-m maximal 
orbit we set x~ml =x~m~ 1 and y\ml =y~m~ 1 in Eqs. (35) and 
(36); then we have 

cmx<ml+~ /x<ml +Cmp.,.i.ml=O 
X 1 v I p , (37) 

where 

em= sinO + sin(m -1 )0 ml2-r2+ sin(m -1 )0 mt2 
X sinmO sinmO r sinmO r 

+ sin2( m - 1 )0 m-r2 sin( m -2 )0 m-r2 
sinO sinm 0 r sinO r ' (38) 

(39) 

Regarding (37) as a quadratic equation for ~, its 
two solutions are 

-- -1 +~ /j_ -4cmcmp.,.J.ml 
~ /.,.(m) _ V x p 
VAll -

2C;' 
(40) 

~ /.,.<ml _ -l-V1-4C;'C;'tfm> 
v ""'12 -

2C;' 
(41) 

Notice that the right hand sides of the solutions [Eqs. (40) 
and (41)] are required to be real and positive. 

For the part of' ( r ,a) parameter space in Fig. 6, nu
merical computations show that the product c:c; is 

nonpositive. With this in mind, we discuss the two kinds 
of period-m maximal orbits depending on the sign of the 
quantity C;' as follows: 

Case (i): Cx"' < 0 

In this case, both solutions x\';'l and x~2l can exist. 
The expressions for ~ and ~ in (40) and (41) 
indicate that a pair of period-m orbits, corresponding to 
x~';'l and x\2l, respectively, are created in a saddle-node 
bifurcation at some negative p value satisfying 

l-4C;'C;'tfm>=o. (42) 

The orbit corresponding to x\';'l only exists for p <0 
[since the right hand side of Eq. (40) is negative for p > 0] 
and is numerically observed to always be unstable. In 
particular, it collapses onto the origin as p-0-. On the 
other hand, the orbit corresponding to x\2l continues to 
exist up to some positive p value and is observed to 
remain stable. Figure 5(a) is an example of this scenario. 
We denote the period of the pair of maximal orbits creat
ed in p < 0 by M, and the negative p value satisfying Eq. 
(42) form =Mby PM· 

Case {ii): Cx"' > 0 

In this case the orbits corresponding to xi';'> can exist 
only if p > 0 (so that ~ is real and positive) and are 
observed to be stable only for positive p values bounded 
away from zero. The solution x~2l does not exist in this 
case. Later, in Sec. V B, we consider the periodic orbits 
in p > 0 that correspond to V x\';'l in the limit that the 
curve K is approached from below. 

From cases (i) and (ii) we see that a pair of stable and 
unstable period-M maximal orbits are created in p < 0 in 
systems with ( r, a) satisfying C~ < 0 and xl!'1 < 0 for 
1 ~ k ~M -1 in Eq. (35) for p=O. To delineate the re
gions of ( r, a) space satisfying these conditions for fixed 
M with -r2 = 1, we take a grid in the region below the 
curve K in Fig. 6 and numerically determine from Eqs. 
(35)-(41) the regions yielding C~ <0 and xl!l1 <0 for 
1 ~ k ~ M -1 with p =0 and -r2 = 1. Since all points in 
the region corresponding to M are required to yield c: < 0, and since Eq. (38) indicates that c:- + oo for 
sinMO-o+ while c~--oo for sinMO-o-, the 
upper boundary of the region in the ( r, a) parameter 
space corresponding to M is given by 

M0=1r (43) 

for all 0 ::=:: -r2 ::=:: 1. Results for M = 3, 4, 5, 6 are shown in 
Fig. 7(a). (The conditions are never satisfied forM= 1,2.) 
We find that the regions corresponding to M and M + 1 
overlap. For example, in Fig. 7(a) we see that between 
the regions where only M =3 occurs and only M =4 
occurs, there is a region where both M =3 and M =4 
occur. For systems with (y,a) located in the overlap of 
the regions corresponding to M and M + 1, a pair of 
period-M maximal orbits are created in a saddle-node bi
furcation at p=pM <0 and a pair of period M + 1 maxi
mal orbits are created in a saddle-node bifurcation at 



p=pM+I <0, where PM+! <PM· Figure 5(b) is an exam
ple of this forM= 3. 

Substituting the expression of () in terms of r and a 
given in (33) into Eq. (43), we have 

a2 
r= . 

4[ l-sin2( 1T /M)] 
(44) 

Thus as M ___,. oo, the regions of successively larger M ac
cumulate on the curve K (given by y =a2 /4). 

For any fixed pair ( y ,a) in region III [so ( y ,a) is 
below the curve K], we make the following three claims. 

Claim 1. At most two pairs of maximal orbits, with 
periods differing by 1, can be created at negative p values. 
That is, at most two regions, corresponding to M and 
M + 1, respectively, can have overlap. 

Claim 2. When the parameters (y,a) are in the region 
where only one maximal stable periodic orbit is created in 
p < 0, that orbit is the one that will be observed to bifur
cate from the stable period-1 orbit asp increases slowly 
through zero. 

To explain what we mean by "observed" in Claim 2, 
assume that p is initially negative and that the orbit is ini
tially on the period-1 orbit. Now imagine that p is al
lowed to drift slowly upward with time. For p < 0 the or
bit will track the location of the period-1 orbit because 
the period-1 orbit is stable. However, when p becomes 
positive, the period-1 orbit becomes unstable, and the or
bit will go to some other attractor. Claim 2 is that the 
other attractor to which the orbit goes is always the 
stable maximal periodic orbit. 

Claim 3. When the parameters (y,a) are in an overlap 
region such that maximal stable orbits of period M and 
M + 1 are both created in p < 0, the lower period stable 
maximal orbit (i.e., period M) is the one that will be ob
served to "bifurcate" from the stable period-1 orbit asp 
increases slowly through zero. 

Thus, Claims 2 and 3 are that the regions of the ( r, a) 
parameter space corresponding to observed bifurcations 
to a stable period-M maximal orbit are as shown in Fig. 
7(b), where Fig. 7(b) is obtained from Fig. 7(a) by incor
porating overlap regions into the regions of lower period. 

Derivation supporting Claim 1. Let f/> 1,f/>2, ••• ,f/>M be 
points on a period-M maximal orbit, assuming x 1 > 0 so 
that x 2,x3 , ... ,xM<O and 4>M+J=tf> 1• Then for 
k=2,3, ... ,M we have 4>k+I=Af/>k+p by Eqs. (1), 
where A is defined in Eq. (6). For p=O, 4>k+ 1=Atf>k· 
We have seen that the matrix A can be written as 

where Sand s- 1 are as in Eqs. (15) and (16). The matrix 

is similar to the rotation matrix 

[
cos() -sin() J 
sin() cos() · 

That is, there exists an invertible matrix P such that 

[e;e 0 ]= [cos() -sin()) _ 1 
0 e -,e p sin() cosO p · 

Hence at p=O, 

(
cos() 

tf>k +I= Atf>k =rSP sin() 
-sin()] p-Is-If/> 
cos() k 

Multiplying both sides by p-Is -I, we have 

-1 -1 - [cos() -sin() l -I -1 
(P S 4>k+I)-r sin() cos() (P S 4>k> · 

Thus the points f/> 1,f/>2, ..• ,tf>M can be linearly 
transformed to points f/>;,f/>;, ... , tf>M (where 
tf>/c=P- 1S- 1tf>k, k=l,2, ... ,M) that are on a circular 
arc with an angle () between two successive points (except 
the one between 4>; and 4>; ), as schematically drawn for 
M = 5 in Fig. 9. For a maximal periodic orbit the points 
f/>;,f/>3, ... , 4>M are in the left half plane, while the point 
tf>i=tf>M+t is the only point in the right half plane. Write 
(31 for the angle between the half line through 0 and 4>2 
and the positive y axis; and write (32 for the angle between 
the half line through 0 and 4>M and the negative y axis 
(see Fig. 9 for M=5). Now, let 0<(31 <()and 0<(32 <fJ 
be given. This implies the following. If (31 +(32 ~ (), then 
in addition to the stable maximal period-M orbit the 
Nordmark map may have a stable maximal periodic orbit 
of period M - 1 but no other stable maximal periodic or
bit. Furthermore, if (31 + (32 2:: (), then in addition to the 
stable maximal period-M orbit the Nordmark map may 
have a stable maximal periodic orbit of period M + 1 but 
no other stable maximal periodic orbit. Therefore, the 
Nordmark map has at most two maximal periodic orbits, 
with periods differing by 1 and coexisting at p = 0. Hence 

y 

i 

FIG. 9. Schematic positions of (transformed) points or a 
period-5 maximal orbit. 



at most two pairs of maximal orbits can be created at 
negative p values. 

Support for Claims 2 and 3. From now on, U 0 denotes 
a suitable region that includes the origin in its interior. 
We observed numerically that after its birth at PM <0, 
the stable period-M maximal orbit and its basin of attrac
tion (.13M) are embedded in a region U 0 • This region U 0 

was originally occupied by the basin 131 of the period-1 
orbit. In particular, for PM <p <0, 13M and 131 share the 
region U0 that was occupied entirely by 131 before the 
birth of 13M. (Here, if two maximal orbits coexist, M 
denotes the lower of the two periods.) As p increases to
ward zero, the area occupied by 13M increases and the 
area occupied by 131 diminishes. Roughly speaking, as 
p--.0- the region that was originally occupied by 131 is 
gradually taken over by 13M. In particular, 131 shrinks to 
a finite number of curves emanating from the origin as 
p--.0-. Meanwhile, the region U0 occupied by 13M and 
131 combined, as well as the basins of attraction of other 
stable periodic orbits, are not significantly altered. A re
gion U that includes U 0 may also have points that belong 
to basins of stable nonmaximal periodic orbits. As an ex
ample illustrating Claim 3, the point (y,a)=(0.9,0.5) 
with ,-2= 1 falls in the overlap of regions M =3 and 
M =4 in Fig. 7(a). A pair of period-3 maximal orbits are 
created in a saddle-node bifurcation at p = p3 and a pair 
of period-4 maximal orbits are created in a saddle-node 
bifurcation at p=p4, where p4 <p3 <0. A stable period-7 
orbit (which is not a maximal orbit) also exists. Figures 
10 plot basins of different attractors for the system with 
(y,a)=(0.9,0.5) and ,-2=1: the grey regions are occu
pied by 134 and the black regions are occupied by 137• In 
Fig. lO(a), p= -0.02 <p3, the period-3 maximal orbits 
are not yet born, and the white region is occupied by 131• 

The point marked with a + sign in Fig. lO(a) is the posi
tion of the stable period-1 orbit. In Figs. 10(b) and lO(c) 
[where Fig. lO(c) is an enlargement of the small box in 
Fig. lO(b)], p=O, the period-1 orbit has just lost its stabil
ity, and the white region is occupied by 2 3• The three 
points marked with + signs in Figs. lO(b) and lO(c) are 
the positions of the stable period-3 maximal orbit. No
tice that in Figs. lO(b) and lO(c), the origin (i.e., the posi
tion of the period-1 orbit at p=O) is embedded in 133 and 
is bounded away from 137 and 2 4• Therefore, if p in
creases slightly, trajectories that start near the origin will 
converge to the stable period-3 maximal orbit. This ex
plains why one observes a bifurcation from a fixed point 
attractor to a period-3 attractor when p traverses zero. 
This pattern of distribution of 131, 13M, and 2M+! (M =3 
in Figs. 10) is typical of systems with (y,a) in the regions 
where both period M and period M + 1 maximal orbits 
are born at negative p values. Therefore only the stable 
period-M maximal orbit is observed to bifurcate from the 
period-one orbit as p increases through zero for systems 
with ( y, a) located in the overlap of regions M and 
M+l. 

Figures 11(a)-11 (c) are similar plots of basins of attrac
tion as Figs. 10(a)-10(c). (Both Figs. 10 and 11 are pro
duced with the DYNAMICS software [14].) In Figs. 
11(a)-ll(c), ,-l=t and p=O with (y,a)=(0.9,0.6) in 

(a) 4 
(y,a)=(0.9,0.5), p=-0.02 

y 

-4 
-4 4 

X 

(b) 4 
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FIG. 10. Basins of attraction for the Nordmark map with 
(y,a)=(0.9,0.5), r=l, and (a) p=-0.02, (b) p=O, (c) p=O. 
Figure lO(c) is an enlargement of the small box in Fig. lO(b). 
The grey regions in (a)-(c) are occupied by the basin of the 
stable period-4 maximal orbit; the black regions in (a)-(c) are 
occupied by the basin of the stable period-7 nonmaximal orbit. 
The white regions in (a) is the basin of the stable period-1 orbit. 
The white regions in (b) and (c) are the basin of the stable 
period-3 maximal orbit. 



Fig. 11(a), (y,a)=(0.9,0.7) in Fig. 1l(b), and 
(y,a)=(0.9,0.8) in Fig. ll(c). The points (y,a) in Figs. 
1l(a)-1l(c) all fall in the overlap of regions M = 3 and 
M =4 in Fig. 7(a), so both stable period-3 and period-4 
maximal orbits exist at p=O. Comparing Fig. lO(b), Fig. 
ll(a), Fig. 11(b), and Fig. ll(c), we see that at p=O the 
territories occupied by .233 and .237 combined are reduced 
and the area of .233 decreases to zero as ( r, a) moves up
wards approaching the upper boundary of the overlap of 
the regions M = 3 and M =4 in Fig. 7(a). Thus we see 
how M = 4 supplants M = 3 as the stable maximal orbit 
observed to bifurcate from the period-1 orbit as p in
creases through zero. Also notice that .237 no longer ex
ists in Figs. ll(b) and ll(c). [Increasing a to 1.0 we find 
that the point (y,a)=(0.9,1.0) is in the M=4 region of 
Fig. 7(a) (i.e., it falls above the overlap of the M = 3 and 
M = 4 regions). Then only a pair of period-4 maximal or
bits are created in p < 0, and almost every point in the 
phase space belongs to .134 at p=O.] 

Therefore we conclude that in the complex eigenvalue 
case, the maximal orbit that is observed to bifurcate from 
the period-1 orbit as p increases through zero has period 
M if (y,a) falls between the curves Me=rr and 
(M -1 )e=rr [cf. Eq. (43)], which includes the region 
where periods M and M + 1 coexist, as shown in Figs. 7. 

B. Limit of small (} 

From the analysis in Sec. VA, we see that the maximal 
orbit observed to bifurcate from the period-1 orbit at p=O 
has period 

M = Int [ ; l + 1 , (45) 

where Int means integer part of. Thus M---+ oo as e-o 
[where e is defined in (33)]. Therefore, in the limit of 
small e, terms of order ,M-I approach zero and the 
quantity t/!~M -o= 1 +A;+ A.f + · · · +A.:' -I (where 
i = 1, 2) can now be approximated by 1 /(1- A;). Then 
Eqs. (35) and (36) in lowest order reduce to 

. ke .,.(k) 
x(k) =-~v x(k) + p (46) 

k+l sine 1 1-a+r 

y<kl =vrsin(k-Uevx<kl _ r .,.(k) (47> 
k +I y sine I 1 -a+ Y p ' 

where k = 1,2, ... , m. The expressions of C;' and C'(: in 
Eqs. (38) and (39) in lowest order reduce to 

em= -sine 
P (1-a+y)sinme 

(48) 

Hence the sign of C;' is determined by the sign of sinm e. 
The solutions in Eqs. (40) and (41) in lowest order reduce 
to 

Vx\':') = -sinme+sinmey1+4Qm/sin2me 
2sine 

_ m _ -sinme-sinmev'1+4Qm/sin2me 
Y x ii. - 2 sinO 

where 

(49) 

(50) 
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FIG. 11. Basins of attraction for the Nordmark map with 
?= 1, p=O, and (a) (y,a)=(0.9,0.6). The grey region is occu
pied by the basin of the stable period-4 maximal orbit, the black 
region by the basin of the stable period-7 nonmaximal orbit, and 
the white region by the basin of the stable period-3 maximal or
bit. (b) (y,a)=(0.9,0.7). The gray region is occupied by the 
basin of the stable period-4 maximal orbit, and the white region 
by the basin of the stable period-3 maximal orbit. The stable 
period-7 nonmaximal orbit no longer exists at this parameter 
value. (c) (y,a)=(0.9,0.8). For clarity, now the white region is 
the basin of the table period-4 maximal orbit, and the black re
gion is the basin of the stable period-3 maximal orbit. The 
stable period-7 orbit does not exist for this parameter value. 



sin26 p 
(1-a+y) r2<m-ll 

[Notice that Qm and p always have the same signs; see 
also (12).] 

Using the approximated expressions above, we reexam
ine the two kinds of period-m maximal orbits depending 
on the sign of C;' (as in Sec. VA). 

Case (i): C""' < 0 

By Eq. (48), in this case sinm () < 0 and m = M, where 
M is defined in Eq. (45). Then we have from Eqs. (49) and 
(50) that 

_ m _ -sinMO-Vsin2M0+4QM 
Y x (i-· - 2 sinO (51) 

(52) 

According to Eq. (44), regions of successively higher Min 
Figs. 7 approach the curve K (i.e., the parabola 
r =a2 /4). The approximated equation (46) indicates that 
for large M only the period-M maximal orbit can exist at 
p=O, so that xjf~ 1 >0 and Xk~\ <0 for 1 ~k ~M-1. 
(The phenomenon of the coexistence of two stable maxi
mal orbits of periods M and M + 1 at p=O is lost due to 
the approximations made for large M.) 

Moreover, with the approximated expressions (46), 
(51), and (52), we can easily show that for l~M the 
maximal period-M orbit corresponding to V xW> is al
ways unstable and the maximal period-M orbit corre
sponding to V x\fl is always stable (which is observed 
numerically in Sec. VA). In particular, since sinM () < 0, 

[ dxjf~ 1 ] -sinMO 
dx(M) x!M) = 2 , ()- /;;fMi 

1 11 sm Y XiT 

= -sinM() ___ ___;;;:;:;==:===== > 1 ' 
-sinMO-V sin2M0+4QM 

for all negative p values (since x \~l exists only for p < 0) 
satisfying sin2M0+4QM > 0, and 

[ dx if-l. 1 } - sinM () 
0 < dx\Ml x\~> = 2 sinO~ 

-sinMO < 1 
-sinMO+V sin2M0+4QM 

for all p value." satisfying sin 2M()+ 4QM > 0. 
Notice, however, that for o-o, i.e., when (y,a) ap

proaches the curve K from below in Fig. 6, we have 
c:'-o and c: -o. Then Eq. (37) implies that the 
period-M maximal orbits shrink to the origin, and thus 
do not exist. 

Case (ii): C:' > 0 

By Eq. (48), in this case sinmO>O; hence m <M, 
where M is defined by Eq. (45). Then we have from Eqs. 
(49) and (50) that 

-sinmO+V sin2m0+4Qm Virfi = ____ __.:.... ____ ..=.::::.. 

2 sinO 
(53) 

A /{m) _ -sinmO-V sin2m0+4Qm 
v x 12 - 2 sin() (54) 

As discussed in Sec. VA, only the solution ~ is ad
missible (i.e., real and positive), and the corresponding 
periodic orbit only exists for positive p values. With the 
simplified expressions in this section, we are able to ex
plicitly derive the stability and existence conditions for 
period-m maximal orbits corresponding to V x\'fl for 
large m (without creating outrageously messy expres
sions). Thus we are able to obtain results on the oc
currence and scaling properties of the stable maximal or
bits with high periods in p > 0. 

A maximal orbit with period m < M is stable if, by Eqs. 
(46) and (53), 

0> m [ dx<m_;.1 ] -sinmO 

dx\m> x\';') = 2 sinoVirfl 

------~si~n=m~()======~ 
-sinmO+V sin2m0+4Q;,. 

> -1' 

which can be reduced to the inequality 

t sin2m0 - 1 p>{f ~2(1-a+r> rm >0 (55) 
m 4 sin2() ' 

where fi! is the stability threshold in the complex case. 
On the other hand, a maximal orbit with period m can 

exist if x 2 ,x3 , ••• ,xm <0. Equation (46) indicates that 
Xm =max{xk: 2~k ~m} for large m. Hence a maximal 
orbit with period m can exist if Xm < 0, which means that 
Ym + 1 = -rxm > 0 by Eqs. (1). Using Eqs. (47) and (53), 
this reduces to 

<~x- [ 1-a+r sin2(m -1)() 
p Pm - r sin20 

1-a+r sin(m -1)()sinm0 l m-1 

Vr sin20 r ' 

(56) 

where If:. is the existence threshold in the complex case. 
Thus a stable period-m maximal orbit exists in the pin

terval J m = [{f~ ,{f;.] if {f;. > {f~. Using the expressions of 
ps~ and {f;. in (55) and (56), the condition {f;. >If~ yields 

4 [ sin(m -1)() ]2 _ 4 [ () sinO ]2 
r<- =- oos -

9 sinm () 9 tanm () 
(57) 

Notice that for o-o, (57) is satisfied for all large m if 
r < 4/9. Thus for r < f, as p increases from zero, the 
grazing bifurcation from the stable period-1 orbit to the 
stable period-M maximal orbit is followed by a reversed 
period adding cascade starting with a period M - 1 win
dow. The stable periodic orbits in this cascade are the 
maximal periodic orbits corresponding to x\'fl. Hence, 
for ()=0, the maximal orbits corresponding to xi'f> form 



a reversed infinite period adding cascade in p > 0. This 
corresponds to points on the curve K in Fig. 6 with y < f, 
which is the right hand side border of region I. More
over, the neighboring intervals J m and J m + 1 do not over
lap if {J',: + 1 < p~, which is similar to the schematic illus
tration in Fig. 8(a), while the intervals J m and J m + 1 over
lap if {J'; + 1 > p~, which is similar to the schematic illus
tration in Fig. 8(b). By the expressions of p~ and if:. in 
(55) and (56), the condition if:.+ 1 > p~ yields 

1 sinm () 1 8 sin() l 12 l 12 
y < 16 sin(m + l)(J = 16 cos - tan(m + l)(J 

(58) 

For 8-o, (58) is satisfied for all large m if y < -i6· Then 
there is an integer N (dependent on y) such that all win
dows of periods m > N overlap with each other. This 
corresponds to points on the curve K in Fig. 6 with 
y < -i6• which is the right hand side border of region l(b). 
Similarly, in the limit of 8-o, (57) and the opposite of 
(58) combined correspond to the right hand side border 
of region l(a), where the system is chaotic between suc
cessive windows with high periods; while the opposite of 
(57) corresponds to the right hand side border of region 
II, where the system is chaotic in an interval in p > 0 ex
tending from zero (recall that the period-M maximal or
bits collapse to the origin as e-o). 

The expressions (55) and (56) also give a scaling (for 
large m) of the window widths IJ m I= {J';-p~ in the bi
furcation diagram if (57) is satisfied. To simplify the ex
pression, we identify the quantity sin(m -1 )8 with 
sinm (J in (56), and then we have 

l~m+tl ~ [ sin(m +1)8 ]
2
r= [case+ sin8 ]

2
r. 

J m sinm (J tanm (J 

(59) 

Since tanm (J decreases towards zero as m () increases to
wards 11', the ratio IJ m + 11 !IJ m I grows as m increases. 
This scaling for large m agrees well with numerical ex
periments. The scaling in Eq. (59) reduces to the scaling 
in Eq. (31) in Sec. IV as 8-0. 

Thus we see how the phenomena below the curve K ap
proach those above K as 8-0. 

VI. DISCUSSION OF THE GRAZING BIFURCATION 
IN VIEW OF ORBIT INDEX 

In the bifurcation theory for maps, attention has been 
focused on differentiable maps when one or more eigen
values of a fixed point (or periodic point) cross the unit 
circle. When this occurs, the nature of the fixed point 
changes. For example, a fixed point attractor becomes a 
saddle (possibly a flip saddle) or a repeller. The Nord
mark map, however, is piecewise smooth and is not 
differentiable at x =0. In particular, the Jacobian matrix 
of the Nordmark map changes discontinuously at x =0 
and becomes singular as X -0+ [ 3x,. + J3x,. 
= 1 /( 2~) ]. This singularity is responsible for the new 

bifurcation phenomena studied in this paper. According 
to [13], the fixed point of the Nordmark map, which is an 
attractor located in x < 0 for p < 0 and a flip saddle locat
ed in x > 0 for p > 0, is a border crossing fixed point; and 
the grazing bifurcations that take place at p = 0 are exam
ples of border-collision bifurcations. In the rest of this 
section, we present the precise definitions of the terms 
used above, introduce the border-collision bifurcation 
theorem obtained by Nusse and Yorke in [13], and dis
cuss the grazing bifurcations analyzed in this paper in the 
context of the more general results on border-collision bi
furcations. 

A map is smooth if it has a continuous derivative. 
Here we examine maps that are piecewise smooth, and 
restrict our attention to those that are smooth in two re
gions of the plane with the border between these regions 
being a smooth curve. Let r be a smooth curve that 
divides the plane into two regions denoted by R 1 and R 2 • 

We say that a map F from the phase space R2 to itself is 
piecewise smooth if (i) F is continuous and (ii) F is smooth 
in both the regions R 1 and R 2 • Let F(·,ll)=FI-' be a 
one-parameter family of piecewise smooth maps from the 
phase space R 2 to itself, which depends smoothly on the 
parameter ll• where 1l varies in a certain interval on the 
real line. Let El-' denote a fixed point of Fl-' defined on 
- E < 1l < E for some E > 0. The position of E 1-' depends 
continuously on ll· We say Ell is a border crossing fixed 
point if it crosses the border r between the two regions 
R 1 and R 2 as 1l is varied. Assume that the crossing 
occurs at ll=O. A periodic orbit P is a border crossing 
orbit if it includes a point that is a border crossing fixed 
point under some iterate of the map. If, furthermore, 
there exists a neighborhood U of the orbit P such that P 
is the only periodic orbit in U at 1l = 0, then P is an isolat
ed border crossing orbit. 

For a general approach we need the concept of the "or
bit index" of a periodic orbit [15]. The orbit index is a 
number associated with a periodic orbit, and this number 
is useful in understanding the allowable patterns of bifur
cations the orbit undergoes. We say an orbit of period p 
is typical if its Jacobian matrix (i.e., the Jacobian matrix 
of the pth iterate of the map at a point on the orbit) exists 
and neither + 1 or -1 is an eigenvalue (of the Jacobian 
matrix). For typical orbits, the orbit index is -1, 0, or 
+ 1. The orbit index is a bifurcation invariant with 
respect to, as in our cases, the periodic orbits that col
lapse onto the fixed point E ~-' as ll-o. That is, the sum 
of the orbit indices of the periodic orbits that collapse 
onto the fixed point Ell as ll-o- is equal to the corre
sponding sum as ll-o+. Suppose a typical periodic or
bit P of a map F has (minimum) period p. The orbit in
dex of P depends on the eigenvalues of the Jacobian ma
trix AP of the map FP at one ofthe points on P. Let m be 
the number of real eigenvalues of AP smaller than -1, 
and let n be the number of real eigenvalues of AP greater 
than + 1. The orbit index I p of P is defined by 

lp=O if m is odd, 

I P = - l if m is even and n is odd , 

I P = + 1 if both m and n are even . 



If the orbit itidex = -1, then the orbit is a regular saddle. 
If the orbit index =0, then the orbit is a flip saddle. The 
typical orbits with orbit index + 1 are repellers and at
tractors and orbits with nonreal eigenvalues. The 
definition of the drbit index is technical when a point of 
the orbit lies on the boundary r since the Jacobian ma
trix of the map does not exist for points on the boundary. 
It is unnecessary to define the orbit index on r since we 
consider orbits for J.L=foO. 

For a moment, assume that E J.L is in the interior of the 
region R 1 (or the region R 2 ), and denote 71 and K for the 
eigenvalues of the Jacobian matrix DFJ.L(EJ.L). If neither 
of the two eigenvalues 71 and K is on the unit circle, then 
the fixed point E J.L is a flip saddle (and has index 0) if 
71 < -1 <K < 1; E~' is a regular saddle (and has index -1) 
if - 1 < 71 < 1 < K; E is a repeller (and has index + 1 ) if 
both l11l > 1 and IKI> 1; and El' is an attractor (and has 
index + 1) if both l11l < 1 and IKI < 1. (Note that E~' has 
orbit index + 1 if the eigenvalues are not real.) Hence, a 
typical fixed point is a flip saddle, a regular saddle, a re
peller, or an attractor. 

Now we introduce the border-collision bifurcation 
theorem. Let the regions R 1 and R 2 , the map F J.L, and the 
fixed point (or periodic point) E I' be as above. Suppose 
there exists a number E > 0 such that (i) E 0 is on the bor
der of the two regions R 1 and R 2 , (ii) for - E < J.L < 0 the 
fixed point E J.L is in the region R 1, and its index is I 1, and 
(iii) for 0 < J.L < E the fixed point E J.L is in the region R 2 , 

and its index is I 2 • If I 1 and I 2 are different, then (as to 
be stated next) some bifurcation must occur at E 0 so that 
the sum of the orbit indices is invariant as J.L crosses zero. 
The following "border-collision bifurcation theorem" is 
obtained in [13]: 

Border-collision bifurcation theorem. For each two di
mensional piecewise smootp map depending smoothly on 
a parameter J.L, if the index of an isolated border crossing 
orbit changes as J.L crosses zero, then at J.L =0 a bifurca
tion occurs at this point, a bifurcation involving at least 
one additional periodic orbit. 

This result says that additional fixed points or periodic 
points must bifurcate from E 0 at J.L =0 if the index of E J.L 
changes as J.L crosses zero. Since this bifurcation occurs 
while the fixed point (or periodic point) collides with the 
border of the regions R 1 and R 2 , we call it a border
collision bifurcation. In other words, a border-collision 
bifurcation is a bifurcation at a fixed point (or periodic 
point) on the border of the two regions, when the orbit 
index of the fixed point (or periodic point) before the col
lision with the border is different from the orbit index of 
the fixed point (or periodic point) after the collision. 

Therefore, if the orbit index of a fixed point (or period
ic orbit) is different before and after it crosses the border 
r, the following two things can possibly occur. 

(i) There are additional periodic orbits which collapse 
onto E 0 as J.L~O+ and/or J.L~O-, whose individual in
dices are such as to make the total orbit index conserved. 

(ii) One or more chaotic sets collapse onto E 0 as 

J.L~O+ and/or J.L~O-. (Since the orbit index for a 
chaotic set is not defined, conservation of the index is no 
longer an issue.) 

The border separating the two regions in which the 
Nordmark map is smooth is the line x =0. The fixed 
point in the Nordmark map crosses the border x =0 at 
p=O; thus it is a border crossing fixed point. For p<O, 
the fixed point is in the region x < 0 and is stable (thus it 
has orbit index I 1 = + 1 ); for p > 0, the fixed point is in 
the region x > 0 and is a flip saddle (thus it has orbit in
dex I 2 =0). We find numerically that it is an isolated 
saddle at p=O. Since I 1=foi2 , by the border-collision bi
furcation theorem, there must be other orbits (periodic or 
chaotic) that collapse onto the fixed point at p=O and are 
involved in the bifurcation there. 

For systems with ( y, a) in the region I (Case 1) in Fig. 
6, a reversed infinite period adding cascade collapses onto 
the fixed point [located at (0,0)] as p~o+. Conservation 
of the orbit index before and after the bifurcation at p = 0 
is not violated in this case, because the orbit index of the 
stable periodic orbits in the infinite cascade is + 1 and the 
orbit index of the chaotic sets in the infinite cascade is 
not defined. For systems with ( y, a) in the region II 
(Case 2) in Fig. 6, a chaotic set collapses onto the fixed 
point as p~o +, whose orbit index is not defined. As for 
systems with (y,a) in the region III (Case 3), which is 
below the curve K in Fig. 6, an unstable period-M maxi
mal orbit (which is a regular saddle and thus has orbit in
dex -1) collapses onto the fixed point as p~o-. The 
value of M is determined by Eq. (45). Therefore the sum 
of the orbit indices is invariant (and equals zero) as the 
fixed point crosses the border x =0. Hence the grazing 
bifurcations studied in this paper are border-collision bi
furcations involving different types of orbits that collapse 
onto the fixed point as p~O+ or p~o-. 

VIII. CONCLUSION 

We have observed three major types of grazing bifurca
tions: (i) bifurcations from a stable period-1 orbit to a re
versed infinite period adding cascade; (ii) bifurcation from 
a stable period-! orbit to attracting chaos occupying a 
full interval of the bifurcation parameter; and (iii) col
lision of an unstable maximal periodic orbit and a 
period-1 orbit, which is observed to be a local bifurcation 
from a stable period-1 orbit to a stable maximal periodic 
orbit. These bifurcations are "unconventional" in that 
they do not occur in smooth systems. Since the Nord
mark map represents the dynamics of typical systems 
that have low-velocity impacts and that are smooth be
tween the impacts, the bifurcations studied in this paper 
are expected to be universal for such systems. 
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