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Context

Dynamic Data Driven Application Systems (DDDAS) paradigm
[4] is based on a continuous exchange between physical system
and its numerical model in order to :
(i) Use observations data to identify and update model parame-

ters
Inverse problem

(ii) Control system evolution according to criteria
Optimal control problem

Application example :
Damage evolution identification and control in composite

structures [8].
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Mathematical representation
Dynamical system : {

u(k+1) =M(u(k)) + eM
s(k) = H(u(k)) + eS

u(k) ∈ Rn state vector at time t(k)

s(k) ∈ Rm observation vector at time t(k)

eM ∈ Rn model error assumed to be Gaussian white noise
eS ∈ Rm observation error assumed to be Gaussian white noise
M : Rn→ Rn model operator
H : Rn→ Rm observation operator

Kalman filter based identification
Inverse problem resolution based on Kalman filtering [6] using non-linear formulation,
here the Unscented Kalman Filter [5]. The idea is to define an expanded state vector ū
and associated dynamical system :{

ū(k+1) =M(ū(k)) + eM
s(k) = H(ū(k)) + eS

with ū(k) =

[
u(k)

p(k)

]

UKF idea is based on Unscented Transform which allows to reconstruct mean and
covariance with sample of 2 · dim(ū) + 1 points. But complexity is O

(
dim(ū)3

)
Modified CRE
Modified Constitutive Relation Error [7] is based on energy functionnal (transient ther-
mal case)
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The identification problem can be formulated as, find p ∈ P such that;

p = argmin
ξ∈P

min
(u,q)∈U×S

E2
m (u,q; s, ξ)

Resolution using alternating minimization + fixed point algorithm
•Minimization according to U × S −→ (uad,qad) (coupled forward/backward problem

in time)
•Minimization according to P −→ p (gradient method)

Modified Kalman Filter
The approach we propose, Modified Kalman Filter (MKF), is slightly similar to the
approach proposed in [1] {

p(k+1) = p(k) + eP
s(k) = Hm(p(k), s(k−1:k)) + eS

with observation operator defined as follow :

Hm
(
p(k), s(k−1:k)

)
= H ◦ mCRE1

(
p(k), s(k−1:k)

)
projector Admissible fields

computation
Advantages :
1. Implementation, since the method is based

on sampling points
2. Robustness, since the system state is com-

puted as an admissible field according to
mCRE

Drawbacks :
Computation time associated to
the coupled forward/backward

problem.

Proper Generalized Decomposition
Proper Generalized Decomposi-
tion [3] based on :
(i) Variable separation
(ii) Parametric solution
(iii) offline modes computation
(iv) online solution evaluation

The incremental approach we consider involves
that PGD decomposition must be on the following
form :

u(k) ' uM
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x, t(k),p, s(k−1), s(k),u

(k)
0

)
u

(k)
0 initial condition on I(k)

t = [t(k−1), t(k)].

Numerical results

Problem setting
• parabolic PDE (transient thermal problem)
• Time-dependant Neumann Boundary Condition iden-

tification (example 1)
• Time-independant conductivity identification in multi-

layer structure (example 2)

Simulated observations
(i) Solve direct problem with fine time discretization
(ii) Extract values according to sensors placement and

aquisition times (coarser than for resolution)
(iii) Add Gaussian white noise

s
(k)
i = s

(k)
i,exact (1 +N (0,Σ)) ∀i = 1, ..,m ; ∀k

Global identification strategy
Offline – compute PGD parametric solution
Online – identification process using MKF approach

Example 1
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Example 2

u = ud

κ1 ? κ2 ? κ3 ? κ4 ?
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space : 148 TRI3
time : 100 time steps
noise : Σ = 0.1
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Conclusions
The strategy we propose, based on coupling between Unscented Kalman filter, modified
Constitutive Relation Error and PGD reduced model offers :
(i) more robustness to highly corrupted data
(ii) a significant computation time-saving

Future works
(i) Extend Modified Kalman Filter approach coupled with PGD to field parameters identification
(a) adaptive mesh approach
(b) multiscale method

(ii) Address full-fields measurements
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