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ABSTRACT:  

Concerning energy consumption and monitoring architectures, our goal is to develop a sustainable declarative monitoring 

architecture for lower energy consumption taking into account the monitoring system itself. Our second is to develop theoretical and 

practical tools to model, explore and exploit heterogeneous data from various sources in order to understand a phenomenon like 

energy consumption of smart building vs inhabitants' social behaviours. We focus on a generic model for data acquisition campaigns 

based on the concept of generic sensor. The concept of generic sensor is centered on acquired data and on their inherent multi-

dimensional structure, to support complex domain-specific or field-oriented analysis processes. We consider that a methodological 

breakthrough may pave the way to deep understanding of voluminous and heterogeneous scientific data sets. Our use case concerns 

energy efficiency of buildings to understand relationship between physical phenomena and user behaviors. The aim of this paper is 

to give a presentation of our methodology and results concerning architecture and user-centric tools. 

 

 

1. INTRODUCTION 

Over the past decade, popular attention to smart building has 

increased. Smart building and sustainability are intertwined. 

2011 Annual Energy Review of the World Business Council for 

Sustainable Development announced that in United States, 

buildings are responsible for 41% of energy consumption of the 

country. Moreover, in 2008 energy consumption of buildings in 

European Union (EU) is 37% of the total energy budget. 

Surprisingly this consumption is higher than the energy 

consumption of industry and transport which are respectively 

28% and 32%. These results should be considered as a warning 

for the future and show the necessity of monitoring energy 

consumption of the buildings (EIA, 2011) and (Eichholtz, 

2013). 

 

Usage of smart buildings is not only for monitoring energy 

consumption but also to provide useful services for the 

occupants such as illumination, thermal comfort, air quality, 

physical security, sanitation etc. Since nature of buildings are 

changing, inhabitants prefer more dynamic work and living 

environments to be actively supported and assisted by smart 

building management system. Each smart building is a 

pervasive environment that covers wireless sensor network 

(WSN) environment and management of sensor data streams. 

WSN environment consists of small, light weight computational 

devices that are able to communicate over wireless connection 

channels. These devices are equipped with sensing, processing 

and communication facilities. 

 

The major challenge in wireless sensor devices is the limited 

energy and lifetime. Since wireless sensor devices are 

autonomous in terms of energy and their energy consumption 

determines the lifetime of the monitoring system, energy 

consumption of WSN environment is considered as a key metric 

for the system. In WSN applications, sensor devices sample 

physical quantity measures and transmit them with defined 

acquisition and transmission frequencies. These application 

requirements make sensor device consume energy. Thus, energy 

should be monitored during the execution and it is necessary to 

monitor energy consumption of the monitoring architecture 

itself.  

 

Our main intention of our works is to build a monitoring system 

that supports multi-applications in real time in a pervasive 

environment. Multiple application system requires handling 

several data stream requests with different data 

acquisition/transmission frequencies for the same wireless 

sensor device and supporting dynamic requirements of 

applications (e.g. high transmission frequencies for occupied 

rooms, lower frequency during night). A common static 

configuration does not optimize energy consumption of the 

monitoring system. Thus, we focus on interaction between 

application requirements and wireless sensor devices and we 

propose a Smart- Service Stream-oriented Sensor Management, 

an approach to optimize interactions between application 

requirements and wireless sensor environment in real-time. A 

Smart- Service Stream-oriented Sensor Management system 

performs energy-aware dynamic sensor device configuration to 

lower energy consumption while fulfilling real-time application 

requirements.  

 

Furthermore, another subject of major interest concerning smart 

building is user behaviours. Nowadays, energy efficiency of a 

building is given by theoretical estimations based on its initial 

design and on typical usage scenarios. Indeed the practical 

efficiency is usually lower due to the complexity of the building 
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process and to the real behaviour of occupants. If energy 

consumption and environmental conditions can be directly 

measured through instrumentation, understanding the practical 

energy efficiency of a building requires cross-analyses of 

“instrumentation data” and “survey data” (and other studies 

data). These data are thus necessary to fully discover and then 

understand complex correlations between physical and human 

parameters. Data are heterogeneous and complex, multi-

sources, multi-dimensional (e.g., spatiotemporal data), and 

multimedia (e.g., numbers, texts, images, sounds, videos). 

Those data need to be deeply analyzed and advanced skills are 

required first to understand raw data, then to discover their 

multi-scale properties, and finally to perform relevant 

aggregations and cross-source comparisons. 

 

Our objective is to develop theoretical and practical tools to 

model, explore and exploit heterogeneous data from various 

sources in order to understand a phenomenon. We focus on a 

generic model for data acquisition campaigns based on the 

concept of generic sensor. This concept allows integration of 

heterogeneous captured data. The concept of generic sensor 

data is centred on captured data and on their inherent multi-

dimensional structure. This multi-dimensional structure is then 

a support for complex domain-specific or field-oriented analysis 

processes.  

 

In this paper, in Section 2, we focus on our methodology for 

integration of heterogeneous data and on our methodology for 

cross-analysis of integrated heterogeneous data in Section 3. 

Then we present briefly our approach concerning a Smart- 

Service Stream-oriented Sensor Management in Section 4 and 

then in Section 5, related works concerning sensor data and 

survey data modelling are explained. 

 

2. METHODOLOGY FOR HETEROGENEOUS DATA 

INTEGRATION 

To develop theoretical and practical tools to model, explore and 

exploit heterogeneous data from various sources in order to 

understand a phenomenon, our approach consists in a generic 

conceptual model of collected data. A generic model would 

permit the representation of heterogeneous data through only a 

few generic concepts to facilitate future cross-analysis. 

 

In order to build this final model, we first took a bottom-up 

approach. We designed a preliminary model for heterogeneous 

physical sensors, based on a real experimental platform in 

occupied buildings. We designed another preliminary model for 

sociological surveys, to take into account opinions and feelings 

of occupants “measured” by a questionnaire. 

 

We then took a top-down strategy. Inspired by existing abstract 

ontologies that describe sensor systems (Compton, 2011) and  

(EIA, 2011) and (Eichholtz, 2013), we designed the Virtual 

Generic Sensor model (VGS model) that can homogeneously 

represents data from heterogeneous physical sensors, data from 

sociological surveys, and data from other kinds of sources. This 

model is also based on a previous sensor model designed for 

natural risk monitoring (Gutierrez 2007) and (Noel, 2005) and 

(Laurini, 2005) and (Rodriguez, 2013). The VGS model focuses 

on data produced by generic sensors linked to a common multi-

dimensional structure. This multi-dimensional structure 

describes time, location and source of measured data, and is 

designed to support additional specific field-oriented 

dimensions. 

 

Our first result is the VGS (Virtual Generic Sensor) model. 

Figure 1 shows the UML class diagram of this model. It 

describes the static structure of a generic acquisition system, 

with a Sensor composed of several Detectors (further detailed 

by MeasureAttributes, via the MeasureType), and a dynamic 

structure with Samples, produced by a Sensor, composed of 

Measures (further detailed as Values). Deployments 

correspond to campaign of measures that take place to validate 

Hypothesis.  

 

 

Figure 1. VGS Model with UML representation 

The process to create the VGS model was the following 

(Figure 2) : analysis and matching of existing sensor ontologies 

and, analysis of survey tools, design of a sensor data model 

(M1), design of a survey data model (M2), alignement of sensor 

data (M1) and survey data models (M2). The VGS model 

allows managing data issued from physical sensors and survey 

data with the same concepts. This is the base to allow then the 

user centric multidimensional exploration of heterogeneous 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. VGS Model design process 

This model has been implemented for two Smart Building 

experimentation platforms managed by our project team: 

SoCQ4Home (illustrated with Figure 3), since October 2012; 

and MARBRE, since February 2014.  

 

A total of around 400 heterogeneous physical sensors have been 

deployed to measure: temperature, humidity, CO2/VOC, 

contact (for doors/windows), electricity consumption, weather 

conditions... Production: about 5000 measure per day. Physical 

sensor devices are modeled as VGS sensors, with detectors 

depending on the actual sensor type. A survey concerning fifty 

occupants of one of the buildings has also been realized. Results 

of questionnaires are going to be integrated: questionnaires are 

modeled as VGS sensors, and answers to questions are modeled 

as measures. The current implementation of the VGS model is 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W1, 2016 
1st International Conference on Smart Data and Smart Cities, 30th UDMS, 7–9 September 2016, Split, Croatia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-4-W1-97-2016

 
98



based on a MySQL database in particular to benefit from the 

expressiveness of the “golden standard” SQL language; 

moreover MySQL is a free open source tool. 

 

 

 

 

 

 

Figure 3. SoCQ4Home Platform: Monitoring Building with 

Sensors 

3. METHODOLOGY FOR HETEROGENEOUS DATA 

CROSS-ANALYSIS  

We also designed a methodology for an agile multi-dimensional 

exploration of those data. Based on the VGS model and its 

multi-dimensional structure, we propose a language to finely 

define domain-specific or field-oriented indicators through 

successive aggregations along dimensions (Patil, 2011) (in a 

similar way to Data Warehouses). We designed a visualization 

framework linked to those dimensions that enables users to 

visually explore indicators using graphs. And in order to 

visually compare indicators, we propose an interactive “matrix 

layout” for those graphs. The common multidimensional 

structure of data is then exploited at three levels: to structure 

data, to define indicators, and to explore data with these 

indicators. 

 

Our agile approach allows incremental and iterative data 

processes and analysis. Users can start to explore raw data with 

some predefined dimensions for time, source and location of 

measured data, and with basic aggregated indicators like MIN, 

MAX, AVG. Exploration can then be incrementally and 

iteratively enriched by users themselves.  

 

At the data level, we consider incremental data sets, e.g., when 

raw data are still being captured and appended to the data set. 

The data set generation is also iterative: data can be 

progressively enriched with new interpreted data that may then 

be used in the same fashion as raw data.  

 

At the analysis level, we consider an incremental exploration 

process: new (aggregated) indicators can be added on-the-fly, 

when needed by users. The exploration process is also iterative 

when knowledge from past explorations is used to refine current 

and future explorations: existing analysis dimensions can be 

refined, with more precise levels of granularity in their level 

hierarchy, and new dimensions can even be added, in order to 

offer new points of view on data. 

 

This approach is designed to support and enrich current 

domain-specific approaches for complex and/or scientific data 

analysis. In particular, each data visualisation is precisely and 

concisely described by its “lineage”, i.e. by the link to the data 

subset, data aggregation definitions, and visual projection 

parameters that lead to this data visualization. 

 

3.1 User centric multidimensional exploration of 

heterogeneous data 

3.1.1 User centric definition of multidimensional space 

One of the major challenges involved in multidimensional data 

analysis (Kimball, 2011) is to identify and define the 

dimensions and dimension levels of analysis. For example, 

Figure 4 shows a time dimension with one hierarchy. Three 

default dimensions are attached to the core VGS model: Time, 

with the timestamp attribute of Samples; Location, with the 

location attribute of measures; and Source, that represents the 

hierarchy of VGS concepts (Detector, Sensor, and 

Deployment). User-defined additional dimensions can be added 

to further describe measures from generic sensors. When 

dimensions and dimension levels are defined by users, these 

dimensions and dimension levels built a multidimensional 

space. These dimensions are then used to specify data 

aggregation and data visualization levels. For example, Figure 5 

shows the definition by a user of an aggregation level of data 

(hour level into the Time dimension) and a visualization level of 

data (month level into the Time dimension). 

 

 
Figure 4. Dimension hierarchy: Aggregation level and 

Visualization level 

3.1.2 Multidimensional space concepts 

A temporal series consists of various observations or 

measurements at different points of time. Spatiotemporal series 

are temporal series used in conjunction with the location of the 

observation or measurement. Sensor data series are 

multidimensional. While time and location gives the 

information concerning when and where an event or 

measurement was recorded, these two dimensions are not 

enough for heterogeneous sensors. We require other various 

information’s concerning the type of measurement (what) like 

temperature, humidity and the manner (how) by which the 

measure was generated (especially in cases of interpolated data). 

 

In multidimensional data series, a relation of interest (here, the 

sensor measure) is analysed along different dimensions. A 

relation of interest (also called fact table in the literature) 

contains several data tuples. A dimension is an hierarchical 

organization of levels that allows to create a partition of these 

tuples at different levels of granularity. For example, the time 

dimension describing the temporal aspect of the tuples can 

contain the following levels: timestamp, hour, day, week, 

month, year. The hierarchy of a dimension starts with a unique 

base level (also known as the leaf and is highly granular like a 

timestamp) and ends with a unique level root (also referred to as 

Aggregation level 

Visualisation level 
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ALL in the literature), that partition the tuples in one single 

group containing all the tuples. 

 

If there is a relationship between two levels, the lower level 

(closer to the leaf) is called the child level and the higher level 

is called the parent level. Every level has a set of descriptor 

attributes. Take for example; the level “day” can have various 

descriptor attributes like “date”, “day of week”, “day number in 

year”. Each member of a level is described by a value for each 

descriptor attribute of its level. “February 1, 2014” is a member 

associated to “2014-02-01, Saturday, 32” for the level “day”. 

Every member of a child level is linked to only one single 

member of the parent level in the hierarchy. For example, for 

the levels “day” and “month”, the members of “day”: “January 

1, 2014” and “January 2, 2014” are linked to “January 2014”, a 

member of “month” and “February 1, 2014” is linked to 

“February 2014”. 

 

A set of tuples in a relation of interest can be partitioned 

according to any one dimension. Every tuple must be linked to 

one unique member of the leaf level. A partition is thus formed 

by the subsets of tuples linked to each member of this leaf level. 

Recursively, partition at level N + 1 (e.g. level “month”) is 

formed by the subsets of tuples linked to each member of the 

level N + 1 (e.g. “January 2014”), those subsets each being 

constituted by the union of subsets of tuples linked to members 

of level N (e.g. “January 1st, 2014” of level “day”) themselves 

linked to this member of level N + 1 (e.g. “January 2014”) in 

the hierarchy. 

 

A multidimensional space is a set of dimensions with their 

associated levels of hierarchies. A multidimensional series in a 

multidimensional space is a series of values (of the relation of 

interest) from the domain of possible values, attached to 

dimensions of this space. Finally users are able to build multiple 

multidimensional spaces to better explore data step by step. 

According to the various analyses, new spaces can be refined or 

defined that allow an agile and incremental way of data 

exploration. 

 

3.2 Declarative language for indicators definition 

Our second result is a formal model and a declarative language 

to finely define indicators as aggregations along dimensions for 

VGS data. It is based on the relational algebra (a foundation 

concept for relational databases, like SQL databases). In our 

current prototype, we implemented this language by 

automatically translating it to complex nested SQL aggregation 

queries. It enables to easily integrate new domain-specific 

dimensions and/or adapted existing dimensions (like Time and 

Location).  

 

Due to space limitations, we do not describe the formal 

definition of this language. We sketch its expressiveness with an 

example: a user can define an indicator as a 2-step aggregation 

along the Time dimension for temperature sensor data, with an 

average at the minute level, and then a formula like 

“(MAX+MIN)/2” at the hour level, applied to the previous 

average at the minute level. An indicator definition can also 

span over multiple dimensions, like Time and Source. 

 

3.3 Visualization with a Web Interface 

A web dashboard for the sensor data has been developed to 

visualize the various measures and indicators that describe a 

phenomenon. Figure 5 shows the SoCQ4Home dashboard of 

the administrator. It shows the temperature recorded during the 

last 48 hours and average temperature recorded during last 30 

days, in user’s office. The dashboard also shows the current 

temperature in some other representative rooms of the building. 

A visualization of building in 3D permits to project the results 

of exploration queries over the real geography of the building 

(see Figure 3). 

 

 

Figure 5. Dashboard for Smart Building 

 

Figure 6. Web user interface to visualize raw sensor data 

(temperature and humidity) as a matrix of graphs (actual data 

from MARBRE platform) by room and by month. 

Our third result is a proof-of-concept Web user interface to 

visualize data and/or indicators as a matrix of graphs, according 

to the aggregation level of indicators (e.g., hour level in the 

Time dimension) and to the navigation level interactively 

defined by the user (e.g., month level in the Time dimension). 

The style of visualization is illustrated in Figure 6: one line per 

sensor in a graph (with one data point for each hour), and one 

graph per room (matrix rows) for Temperature and Humidity 

indicators (matrix columns). 

 

In order to facilitate visual correlations, graph scales are 

identical within a column, as well as the time axis between the 2 

indicators. In this example, we can visually compare 

Temperature evolution between rooms, and visually search for 

potential correlations between Temperature and Humidity in 

each room. Aggregation level and visualisation level are defined 

by users using the web interface showed in Figure 7. 

Development of a full exploration Web interface, including 

definition of dimensions, indicators, and the dynamic 

navigation along dimensions is a work in progress. 

 

 

Room                              Temperature                                   Humidity 
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Figure 7. Multidimensional space corresponding to visual 

results showed in Figure 8. Aggregation levels selected by 

users:  hour in Time hierarchy, and detector in Source 

hierarchy. Visualization levels selected by users: month in Time 

hierarchy, room in Location hierarchy, All sensors in Source 

hierarchy 

 

4. SUSTAINABLE DECLARATIVE MONITORING 

ARCHITECTURE AND SMART-SERVICE STREAM-

ORIENTED SENSOR MANAGEMENT 

We focus on monitoring system of pervasive environment 

especially smart buildings. More precisely we focus on 

interactions between application service oriented queries and 

wireless sensor devices. We propose a sustainable declarative 

monitoring architecture and energy aware dynamic sensor 

stream management system for smart building environment. 

High level declarative monitoring architecture is given in 

Figure 8.  

 

Proposed architecture covers Pervasive Environment 

Management System and WSN environments. In one side, 

Pervasive Environment Management System handles 

application service oriented queries and deals with 

heterogeneous sensor data streaming. On the other side, WSN 

covers wireless sensor devices (either physical real sensor 

devices or virtual ones).   

 

Figure 8. High level declarative monitoring architecture 

From our perspective, sensor management consists of dynamic 

sensor configuration in terms of sensor data acquisition and 

transmission frequencies. Basically, real-time sensor device 

configuration can be realized with these two parameters. Real-

time configuration profile for sensor device can be determined 

dynamically. This configuration can be considered as 

acquisition/transmission scheduling time pattern from sensor 

device side. This schedule is a set of timestamps that indicate 

moments for data acquisition and transmission. This mechanism 

lets a sensor device configure itself in real-time to avoid 

unnecessary data measurements and to promote data 

transmission shorter/compressed.  

 

Since our intention is to support multiple applications, with 

configurable sensors, it is possible to have several subscriptions 

to the same sensor device with different frequency parameters. 

Without our approach, system considers highest acquisition and 

transmission frequency among the parametrized subscriptions. 

This will cause high energy consumption during the execution. 

However, with our proposed solution, parametrized 

subscriptions are managed, frequencies of subscription form 

acquisition/transmission schedule time pattern dedicated to a 

sensor device. Moreover, schedule time pattern algorithm is 

updated in real-time when a new subscription or non-

subscription occurs.  

In summary, existing smart building energy management 

systems adopt static sensor device configuration and fitted to a 

single monitoring application. However, sensor devices can be 

configurable more precisely than a duty-cycle in real time. We 

propose a new generation Smart Service-Stream Oriented 

Sensor Management. Our proposition, application requirement 

based energy-aware stream management and dynamic sensor 

configuration mechanism, are perform in the smart gateway 

layer in order to optimize consumed energy by a sensor device, 

independent from application layer and/or query. 

 

5. RELATED WORKS 

5.1 Sensor data model 

Sensors have started becoming an integral part of our personal 

lives, for example in the form of temperature and humidity 

sensors, or smoke and fire detectors. Examples of some wireless 

sensors are shown in Figure 3. Sensors can send periodical 

measurements for long periods, with only very little human 

intervention. Depending on the chosen periodicity of data 

acquisition, these sensors can produce a large amount of data in 

a very short amount of time.  

 

Sensor data modelling has recently generated a number of 

research works. Many sensor ontologies have been proposed 

since 2005 (see Table 1). They may focus on the description of 

the observation process, on the structure of the sensor network, 

or on the description of the physical sensors. They often contain 

specificities from a targeted application domain. 

 

 

Table 1. Sensor data Models and Ontologies since 2005 

Towards an objective of standardization, the W3C incubator 

group SSN XG3 proposed the Semantic Sensor Network (SSN) 

ontology based on SensorML (SensorML, 2007) and Dolce 

UltraLite (DUL, 2010). SSN ontology describes key concepts 

related to sensors and sensor networks. It proposes a collection 

of models for representing the main concepts linked to the 

context of sensors and defining the relations between these 

concepts, like Process, Stimulus-Sensor-Observation Pattern, 

Device, Data. It allows a separation between hardware aspects 

and abstract processes of a sensor. SSN therefore offers 

ontology adapted to the description of a sensing system. 

However SSN descriptions are abstract and focus on physical 

sensors and sensing systems. The specification of abstract 

concepts for data measures is less detailed, with only one 

Continuous Query Engine 

Smart Gateway 

WSN 

Human Computer 

Interaction 

Pervasive Environment Management 

System 
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concept of Observation Value in the Data model (at the bottom 

left of SSN Ontology Diagram in Figure 10). 

 

A more precise, but still generic structure is necessary to 

facilitate the development of applications managing 

heterogeneous sensor data, like environmental or urban 

monitoring. A more precise structure simplifies the querying of 

data (easiness of query expression and query optimization). A 

generic structure allows a homogeneous management of data 

obtained from heterogeneous sensing systems.  

 

A lot of existing works focused on physical sensor and real-time 

systems (Bonnet, 2001) and (Diallo, 2012). In our project, we 

rather focus on issues with heterogeneous data sources (Noel, 

2005). Query optimization and data indexing of sensor data are 

also issues in this context. In (Noel, 2010), the authors 

proposed a data model based on a proposition of spatiotemporal 

indexation of sensor data considering the most recent data. The 

model was also later used in (Rodriguez, 2013) and (Gutierrez, 

2007) and improved to support a methodology for evaluation of 

the quality of sensor data for the environmental phenomena 

monitoring systems. These ontologies and models inspired our 

proposed data-centric VGS (Virtual Generic Sensor) model 

detailed in Section 2.1. 

 

For analyzing sociological phenomenon, one of the commonly 

adapted tools is the survey. A survey corresponds to collection 

and analysis of answers to questionnaires. Several survey 

softwares have been proposed for the creation of surveys and 

the exploration of collected data. LimeSurvey (LimeSurvey 

2015) is a free software package that permits to publish a 

questionnaire online and to collect their answers. SPHINX iQ  

(Sphinx. 2015) is a commercial software that permits to create 

surveys and analyze the data and their nature (quantitative or 

qualitative). Another group of users of surveys use spreadsheets 

for managing the questionnaires. We studied closely the 

database schema of LimeSurvey to obtain a conceptual model of 

survey data. The documentation of the SPHINX software 

permits us to extend the specifications linked to the conception 

of questionnaires to know the different types of answers (to 

questions). We preview the importance of the analysis phase of 

questionnaire data that constitute an important objective of this 

data collection. However, these tools are not destined towards 

the management, exploration and cross-analysis of voluminous 

heterogeneous data. 

 

Concerning data management, the use of data warehouses for 

sensor data storage and analysis can be seen in various works 

like monitoring of pollinators (Da Costa, 2010), building energy 

and maintenance (Gökçe, 2009) and (Stack, 2012), soil 

ecosystem (Szlavecz, 2007). The difficulties are that they only 

deal with physical sensor data and not with other heterogeneous 

data. 

 

5.2 User-centric Multidimensional data analysis 

Sensor and survey data are historical and multidimensional. In a 

conceptual multidimensional design phase (Kimbal, 1996) and 

(Kimbal, 2011), dimensions and facts are decided along with 

the appropriate schema (star schema, snowflake schema, star 

cluster schema etc.) by taking into account all the user 

requirements. 

 

Graphical conceptual modelling is particularly interesting since 

it helps the designers to visualize the multidimensional data 

modelling. These models can also be used during visual 

interactive exploration of data. Automated conceptual 

multidimensional modelling can be classified into three 

approaches based on how they are obtained: supply-driven, 

demand-driven and hybrid (a mix of both supply-driven and 

demand driven) approaches. Supply-driven approach considers 

only the schema and the ontology (Romero, 2010) of the data 

sources to obtain a multidimensional data model, whereas 

demand-driven (Romero, 2006) and (Romero, 2008) and 

(Romero, 2010) takes into consideration the user queries to 

obtain the final model. 

 

But the major limitation in most of the works discussed above is 

that they do not take into consideration the possibility of 

various categories of end users during the conceptual modelling 

phase. The designer entrusted with the conceptual modelling 

proposes a model based on the initial user requirements or by 

using automated techniques discussed above. For projects 

involving multidisciplinary teams and dealing with 

heterogeneous data sources, the final conceptual model may 

have a large number of dimensions, levels and associated 

hierarchies. We believe that it is a shortcoming of the current 

conceptual modelling approach since it overwhelms the end 

user with a number of irrelevant fact tables, dimensions and the 

associated hierarchies. 

 

Much recently focus on conceptual design has turned user-

centric to facilitate flexible analysis of multidimensional data. 

Research works like (Ahmed, 2011) and (De Aguiar Ciferri, 

2013) and (Viswanathan, 2011) discuss the need for user-

centric data analysis. Cube Algebra proposed by (De Aguiar 

Ciferri, 2013) takes the cube metaphor seriously (likewise 

BigCube proposed by (Viswanathan, 2011)) and allow the end 

user to create, manipulate and query the data taking into 

account only the notion of cube (or n-cube). But the proposed 

conceptual model is not graphical and is not an extension to any 

existing models like E/R or UML. 

 

The approach proposed by us in this article also reflects the 

user-centric approach, but goes one step further by allowing 

users to create and manage their own spaces to analyze the 

multidimensional data. Our proposal is in the form of 

Multidimensional Space that provides every user a space to 

manage dimensions and hierarchies relevant to her own 

requirements. We also propose a conceptual graphical model 

based on ME/R and MultiDimER for multidimensional spaces. 

 

5.3 Monitoring architectures for smart building 

Furthermore, concerning monitoring systems for smart building, 

most of existing studies focus on design and architecture side of 

smart buildings (Byun, 2011) and (Chen, 2009) and (Doukas, 

2007). (Doukas, 2007) proposes a model for the intelligent 

building monitoring in which a real-time decision unit interacts 

with sensors for diagnosis of the building’s state and with the 

building’s controllers to select the appropriate interventions. 

(Chen, 2009) focuses on design of an intelligent building 

system that covers monitoring of energy consumption of the 

system, integrated building operations, occupant-aware building 

control. In these works, even though application parameters 

(user preferences) are processed and decision model is used, 

deployed wireless sensor devices are fixed and have static 

configuration during the execution. 
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Figure 9. SSN ontology for Sensor Network 

Moreover, high energy problem is not considered as a major 

issue. Most relevant study to our approach is (Byun, 2011). 

Thus, author, similar to ours, propose an approach based on 

self-adapting intelligent gateway mechanism for service, service 

management and provision of energy consumption. However, 

their approach does not benefit from potential reconfiguration 

of acquisition and transmission frequencies: sensor 

configuration stays static during the system lifetime. In our 

Smart-Service Stream-oriented Sensor Management approach, 

we intend to introduce an energy-aware dynamic sensor 

reconfiguration process while fully fulfilling application 

requirements. 

 

6. CONCLUSION 

Our proposed methodology for heterogeneous data integration 

and cross-analysis to understand complex phenomena 

contributes to a better understanding of urban-related 

phenomena through cross-disciplinary analyses of large amount 

of data coming from phenomenon observations issued from 

multiple sources (sensors, surveys, various studies).  Our case 

of application is smart building and energy consumption. 

 

This methodology aims at being well integrated with user-

specific and domain-specific analyses processes, in particular 

for scientific data analyses. Analyses may be multi-dimensional 

through the definition of dimensions: spatial dimensions, 

temporal dimensions, and field-specific dimensions. 

Dimensions dedicated to a given phenomenon have to be 

identified and co-built by computer scientists and scientists 

from other urban-related disciplines. Our methodology is agile, 

incremental, iterative, and interactive to allow knowledge 

discovery along the way by users.  

 

Our VGS model is generic as it enables heterogeneous data 

handling. The VGS model is semantically compatible with 

standard sensor ontologies defined by standardization 

organizations like Open Geospatial Consortium standards 

(DUL, 2010) and (Reed , 2007).  

 

Our conceptual VGS model has been built from a real multi-

disciplinary approach and its generic design makes it easy to 

apply to other phenomena observation. This model, as well as 

our agile exploration approach, is moreover independent from a 

specific data management technology. Although it is currently 

implemented on a SQL database, we aim at implementing it also 

on Big-Data-oriented databases like MongoDB or Cassandra. 

 

Furthermore, concerning energy consumption and monitoring 

systems, we briefly point at a major challenge of pervasive 

environments: to take into account energy consumption of the 

monitoring architecture itself. In the context of smart building, 

we focus on the lifetime of a monitoring system based on 

wireless sensor devices. Most existing studies on smart building 

and/or pervasive environment systems do not tackle energy 

consumption of wireless devices and lifetime of the whole 

system. They adopt static configurations for wireless devices. 

 

Our approach concerns new mechanisms for dynamic sensor 

reconfiguration in terms of sensor data acquisition/transmission 

frequencies. In this paper, we present a sustainable declarative 

monitoring architecture for pervasive environment. We 

introduce our approach of Smart-Service Stream-oriented 

Sensor Management based on data acquisition/transmission 

scheduling time patterns. The next step is to design, specify and 

implement time patterns to support multiple measure types on a 

same device and then to optimize the time pattern fusion 

process. 
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