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Necessary and Sufficient Conditions on the
Exponential Stability of Positive Hyperbolic

Systems (full version)
Liguo Zhang and Christophe Prieur

Abstract—In this paper, a strict linear Lyapunov function is
developed in order to investigate the exponential stability of
a linear hyperbolic partial differential equation with positive
boundary conditions. Based on the method of characteristics,
some properties of the positive solutions are derived for the
hyperbolic initial boundary value problems. The dissipative
boundary condition in terms of linear inequalities is proven to be
not only sufficient but also necessary under an extra assumption
on the velocities of the hyperbolic systems. An application to
control of the freeway traffic modeled by the Aw-Rascle traffic
flow equation illustrates and motivates the theoretical results.
The boundary control strategies are designed by integrating the
on-ramp metering with the mainline speed limit. Finally, the
proposed feedback laws are tested under simulation, first in the
free-flow case and then in the congestion mode, which show
adequate performance to stabilize the local freeway traffic.

Index Terms—Positive hyperbolic systems, Lyapunov function,
distributed parameter systems, exponential stability, Aw-Rascle
equations.

I. INTRODUCTION

Many physical systems having an engineering interest are
represented by a system of one-dimensional hyperbolic partial
differential equations (PDEs). Typical examples include the
telegrapher equations for electrical circuits with transmission
lines [25], the shallow water equations for open channels [10],
[7], and the Aw-Rascle traffic flow model for road traffic
systems [2].

The problem of analyzing exponential stability of the equi-
librium for linear or quasilinear hyperbolic systems has been
considered in the literature for more than 30 years. One main
contribution of [17] is the trajectory-based technique via direct
estimation of the solutions and their derivatives along the
characteristic curves. Recent results have been extended to
the case of conservation laws with perturbation source terms
[22], [23], and absolutely exponential stability for switched
hyperbolic systems [1], [21] under suitable dissipative bound-
ary conditions.

On the other hand, a Lyapunov stability analysis technique
is proposed in [6], with a strict quadratic Lyapunov function to
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analyze the exponential stability of the equilibrium of conser-
vation laws. The sufficient dissipative boundary condition is
known to be strictly weaker than the one of [17] and to allow
for numerically tractable methods for the design of stabilizing
boundary controls [8] However, the approach by a quadratic
Lyapunov function is not always effective to prove stability
for hyperbolic systems. It has been shown in [3] that there
exist stable 2 × 2 linear hyperbolic systems for which there
does not exist any quadratic Lyapunov function.

In this paper, we consider the case in which hyperbolic
systems belong to a class of positive systems whose state
variables remain non-negative whenever initialized in the
positive conditions. The positivity constraint on system states
is motivated by the engineering physical nature of the variables
involved (pressure, mass flux, density, vehicle speed and so
on). The stability and other properties of positive systems often
present some peculiar features [14], [15], [18], [24], which
simplify the system analysis.

A necessary and sufficient condition for exponential stability
of positive linear hyperbolic systems is presented by means
of a novel strict Lyapunov function. To the best of our
knowledge, this is the first work dealing with such a converse
explicit Lyapunov result. Note that [5, Proposition 3.7] implies
that the dissipative boundary condition is a necessary and
sufficient condition for stability of linear hyperbolic systems
with dimension 1 to 5. Our necessary discussion relies on
the assumption that velocities of hyperbolic systems have a
common factor. Then, we could find a common time sample
at which the dynamics of all states are projected to the
boundaries; it transforms the dynamic of boundary conditions
into a time-delay difference equation. The obtained conditions
are written in terms of linear inequalities which can be solved
numerically. The context of a continuous selection of boundary
conditions in an interval matrix is also considered, supposing
each entry belongs to a certain interval of the real line.
Absolutely exponential stability also holds if and only if the
upper bound satisfies the dissipative conditions.

The motivating application for the theoretical results pre-
sented in this paper is the development of dissipative boundary
conditions with a strict linear Lyapunov function to regu-
late traffic states (vehicle density, speed) in a freeway link.
Adopting boundary control strategies are particularly natural
and necessary for freeway traffic systems, since the available
control devices often depend on traffic signals for on-ramp
metering and VMSs (Variable Message Signs) for regulating
vehicle speed usually located at boundaries or cross-sections
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of the freeway link. Inside the freeway section, the number of
vehicles is conservative. The dissipative boundary condition
obtained from our theoretical contribution allows us to design
the stabilizing feedback laws by integrating the on-ramp
metering with the speed limiting control in the distributed
control action.

The problem of freeway traffic control has been considered
for a long time in the literature as reported in the survey [20]
paper which involves a comprehensive bibliography.

In this paper, we go a step further since the control design is
derived and analyzed directly from the linearized Aw-Rascle
partial differential equations without any model approximation
and discretisation. As Aw-Rascle traffic flow model, the speed
dynamics might propagate upstream or downstream along the
freeway for the same flow-rate of traffic, in practice, also
called in the free-flow traffic or in the congestion mode. For
the application, two different boundary feedback strategies
are proposed in this paper by taking advantage of the traffic
measurements coming from the upstream or downstream,
respectively. In details, as the steady states in the free-flow
mode, we detect downstream traffic states and integrate ramp
metering with variable speed limit to control the upstream
boundary of the freeway link, while in the congestion mode,
the control design is the inverse. The theoretical contributions
guarantee the exponential convergence of the system when
closing the loop with the feedback control.

This paper is organized as follows. The class of positive
linear hyperbolic systems is given in Section II. Wellposedness
and positive properties of solutions of positive linear hyper-
bolic system are also discussed. In Section III, our main results
on the necessary and sufficient conditions are derived for
the exponential stability of positive linear hyperbolic systems.
Finally, in Section IV, as a matter of illustration, an application
of boundary feedback control of freeway traffic based on the
linearized Aw-Rascle traffic flow equations is presented.

Notation. The set of non-negative integers and reals is N or R+,
respectively. Rn×n

+ or Rn
+ is the set of n-order square non-negative

matrices or vectors. A matrix (in particular, a vector) A with entries
in R+ is called a non-negative matrix (vector), and it is denoted as
A � 0. It is said to be positive (A � 0), if all its entries are positive.
The expression A � B, indicate the difference A−B is non-negative.
The term non-positive, negative are defined analogously as � and
≺. rowi(A) denotes the ith row of matrix A. A real symmetric
matrix A is positive definite (resp. semi-definite positive), if all its
eigenvalues are positive (resp. non-negative); in that case we will use
the respective notation A > 0 and A ≥ 0. Given a function g :

[0, 1] → Rn, we define its L1-norm as ‖g‖L1(0,1) =
∫ 1

0
‖g(x)‖dx,

where ‖.‖ is the Euclidian norm in Rn. We call L1(0, 1) the space
of all measurable functions g for which ‖g‖L1(0,1) <∞.

II. POSITIVE HYPERBOLIC SYSTEMS: MATHEMATICAL
PRELIMINARIES

Consider a class of positive linear hyperbolic systems de-
scribed by the following equation:

∂tξ(x, t) + Λ∂xξ(x, t) = 0, t ∈ R+, x ∈ [0, 1], (1)

where ξ : [0, 1]×R+ → Rn. Assume Λ ∈ Rn×n+ is a diagonal
positive definite matrix such that Λ = diag{λ1, λ2, . . . , λn},

with λi > 0, for all i ∈ {1, . . . , n}. The boundary condition
is written as

ξ(0, t) = Gξ(1, t), t ∈ R+, (2)

where matrix G belongs to Rn×n+ . We shall consider the initial
condition given by

ξ(x, 0) = ξ0(x), x ∈ [0, 1], (3)

for a given function ξ0 : [0, 1]→ Rn.
The linear hyperbolic system (1)-(3) is called positive if the

trajectories of the system starting from any non-negative initial
conditions remains forever non-negative. As example ξ could
be related to the gas flow in pipelines as considered in [13]. It
could also coupled wave equations for dynamics of stimulated
Raman scattering. See in also [11] where the positivity of the
solutions is assumed.

The existence of the solution of the hyperbolic system
(1)-(3) in the set C0([0,∞), H1(0, 1))∩C1([0,∞), L2(0, 1))
holds for initial condition ξ0 in H1(0, 1) satisfying the zero-
order compatibility condition ξ0(0) = Gξ0(1) (see e.g. [5] or
[4, Theorem A.1]).

In the context of positive hyperbolic systems, we are able
to state the following:

Proposition 1: Assume the matrix G ∈ Rn×n+ in the
boundary condition (2) is non-negative, i.e., G � 0. Then, for
any function ξ0 : [0, 1]→ Rn in H1(0, 1) satisfying the zero-
order compatibility condition, there exists a unique solution
ξ : [0, 1]× [0,∞) to the Cauchy problem (1)-(3).

Moreover, the solution satisfies

1) if ξ0(0) ∈ Rn+ for all x ∈ [0, 1], then ξ(x, t) � 0, for all
(x, t) ∈ [0, 1]× R+;

2) if for all i = 1, . . . , n, rowi(G) 6= 0, and ξ0(x) � 0
for all x ∈ [0, 1], then ξ(x, t) � 0, for all (x, t) ∈
[0, 1]× R+.

Roughly speaking, besides the existence and uniqueness
result of the Cauchy problem (1)-(3), the previous result states
the positivity of hyperbolic systems, and that positivity of
solutions is preserved for a special kind of boundary condition
matrices.

Proof: The well-posedness follows from a classical appli-
cation of Lumer-Philipps theorem, as done e.g. in [4, Theorem
A.1].

For system (1), we can calculate the propagating period of
each state component ξi(x, t) from the boundary x = 0 to
x = 1 as

τi =
1

λi
, i = 1, . . . , n. (4)

Denote τ be the minimum time of all τi, i.e., τ = min
i=1,...,n

τi,

and for p ∈ N, let ∆p ⊂ R+ be defined by

∆p = [pτ , (p+ 1)τ ]. (5)

We now proceed by induction over the time interval ∆p to
prove Item 1 of Proposition 1. The first step consists to prove
ξ(x, t) � 0, for all t ∈ ∆0, x ∈ [0, 1].
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For an initial state ξ0 ∈ Rn+ in H1(0, 1), by the method
of characteristics, the state component to the Cauchy problem
(1)-(3) on [0, 1]×∆0 is given as, for all i = 1, . . . , n

ξi(x, t) ={ ∑n
j=1 gijξ

0
j

[
1− λj(t− x

λi
)
]
, for λit > x,

ξ0
i (x− λit), for λit ≤ x,

(6)

where gij is the entry (i, j) of the boundary condition matrix
G.

Since ξ0(x) ∈ Rn+, for all x ∈ [0, 1], and gij ≥ 0, it follows
from (6) that ξ(x, t) � 0, for all t ∈ ∆0. This concludes the
initial step of the induction.

Suppose for p ≥ 0, ξ(x, t) � 0, for all t ∈ ∆p. Taking
ξ(·, pT ) as the initial condition of the system and applying the
same argument as above, we get that the solution is uniquely
defined, and ξ(x, t) � 0 for all t ∈ ∆p+1.

Therefore, the solution satisfies ξ(x, t) � 0, t ∈ R+. It
concludes the proof of Item 1 in Proposition 1.

Let us prove Item 2, using again an induction argument.
First from (6), noting that all the terms in the sum of the
first line of (6) are non-negative and there exist at least one
positive term gij of the sum in (6), we have ξi(x, t) > 0, for
all (x, t) ∈ [0, 1] × ∆0. The induction is shown in a similar
way taking ξ(·, pT ) as an initial condition.

This concludes the proof of Proposition 1.
Remark 1: From Proposition 1, we deduce the fact that

the linear hyperbolic system (1)-(3) is positive or not depends
only on whether boundary condition matrix G is non-negative.

◦
As the boundary condition matrix G including zero rows,

i.e., rowi(G) = 0, for some row indices i ∈ {1, . . . , n}, the
corresponding state ξi(x, t) becomes zeros in a finite time.
Then the rest state components might subsequently becoming
zeros under the structure of matrix G. In the following, we
give an estimation of each state component for system (1)-
(3), whether it holds positive all the time or when it becomes
zero.

Before stating the general results on the solutions of positive
linear hyperbolic systems (1)-(3), let us construct a sequence
of the index set according to the structure of matrix G.

Let Ω0 = {1, . . . , n}, and I1 = {i :
∑
j∈Ω0

gij = 0}
which includes all indices of the zero rows of matrix G,
i.e., rowi(G) = 0, i = 1, . . . , n.

We denote the following index sets iteratively, for all k ∈ N,
k ≥ 2,

Ωk−1 = {1, . . . , n} \
k−1⋃
l=1

Il, (7)

and

Ik =

i : i ∈ Ωk−1, and
∑

j∈Ωk−1

gij = 0

 . (8)

Then, Ik is the largest subset in Ωk−1 such that∑
j∈Ωk−1

gij = 0 for all i ∈ Ik, and for all indices i 6∈ Ik it
holds

∑
j∈Ωk−1

gij 6= 0.
Since G is a n-dimension matrix, the construction process

(7)-(8) could be finished in a finite number of iterative steps,

that is the index sequence Ik, k = 1, . . ., is a finite set, and
includes at most n subsets. Let K be such that the last subset
IK is empty, IK = ∅, and other sets I1, · · · , IK−1 are non-
empty.

Item 2 in Proposition 1 indicates that the positive linear
hyperbolic systems (1)-(3) might experience a positive solution
as the boundary condition matrix G does not include non-
zero rows. Given a submatrix GΩk (the subscripts instruct the
rows and columns of G that make up the square submatrix),
k = 0, 1, . . . ,K − 1, we prove that the state components ξi,
whose index i belongs to the subset Ωk, remains positive as
the submatrix GΩk does not have non-zero rows. To be more
specific the following proposition holds.

Proposition 2: Assume that the matrix G includes zero
rows, i.e., rowi(G) = 0, for some i ∈ {1, . . . , n}, and the
sequence of index sets Ik, k = 1, . . . ,K, is defined as (8),
IK = ∅. Then, for any initial condition ξ0 in H1(0, 1) sat-
isfying the zero-order compatibility condition and ξ0(x) � 0,
x ∈ [0, 1], the solution to the system (1)-(3) satisfies

1) ∀i ∈ IK0
, K0 = 1, . . . ,K − 1,

ξi(x, t) = 0, (9)

for all (x, t) ∈ [0, 1] ×
(∑K0

k=1 maxi∈Ik(τi),+∞
)

,
where τi is defined by (4);

2) ∀j ∈ ΩK−1,

ξj(x, t) > 0, (10)

for all (x, t) ∈ [0, 1]× R+.
Proof: 1) Let us prove Item 1 successively for K0 =

1, 2, . . . ,K − 1.
Since matrix G includes some zero rows, that is I1 6= ∅,

then for all indices i ∈ I1, and t ∈ R+, at the left boundary
we have ξi(0, t) = 0. Hence, for all i ∈ I1 and x ∈ [0, 1],

ξi(x, t) = 0, t ∈ (maxi∈I1(τi),+∞). (11)

This is (9) for K0 = 1.
For the index i ∈ I2, it holds

∑
j∈Ω1

gij = 0. Since gij ≥ 0,
it follows that gij = 0, for all i ∈ I2, and j ∈ Ω1. Then, due
to (2),

ξi(0, t) =
∑
j∈I1

gijξj(1, t) +
∑
j∈Ω1

gijξj(1, t)

=
∑
j∈I1

gijξj(1, t). (12)

From (11), for the indices j ∈ I1, at the right boundary, we
have ξj(1, t) = 0 when t > maxi∈I1(τi). Substituting into
(12), it yields ξi(0, t) = 0, for all t ∈ (maxi∈I1(τi),+∞).

Thus, for all i ∈ I2 and x ∈ [0, 1],

ξi(x, t) = 0, t ∈
(∑2

k=1 maxi∈Ik(τi),+∞
)
. (13)

This is (9) for K0 = 2.
Repeating above procedures, we prove by the induction that,

for each index set IK0
, K0 = 1, . . . ,K−1, the corresponding

state components ξi(x, t), x ∈ [0, 1], with index i ∈ IK0
,

become zero in a finite time. It concludes the proof of Item 1
in Proposition 2.
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2) We now proceed by induction over the index set Ωk,
k = 1, . . . ,K − 1 to prove that for all j ∈ Ωk, x ∈ [0, 1] and
t ∈ [0,

∑k
k=0 minj∈Ωk(τj)], it holds ξj(x, t) > 0.

For the index i ∈ Ω1, and under the boundary condition (2),
we have

ξi(0, t) =
∑
j∈Ω0

gijξj(1, t). (14)

On the other hand, given a positive initial condition ξ0(x) >
0, x ∈ [0, 1], it holds ξj(1, t) > 0, for all j ∈ Ω0 and
t ∈ [0,minj∈Ω0(τj)]. Substituting into (14), and because∑
j∈Ω1

gij 6= 0, for all i ∈ Ω1, one gets

ξi(0, t) > 0, t ∈ [0,minj∈Ω0
(τj)] . (15)

Thus, for i ∈ Ω1, x ∈ [0, 1], the state component ξi(x, t)
satisfies

ξi(x, t) > 0, t ∈ [0,minj∈Ω0(τj) + minj∈Ω1(τj)] . (16)

This is the first step of the induction.
At the second step, for all i ∈ Ω2, combining

ξi(0, t) =
∑
j∈I1

gijξj(1, t) +
∑
j∈Ω1

gijξj(1, t), (17)

∑
j∈Ω1

gij 6= 0 and (16) for x = 1, we get, for all j in Ω1,

ξj(1, t) > 0, t ∈ [0,minj∈Ω0(τj) + minj∈Ω1(τj)]. (18)

Because again
∑
j∈Ω1

gij 6= 0, for all i ∈ Ω2, one gets with
(17)

ξi(0, t) > 0, t ∈
[
0,
∑1
k=0 minj∈Ωk(τj)

]
. (19)

Hence, with (2), for all i ∈ Ω2, x ∈ [0, 1],

ξi(x, t) > 0, t ∈
[
0,
∑2
k=0 minj∈Ωk(τj)

]
. (20)

This is the second step of the induction from the first step
(the other steps are proven similarly). Therefore, by induction,
we prove that, for the index set ΩK−1, for all i ∈ ΩK−1,
x ∈ [0, 1], the state components satisfy

ξi(x, t) > 0, t ∈
[
0,
∑K−1
k=0 minj∈Ωk(τj)

]
. (21)

Moreover, due to (2), we have

ξi(0, t) =

∑
j∈I1

+ · · ·+
∑

j∈IK−1

 gijξj(1, t)
+

∑
j∈ΩK−1

gijξj(1, t). (22)

Since IK = ∅, then, for all i ∈ ΩK−1,
∑
j∈ΩK−1

gij 6= 0.
Taking

τ ′ =

K−1∑
k=1

min
j∈Ωk

(τj), (23)

as the initial time, and using (21), we see the solution ξ as
a strictly positive initial condition ξi(x, τ

′) > 0, for all x ∈
[0, 1].

Following the proof of Item 2 of Proposition 1, for all i ∈
ΩK−1, we have ξi(x, t) > 0, for all t ≥ τ ′, x ∈ [0, 1].

This concludes the proof of Proposition 2.
Example 1: Let us consider the following non-negative

boundary condition matrix

G =


0 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

We have I1 = {1}, I2 = {4}, I3 = {2}, and I4 = ∅.
Thus {1, 2, 3, 4} −

⋃3
k=1 Ik = {3}. For any initial condition

ξ0(x) � 0, the third state component satisfies ξ3(x, t) � 0 for
all (x, t) ∈ [0, 1]×R+. For any x ∈ [0, 1], other state compo-
nents become zeros in finite time. More precisely, ξ1(x, t) = 0
when t ∈ [τ1,∞), ξ4(x, t) = 0 when t ∈ [τ1 + τ4,∞), and
ξ2(x, t) = 0 when t ∈ [τ1 + τ4 + τ2,∞). ?

Remark 2: We can consider more general positive linear
hyperbolic systems with both negative and positive velocities
for Λ, such as with λi < 0 for i ∈ {1, . . . ,m}, and λi > 0
for i ∈ {m+ 1, . . . , n}. By defining the state description ξ =
(ξ−, ξ+)>, where ξ− ∈ Rm and ξ+ ∈ Rn−m, and the change
of variable w(x, t) = [ξ−(1− x, t), ξ+(x, t)]>, we can obtain
a new hyperbolic system in the same form as (1)-(2). ◦

III. NECESSARY AND SUFFICIENT CONDITIONS ON THE
EXPONENTIAL STABILITY

Let us start this section by defining the notion of the
exponential stability under consideration in this paper.

Definition 1: The linear hyperbolic system (1)-(2) is said
to be exponentially stable in L1-norm, if there exist ν > 0 and
C > 0 such that, for every initial condition ξ(·, 0) in H1(0, 1)
satisfying the zero-order compatibility condition, the solution
ξ to the Cauchy problem (1)-(3) satisfies, for all t ∈ R+,

‖ξ(., t)‖L1(0,1) ≤ Ce−νt‖ξ(., 0)‖L1(0,1). (24)

A. Conditions for the existence of a linear Lyapunov function

Let us first deal with a sufficient condition for the existence
of a linear Lyapunov function yielding an exponential stability
of positive linear hyperbolic systems. This sufficient condition
is written in terms of a dissipative boundary condition and is
also necessary under an additional assumption, as written in
the following first main result.

Theorem 1: Consider the positive linear hyperbolic system
(1)-(3) with matrix G ∈ Rn×n+ . Let θ ∈ Rn+ be a positive
vector, i.e. θ � 0, and µ > 0 be a constant such that

[G> − e−µIn]θ � 0. (25)

• The system (1)-(3) is exponentially stable if condition (25)
holds, and moreover a Lyapunov function is given by, for
all ξ in L1(0, 1),

V (ξ) =

∫ 1

0

θ>Λ−1ξe−µxdx. (26)

• Conversely, if the system (1)-(3) is exponentially stable
and the inverse of velocities, λ−1

i , are commensurable,
then there exist θ � 0 and µ > 0 such that (25) holds.
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Remark 3: Before proving this theorem, let us note that
the Lyapunov function candidate V defined in (26) is inspired
by [6] among other references where the same weight x 7→
exp(−µx) is used combined with a L2 integral norm (see also
[9]). It is also inspired by [19] where the Lyapunov function is
linear which implies a prior requirement that all state variables
are non-negative. This linear Lyapunov function candidate is
not appropriate for general linear hyperbolic systems. ◦

Proof: Sufficiency. Using an integration by part, the
time derivative of the Lyapunov function (26) along the
solutions to (1) is computed as V̇ = −

∫ 1

0
θ>∂xξe

−µxdx =

−[θ>ξe−µx]10 − µ
∫ 1

0
θ>ξe−µxdx. Now under the boundary

condition (2), it holds V̇ = ξ>(1, t)[G> − e−µIn]θ −
µ
∫ 1

0
θ>ξe−µxdx.

Moreover, using G in Rn+ and Proposition 1, we have
ξ(1, t) ∈ Rn+ for all t ≥ 0 and thus V̇ ≤ −µλV (ξ) where
λ = min{λi, i = 1, . . . , n}. By remarking that there exist
positive values C1 and C2 (depending on θ, Λ, and µ) such
that, for all non-negative functions ξ, it holds C1‖ξ‖L1(0,1) ≤
V (ξ) ≤ C2‖ξ‖L1(0,1), we may deduce that the solutions of the
positive linear hyperbolic system (1) exponentially converge to
0 in L1-norm.

This complete the proof of sufficiency.
Necessity. Since the inverse of the velocities, λ−1

i , are
commensurable, there exists a sufficiently small time-interval
∆t ∈ R+, such that the time periods satisfy τj = dj∆t, for
suitable integers dj ∈ N, j = 1, . . . , n.

Then, we could find a common time sample at which the
dynamics of each state component ξi(x, t) project to its left
boundary. Roughly speaking the necessary condition is later
derived by considering the time evolution of ξi(0, t), for all
t ≥ 0.

Let τ be the maximum time of all τi, i.e., τ = max
i=1,...,n

τi.

Using that state ξi is constant along the characteristic curves,
the values of every state component at the right boundary at
time t, are equivalent to those at time t− τi, that is,

ξi(1, t) = ξi(0, t− τi), (27)

for all t ≥ τi, i = 1, . . . , n.
Combined with the boundary condition (2), for t ≥ τ , the

dynamics of system (1) at the left boundary x = 0 can be
represented as

ξ(0, t) =

n∑
j=1

G[j]ξ(0, t− τj), (28)

where G[j] = [0, . . . , colj(G), . . . , 0] is a n-dimension square
matrix, and colj(G) is the j-th column of the matrix G. We
find

∑n
j=1G[j] = G. Using the notation l = τ

∆t , we note that
dj ≤ l for all j = 1, . . . , n, and thus we get the following
time-delay equation from (28),

ξ(0, s∆t) =

n∑
j=1

G[j]ξ(0, s∆t− dj∆t), (29)

for s = l, l + 1, . . ..
Simply denote ys = ξ(0, s∆t). By reorganizing the terms

in (29), we get the following time-delay system, for s = l, l+

1, . . .,

ys =

l∑
d=1

Gdys−d, (30)

where

Gd =

{ ∑
dj=d

G[j] there exists j such that d = dj

0 otherwise

and initial values yl−d = ξ(0, (l−d)∆t), for all d = 1, . . . , l, is
uniquely defined with Proposition 1. Further, with Proposition
2, the state components ξi(0, s∆t) > 0, as i ∈ ΩK−1, and the
others keep non-negative.

Now, we consider the discrete-time instant

h =
1

∆t

n∑
i=1

τi. (31)

From (30), for all s = h + 2, . . . , h + p, (p ∈ N), we
have, respectively yh+2 =

∑l
d=1 Gdyh+2−d, ..., yh+p =∑l

d=1 Gdyh+p−d. Summing the above equalities one obtains

h+p∑
s=h+2

ys =

h+p∑
s=h+2

l∑
d=1

Gdys−d =

l∑
d=1

Gd
h+p∑
s=h+2

ys−d

=

l∑
d=1

Gd

[
h+p−d∑
s=h+2

ys +

h+1∑
s=h+2−d

ys

]
. (32)

Since the system (1)-(3) is exponentially stable in L1-norm,
then for all x ∈ (0, 1), except on a set of measure zero,
ξ(x, t)→ 0, as t→∞, exponentially fast. Since the solution
is continuous with respect to x, this implies the exponential
pointwise convergence of ξ(x, t)→ 0, as t→∞, for all x in
(0, 1). In particular, ξ(0, t)→ 0, exponentially fast, as t→∞.
For the corresponding discrete system (30),

∑∞
s=h+2 yk <∞.

It follows from (32)

−
l∑

d=1

Gd
h+1∑

s=h+2−d

ys =

[
l∑

d=1

Gd − In

] ∞∑
s=h+2

ys

= [G− In]

∞∑
s=h+2

ys. (33)

Moreover, due to Item 1 of Proposition 1, all the terms in
the left-hand side of equality (33) are non-positive, we have

[G− In]

∞∑
s=h+2

ys � −
l∑

d=1

Gdyh+1

� −Gyh+1. (34)

To conclude the necessity part of the proof, and show that
inequality (25) holds for suitable θ � 0 and µ > 0, two cases
about matrix G may occur:

Case 1: rowi(G) 6= 0, for all i = 1, . . . , n.
According to Item 2 in Proposition 1, the solution of the

Cauchy problem (1)-(3) with an positive initial condition
ξ0(x) � 0 satisfies ξ(x, t) � 0 for all (x, t) ∈ [0, 1]× R+.
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In particular ys � 0, for all s ≥ h+ 1. Thus −Gyh+1 ≺ 0.
With (34), it holds

[G− In] b ≺ 0, (35)

by letting b =
∑∞
s=h+2 ys � 0.

Moreover, there exists µ > 0 such that[
G− e−µIn

]
b � 0. (36)

Because −[G− e−µIn] is a M-matrix and b � 0 satisfying
(36), there exists a positive vector θ ∈ Rn+, θ � 0, such that
[G> − e−µIn]θ � 0.

Case 2: There exists at least one row of indices i ∈
{1, . . . , n}, such that rowi(G) = 0.

Assume the sequence of index set Ik as (8) is constructed,
k = 1, . . . ,K − 1, and with an initial condition to (1)-(3)
starting from ξ0(x) � 0 for all x ∈ [0, 1].

Since h = 1
∆t

∑n
i=1 τi, we have

h ≥ 1

∆t

K−1∑
k=1

max
i∈Ik

(τi). (37)

Therefore according to Proposition 2, for all s ≥ h + 1, it
follows, (ys)Ik = 0, for all k = 1, . . . ,K−1, and (ys)ΩK−1

�
0.

Because again b =
∑∞
s=h+2 ys is constant, it follows bIk =

0, for all k = 1, . . . ,K − 1, and bΩK−1
� 0.

Furthermore, under the structure of matrix G, the (i, i)
entries of [G− In]Ik (a submatrix of [G− In] whose row
indices belong to Ik) is −1, i ∈ Ik, and the (i, j) entries of
[G− In]Ik is 0, for i ∈ Ik, j ∈ Ωk, k = 1, . . . ,K−1. Hence,
we have, for all k = 1, . . . ,K − 1,

([G− In] b)Ik = 0. (38)

On the other hand, from inequality (34), we have

([G− In] b)ΩK−1
� (−Gyh+1)ΩK−1

≺ 0. (39)

Let vector b̃ in Rn such that b̃Ik = εk, for all k =
1, . . . ,K − 1, and b̃ΩK−1

= 0 for the remaining entries of
b̃, εk are sufficiently small positive values satisfying

εk > max
i∈Ik


k∑
r=1

∑
j∈Ir

gijεr

 . (40)

Hence, b+ b̃ � 0, and, due to (38) and (39), [G− In] (b+
b̃) ≺ 0 holds. The remaining proof of this case is as in the
first case.

It concludes the proof of Theorem 1.

B. Conditions for the existence of a quadratic Lyapunov
function

Before commenting on the second main result, let us
recall the following sufficient condition for the existence of
a quadratic Lyapunov function.

Proposition 3: [8] Let P ∈ Rn×n be a diagonal positive
definite matrix, µ > 0 be a constant, the function

V (ξ) =

∫ 1

0

ξ>Λ−1Pξe−2µxdx, (41)

is a quadratic Lyapunov function for system (1)-(3), that is
V̇ ≤ − 2µ

(mini λi)−1V along the solutions to (1)-(3), if the matrix
inequality

e−2µP −G>PG ≥ 0 (42)

holds.
The second main result, namely Theorem 2 below, proves

that the sufficient condition for the existence of a linear
Lyapunov function as written in item 1) of Theorem 1 is
equivalent to the dissipative boundary condition (42) consid-
ered in Proposition 3. In details, Theorem 2 below gives three
characterizations for the matrix inequality (42) to hold, each of
them implying the existence of a quadratic Lyapunov function
for system (1)-(3).

Theorem 2: Given a positive linear hyperbolic system (1)-
(3), the following are equivalent:

1) there exist µ > 0, and a vector θ � 0, such that
condition (25) holds;

2) there exist µ > 0 and a diagonal positive definite matrix
P > 0, such that inequality (42) holds;

3) ρ(G) < 1, where ρ(G) is the spectral radius of the
matrix G.

Proof: 1) ⇒ 2) We denote [G> − e−µIn]θ = v � 0,
and [G − e−µIn]b = u � 0, where θ = [θ1, . . . , θn]>, and
b = [b1, . . . , bn]>.

Using θ and b, we construct a diagonal positive definite
matrix as P = diag

{
θ1
b1
, θ2b2 , . . . ,

θn
bn

}
. We have Pb = θ and

Gb = u+ e−µb. Then

(e−2µP −G>PG)b = e−2µθ −G>P (u+ e−µb)

= e−µ(e−µInθ −G>θ)−G>Pu
= −e−µv −G>Pu � 0. (43)

Since e−2µP −G>PG is a symmetric M-matrix and satis-
fies inequality (43), it must be a semi-definite positive matrix,
and thus (42) holds.

2) ⇒ 3) Using the congruence transformation defined by
the positive definite matrix e−µP

1
2 on both sides of e−2µP −

G>PG = Q, yields

(eµP−
1
2G>P

1
2 )(P

1
2GP−

1
2 eµ)− In

= −(eµP−
1
2 )Q(P−

1
2 eµ). (44)

Since the right-hand side of (44) is semi-definite negative,
this requires that ‖P 1

2GP−
1
2 eµ‖2 ≤ 1. Thus, with µ > 0,

ρ(G) = ρ(P
1
2GP−

1
2 ) ≤ ‖P 1

2GP−
1
2 ‖2 < 1.

3) ⇒ 1) follows from the Perron-Frobenius theorem.
This concludes the proof of Theorem 2.
Example 2: Consider a positive linear hyperbolic system

(1)-(2) with the characteristic and the boundary condition
matrices given, respectively, by Λ = diag{1,−1, 2}, and

G =

 0.2 0.4 0.2
0.8 0.2 0.1
0.4 0 0.2

 . (45)

The spectral radius of the non-negative matrix G is ρ(G) =
0.8990 < 1. After solving the linear inequality condition (25),
one can easily construct a linear Lyapunov function (26) with
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θ = (6, 4, 3)> � 0 and µ = 0.01 > 0. Following the
results of Theorem 2, a quadratic Lyapunov function (41)
can be further constructed with b = (4, 5, 5)> � 0 and
P = diag{1.5, 0.8, 0.6} > 0. ?

IV. APPLICATION TO FREEWAY TRAFFIC CONTROL

To illustrate the usefulness of the results, we will consider
the stabilization problem of vehicle transportation systems in
a freeway link which is modeled by the positive hyperbolic
linear systems.

Fig. 1. A freeway link controlled by local on-ramp metering and variable
speed sign.

A homogeneous freeway section between two successive
on-ramps is sketched in Fig. 1, where uf and uc are two
boundary feedback laws that will be defined in this section.
We assume that the upstream and the downstream boundaries
of the freeway section are provided with the on-ramp metering
to regulate the flow-rate of driving-in vehicles, and with the
VMSs to limit the driving speed of the mainline traffic.

The control of the freeway traffic is defined from upstream
to downstream and regulates the traffic limit of the freeway
section (see Section IV-C below for more details). Usually the
transmission speed of information from upstream to down-
stream is faster than the speed of the vehicles in the freeway.
Therefore, for this application, the transmission delay will be
neglected.

A. Aw-Rascle traffic flow model

The traffic dynamics of the freeway link are described by a
system of two laws of conservation, the so-called Aw-Rascle
traffic flow model [2]. It is{

∂tρ+ ∂x(ρv) = 0
∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0

, (46)

where ρ(x, t) is the vehicle density, v(x, t) is the average
speed, x ∈ [0, 1], t ≥ 0, and p(ρ) means the traffic pressure
term, which is supposed to increase over the vehicle density.

In [26], a special pressure function p(ρ) is given as

p(ρ) = vf − V (ρ), (47)

where vf is the free (maximal) speed, and V (ρ) is the speed-
density fundamental diagram. Typically, with the Greenshields
fundamental diagram [12],

V (ρ) = vf

(
1− ρ

ρm

)
, (48)

where ρm is the maximal density. Thus, we have p(ρ) = aρ,
and a =

vf
ρm

.

Let w = v + aρ, z = v. The nonlinear hyperbolic equation
(46) may be written in the characteristic Riemann coordinates
as {

∂tw + z∂xw = 0
∂tz + (2z − w)∂xz = 0

. (49)

In (49), the first velocity is assumed to be positive z > 0,
and the second velocity 2z − w is assumed to be nonzero
and its sign does not change. The sign of the second velocity
indicates the transfer direction of the vehicle speed from the
freeway upstream section to the downstream, or inverse. It is
usually used as the feature to determine the freeway traffic
lies in the free-flow mode or in the congestion mode [16]. In
practice, it also determines how to regulate the freeway traffic
by using the upstream or the downstream traffic measurements
(see Section V-C below).

B. Steady-state and linearization

A steady-state of the freeway traffic is a constant traffic state
(ρ∗, v∗) which satisfies one of the following relation

pin + rf = ρ∗v∗, or
ρ∗v∗ = pout − rc,

(50)

where pin, rf are constant flow-rates of the driving-in vehicles
through the upstream mainline and the upstream on-ramp of
the freeway section, and pout, rc are constant driving-out flow-
rates of the downstream mainline and on-ramp.

In order to linearize the model (46), we define the deviations
of the state ρ(x, t), v(x, t) with respect to the steady-state as,
respectively

ρ̂ = ρ− ρ∗,
v̂ = v − v∗. (51)

The linearization of the system (49) with the steady-state
(w∗, z∗) is written as{

∂tŵ + (z∗ + ẑ)∂xŵ = 0
∂tẑ + (2z∗ − w∗ + 2ẑ − ŵ)∂xẑ = 0

. (52)

In above Riemann coordinates, the deviations are ŵ = w−w∗,
and ẑ = z − z∗, with the associated steady-state given as
w∗ = v∗ + aρ∗, z∗ = v∗.

For the traffic steady-state we only assume that the product
of vehicle density times speed, that is the flow-rate, is constant.
Then there exists a set of the steady-states (ρ∗, v∗) satisfying
the condition (50). In fact, since

λ∗2 = 2z∗ − w∗ = v∗ − aρ∗, (53)

we regard just as two categories of the traffic steady-states.
While the steady-state (ρ∗, v∗) satisfies v∗−aρ∗ > 0, we call
it the free-flow steady-state, while v∗−aρ∗ < 0, the congestion
steady-state.

C. Boundary feedback control

Now we are going to show how Theorem 2 may be applied
to analyze the local stability of the freeway traffic under the
boundary feedback control.As mentioned above, the regulation
strategies (using different controller and measurement) are
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designed depending on the steady-state of the freeway traffic
lying in the free-flow or congestion traffic modes.

Two cases are discussed separately.
Case 1: λ∗2 = 2z∗ − w∗ > 0, the steady-state (ρ∗, v∗) lies

in the free-flow mode.
In this case, the velocity information (z or v) is propagating

from upstream to downstream, and thus it is natural to control
uf and v(0, t). We assume that the vehicle density ρ(1, t)
and the average speed v(1, t) at the downstream boundary
are measured, and the control units are the upstream on-ramp
metering and the driving-in speed limit of the freeway section.

Precisely, we introduce the boundary feedback law:{
uf (t) = rf + kfρ (ρ(1, t)− ρ∗)
v(0, t) = v∗ + kfv (v(1, t)− v∗) , (54)

with feedback gains kfρ > 0 and kfv > 0. The previous
controllers are proportional controllers that do not need the
knowledge of the entire state, but only the measurement of
the vehicle density ρ(1, t) and the average speed v(1, t) at the
downstream boundary.

At the upstream boundary of the freeway section, i.e., x =
0, the driving-in flow-rate conservation equation holds

uf (t) + pin = ρ(0, t)v(0, t). (55)

After the linearization of the boundary condition (55) with in-
tegrating the feedback control law (54), we have the following
boundary condition

ρ̂(0, t) =
kfρ
v∗
ρ̂(1, t)− ρ∗ k

f
v

v∗
v̂(1, t). (56)

Since v̂(1, t) = ẑ(1, t) and ρ̂(x, t) = (ŵ(x, t)− v̂(x, t))/a,
as x = 0, 1, we could rewrite condition (56) in the Riemann
coordinates for the system (52) as

ŵ(0, t) =
kfρ
v∗
ŵ(1, t)

+

[
kfv − aρ∗

kfv
v∗
−
kfρ
v∗

]
ẑ(1, t). (57)

Then the boundary condition that need to be imposed for the
system (52) is written as[

ŵ(0, t)
ẑ(0, t)

]
= Gf

[
ŵ(1, t)
ẑ(1, t)

]
, (58)

where

Gf =

[
kfρ
v∗ kfv − aρ∗

kfv
v∗ −

kfρ
v∗

0 kfv

]
. (59)

In the boundary condition matrix Gf ,

kfv − aρ∗
kfv
v∗
−
kfρ
v∗

=
λ∗2k

f
v − kfρ
v∗

. (60)

Let us choose λ∗2k
f
v − kfρ ≥ 0, the boundary condition

matrix Gf is non-negative, i.e., Gf � 0. Therefore, applying
Proposition 1, system (52) with the boundary condition (58)
is a positive linear hyperbolic system.

Straightforward calculations show that Theorem 1 holds for
the matrix Gf , if and only if, kfρ , kfv of the feedback control

law (54) can be selected as 0 < kfρ < v∗, 0 < kfv < 1, and
λ∗2k

f
v − kfρ ≥ 0.

Case 2: λ∗2 = 2z∗ − w∗ < 0, the steady-state (ρ∗, v∗) lies
in the congestion mode.

In this case, velocity information is propagating from up-
stream to downstream and thus it is natural to control uc and
v(1, t). Thus, conversely, the measurements are the vehicle
density ρ(0, t) and the average speed v(0, t) at the upstream
boundary, and the control units are the downstream on-ramp
metering and the driving-out speed limit of the freeway
section.

Then, we introduce the other boundary feedback law:{
uc(t) = rc − kcρ(ρ(0, t)− ρ∗)
v(1, t) = v∗ + kcv(v(0, t)− v∗) , (61)

with feedback gains kcρ > 0 and kcv > 0. The previous
controllers are again proportional controllers that need only the
measurements of the vehicle density ρ(0, t) and the average
speed v(0, t) at the upstream boundary.

Fig. 2. The evolution of the first component ŵ of the positive linear
hyperbolic system (52) with matrix Gf .

At the right boundary of the freeway link, i.e., x = 1, the
driving-out flow-rate conservation equation holds

pout − uc(t) = ρ(1, t)v(1, t). (62)

Combining the boundary condition (62) with the feedback
control law (61), we have

ρ̂(0, t) =
v∗

kcρ
ρ̂(1, t) + ρ∗

kcv
kcρ
v̂(0, t). (63)

Under the Riemann coordinates, since v̂(0, t) = ẑ(0, t) and
ρ̂(x, t) = (ŵ(x, t)− v̂(x, t))/a, as x = 0, 1, then it holds

ŵ(0, t) =
v∗

kcρ
ŵ(1, t)

+

[
1 + aρ∗

kcv
kcρ
− v∗ k

c
v

kcρ

]
ẑ(0, t). (64)
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Fig. 3. The evolution of the second component ẑ of the positive linear
hyperbolic system (52) with matrix Gf .

Fig. 4. The evolution of the density ρ of the Aw-Rascle traffic flow equation
(46) with the steady-state (ρ∗1, v

∗
1).

The corresponding boundary condition for the system (52)
is given as [

ŵ(0, t)
ẑ(1, t)

]
= Gc

[
ŵ(1, t)
ẑ(0, t)

]
, (65)

where

Gc =

[
v∗

kcρ
1 + aρ∗

kcv
kcρ
− v∗ k

c
v

kcρ

0 kcv

]
. (66)

Because

1 + aρ∗
kcv
kcρ
− v∗ k

c
v

kcρ
= 1− λ∗2

kcv
kcρ

> 0, (67)

Fig. 5. The evolution of average speed v of the Aw-Rascle traffic flow
equation (46) with the steady-state (ρ∗1, v

∗
1).

the boundary condition matrix Gc is non-negative, i.e., Gc �
0, and the solution to system (52) is non-negative for all the
time, if only kcρ > 0 and kcv > 0, and if the initial condition
is non-negative.

Fig. 6. The evolution of the first component ŵ of the positive linear
hyperbolic system (52) with matrix Gc.

Moreover, as the freeway traffic is lying in the congestion
mode, the system (52) with the boundary condition matrix
Gc is locally exponentially stable if and only if the control
gains kcρ, kcv of the boundary feedback strategy (61) satisfies
kcρ > v∗, 0 < kcv < 1.

Remark 4: Our designed boundary feedback strategies
(54) and (61) depend on the sign of the second velocity
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Fig. 7. The evolution of the second component ẑ of the positive linear
hyperbolic system (52) with matrix Gc.

Fig. 8. The evolution of the density ρ of the Aw-Rascle traffic flow equation
(46) with the steady-state (ρ∗2, v

∗
2).

which keeps either positive or negative in the whole spatial
domain. For the spatial-varying steady-states containing phase
transition between the free-flow mode and the congestion
mode, the boundary feedback stabilization is not discussed
in the present note. ◦

D. Simulation

The developed boundary feedback strategies (54) and (61)
are now tested with some numerical simulations in the two
traffic modes presented above. To this end, we consider a local
freeway section with parameters ρm = 200 veh./km, vf = 150
km/hour, a = 0.75, pin = 6000 veh./hour, rf = rc = 1000

Fig. 9. The evolution of average speed v of the Aw-Rascle traffic flow
equation (46) with the steady-state (ρ∗2, v

∗
2).

veh./hour, pout = 8000 veh./hour, and the total road length is
1 km, i.e., x ∈ [0, 1].

Firstly, for the steady-state (ρ∗1, v
∗
1) = (70, 100), we have

λ∗2 = 47.5 > 0. In the neighborhood of this steady-state, the
freeway traffic lies in the free-flow mode. Thus we apply the
boundary feedback strategy (54), and the feedback gains are
chosen as kfρ = 20, and kfv = 0.5. The associated boundary
condition matrix Gf in (59) is given as

Gf =

[
0.2 0.0375
0 0.5

]
. (68)

The initial deviations for the Aw-Rascle traffic flow equation
(46) are chosen as{

ρ(x, 0) = ρ∗ +
√

2 sin(4πx) + 1.45

v(x, 0) = v∗ +
√

2 sin(3πx) + 1.45
. (69)

Figs. 2 and 3 show the time evolution of system (52) with
the boundary feedback control (54), boundary condition matrix
(59), and the initial conditions ŵ(x, 0) = v̂(x, 0) + aρ̂(x, 0),
and ẑ(x, 0) = v̂(x, 0), x ∈ [0, 1], under Riemann coordinates,
satisfying the zero-order compatibility condition.

It is observed that solutions of ŵ(x, t), ẑ(x, t) of hyperbolic
system (52) preserve non-negativity and converge to the origin
as time increases, as expected from Proposition 1 and Theorem
1. Figs. 4 and 5 show the solutions ρ(x, t) and v(x, t) to
the Aw-Rascle equation (46). The states clearly converge to
their steady-state ρ∗1 = 70 veh./km and v∗1 = 100 km/hour,
respectively, in these simulation.

In the other simulation, we assume freeway traffic lies
in the congestion mode, and consider the steady-state as
(ρ∗2, v

∗
2) = (100, 70). In this case, the second eigenvalue

λ∗2 = −5 < 0. We apply the boundary feedback strategy (61),
and the feedback gains are chosen as kcρ = 400 and kcv = 0.5.
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Then the boundary condition matrix Gc in (66) is calculated
as

Gc =

[
0.175 1.0025

0 0.2

]
. (70)

Using the same initial conditions (69), Figs. 6 and 7
show that the boundary feedback control (61) stabilizes the
linearized system (52). A common practice of traffic control
during the congestion mode is to first regulate the downstream
traffic to a constant value corresponding to the upstream mea-
surements. Figs. 8 and 9 show that such strategy is effective
to stabilize the congestion freeway traffic, by simulating the
Aw-Rascle equation (46).

V. CONCLUSION

In this paper, an important contribution was the neces-
sary and sufficient conditions for the exponential stability
of positive linear hyperbolic systems using a constructive
linear Lyapunov function. This condition is written in terms
of linear inequalities which are numerically tractable. The
theoretical contribution was applied to stabilize freeway traffic
represented by the Aw-Rascle traffic flow model. The control
strategies combine the on-ramp metering with the speed limit
in the distributed action.

Future work shall extend above theoretical results, such
as Propositions 1, 2, and Theorem 1 with space-varying
coefficients in the velocity matrix and with the discontinuous
selection of boundary conditions. Some effort will also be
devoted to the connection between the positivity of hyper-
bolic systems and the positivity of the associated Riemann
coordinates.
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