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APPLICATIONS OF GAUSS'S PRINCIPLE OF LEAST CONSTRAINT TO THE NONLINEAR HEAT-TRANSFER PROBLEM

B. VUJANOVIC and B. BACLIC:

Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Yugoslavia

Abstract-An approximate direct method for solving linear and nonlinear heat conduction problems, based on the Gauss's principle of least constraint is presented. In every particular case, the problem is reduced to the algebraic minimization of a quadratic form with respect to some complex of physical parameters. By principles in use at the present time in the study of heat transfer, are built up in formal analogy with known principles of classical mechanics. This fact confirms the claim of Heisenberg that : " Mechanics could be a model and a basis for all other fields of science ... " ( [START_REF] Heisenberg | Philosophic Problems of Nuclear Sciences[END_REF], p. 89). The most popular principles of mechanics which are advantageously used in many branches of engineering as a starting point for the direct calculation are the D'Alambert's principle of virtual work and Hamilton's principle of stationary action. In addition, when a physical problem is stated in the form of Hamilton's principle it becomes a variational problem in the sense of variational calculus. The direct methods applied on the D'Alambert's principle are generally known as the Galerkin's method, while the numerous direct computations based on the Hamilton's principle are known as Ritz's method, method of partial integration, Rayleigh's method etc.

In this paper we shall study the possibility of applications of Gauss's principle of least constraint to the nonlinear heat transfer. This principle is a true minimum principle in contrast with the two aforementioned principles of D'Alambert and Hamilton, which are generally not the minimum principles. • Contrary to *The variational principle of Hamilton may be occasionally a true minimum principle.

the general impression that the Gauss's principle is of purely theoretical interest in classical (point) mechanics, the purpose of this, and the previous article [START_REF] Vujanovic | The practical use of Gauss's principle of least constraint[END_REF] is, to point out that this principle can lead to considerable practical advantages in nonlinear heat transfer.

GAUSS'S PRINCIPLE

For the sake of clarity we will briefly describe the Gauss principle of ordinary mechanics in a form suitable for applications in heat transfer. where p is the density, k(T) and c(T) are the thermophysical coefficients which are supposed to be the functions of temperature T.

Consider the heat-transfer analog of equation (2) :

z = L [X-YY d v (9)
where Vis the volume which is engaged in the process of heat transfer and

X = div(k •grad T)
y = pc oT [START_REF] Jaeger | Conduction of heat in a solid with a power law of heat transfer at its surface[END_REF] ar are spatial and temporal parts respectively. As in the previous case the following two variational rules for Z =!I (F;-m;a;) 2

(2)

minimizing (9) are possible i=l bX=!-0, bY=O (11) 
and suppose that the configuration (r;), velocity (v;) and and forces (F;) of the system are prescribed at timet, i.e. and the remaining "complex"-m;a; is then the only one to be varied, i.e.

(4)

The Gauss's principle of least constraint states that under the conditions (3) and (4) the quantity Z can assume its absolute minimum, which is zero. The proof is simple. If ( -m;a;) represents the actual inertial force, and -m;a;+b(m;a;) represents any other possible inertial force, we have: 

As a second possibilityt of achieving the absolute minimum of "constraint" Z defined by (2), we can suppose that the configuration, velocity and acceleration of the system are prescribed at time t and the impressed force F; is then only one to be varied, i.e.

.5r, = 0, bv; = 0, b(m;a;) = 0, bF, =!-0.

(7)

If the system in question is subject to holonomic or nonholonomic constraints the constraint Z is in minimum again but introduction of Lagrange's undetermined multipliers is necessary. We will show now how one can treat the equations of nonlinear heat transfer in the same way as the dynamical systems discussed above. *In the original version of Gauss's principle the expression in the parenthesis of ( 2) is multiplied by the factor 1/m;. tFor more details see [START_REF] Vujanovic | The practical use of Gauss's principle of least constraint[END_REF]. bX = 0, bY=!-0.

(
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This variational principle may be formulated by means of the generalized coordinates instead of the components of the field itself. In numerous problems it is possible to guess that a solution belongs to a family of functions with one or more unknown parameters, which is more or less characteristic feature for all approximate methods. In each particular case we must be able to identify the characteristic complex of parameters which represent X or Y and minimization of Z has to be performed with respect to one of these complexes. The method proposed is very simple because the whole technique for obtaining approximate solution is of the algebraic nature-minimization of a quadratic form with respect to a complex. If some of generalized coordinates are coupled by one or more algebraic •relations the minimization of Z should be performed using Lagrange's undetermined multipliers.

The efficiency of the method can be illustrated by obtaining approximate solution of a simple linear heat-transfer problem.

Consider a one-dimensional thermally insulated semi-infinite body with constant thermo-physical coefficients p = p 0 , c = c0 and k = k0 . The body is initially at the temperature T = 0. At t = 0 the face of the body, located at x = 0, is suddenly brought to a constant temperature T = T0 where rx = k0 /p 0 c0 , together with

T(O, t) = To; T(x, 0) = 0. ( 14 
)
Following the concept ofthe penetration depth assume the solution in the form

T = To (1-q~tJ (15)
where q(t) is penetration depth.

Let us solve the problem minimizing the constraint:

Z = lq [aT -rt. azT]z dx Jo at ax 2 (16)
with respect to the temporal part aTjat. From (15)

we have

Y= aT =2To(1-~)~•W at q q a 2 T 2To (17)
axz qz where W=~ (18) q is the "temporal complex" with respect to which we will minimize the expression (16). Substituting (17) into (16) integrating and retaining only the terms with W we have

W 2 q Wrt. Z(W)= - -- 10 q (19)
where a constant multiplicative factor has been omitted. Minimizing (19) with respect to W, i.e.

az(W) =O aw and using ( 18) we find the following differential equation

qq = 5rt.
the solution of which, with respect to the initial condition q(O) = 0 is

q = J(lOrt.t). ( 20 
)
Finally let us use the second possibility, minimizing ( 16) with respect to the spatial complex a2T X = rt. ,; yz = 2KT0 

aT =2T 0 (1-~)~q, at q q 2
and ( 21) into ( 16), retaining the terms with K, we have after integration

(23)
where a constant multiplicative factor has been omitted.

The equation az(K)jaK = 0, together with (22) will yield the equation qq = 6rt.

i.e.

q = J(12rt.t). ( 24 
)
These two results (20) and ( 24) are in good agreement with the exact solution. Besides, they are identical with the approximate solutions obtained by the Galerkin and integral methods respectively.

It should be noted that the Gauss principle of least constraint has been applied on the linear heatconduction problems by Samoilovich in [START_REF] Yu | Gauss's principle in heat conduction theory[END_REF]. However, the author deals with a transformed form of the basic heat conduction equation similar with the Biot's quasivariational method.

It is the purpose of this note to show that the Gauss's principle can be applied directly on the governing heat-conduction equations, and in addition, the nonlinear problems are generally treated in the same way as the linear ones.

As was shown above, the applications of direct methods, using Gauss's principle are simple and straightforward. In the next section several more complex examples will be presented .

EXAMPLES (A) Unsteady two-dimensional nonlinear heat conduction through the prism-like infinite bodies with a given cross section

As the first example we shall study the temperature distribution through the prism-like infinite bodies. The thermal conductivity is supposed to be a linear function of temperature hence the differential equation is of the form aT -r~.!...[o+aT) aTJ-r~. i [o+aT) 0 TJ=o (25) ot ax ox oy ay

where rt. and a are given constants.

Initially, the body is at the uniform temperature, i.e.

T(O , x, y)

= T0 = const. ( 26 
)
and the surfaces of the body are maintained at the zero temperature

T(t, X, y)ls = 0 ( 27 
)
where Is is the symbol for the external surfaces of the prism. Consequently the problem is to find the approximate solution of (25) in the presence of initial and boundary conditions (26) and (27).

The suitable form of the trial solution will be :

T = tf>(t)B(x, y) (28)
where B(x, y) is a specified function of the position which has to be chosen in accordance with the shape of the cross section of the body. The function B(x, y)

has the following properties: B(x , y)ls = 0, and B(x, y) > 0 for every x andy inside the region bounded by S. Hence, the problem is reduced on finding the unknown function of time tf>(t), using the Gauss's principle.

Let us consider the constraint in the same sense of Gauss:

Z = --rt.-(1+uT)- f x,iy'{oT a l 8TJ xo Yo 0( OX ax -rt.!_ l(l +aT) oT]} 2 dxdy (29)
ay ay

where(x0 ,y0 ) and (x 11 yJ) are to be selected in accordance with the contour in question.

The minimization of Z will be performed with respect to the temporal "complex" ¢. Introducing (28) into (29), integrating, and omitting all terms not containing ¢,we find: (

Z = 11 rP 2 -2r:xl2 4>¢-2rxa !3 4> 2 rP
) 32 
The initial condition </J(O) will be determined by minimizing the initial square residual of the form:

J = [ ' [ ' [To-</J(O)B(x,y)J2dxdy
with respect to the arbitrary constant of the general solution of differential equation (32).* As the particular examples we will consider two characteristic shapes of cross section.

(a) The triangle. Consider the triangular cross-section bounded by x = 0, y = 0, x+ y-1 = 0. For this case the trial solution is supposed to be of the form:

( x y)x y T= ¢>(t) 1------ 1 I I I (33) hence ( x y)x y B(x y) = 1------ , I I II (34)
and the limits of integration in (31) are

Xo=Yo=O, Xt=l, Yt=l-x. hence the solution is of the form For this case we will suppose (39)

42To exp(-56r:xt fl 2 ) T(x, y, t) = _ _ Tt _ _ _ _ _ _ _ _ 1 +a 2 ° [1-exp(-56r:xt j/ 2 )] X ( 1 _ T _ n y r (
(40)
and proceeding as in the previous case we find that the temperature distribution is 25T0 exp[ -10 ~:~~2 at]

T(x ,y, t) = [ ( 12 b 2 ) ] 1 +-HaT0 1-exp -10 1 ~2 r:xt X (7-~:)(~-;:). ( 41 
)
It is interesting to note that for the linear case a= 0, the corresponding results obtained from (38) and (41) are identical with those obtained by Tsoi in [START_REF] Tsoi | Transient heat conduction in the cylindrical bodies of arbitrary cross-section[END_REF], who used the approximate method based on Laplace transforms. Tsoi reports that for the case of a rectangle his results are in good agreement with the exact solution. Unfortunately for more complicated geometry as triangular for example, the comparison is not possible because the exact analytical solution is not available.

It is reasonable to suppose that the solutions (38) and (41) are of some validity for the moderate range of parameter a.

The corresponding results for both cases (a) and (b) are presented graphically on Figs. 1 and2, where the influence of nonlinearity is presented also.

(B) A melting problem

Consider a semi-infinite solid initially at the melting temperature eP whose surface x = 0 is raised suddenly to the temperature 80 and held there for t ~ 0. We will assume the temperature distribution only in the liquid phase. Such a simplification was proposed by

Goodman [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF] and greatly enhances the use of penetration depth concept in trial solution as far as the latter becomes identical with the location of the melting line ~(t).

Introducing dimensionless temperature T = (8 -8p)/

(80 -Bp), and assuming a liquid of constant thermophysical properties, the governing equation is given by (13), where a modification is made introducing dimensionless time Fo = r:xtj/ 2 where only penetration depth ~(Fo) and the constant A remain for evaluation in accordance with the condition at the interface (45) and the governing heat-conduction equation (13).

Upon substituting (47) into equation (45), one is Jed to the following differential equation for ~ (48) where .u = 2(80 -8p)c0 /L , which when solved for the initial condition ~(0) = 0 gives

~ = 2/J.J(Fo) (49)
where p == .J( -A.u/4).

(50)

It can easily be seen that in this manner all aforementioned conditions are fulfilled by ( 47) and (49). But as trial function (47) fails to satisfy the governing differential equation ( 13), we may proceed, by forming the constraint (16). The temperature profile (47), when substituted into (16), and the integration with respect to X , this time from X= 0 to X= ~(Fo) performed, yields

wz Z = ~(2A 2 -A+2) ~ +!(A 2 -A-2)KW+4(A+1) 2 K 2 ~ (51)
where W = ~ and K = l/~2 are physical components of oT joFo and o 2 T joX 2 respectively. We have two possibilities to obtain the approximate solution of the problem in consideration, i.e. by minimization of the constraint (51): (i) with respect to W , and (ii) with respect to K. In the exact solution J1. is related to the melting constant p by [START_REF] Carslaw | Conduction of Heat in Solids[END_REF] :

Jl. = 2(n:)tp exp(/J 2 )erf(pj. ( 57 
)
Since the relation p = P(JJ.) is of most interest in the solution of heat-conduction problems with moving boundaries, in Fig. 4 the percentage error E = lOO(Papprox-Pexac1)/Pexact is plotted against the dimensionless quantity Jl. defined above. J1. = 3 was the largest value of this parameter considered so that values required in practice are covered by this range. The improvement of the accuracy for the approximate solutions obtained here, when compared with those obtained in [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF] using the heat-balance integral, and in equation (5.28) of [START_REF] Eckert | Analysis of Heat and M ass Transfer[END_REF] by the help of a rather incorrect treatment of the problem, with a trial solution of the same form, is self-evident. We also conclude that the optimization with respect to temporal change of temperature field yields, in this case, much better results than the same with respect to spatial change of temperature.

(C) Semi-i'!finite body with an arbitrary heat flux input

As the last example, consider the case of the transient heat-conduction problem in the semi-infinite solid with constant thermal properties whose initial temperature is zero. In order to involve both linear and nonlinear boundary conditions the assumption will be made that the heat flux at the surface x = 0 is an arbitrary function of surface temperature T. = T(O, t) and time. Hence, the problem can be stated mathematically as follows. The governing equation is (13), with initial condition T(x, O) = 0 and boundary condition at

x = 0 aT ko -+ f(T. , t) = 0. ox (58) (59)
Following references [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF] and [START_REF] Vujanovic | Heat transfer with nonlinear boundary conditions via a variational principle[END_REF] let us assume the cubic temperature profile in the form:

T = T.(t) (I-q~tJ (60)
where q = q(t) is the penetration depth and both q and T. are unknown functions of time.

From the boundary condition (59) it follows that penetration depth and surface temperature are dependent

3ko T. = qf (61)
which indicates that we are going to deal with a constrained optimization problem in the appliance of the above exposed direct method to find T. and q. In the sense of this fact, we will use the Lagrange's multiplier technique, when dealing with the minimization with respect to physical components of temporal change of temperature.

Let us start by substituting the trial function, equation ( 60 and performing the indicated integration, one obtains t/q T. f.q 3 T.2q2

Z = -+ --+ n -- 7 7 q • 2 2
12 T. T. 9 T. . 2 2 T.

---,CJ. ----;er: -q+l

C/. - q q2 q3 (63)
where the dot represents differentiation with respect to time. The next step is to recognize the physical components of temporal and spatial change of temperature in this expression so that the minimization procedures may be performed straightforwardly. Since aT t. CJ.-2 = 6 2 (q-x)er: (66) ax q has only one complex:

T, K=a-(

q In order to demonstrate two possible solutions we will solve the problem minimizing corresponding Gauss's constraint with respect to temporal and spatial change of the assumed temperature distribution respectively. (i) Minimization with respect to temporal change. Omitting last term in (63) as irrelevant since it does not contain components W1 and W2 defined by (65), and using (61) whence 3k0 f.-4! -q(f'f.+ /) = 0 (68) where/= of /o t andf' = of/8 4 , we have

3ko T. W? 4 W1 Wz 4fWl z = 7f + 7 + 35ko 4af af2 -! -W1 -! -2 Wz ko ko ( 3ko 4Wd' +J. 3k o W~-fWz- f 3kof4f)
where). is an unknown Lagrange's multiplier. Minimization with respect to oT /ot, i.e. -k5 kf, .

Assuming that, in second case, f = fo • tN where N is an integer, equation (77) becomes t(f.)2 + H N42 = * af~2 t2N +' (79) ko and reduces to the first case for N = 0. The solution to equation ( 79) is

fo ( 49at )t N 4 = k 0 45N +39 t • (80) 
Upon separation of variables the differential equation for the third case (78) yields fr, 784/ 2 -66T/jf'

+ 184 3 !' 2 T. _ 7at Jo / 3 (7f -3T.f') d ' -kij • ( 81 )
Let us solve this equation for the case of power low heat transfer at the body surface into a medium at zero temperature, i.e.

f(T,) = H(T.-To)'"

where Hand mare constants. Introducing 11 = 1 + T. / To equation (81) becomes Upon elimination J. from equations (71) and (72) one is led to 45kij T. f.+ 11fko 4q-49af 2 -15k5 T. 2 f. j'

-6k0 4 2 4[' + 2lafT.f' = 0 (73)
which when combined with equations ( 68) and (61) gives the first order differential equation for the temperature at the surface (74)

The initial condition for the problem is T.(O) = 0. There are three cases in which equation ( 74) can be integrated analytically:

1. f = const. In this case equation (74) reduces to

(75) (83) 
The method of handling (82) applies also to the case in which the surface flux is a sum of powers of the surface and environment temperatures, and thus to heat convection from bounding surface into a fluid at temperature T 1 , for which the boundary condition is (linear case) f=h(4-T 1 ), and also to the blackbody radiation into a medium at temperature

Tm :f = a(T, 4 -T;). The discussion of the results given above will take place after solving the same problems using the second possibility, viz. minimizing the constraint (63) with respect to the component of spatial change of temperature.

( 

2. f = f(t) 3. f = j(T,) f T. = 1.127-(a.t)t ko 2 r. t. _ 6 T. 2 ! = 80 a.P s s 7 f 03" k6 ibf T• l4T,f-6Tlf' _ext ! 3 dT,-2• o ko (90) (91) 
where ' 7 = 1 -T. / T 1 .

Let us now proceed with the discussion and the comparison of the results. One thing is obvious-the closed form solutions obtained by minimization of Gauss's constraint with respect to the component of spatial change of temperature distribution are more attractive since they are of a rather less complicated form. To evaluate the accuracy of the results we are going to compare all of them with the exact solutions for surface temperature.

In the case of constant heat flux the exact solution is known to be T. = 1.128(! /k0 )(rxt)+, which when compared with equations (76) and (91) indicates the improvement of the result obtained by the help of minimization with respect to K. But when compared with the result l.l5(f /k0 )(at)t of application of the integral method [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF] to the same problem, both results are better.

To compare the results for the case when heat flux is the power function of time the corresponding ratios for the approximate solutions obtained by variational [START_REF] Vujanovic | Heat transfer with nonlinear boundary conditions via a variational principle[END_REF] and integral [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF] method are also listed.

(f = fo • tN) we calculate T r(N+ 3 ) r(N) = .-approx. = 7 • R(N) (100) 
Comparison of the approximate solutions with the numerical ones [START_REF] Jaeger | Conduction of heat in a solid with a power law of heat transfer at its surface[END_REF], for the case when the heat flux is a power low function of the surface temperature, is evident from Fig. 5. The dots represent approximation equations ( 96), (97) and (98) for m = 4, 2 a nd 5/4 respectively. If one superimposes the results of Goodman [START_REF] Goodman | Application of integral methods to transient nonlinear heat transfer[END_REF], or Vujanovic and Strauss [START_REF] Vujanovic | Heat transfer with nonlinear boundary conditions via a variational principle[END_REF] (available only for m = 4), or those obtained by minimization with respect to o Tjot in this paper, it may be concluded that all of them are less accurate.

-Exact When the solution of equation ( 99) is compared with the exact one, and the percentage error E = 100('7approx. -'lexactl/'lexact is calculated it turns out that E = 3%, for (T./ TJ)approx = 0.8, which reduces to 1% for (T./ T.)approx. = 0.5, while for (T./Tf)approx. ~ 0.3, E ~ 1%. Doing the same with equation ( 86): E = 6.4% at (T./ T,)approx = 0.8; E = 1% at (T./Tf)approx. = 0.4 and less than 0.5% for (T./TJ)approx. < ~.3.

Thus, in all cases the solutions here obtained differ only slightly from the exact ones. Further, the important conclusion is that the result obtained by minimization of Gauss's constraint with respect to the component of spatial change of temperature distribution are always more accurate, although of rather less complicated form.

DISCUSSION

In conclusion several remarks would be of interest:

1. The method we have presented is quite useful in the search for approximate solutions of linear and nonlinear heat-conduction problems. Usually, in the case of nonlinear analysis, it pertains to a high accuracy when compared with the other approximate methods.

2. A common feature of all approximate methods in heat transfer, including the method presented, is that the solution of a problem should be selected to some extent a priori. The choice of the form of a solution which contains some parameters that should be determined by the help of the Gauss's method depends upon all the information available from empirical, experimental, intuitive, etc. data.

Our aim has been to demonstrate two possibilities

for obtaining approximate solutions from the same Gauss's constraint. The question as to which of the two possible approximate solutions should be taken is to be decided by considering the mean square residual [START_REF] Finlayson | The Method of Weighted Residuals and Variational Principles[END_REF] (p. 388) in the form Z=f''f (X-Y) 2 dVdt.

(101)

'o Y
Naturally, the value of Z defined by ( 101) is equal to zero for the exact solution. Hence, the better solution is that one for which Z has the smallest value. It should be pointed out that the same criteria can be employed for evaluating the accuracy of any approximate solution obtained by some other approximate method.

4. The extension of the method presented in this paper on some more elaborated mathematical schemes as for example the method of finite elements is possible and will be reported elsewhere.

5. This method can be extended also in a straightforward way to handle the numerous problems arising in transport phenomena.

  Consider a free dynamical system of n particles, subject to impressed forces F;(i = I, 2, . . . , n). If m; are masses, r; position vectors and a; = d 2 r;/dt 2 accelerations, the differential equations of motion are (I) Let us introduce the quantity* Consider the nonlinear equation of heat conduction t' T div(k • grad T)-pc ---:. ; -= 0.

  n bZ =±I {[F;-m;a;+b(m;a;j]2-(F;-m;a;) 2 } i=l =!I [6(m;a;)] 2 + I (F;-m;a;)b(m;a;) (5) i=l i=l and the last term vanishes in virtue of (I). Thus bZ>O unless b(m;a;) is zero.

  ..,-=0 o<P yields the differential equation /1 rP-l2r:x¢>-MlJ¢> 2 = 0.

  the constant of integration. The equation oJ -= 0 oCz *This standard procedure for finding the initial condition of </>(t) was applied by many authors previously. See for example [ 4]. will yield 2 56 C 2 = -3[2a-421 2 To (37)

  38) (b) Rectangular cross-section. Let the boundaries of a rectangle be defined by x= ±l y =±b.

FIG. 2 .

 2 FIG. I. Temperature distribution in the triangular crosssection atFo = rxt/4/ 2 = 0.08 for linear (u = 0) and nonlinear (a= 0.5) case, (a) temperature distribution in the center line (x = y), (b) isothermals T = 0.2 and 0.4.

  (i) Minimization with respect to spatial change of temperature K. Condition oZjoK = 0 together with K = 11e yields the differential equation 2 ~~ = 24(A + 1) .

2 -A - 2 2~~=FIG. 3 .

 223 FIG. 3. Negative roots of equation (56).

8 FIG. 4 .

 84 FIG. 4. Percentual error in determination of melting constant by different approximate methods.

  ), into z = fq[(oT)2 -2CJ. oT o2T + CJ.2(o2T)2] dx (62)

It

  IS obvious that temporal change of temperature distribution possesses two natural components (65) On the other hand spatial change of temperature a 2 T r.

2 + 2 . 7 : 1 :

 2271 105J.k5f(1-T/) = 0 (71) 5kij T. f.+2fko T.q-7af 2 -35J.k5f = 0. (72) or 4 =f... (~at)t = 1.121£ (ar)t ko ko Iff = f(t), equation (74) becomes and 2 + 11 Ts 2 / = 49 ajl ' ' n f 3"9" k5 , 3. Whenf = f(4), equation (74) yields . 42 t. , 6 43 t.rz 244-HT f +TJ-1 -2- -~ af2-ti r4f'T.

Final 2 1 -

 21 ao = 3/7 a1 = -40/49 a2 = 107/252 as= -275/31104 a6 = -1375/ 248832 a1 = -6875/ 1492992 b = -34375/17915904 (84) a3 = -11/360 a4 = -55/3456 c = 376528644/ 13168189440 (b) form= To2H2 -rxt = -[i--H'7+ih2-fi'73] nln'l (86) where ' 7 = 1 -T./T 1 since the boundary condition is taken of the formf = h(T 1 -T,).

  the second case we choose f = fo • t N to get the solution of (92) T. _ fo ( 80a.t )t N s -ko 72N + 63 t • (94) Assuming againf(T,) = Trf • H • Y/m where Y/ = 1 + T./ To we obtain the solution for the third case in the form 9 f~(7-3m)'1 2 +(6m-7)1]-3m y 0 2m -zH2 case of heat convection boundary conditionf(T,) = h(T 1 -T.) from equation (93) one obtains

FIG. 5 .

 5 FIG. 5. Surface temperature of the semi-infinite solid with surface flux the mth power of the temperature. The dots represent approximation equations (96), (97) and (98).

  the help of several concrete examples the efficiency and accuracy of this new method is demonstrated.

		NOMENCLATURE	fJ,	temperature;
	a,	acceleration;	fJP,	temperature of phase change.
	b, c, E, F, Fo, H,	characteristic length; specific heat; percentage error; force; Fourier number rxt/1 2 ; coefficient;	Subscripts 0, refers to initial values; f, refers to the fluid; m, refers to the surrounding medium ; S, refers to the surface of the body.
	h,	convective heat-transfer coefficient;		
	K,	complex representing the component of		
		spatial change of temperature distribution;		
	k,	thermal conductivity ;		
	L,	latent heat of melting ;		
	/,	characteristic length;		
	m,	mass;		
	q,	penetration depth;		
	r,	position vector;		
	t,	time;		
	T,	nondimensional temperature;		
	v,	velocity;		
	W,	complex representing the component of		
		temporal change of temperature distribution ;		
	x,	length coordinate ;		
	X ,	nondimensionallength xj l;		
		spatial change of temperature distribution		
		(10);		
	y,	length coordinate ;		
	Y,	nondimensionallength yjb;		
		temporal change of temperature distribution		
		(10);		
	Z,	Gauss's constraint.		
	Greek symbols		
	rx,	thermal diffusivity ko/poco ;		
	{3,	melting constant;		
	A.,	Lagrange multiplier ;		
	p,,			

= 2(8o -lJp)co/L; e. location of melting line; p, density; a, constant specifying the dependence of k on T; Stefan-Boltzmann constant in example C; I. INTRODUCTION THE USE of variational methods for obtaining solutions of transport phenomena has become an indispensable tool in the domain of nonlinear conduction. Many publications dealing with variational principles of various kinds have appeared in the technical literature in the past 20 years. Roughly speaking, all variational

  ii) Minimization with respect to spatial change. This time omission of terms not containing component K

	defined by (67) reduces constraint (63) to the following
	expression of relevance:	
	12 Z = -,KT,--s-K-q+12 -. • 9 T. . K 2 q q	(87)
	Optimization condition	
	az aK=O	(88)
	together with (67) will yield, upon using (61) and (68),
	the differential equation	
	. 63T.T.-27f(T.f'+ )=40 k6 T.2 . f afz	(89)
	determining surface temperature.	
	If we consider, as above, the cases for which equation
	(89) is integrable, the following reductions are evident:
	1. f = const.	
	2T. t. = 80 af 2 s s 03" k5	
	with the solution