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ON THREE EARLY PAPERS BY HERBERT BUSEMANN

ATHANASE PAPADOPOULOS AND MARC TROYANOV

Abstract. This paper is a commentary and a reading guide to three papers
by Herbert Busemann, Über die Geometrien, in denen die “Kreise mit un-
endlichem Radius” die kürzesten Linien sind. (On the geometries where circles
of infinite radius are the shortest lines) (1932), Paschsches Axiom und Zwei-

dimensionalität, (Pasch’s Axiom and Two–Dimensionality) (1933) and Über
Räume mit konvexen Kugeln und Parallelenaxiom. (On spaces with convex

spheres and the parallel postulate) (1933). These are the first papers that
Busemann wrote on the foundations of geometry and the axiomatic character-
ization of Minkowski spaces (finite-dimensional normed spaces). The subject
of these papers followed Busemann for the rest of his life, and the three papers
already contain several ideas and techniques that he developed later on, in
his work on the subject which lasted several decades. The three papers were
translated into English by Annette A’Campo. These translations, together
with the final version of present commentary, will be part of the forthcoming
edition of Busemann’s Collected papers edition.

Keywords: Axioms of geometry, Minkowski spaces, Hilbert axioms, Busemann ge-
ometry, horospheres.

AMS codes: 53C70, 54E35, 53C23, 97E10.

1. Introduction

The three papers [5, 6, 7] by Busemann with which we are concerned in this note
are among the first papers that he wrote.1 The first one was published in 1932 and
the two others in 1933. These papers concern the foundations of geometry, a field
whose main object is to investigate the various existing geometries, in general from
the axiomatic point of view. This concerns in particular the three “classical” ge-
ometries: Euclidean, hyperbolic and spherical, but projective and affine geometries
were also extensively studied, since the 19th century. Furthermore, the axioma-
tization process, when Busemann started his work, had already been extended to
other fields than geometry. One may mention arithmetic, but we also recall that
Hilbert’s Problem VI, from his famous 1900 twenty-three problems, asks for the
axiomatization of mathematical physics.

The axiomatic method has a long history which starts in Greek Antiquity2 with
a culmination in Hilbert’s Grundlagen der Geometrie [21]. The first edition of this
treatise appeared in 1899, and the seventh revised edition, to which Busemann
refers, in 1930.

It is also worth mentioning that during the three decades that preceded Buse-
mann’s work, set theory and topology, which were closely related fields, experienced
a rapid development, and several mathematicians, including Busemann himself,

1Busemann published a paper on analysis in 1930, Die Vollständigkeit der Minimalfolgen von
Eigenwertproblemen, Nachrichten Göttingen 1930, 295-307. It seems he did not publish any paper
in 1931.

2It is well known that the Greeks started the axiomatic foundation of Euclidean geometry, but
they also worked out the foundations of spherical geometry; this was done mainly by Theodosius
and Menelaus. They also approached the foundations of projective geometry; one may think here
of the work of Apollonius.
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2 ATHANASE PAPADOPOULOS AND MARC TROYANOV

were familiar with them.3 Busemann had also at his disposal the theory of metric
spaces. We recall in this respect that the abstract notion of metric space as we
understand it today first appeared in 1906, in Fréchet’s thesis [15]. At the time
where Busemann started his work, this theory had already witnessed important
developments, in particular by K. Menger who worked in Vienna. Busemann refers
at several places to the work of Menger.

The papers [5, 6, 7] by Busemann are important because the questions that
Busemann considers and the ideas he expresses there are among those that followed
him during the rest of his life. At the time where Busemann wrote them, he was
working as an assistant (without salary) at the University of Göttingen, having
obtained his doctorate in 1931 under the supervision of R. Courant. Hilbert, to
whom we shall often refer in this note, was still teaching at that university, mostly
on philosophy of mathematics, although he had officially retired in 1930.

The specific problem in which Busemann was interested in these three papers is
that of characterizing Minkowski geometries. We recall that a Minkowski space is
defined by a metric ρ on a finite-dimensional real vector space such that for any
quadruple X,Y,X ′, Y ′, if (Y ′ −X ′) = t(Y −X), then ρ(X ′, Y ′) = |t|ρ(X,Y ), see
[26, chap 1, §1] . These spaces were introduced by Hermann Minkowski in the book
[26], to which Busemann refers. These spaces play a major role in Busemann’s
subsequent work. They are the infinitesimal Finsler geometries, that is, they play,
in Finsler geometry, the role played by Euclidean spaces in Riemannian geometry.
Developing a theory of Finsler spaces from a purely metric point of view, that is,
without differentiability, was one of Busemann’s favorite topics. Another reason for
which Minkowski spaces are important in Busemann’s work is that they constitute
one of the two main classes of examples of metric spaces satisfying the conditions
of Hilbert’s Problem IV.4 This problem, from the list of problems that Hilbert
addressed at the Paris 1900 International Congress of Mathematicians, remained
for several decades one of Busemann’s favorite problems. In Hilbert’s words, this
is the problem of the straight line as the shortest distance between two points. This
is usually interpreted as the question of characterizing the metrics on subsets of
Euclidean (or projective) space such that the Euclidean (respectively projective)
straight lines are the shortest lines. As a matter of fact, in his comments on
that problem, Hilbert says much more. In particular he mentions twice Minkowski
spaces. First, he considers them as one of the two main examples of spaces satisfying
his problem, and then he asks for an axiomatic characterization of these spaces. Let
us quote his words, from the English translation of his fourth problem [20]:

One finds that such a geometry really exists and is no other than that
which Minkowski constructed in his book, Geometrie der Zahlen,5 and
made the basis of his arithmetical investigations. Minkowski’s is there-
fore also a geometry standing next to the ordinary Euclidean geometry;
it is essentially characterized by the following stipulations:
1. The points which are at equal distances from a fixed point O lie on

a convex closed surface of the ordinary Euclidean space with O as
a center.

2. Two segments6 are said to be equal when one can be carried to the
other by a translation of the ordinary Euclidean space.

3We point out that Busemann, during his studies, followed the topology courses of P. S.
Alexandroff, who visited Göttingen regularly. See [16].

4The other class is that of Hilbert metrics.
5[Hilbert’s footnote] Leipzig, 1896.
6In this paper, the word “segment” is used several times, in more than one sense. In each case

the meaning should be clear from the context.
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In Minkowski’s geometry the axiom of parallels also holds under the
conditions that balls are strictly convex.

We note that in his formulation of the second property, Hilbert makes use of
translations of the space. In Busemann’s axiomatic characterization of Minkowski
spaces, which is the subject of the two papers [5] and [7], there is no mention of mo-
tion. We remind the reader that the question of including or not the motions in the
axioms of geometry has been a delicate issue, for several centuries. It originates in
Aristotle, who considered that motion should be avoided in the axioms of geometry,
because it pertains to physics rather than mathematics, cf. e.g. Aristotle’s Meta-
physics A8, 989, b32-33 [2]. Euclid, in his list of axioms, followed Aristotle’s point
of view. The question of including or not motions in the foundations of geometry
has been thoroughly discussed by several commentators of Euclid, in particular the
Arabs; see e.g. [29], [30] and the references there.

The question of describing axioms for Minkowski geometries remained central
for Busemann. It is investigated in his later papers, e.g. [9, 13], and in his books
[10] and [12]. Besides the question of characterizing Minkowski spaces, Busemann
made an extensive investigation of the geometry of these spaces, cf. [11, 13]. There
is more about these results in the paper [3] in the present volume.

We shall comment more on Hilbert’s Problem IV. In particular, we shall point out
that several directions that Hilbert indicated, in the comments that accompany this
problem, concerning the solution. Busemann remained interested in that problem
during several decades; cf. [28] for a review of his work on this problem. He started
by following Hilbert’s line of thought, but he then brought a certain number of
fundamental ideas that were completely novel. His program combines the then
recent developments of metric geometry, set theory and topology, together with a
knowledge of the classical bases of axiomatic and projective geometry. At several
occasions, Busemann commented on his metric approach to the axioms. In the first
two paragraphs of [8, Chap. 3], he writes:

The axiom that there is only one straight line through two given points is
fundamental in the foundation of geometry, in projective geometry and
in non-euclidean geometry. At the stage where this axiom is formulated
a metric is generally not yet defined; therefore it is meaningless to speak
of the straight line as a geodesic.

The early geometers frequently tried to introduce the straight lines as
shortest connections,7 but without success since there was no abstract
definition of a metric.

Hilbert suggested in his comments on Problem IV the inclusion of metric el-
ements as part of the axiomatics. More precisely, he asks whether the triangle
inequality could be introduced as an axiom in the foundation of geometry. He
writes in [20]:

We are asking, then, for a geometry in which all the axioms of ordinary
Euclidean geometry hold, and in particular all the congruence axioms
except the one of the congruence of triangles (or all except the theorem
of the equality of the base angles in the isosceles triangle), and, in which,
besides, the proposition that in every triangle the sum of two sides is

greater than the third is assumed as a particular axiom.

Regarding this passage, let us recall that the triangle inequality is a theorem in
Euclidean geometry; see the end of the Appendix for a short discussion.

7For instance, Legendre in his Elements de géométrie gives the following definition: La ligne
droite est une ligne indéfinie qui est le plus court chemin entre deux quelconques de ses points
(The straight line is an undefined line that is the shortest path between any two of its points).
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We mentioned that the paper [6] concerns the axioms of two-dimensional geom-
etry. We note in this respect that it may happen that in some results of Busemann,
the case of dimension two requires a special statement (cf. for example the results
of the paper [7] that are recalled in §5 below). Since we are talking about dimen-
sion, we note right away that there exist axiomatic definitions of dimension (in the
style of Hilbert’s Foundations), but that Busemann in his work uses the notion of
topological dimension, for which he refers to Alexandroff [1].

The plan of the rest of this note is the following.
In §2, we introduce some basic notions that are used by Busemann, in particular

the notion of line space.
In §3, we comment on the content of the paper [6] where Busemann proves that

a line space is 2-dimensional if and only if Pasch’s Axiom holds.
In §4, we comment on the content of Busemann’s paper [5]. The main result in

this paper is a characterization of Minkowski spaces by the fact that horospheres,
with the induced metric, are themselves line spaces.

In §5, we comment on the content of Busemann’s paper [7]. In this paper, a
characterization of Minkowski spaces is given in terms of a parallelism relation sat-
isfied by the space together with a convexity property of its spheres. This property
of convexity of spheres will play a prominent role in the later works of Busemann.

In an appendix at the end of the present note, we have included, for the conve-
nience of the reader, the list of Hilbert’s axioms of Euclidean geometry to which
Busemann refers.

2. The notion of line space

In the three papers, Busemann uses the following notion that he attributes to
Menger.

Definition 2.1. A line space is a set equipped with a non-negative distance func-
tion ρ(X,Y ), called a metric, satisfying the following 6 axioms.

i. ρ(X,Y ) = ρ(Y,X).
ii. ρ(X,Y ) = 0 if and only if X = Y .
iii. ρ(X,Y ) + ρ(Y,X) ≥ ρ(X,Z).
iv. Every sequence which is bounded with respect to this metric has an accu-

mulation point.
v. For every pair of points (X,Y ) there exists a unique point U such that

ρ(X,U) = ρ(U, Y ) and ρ(X,U) + ρ(U, Y ) = ρ(X,Y ).

vi. For every pair of points (X,Y ) there are exactly two points V and W such
that

ρ(X,Y ) = ρ(Y, V ) = ρ(W,X),

ρ(X,Y ) + ρ(Y, V ) = ρ(X,V ),

ρ(Y,X) + ρ(X,W ) = ρ(Y,W ).

X YU VW

The first three axioms are the usual axioms of a metric space. Axiom iv is a
formulation of the Bolzano-Weiertrass property for sequences in Rn. It seems that
the introduction of this statement in the axioms of a geometry is a novelty.

Axiom v is about the existence and uniqueness of midpoints and Axiom vi is
about the existence and uniqueness of doubled points.
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Busemann notes that, using techniques from metric geometry as in Menger’s
paper [25], one may prove that any pair of distinct points X and Y in a line space

belongs to a unique geodesic that is isometric to R. He attributes this fact to
Biedermann. Busemann also notes that in a line space, Hilbert’s linear axioms are
satisfied:8 I, 1,2,3 (first half); II, 1,2,3, III, 1,2,3 and V.1.

In his later works, Busemann calls such a space a straight line space (e.g. in [8])
or simply a straight space (e.g. in [10]).

3. The paper on Pasch’s axiom and 2-dimensionality

In the short paper [6], Busemann recalls Pasch’s axiom9 which states that for
any three non-collinear points A,B,C in a plane, if a line meets the segment AB,
then it meets the union of the segments AC and CB. He proves that under some
topological conditions, Pasch’s axiom is equivalent to the fact that the space is
homeomorphic to the plane. More precisely, Busemann shows that if the lines (in
the sense of axiomatic geometry) are the geodesics for a metric satisfying the axioms
of a line space as defined in § 2, then the fact that Pasch’s axiom holds is equivalent

to the fact that the space is homeomorphic to the plane. The proof is sketched in
[31].

Note that in a line space, one can easily define the congruence of segments
by stating that AB ≡ A′B′ if ρ(A,B) = ρ(A′, B′), and this congruence satisfies
Hilbert’s axioms (III.1) to (III.3).

In the last part of the paper, Busemann proposes the following notion of angle
congruence in a 2-dimensional line space. Let g and h be two rays with common
origin O and g′, h′ two other rays with common origin O′. Consider the points G
and H on g and h respectively satisfying ρ(O,G) = ρ(O,H) = 1 and similarly the
point G′ andH ′ on g′,h′ such that ρ(O′, G′) = ρ(O′, H ′) = 1. Then the angles (g, h)
and (g′, h′) are said to be congruent if ρ(G,H) = ρ(G′, H ′). This angle congruence
is clearly an equivalence relation and Hilbert’s axiom (III.4) is satisfied.

In general however, Axiom (III.5) is not satisfied and therefore the first theorem
on triangle congruence in Hilbert’s Foundations fails for a general line space. We
recall that this theorem states the following (sometimes called the SAS – for side-
angle-side – triangle congruence criterion).

If ABC and A′B′C′ are two triangles such that A′B′ ≡ AB, A′C′ ≡ AC and

B̂′A′C′ ≡ B̂AC, then triangles ABC and A′B′C′ are congruent, in particular we

also have B′C′ ≡ BC.

Busemann concludes his paper by stating that it is well known that one cannot

say more in general, even with a quadratic metric. Busemann probably means here
that in a two-dimensional Riemannian manifold (say complete, simply connected
and without conjugate points), although the notion of angle is well founded, the
theorem on triangles congruence generally fails.

4. Geometries where Circles with Infinite Radius are the Shortest

Curves

Let us now discuss the content of the paper On the Geometries where Circles

with Infinite Radius are the Shortest Curves [5]. Busemann starts with the following
definition:

Definition 4.1. A line space satisfies the limit circle axiom if in addition to (i)–(vi)
above, it also satisfies the following condition:

8The numbering here refers to that of Hilbert’s axioms in the appendix of this article.
9It may be useful to recall that Pasch’s axiom was known and used by Euclid’s commentators

long before Pasch (1843–1930); see e.g. [29].
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vii. For any pair of distinct points X,Y and any sequence {Pn} such that
ρ(Pn, X) → ∞ and (ρ(Pn, X)− ρ(Pn, Y )) → 0 we also have

(ρ(Pn, X)− ρ(Pn, U)) → 0 and (ρ(Pn, X)− ρ(Pn, V )) → 0,

where U is the midpoint of X and Y and V is the doubling point, that is
Y is the midpoint of X and V .

Remaks. 1.) Condition vii is equivalent to the requirement that

(ρ(Pn, X)− ρ(Pn, Z)) → 0

for any point Z on the line through X and Y . In Euclidean geometry, this holds if
the sequence Pn diverges to infinity on a line othogonal to the line through X and
Y .

2.) This condition also implies that the horospheres in our line space are totally
geodesic.

The goal of the paper is to prove the following

Theorem 1. A 3-dimensional line space satisfying the limit circle axiom is iso-

metric to a Minkowski space. Furthermore, the metric balls are strictly convex and

the spheres have a unique tangent plane at any point.

Busemann also proves the converse: every Minkowski space with the above prop-
erties is a line space satisfying the limit circle axiom.

Let us describe in some detail the content of the paper. The article contains 5
sections comprising a total of 41 facts which are either technical lemmas or propo-
sitions having some interest in themselves.

In Section 1, Busemann describes the segments and lines in a line space and
spells their basic properties. The results can be summarized by saying that the
usual incidence axioms for lines such as those listed in Hilbert’s Grundlage der

Geometrie are satisfied.

Let us note Fact 3, which states that the join of a point P and a segment AB is
homeomorphic to a triangle in R2 if A,B and P are not on a line.

In Section 2, Busemann introduces the notion of limit sphere in a general line
space. By definition, a limit sphere is the limit of a sequence of spheres through a
point P with centers Qn lying on a fixed ray and such that ρ(P,Qn) → ∞. The
limit spheres are also called horoshperes.10

Note that Busemann introduced the notion of horosphere in a general metric
space, as a level set of a Busemann functions in [10, p. 102 and p.132], see also
[27]. Recall that for any geodesic ray γ, the associated Busemann function βγ is
defined as

βγ(X) = lim
t→∞

(ρ(X, γ(t))− t).

The equivalence between the notions of horosphere and level set of some Busemann
function follows from Fact 7.

In Section 2 of the paper [5], Busemann establishes the following properties of
horospheres:

i.) Two horospheres associated to the same ray are equidistant.

10It is also worth recalling that the notion of limit sphere was introduced by Lobachevsky, in
the setting of his work on hyperbolic geometry. We refer the reader to the English edition of the
Pangeometry [24] (p. 8). We also note that Lobachevsky, in some other memoirs, used the word
horisphere (see e.g. [23]), which was later on transformed into horosphere. Lobachevsky proved
that in hyperbolic space, horospheres are equipped with a Euclidean structure. His proof is based
on the fact that Euclid’s axioms are satisfied on horospheres, for a appropriate notion of line,
angle, etc.
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ii.) Horospheres are convex in the sense that every point not on a horosphere has
a unique nearest point on that horosphere.

iii.) Horospheres in an n-dimensional line space are locally homeomorphic to stan-
dard spheres; therefore their topological dimension is n− 1.

In Section 3, Busemann considers horospheres in a line space satisfying the limit
circle axiom. He first observes that the horospheres in such a space are flat sub-
spaces. In particular they are themselves line spaces (of dimension one less). Fur-
thermore, any horosphere separates the ambient space into two convex regions.

Busemann then specializes his investigation to dimension 3. He calls plane a
horosphere in a 3-dimensional line space satisfying the limit circle axiom. Any ray
defining the horosphere is said to represent the normal direction of that plane.

Busemann then shows that there is a unique plane through three non aligned
points (Facts 17 and 25). He also proves that given a point P not on a plane there
is a unique footpoint (nearest point) for P on the plane.

Note that this property implies that at any point on a sphere, there is a unique
plane tangent to that sphere (where by “tangent” one means that the intersection
of the plane and the sphere is a singelton).

In Section 4, Busemann discusses the geometry of 2-dimensional line spaces
satisfying the limit circle axiom. He first observes that the horospheres in such a
space are exactly the lines. In the rest of the section he shows that such a space is
homeomorphic to R2 and Pash’s axiom is satisfied. The arguments are similar to
those in [7], see Section 3. It is also easy to show that in such a space the parallel
postulate (as formulated in Hilbert’s Axiom IV) holds.

In Section 5, Busemann recapitulates the previous discussion in the following
claim: For a 3-dimensional line space satisfying the limit circle axiom, all the

projective axioms of a 3-space have been verified. This means that all Hilbert’s
axioms of incidence and order, that is, groups (I) and (II) are satisfied. This
also implies that Desargues’ theorem holds in a suitable sense. Since the parallel
postulate also holds, X can be mapped homeomorphically to R3 in such a way
that the geodesics in this plane are mapped to straight lines in R3, see [31] for a
discussion of Desargues’ theorem and its relation with such a mapping.

Busemann then observes that the spheres in X are strictly convex and at each
point they admit a unique tangent plane. He then shows (Fact 39) that any pair of
spheres in X are related by a similarity transformation, and from this he concludes
that the line space is a Minkowski space (Fact 39). This completes the proof of the
main Theorem.

Busemann then proceeds to prove the converse, namely that Minkowski metrics
on R3 with strictly convex spheres and with a unique tangent plane at each point
are line spaces satisfying the limit circle axiom (Fact 41). He concludes the paper
by recalling that it is then sufficient to add a single axiom to conclude that the
line space is Euclidean. He states the additional axiom as a condition involving a
configuration of 6 points proposed by O. Veblen. Note that many other equivalent
conditions were proposed by a number of mathematicians. The most elegant and
famous among them is probably the parallelogram law published in 1935 by P.
Jordan and J. von Neumann in [22].

5. Spaces with Convex Spheres and the Parallel Postulate

In the fifth postulate of Euclid’s Elements and in Hilbert’s axiom (IV), the notion
of parallelism between two lines refers to the fact that the two lines are coplanar
and disjoint. In the paper On spaces with convex spheres and the parallel postulate

[7], Busemann introduces a different notion of parallelism, which he will also adopt
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(with a small variation) in his later work, in particular, in his book The Geometry

of geodesics. The definition is the following:

Definition 5.1 (Space satisfying the parallel postulate). A line space is said to
satisfy the parallel postulate if whenever g is a straight line, P a point not on g,
and Xn a sequence of points on g converging to infinity, the straight lines PXn

always converge to the same straight line (depending only on g and P .)

Using this notion, Busemann gives a characterization of Minkowski spaces that
uses spheres, rather than horospheres as in the previous paper. More precisely, he
first obtains the following result, valid in dimension ≥ 3:

Theorem 2. If in a line space of dimension ≥ 3 the distance spheres are convex

and differentiable and the parallel axiom holds, then the space can be mapped topo-

logically onto a Euclidean space in such a way that the geodesics are mapped to

straight lines and the metric is Minkowskian.

The differentiability of a sphere, in Busemann’s metric setting, means the ex-
istence and uniqueness of “as few tangent lines as possible” at each point of the
sphere. This is made precise in §3 of his paper.

The case of dimension 2 requires different hypotheses. In Busemann’s termi-
nology, in a line space, the distance function is said to be convex if the distance
function from an arbitrary fixed point to the points moving on an arbitrary line is
convex. In the same manner, by taking the α-th power of this function, one defines
the notion of a line space in which the α-th power of the distance function is convex.

In the case of dimension two, Busemann obtains the following.

Theorem 3. In a two-dimensional line space in which the parallel postulate holds,

if for some α ≥ 1 the α-th power of the distance function is convex and differentiable

then the same conclusion as in Theorem 2 holds.

The outline of the paper is the following.
The paper is divided into 5 sections.
Section 1 concerns the notion of parallelism in line spaces. Busemann intro-

duces the notion of asymptotic lines, and he makes a thorough investigation of this
notion, making the relations with limit spheres and their orthogonal trajectories.
Busemann refers to the book [14] by É. Cartan in which the latter studied such
a relation in Riemannian spaces of nonpositive curvature. In fact, the notion of
asymptoticity of lines, in the setting of surfaces embedded in 3-space, was already
studied by Hadamard in his paper [17]. The study made by Busemann in his pa-
per is a generalization of those made by Hadamard and Cartan to this setting of
abstract line spaces. Using this notion of parallelism, Busemann states his parallel
postulate in the setting of line spaces. The definition involves 5 statements con-
cerning asymptotic lines. Dimension 2 requires a special study, and for this case
Busemann uses the result of his paper [6].

Section 2 concerns the convexity of spheres and its consequences. Busemann
makes the relation of this notion with the existence of midpoints, and he notes that
this was already noticed by Minkowski in his Geometrie der Zahlen [26]. Busemann
refers again to Cartan’s book [14] for the case of Riemannian manifolds. In this
general setting, Busemann gives a formulation using the convexity of the distance
function and the uniqueness of foots of perpendiculars. A thorough investigation
of the notion of perpendicularity in this non-Riemannian setting is needed. In
particular, the notion of perpendicularity is extended to a pair of lines which do
not meet: a line g is said to be perpendicular to a line h if there is a parallel to g

which is perpendicular to h. Again, in the case of dimension two, a special study
is made. All these ideas will play an essential role in the later work of Busemann.



ON THREE EARLY PAPERS BY HERBERT BUSEMANN 9

Section 3 concerns the characterization of Minkowski spaces of dimension > 2.
In this section, Busemann defines the notion of differentiablity of spheres in this
metric setting. This involves the introduction of metric notions of hypersurfaces,
midsurfaces and hyperspheres, the use of the parallel postulate, and of several
topological lemmas.

In Section 4, Busemann studies the question of embedding a 2-dimensional line
space into a 3-dimensional one. He recalls that Hilbert, in his Grundlagen, already
considered the question of the embedding of a plane satisfying all the axioms of
order and intersections in a three-dimensional projective space. He showed that the
embeddability is equivalent to the fact that Desargues property is satisfied. This
is one of the starting points for Busemann’s work on what he called Desarguesian
spaces. In the paper under review, Busemann adresses a similar question. The
space is equipped with a metric and with a certain system of curves, called lines.
Busemann proves that if in this space Desargues theorem holds, then the two-
dimensional space can be embedded in a three-dimensional space such that these
lines are sent to lines of the projective space. The proof uses a construction by
Hessenberg [18].

Section 5 concerns the characterization of 2-dimensional Minkowski spaces. The
embedding of §4 is used. The convexity property of the α-th power of the distance
function to which we referred in Theorem 3 above is equivalent to the fact that
in that space, the spheres are convex. Busemann uses this fact to show the main
theorem in dimension two, namely, if in a 2-dimensional line space the parallel
postulate holds and if there exists α > 1 such that the α-th power of all distance
functions are convex and differentiable, then the metric is Minkowskian.

The paper ends with a discussion of the convexity of ellipses and hyperbolas,
with their natural definition in a general 2-dimensional line space. This is naturally
motivated by the result on the convexity of spheres. Busemann shows in particular
that if in such a space the branches of any hyperbola are convex, then for any two
points, the perpendicular bisectors exist and are lines. Then he proves that if in
any two-dimensional line space the branches of any hyperbola are convex curves,
then the metric is either Euclidean of hyperbolic.

Finally, let us note that some of the results of the three papers [5, 6, 7] were also
reproved in the book [10]

Appendix: Hilbert’s axioms

In this section, we reproduce, for the readers’ convenience, Hilbert’s axioms
from his Foundation of Geometry. We are following the second English edition [21],
which is based on the tenth German edition. This edition differs marginally from
the seventh edition, to which Busemann refers. Besides the axioms themselves,
Hilbert’s treatise also contains the consequences of the axioms as well as numerous
comments enriching the axiomatic system.

The goal of this system of axioms is to lay down foundations for Euclidean ge-
ometry in 3-space. Three undefined notions (objects) are assumed: points (denoted
by capital Latin letters), lines (denoted by small Latin letters) and planes(denoted
by small Greek letters). Some undefined relations are also assumed; these are the
incidence relations (a point is on a line, a line is contained in a plane etc.), the order
relation (a point lies between two others) and the congruence relation formalizing
the idea that two segments or two angles can be superposed.

The axioms are divided into five groups describing the basic properties of inci-
dence, order and congruence. The parallel postulate and a continuity (or complete-
ness) axiom are also assumed.
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I. Axioms of incidence

(I.1) For every two points A,B there exists a line that contains each of the points
A,B.

(I.2) For any two distinct points A,B there exists no more than one line that
contains each of the points A,B.

(I.3) There exist at least two points on a line. There exist at least three points
that do not lie on a line.

(I.4) For any three points A, B, C that do not lie on the same line there exits
a plane α that contains each of the points A,B,C. For every plane there
exists a point which it contains.

(I.5) For any three points A, B, C that do not lie on one and the same line
there exists no more than one plane that contains each of the three points
A,B,C.

(I.6) If two points A, B of a line a lie in a plane α, then every point of a lies in
α.

(I.7) If two planes α, β have a point A in common, then they have at least one
more point B in common.

(I.8) There exist at least four points not lying in a plane.

II. Axioms of order

(II.1) If a point B lies between a point A and a point C then the points A, B, C
are three distinct points of a line, and B lies also between C and A.

(II.2) For two points A and C, there always exists at least one point B on the
line AC such that C lies between A and B.

(II.3) Of any three points on a line, there exists no more than one that lies between
the other two.

(II.4) Pasch’s Axiom: Let A, B, C be three points not lying in the same line and
let a be a line lying in the plane ABC and not passing through any of the
points A, B, C. If the line a passes through a point of the segment AB,
it also passes through either a point of the segment BC or a point of the
segment AC.

III. Axioms of congruence

(III.1) If A, B are two points on a line a, and if A′ is a point on the same or
another line a′, then it is possible to find a point B′ on a given side of the
line a′ so that the segment AB is congruent to the segment A′B′. We write
AB ≡ A′B′.

(III.2) If two segments are congruent to a third one they are congruent to each
other.

(III.3) On the line a let AB and BC be two segments which except for B have
no point in common. Furthermore, on the same or another line a′ let A′B′

and B′C′ be two segments having no point other than B′ in common. In
that case if AB ≡ A′B′ and BC ≡ B′C′, we have AC ≡ A′C′.

The next two axioms concern the congruence of planar angles and are of little
interest in Minkowski geometry.

(III.4) 11 Given an angle in a plane α and a half-line in another plane β there exists
exactly two half-lines in β generating angles congruent with the given angle.

(III.5) IfABC andA′B′C′ are two triangles such that A′B′ ≡ AB, A′C′ ≡ AC and

B̂′A′C′ ≡ B̂AC, then we also have ÂBC ≡ Â′B′C′ and ÂCB ≡ Â′C′B′.

11We have summarized Axiom III.4 – which is long in Hilbert’s version – while keeping the
meaning.
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IV. The parallel postulate

(IV.) Let a be any line and A a point not on it. Then there is at most one line
in the plane, determined by a and A, that passes through A and does not
intersect a.

V. Axioms of continuity

(V.1) Archimedes’ Axiom: If AB and CD are any segments then there exists
a number n such that n segments CD constructed contiguously from A,
along the ray from A through B, will pass beyond the point B.

(V.2) Completeness’ Axiom: An extension of a set of points on a line with its order
and congruence relations that would preserve the relations existing among
the original elements as well as the fundamental properties of line order
and congruence that follows from Axioms I-III, and from V.1 is impossible.

On the triangle inequality. Before ending this paper, we aim at clarifying a
point. In his comment to his IVth problem, Hilbert suggests to consider the triangle
inequality as an Axiom and not as a Theorem (see Hilbert’s quotation on page 3
in the present paper). However the triangle inequality is not explicitly stated as a
theorem in Hilbert’s foundations.

To understand in what sense Hilbert considers the triangle inequality as a theo-
rem, let us recall that in Euclid’s Elements, Proposition 20 of Book 1 says that In
any triangle the sum of any two sides is greater than the remaining one. The proof
derives from Proposition 5: On an isosceles triangle the angles at the base are equal

to one another and Proposition 19: In any triangle the greater angle is subtended

by the greater side.
In his Foundations, more precisely, in the comments following the congruence

axioms, Hilbert discusses the notions of angle and segment comparison. Axiom
(III.3) allows also an obvious definition of segment addition. With this material,
Hilbert proves the equality of the base angles in an isosceles triangle as Theorem
11 and he proves that in every triangle the greater angle lies opposite to the greater
side as Theorem 23. One may then prove the triangle inequality exactly as in
Euclid. This justifies Hilbert’s claim that it is a proposition that in every triangle

the sum of two sides is greater than the third and gives a meaning to his suggestion
to assume this fact as an axiom instead.

Let us end with two short comments. First we stress that in the above proof
the angle congruence Axiom plays an important role. Thus the triangle inequal-
ity in classical Euclidean geometry appears as a consequence of some properties of
angles. Finally let us mention that although Hilbert did not explicitly state the
triangle inequality in the Foundations, he wrote a paper in 1902 about the role of
the theorem on the base angles in an isosceles triangle [19]. This paper is repro-
duced in appendix II of [21]. There, the triangle inequality is explicitly stated as a
proposition.

Acknowledgement The authors would like to thank Valerii Berestovskii for read-
ing this paper and sending corrections. The first author acknowledges support from
the ANR program FINSLER.

References

[1] P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen,
Math. Annalen 106 (1932), p. 161-238.

[2] Aristotle, the Metaphysics, In The Complete Works of Aristotle: The Revised Oxford Trans-
lation (J. Barnes, editor), Volume 2, 1552-1728, Translated by W. D. Ross, Princeton Uni-
versity Press, Princeton, 1984.

[3] V. N. Berestovskii, Busemann’s results, ideas, questions and locally compact homogeneous
geodesic spaces, this volume.



12 ATHANASE PAPADOPOULOS AND MARC TROYANOV

[4] R. Bonola, La geometria non-euclidea, Esposizione storico-critica del suo sviluppo. First
edition, Ditta Nicola Zanchinelli editore, Bologna 1906. German translation by M. Liebmann
in the collection Wissenschaft und Hypothese, Teubner, Leipzig, 1908. English translation by
H. S. Carslaw: Non-Euclidean Geometry, A critical and historical study of its development.
First edition, 1912. Reprinted by Dover, 1955.

[5] H. Busemann, Über die Geometrien, in denen die “Kreise mit unendlichem Radius” die
kürzesten Linien sind. Math. Ann. 106 (1932), no. 1, 140–160. English translation by A.
A’Campo: On the geometries where circles of infinite radius are the shortest lines, this
volume.

[6] H. Busemann, Paschsches Axiom und Zweidimensionalität. Math. Ann. 107 (1933), no. 1,
324–328. English translation by A. A’Campo: Pasch’s Axiom and Two–Dimensionality, this
volume.
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