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Abstract— Socially assistive robot with interactive behavicl
capability have been improving quality of life fora wide range of
users by taking care of elderlies, training individials with
cognitive disabilities or physical rehabilitation, etc. While the
interactive behavioral policies of most systems arscripted, we
discuss here key features of a new methodology thanables
professional caregivers to teach a socially assiai robot (SAR)
how to perform the assistive tasks while giving proer
instructions, demonstrations and feedbacks. We desbe here
how socio-communicative gesture controllers — whiclactually
control the speech, the facial displays and hand geires of our
iCub robot — are driven by multimodal events captued on a
professional human demonstrator performing a
neuropsychological interview. Furthermore, we propse an
original online evaluation method for rating the mutimodal
interactive behaviors of the SAR and show how such method
can help designers to identify the faulty events.
robot;

Keywords—- socially assistive robot; humanoid

multimodal behavior; subjective evaluation;

I. INTRODUCTION

A. A socially assistive rotot

A socially assistive robot is an assistive robodiray
people through social interactive behaviors rathban
physical interaction [25]. Several socially assstirobot
(SAR) systems have been proposed and designedgegen
people into various interactive exercises such hgsipal
training [1], neuropsychological rehabilitation [@] cognitive
assistance [3]. Depending on the objectives of Hibenan-
Robot Interaction (HRI), SAR faces different chafies. One
of the important dimensions is the length of thigeraction.
Several SAR are concerned with long-term interagtéaming
at providing a single user with social glue andeetif/e
relations. Paro [4] is emblematic of that challefgge Leite et

al [5] for a review). These companion robots offgay the
role of pets or majordomos. In contrast, severdR$@ve also
been designed to engage into short-term task-edent
interactions. The challenge is here more orientadatds
attention and quick adaptation.

Our works focus on the development of socio-
communicative abilities of a SAR for short-termeirgtictions.
Particularly, in this paper, we present the SOMBRER
framework which aims at providing a humanoid robdth
multimodal interactive behaviors — such as spegalag arm
gestures, etc. — in order to perform a neuropsydhcal test,
demonstrated by professionals.

B. SOMBRERO framework

The three main steps of learning interaction by
demonstration are given in Figure 1: we should ddllect
representative interactive behaviors from humarcioes; (2)
build comprehensive models of these overt behavimis a
priori knowledge (task & user model, etc.); and nth@)
provide the target robot with appropriate gesturetiollers to
execute the desired behaviors.

Most interaction models embedded into HRI systenes a
strongly inspired by Human-Human Interactions (HHfi)hot
entirely trained on HHI data. This HHI-based framekvfaces
several problems: (1) the scaling of the human mtal¢he
interaction capabilities of the robots in terms miysical
limitations (degrees of freedom) and perceptiortioacand
reasoning; (2) the drastic changes of human betsirndront
of robots or virtual agents [6]; (3) the modeling joint
interactive behaviors (4) the replay and assessmkthese
behaviors by the robot.

SOMBRERO proposes to solve the two first issues by
enabling coaches to demonstrate human-robot initenac
(HRI) via immersive teleoperation, i.e. by direabbotic
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Figure 1: The main steps of learning interactiordbgnonstration



embodiment. HRI is thus bootstrapped by a robotiated

the SAR, we adopted a modified scenario using timets:

HHI, which may be broadly considered as a cognitiveone tablet facing the robot to score the subjeaiswers and

infocommunication system (see section V).

The immersive teleoperation of the gaze and lip enzants
of our iCub robot Nina is described in Guillermoa&f7]. This
technique artificially provides the SAR with cogmit —
notably social — skills that are intrinsically atlsg to the
robot’s sensorimotor abilities. Moreover subjectsyrhave the
impression to interact with a truly autonomous Sa&ml thus
provide the interaction model with genuine behalidata.

The third issue i.e. learning—based modelling
interactive behaviors — is an emerging concept (Seaeer
work performed by Otsuka et al [8] or more recer®y).
While learning by demonstration [10] has been gaftective
for sensorimotor tasks such as walking or graspihgre the
robot interacts with the physical environment,didension to
HRI presupposes HRI data that are difficult to asguwe
proposed [11] [12] to train statistical behaviomabdels that
encapsulate discrete multimodal events performed they
interlocutors into a unique dynamical system thatild be
further used to monitor behaviors of one interlocuand
generate behaviors of the other.

We address here the fourth issue i.e. the replay
assessment of interactive behaviors by the robot.

. THECURRENTCONTRIBUTION

We should in fact verify that the multimodal belwasi
planned by the interaction model can effectivelydggroduced
by the target robot and that these multimodal biehsvare
perceived as adequate by human interlocutors.

A. The scenario

Our interviews are based on the French adaptati8hdf
the Selective Reminding Test [14] named the RL/BI It
provides a simple and clinically useful verbal meyntest for
identifying loss of episodic memory in the elderly.

The RL/RI 16 protocol consists in four phases. fitst one
is the progressive learning of 16 words togetheth wheir
semantic categories four by four. This phase iredutvo main
tasks: (1) item identification (the interviewer plsys four
items and asks the subject spell out each namevingdts
category); (2) immediate recall of items (the sabjshould
recall each item by its category while the items hidden).
The second phase is three successive recall tasksfrée
recall, complemented by an indexed-by-categorylirémathe
unrecovered items) separated with a distractivk (eeverse
counting). In the next, there is a recognition tamsiolving the
16 items, 32 distractors (16 different words witle tsame
semantic category and 16 true distractors) anda(dglayed
free and indexed recall (not administrated in tresent study).
Mnesic performance is evaluated by comparing reesdls of
the subject with regards to mean & standard dewiati
observed within sane control population of the saage
interval.

Most professionals use folders with sheet of papkrs
order to avoid complex dexterous gestures to bomweed by

a

the other tablet facing the subject to display aistimuli i.e.
items to be learned or recognized.

B. Interactive data

The demonstrations used here have been performed by

female professional neuropsychologist. Since thenensive
teleoperation of the upper body (notably of the gris not
available yet, the discrete multimodal events hdogen
collected via semi-automatic labeling of HHI. Thetmon of
of25 reflective markers placed on the plexus, shos)deead,
arms, indexes and thumbs of the professional ilgenr were
monitored thanks to a Qualysis® system with 4 caseA
Pertech® head-mounted monocular eye tracker algutons
the gaze of the interviewer (see Figure 2). Speadath are
captured via OKMII high-quality ear microphones aack
recorded synchronously with a side-view video by ¢tiinera.

Each interview lasts around 20", comprising thdemion
of personal records, the core RL/RI protocol andlfreport of
performance. We analyze here a total two hourswdfimodal
data for five subjects, interacting with the prafegal
interviewer we used as unique demonstrator of pipecgriate
socio-communicative behaviors for that particuseskt
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Figure 2. Visual data. Left: head-related view fribra eyetracker scene
camera. The marker superimposed to the scene céeatuges the current
gaze fixation point. Right: side view from a fixelD camera.
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Figure 3. Labeling gaze & speech events with Elan.

C. Gestural scores

Elan [15] (see Figure 3) and Praat [16] were useskemi-
automatically identify speech, gaze and arm evemtse
behavioral model has to orchestrate these eventading to
the different sub-tasks and should be able to gémenotor
actions from percepts. Modality-specific gesturentoallers
have then to reproduce final motions from theserdts motor
events. Our hypothesis is that the compositior@ingéss of



such discrete events is able to capture the dtyersf
multimodal behaviors.

D. Gesture controllers

the oculo-collic and vestibule-ocular reflexes. 3éegestures
can be performed by a parametrized combinationeck rand
eyes movements. For simplicity, the Cartesian gawgroller
is provided with the 3D position of the current iceg of

Speech. We transcribed speech and aligned its phonetiinterest and a fixed contribution of neck movemesft$0%.

content with the acoustic signals uttered by bolie t
interviewer and the subjects. We mainly spot iteamshe
subject’s speech in order to trigger scoring artdriewer’s
feedbacks. The interviewer's speech was analyzerk i
depth with a special attention to prosody and irtigpsar to
backchannels [17]. The orthographic transcriptioh her
discourse augmented with prosodic markers and tbrezises
is then played by the audiovisual text-to-speechth®sizer
controlling Nina’'s loudspeaker and facial movemghgj.

Arm gestures. While the human interviewer was displaying
word items and scoring using sheets of paper, veldd to
use tablets to display items and pretend to trigigerdisplay
and take notes (see Figure 4). In fact, subjedpgr human
skills and capabilities onto agents — including gioe
capabilities — and would be very disturbed if thtifieial
interviewer does not take any notes despite the tfat its
processing power does not require such a physisplay.
Such a behavior is thus clearly imposed by soalakt

Arm displacements and finger clicks are programried
trigger display on the subject’s tablet (show/hittems) and
take notes (monitor correct responses). The arntuiges
controller uses the iCub Cartesian Interface [Mch enables
the control of the robot’'s arm directly on operatibspace by
providing the desired position and orientation @feoend-
effector (here the index finger of the right han@ihe arm
controller also provides task-specific movementsppring to
click, clicking, and going back to rest positioniglire 4
illustrates the position of robot’s right arm whieoring and
resting. In the experiment, the left arm remainedi It holds
the scoring tablet, while the right arm movements adapted
so as to follow the timing of the writing gestudfshe human
interviewer.

Figure 4. Robot’'s arm while (left) scoring and [ripresting.

Gaze. We distinguish three main regions of interesthef t
interviewer's gaze: (1) the subject’s face; (2) slering tablet
(i.e. the scoring sheet and chronometer used inotiggnal
HHI); (3) the subject’s tablet (i.e. the notebodded in HHI
demonstrations). Note that all arm gestures ar®ieed with
visuomotor supervision: since robot motion is oftdower
than human motion, all arm motions are precededohy
fixation towards the target if any and accompartigdgaze
smooth pursuit till completion. This visuomotor sugision
supersedes the original fixation patterns.

The gaze gesture controller uses the iCub gazeatient
[20], which provides direct control of saccadesations and
smooth pursuit while implementing the binocculargence,

Figure 5 presents robot in two positions: (a) l@bksubject’s
face, (b) look at scoring tablet.

Eyelids. Although we did not track eyelids’ movements, we
developed a specific eyelids gesture controlleroider to
provide Nina’'s behavior with additional socio-commiuative
cues such as blinking as well as redundant cuds asche
coupling of eyelids aperture with eyes elevatiof] [22] and
speech articulation [23]. Figure 6 illustrates ttwupling of
eyelids aperture with eyes elevation.

i

Figure 5. Robot’s gaze looking at subject’s face secoring tablet.

Figure 6. Robot's eyelids with gaze looking doweft]l or straight (right).

I1l. EVALUATION

These complex and coordinated behaviors should be
perceived and interpreted correctly by subjects. Wave
shown that the morphology and appearance of effeatan
strongly impair the perception of planned gestyteq. We
thus ask third parties to rate the final renderifigour HHI
multimodal score by our robotic embodiment in orttecheck
if the reconstructed behavior of our human demaiwtiis still
relevant and if the mapping between discrete evemd
gestures are correctly performed by our gestunatrabers.

A. State of the art

Most subjective evaluations of HRI behavior haverbe
performed using questionnaires, where subjectsiat parties
are asked to score specific dimensions of the antem on
Likert scale. For example, Fasola et al [1] ratedesal aspects
such as pleasure, interest, satisfaction, ententih and
excitation of a SAR monitoring physical exerciseislang et
al [9] assessed a narration humanoid robot alongrak
dimensions such as immediacy, naturalness, effautiss,
likability and credibility. Zheng et al [24] compat control
strategies for robot arm gestures along dimenssth as
intelligibility, likeability, anthropomorphism anshfety.
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Figure 7. Density of yuck responses for our repdaiyeraction. Each yuck response is weighted biaaning window of 5s in order to smooth the densfty
responses and overlapped/added to the others. Mafirhis time-dependent histogram reveal multichdehaviours that are judged inadequate by a ntgjori
of raters. The 25 main maxima are commented inetkte

Although delivering very useful information notabfgr
sorting between competing control policies or sgtj these
guestionnaire-based evaluations provide developihs poor
information about faulty behaviors: the evaluatisnin fact
performed off-line and questions mostly addressbajlo
properties of the entire interaction.

B. Designing and performing an on-line evaluation

In line with online evaluation methods deployed &wdio
[25] and video [26], we designed an on-line evatmat
technique that consists in asking raters to imnteljissignal
faulty behaviors when they observe them. We wi# thee term

“yuck responseused by de Kok [27] for evaluating the

adequacy of automatically generated backchannels.

Since raters cannot both experience and rate araation,
we ask them to put themselves in the place of stdbjeho
have previously experienced the interaction. Thehngue
thus consists in replaying a recorded interactioevipusly
performed by a Guinea pig and asking subjects te tlae
adequacy of the SAR’s behavior with regards to Ghenea
pig’s verbal behavior. Note that this on-line ewxion task
can also be performed by the Guinea pigs who hesxqusly
experienced the interaction.

This online evaluation can be performed in fronttioé
robot itself — with the benefit of physical presensut the
challenge of coping with the active perception atte rater
who may change his/her viewing position — or innfrof a
video recorded from the Guinea pigs’ perspective &dopt
here the latter option, i.e. we filmed the robqgplaging the
situated interaction using a camera placed appmatinly at
the mean position of the Guinea pigs’ eyes.

We created a websitavhere we ask people to press the
“ENTER” key anytime they feel the robot behavior is

incorrect. This provides a time-varying probabilitensity
function of incorrect behaviors. The maxima of thensity
function providewhen cues i.e. time-intervals for which a
majority of raters estimate the behavior is inappede or

! http:/Aww.gipsa-lab.fri~duccanh.nguyen/assessiment

500 600 700 800

hinders the interaction. Further diagnosticwdfat cuescause

these faulty behaviors has to be performed by roists and

system designers. This on-line evaluation taskesged by a
quick screening of subjects (age, sex and motmgum) and a
familiarization exercise, and followed by a questiaire that
asks the subjects’ judgements (five-level Likert)nine points:

Did the robot adapt to the subject?

Did the subject adapt to the robot?

Did you feel relaxed?

Did you feel secure?

Was the rhythm of the robot’s behavior well adapted

Was the interaction pleasant?

Was the multimodal behavior appropriate?

Did the robot pay attention while speaking?

Did the robot pay attention while listening?

CoNooR~WNE

C. Results

We report here the objective and subjective scofes3
French natives, who performed the entire evaluatith are
males and 24 females. The average age of theipartts is 32
+12 years. Figure 7 shows the weighted cumulateck yu
responses of our participants. Most maxima of tlesisity
function have clear interpretations. We furtherdui#an (see
Figure 8) to associate these major yuck responsis w
multimodal events. Here are the 25 most signaletitsy

* 1,4, 6 & 7: the robot here performs clicking gestuon
its tablet to show or hide items onto the subjedisplay
that was not available to raters. Such ungrounéstliges
are thus perceived as distractors by subjects.eTask
responses are located at the beginning of thevieter
during the learning phase.

e 2,3,5,9, 17, 20, 21, 24 & 25: participants alsbected
that gaze towards the subject was missing or toohmu
delayed with reference to the interviewee’s answers
qguestions or when delivering instructions. Whilelsa
behavior is quite legible when performed by the
interviewer — who did not want to interfere witheth
subject’'s thoughts — it seems completely unaccéptab

when performed by a SAR, whose intentions are much

less readable.
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Figure 8. Using ELAN [15] to diagnose th

10, 11, 12, 13, 16, 18, 19 & 23: the robot remaiils —
with the exception of quasi-periodic blinks — footlong,
notably during periods of poor interactive activitf/the
interviewee such as reverse counting or coverkitn
This absence of input observations results in megged
movements. We are currently working on a more ¥ivel
default listening behavior that will cope with pmis of
poor external stimulation.

14 & 15: these particular misbehaviors are expthibg
the persistence of a large mouth opening well afte
finishing speaking. This failure is now identifiathd has
been corrected: it was due to a faulty audiovisegiment
that was improperly articulated during a silentgeu

22: In several places, the subject joked and ladighbe
lack of SAR response to this strong call for sosigbport
during episodes of embarrassment is here
penalized by raters.

8: We did not found any obvious explanation forsthi
particular yuck response in the learning phase.

Figure 9 shows the global subjective
performed at the end of the online evaluation. Rastrongly
agree that the robot displays a rather decent l@hawth
regards to the task it is assigned to. This notdwor
evaluation is confirmed by the free comments gibefore
closing each session: nearly all raters declardztimpressed
by the overall quality and relevance of the robahaviors.
Three other criterions also reach a large consenlsasobot
pays attention to her interlocutors when speaking,SAR is
perceived as secure and adapts to its interlocufbnsee
dimensions receive a lower consensus: attentionnglur
listening is impaired by several failures that haleen
identified and commented above while the interactio
judged not so relaxed and pleasant. We also newabro out
the speed: several raters reported that speechigihiéty
would have been improved by a lower speech ratéhat
beginning of the interview.

rightly

judgements

e possitdeses of major yuck responses.

In the free comments, several raters mention tlieera
directive style of our female interviewer and tHesence of
emotional vocal and facial displays on our SAR g taughs
and smiles. We plan to add such segments in oupwsadal
speech repository in complement to breath noised an
humming. We will also urge the design of articuthte
eyebrows.

Attention while listening

Attention while speaking [

Decent behavior

Pleasant interaction -

Speed adapted

I
Rather yes

Figure 9. Global subjective judgements.

IV. COGNITIVEROBOTICSAND
INFOCOMMUBNICATIONS

Experienced professional pilots here transfer thaak-
specific socio-communicative skills to a SAR by natidg
their usual HHI practice though a robotic embodimeyo
doubt that this mediation strongly affects behassiof pilots
and subjects. We face here a challenging situattogre pilots
have to co-evolve both with SAR expressive andgoerative
capabiliies and with the adaptation of their human
interlocutors to the affordances of the artificégjent. These
themes have a strong relevance to the field of itiwgn
infocommunications, notably because cognitive rsbate
right at the crossroads of technology and humankpidts,
subjects and SAR build an unprecedented ecosysten t
might benefit from a long-term co-evolution in orde ease
short-term interactions.

V. CONCLUSIONS

We here gave an overview of the SOMBRERO framework
for collecting, modeling, controlling and evalugiSAR. All
the building blocks are almost operational and haeen



evaluated separately. We notably put forward amgiral [8]
framework for the online evaluation of interactlvehavior that
offers subsequent glass-box assessment: post-heoersee
engineering should be performed by the SAR designer
identify the potential causes of the most consdnguak
responses. We will verify that the correction amdlaccepted

and do not generate new errors.

19

[10]
One of the major missing features of our currenitrd
policy concern head movements that are now justriboting
to the gaze direction of the SAR, i.e. the headaiemstill is
no gaze shifts are programmed. In the same vednrasyelids’
controller, we plan to combine contributions of ¢thea
movements to gaze with their co-verbal contribigiemotably
as encoders of audiovisual prosody.

(11]
[12]

In the mid-term, we plan to conduct robot-medialtédl
using immersive teleoperation very soon and sed péras of
this framework should be corrected. One of the dteallenges
is the system’s adaptation. Mihoub et al [11] helvewn that a
subject-independent gaze model may be parametaozsdhpt
to specific social profiles. We will see if thismpach scales to
multimodal behavior planning and control.

[13]

[14]

[15]
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VII. APPENDIX
The multimodal data and label files are freely kalde at:

www.gipsa-lab.fr/projet/ SOMBRERO/data [19]
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