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Abstract— Socially assistive robot with interactive behavioral 
capability have been improving quality of life for a wide range of 
users by taking care of elderlies, training individuals with 
cognitive disabilities or physical rehabilitation, etc. While the 
interactive behavioral policies of most systems are scripted, we 
discuss here key features of a new methodology that enables 
professional caregivers to teach a socially assistive robot (SAR) 
how to perform the assistive tasks while giving proper 
instructions, demonstrations and feedbacks. We describe here 
how socio-communicative gesture controllers – which actually 
control the speech, the facial displays and hand gestures of our 
iCub robot – are driven by multimodal events captured on a 
professional human demonstrator performing a 
neuropsychological interview. Furthermore, we propose an 
original online evaluation method for rating the multimodal 
interactive behaviors of the SAR and show how such a method 
can help designers to identify the faulty events. 

Keywords-- socially assistive robot; humanoid robot; 
multimodal behavior; subjective evaluation;  

I. INTRODUCTION 

A. A socially assistive rotot 

A socially assistive robot is an assistive robot aiding 
people through social interactive behaviors rather than 
physical interaction [25]. Several socially assistive robot 
(SAR) systems have been proposed and designed to engage 
people into various interactive exercises such as physical 
training [1], neuropsychological rehabilitation [2] or cognitive 
assistance [3]. Depending on the objectives of the Human-
Robot Interaction (HRI), SAR faces different challenges. One 
of the important dimensions is the length of this interaction. 
Several SAR are concerned with long-term interaction, aiming 
at providing a single user with social glue and affective 
relations. Paro [4] is emblematic of that challenge (see Leite et 

al [5] for a review). These companion robots often play the 
role of pets or majordomos. In contrast, several SAR have also 
been designed to engage into short-term task-oriented 
interactions. The challenge is here more oriented towards 
attention and quick adaptation. 

Our works focus on the development of socio-
communicative abilities of a SAR for short-term interactions. 
Particularly, in this paper, we present the SOMBRERO 
framework which aims at providing a humanoid robot with 
multimodal interactive behaviors – such as speech, gaze arm 
gestures, etc. – in order to perform a neuropsychological test, 
demonstrated by professionals. 

B. SOMBRERO framework  

The three main steps of learning interaction by 
demonstration are given in Figure 1: we should (1) collect 
representative interactive behaviors from human coaches; (2) 
build comprehensive models of these overt behaviors and a 
priori knowledge (task & user model, etc.); and then (3) 
provide the target robot with appropriate gesture controllers to 
execute the desired behaviors. 

Most interaction models embedded into HRI systems are 
strongly inspired by Human-Human Interactions (HHI), if not 
entirely trained on HHI data. This HHI-based framework faces 
several problems: (1) the scaling of the human model to the 
interaction capabilities of the robots in terms of physical 
limitations (degrees of freedom) and perception, action and 
reasoning; (2) the drastic changes of human behaviors in front 
of robots or virtual agents [6]; (3) the modeling of joint 
interactive behaviors (4) the replay and assessment of these 
behaviors by the robot. 

SOMBRERO proposes to solve the two first issues by 
enabling coaches to demonstrate human-robot interaction 
(HRI) via immersive teleoperation, i.e. by direct robotic 
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Figure 1: The main steps of learning interaction by demonstration 



embodiment. HRI is thus bootstrapped by a robot-mediated 
HHI, which may be broadly considered as a cognitive 
infocommunication system (see section IV). 

The immersive teleoperation of the gaze and lip movements 
of our iCub robot Nina is described in Guillermo et al [7]. This 
technique artificially provides the SAR with cognitive – 
notably social – skills that are intrinsically adapted to the 
robot’s sensorimotor abilities. Moreover subjects may have the 
impression to interact with a truly autonomous SAR and thus 
provide the interaction model with genuine behavioral data. 

The third issue – i.e. learning–based modelling of 
interactive behaviors – is an emerging concept (see pioneer 
work performed by Otsuka et al [8] or more recently [9]). 
While learning by demonstration [10] has been quite effective 
for sensorimotor tasks such as walking or grasping where the 
robot interacts with the physical environment, its extension to 
HRI presupposes HRI data that are difficult to acquire. We 
proposed [11] [12] to train statistical behavioral models that 
encapsulate discrete multimodal events performed by the 
interlocutors into a unique dynamical system that could be 
further used to monitor behaviors of one interlocutor and 
generate behaviors of the other. 

We address here the fourth issue i.e. the replay and 
assessment of interactive behaviors by the robot. 

II.  THE CURRENT CONTRIBUTION 

We should in fact verify that the multimodal behaviors 
planned by the interaction model can effectively be reproduced 
by the target robot and that these multimodal behaviors are 
perceived as adequate by human interlocutors. 

A. The scenario 

Our interviews are based on the French adaptation [13] of 
the Selective Reminding Test [14] named the RL/RI 16. It 
provides a simple and clinically useful verbal memory test for 
identifying loss of episodic memory in the elderly.  

The RL/RI 16 protocol consists in four phases. The first one 
is the progressive learning of 16 words together with their 
semantic categories four by four. This phase includes two main 
tasks: (1) item identification (the interviewer displays four 
items and asks the subject spell out each name by giving its 
category); (2) immediate recall of items (the subject should 
recall each item by its category while the items are hidden). 
The second phase is three successive recall tasks (i.e. free 
recall, complemented by an indexed-by-category recall for the 
unrecovered items) separated with a distractive task (reverse 
counting). In the next, there is a recognition task involving the 
16 items, 32 distractors (16 different words with the same 
semantic category and 16 true distractors) and (4) a delayed 
free and indexed recall (not administrated in the present study). 
Mnesic performance is evaluated by comparing recall rates of 
the subject with regards to mean & standard deviations 
observed within sane control population of the same age 
interval. 

Most professionals use folders with sheet of papers. In 
order to avoid complex dexterous gestures to be performed by 

the SAR, we adopted a modified scenario using two tablets: 
one tablet facing the robot to score the subject’s answers and 
the other tablet facing the subject to display visual stimuli i.e. 
items to be learned or recognized. 

B. Interactive data 

The demonstrations used here have been performed by a 
female professional neuropsychologist. Since the immersive 
teleoperation of the upper body (notably of the arms) is not 
available yet, the discrete multimodal events have been 
collected via semi-automatic labeling of HHI. The motion of 
25 reflective markers placed on the plexus, shoulders, head, 
arms, indexes and thumbs of the professional interviewer were 
monitored thanks to a Qualysis® system with 4 cameras. A 
Pertech® head-mounted monocular eye tracker also monitors 
the gaze of the interviewer (see Figure 2). Speech data are 
captured via OKMII high-quality ear microphones and are 
recorded synchronously with a side-view video by HD camera. 

Each interview lasts around 20”, comprising the collection 
of personal records, the core RL/RI protocol and final report of 
performance. We analyze here a total two hours of multimodal 
data for five subjects, interacting with the professional 
interviewer we used as unique demonstrator of the appropriate 
socio-communicative behaviors for that particular task. 

 
Figure 2. Visual data. Left: head-related view from the eyetracker scene 

camera. The marker superimposed to the scene camera features the current 
gaze fixation point. Right: side view from a fixed HD camera. 

 
Figure 3. Labeling gaze & speech events with Elan. 

C. Gestural scores 

Elan [15] (see Figure 3) and Praat [16] were used to semi-
automatically identify speech, gaze and arm events. The 
behavioral model has to orchestrate these events according to 
the different sub-tasks and should be able to generate motor 
actions from percepts. Modality-specific gesture controllers 
have then to reproduce final motions from these discrete motor 
events. Our hypothesis is that the compositional richness of 



such discrete events is able to capture the diversity of 
multimodal behaviors. 

D. Gesture controllers 

Speech. We transcribed speech and aligned its phonetic 
content with the acoustic signals uttered by both the 
interviewer and the subjects. We mainly spot items in the 
subject’s speech in order to trigger scoring and interviewer’s 
feedbacks. The interviewer’s speech was analyzed more in-
depth with a special attention to prosody and in particular to 
backchannels [17]. The orthographic transcription of her 
discourse augmented with prosodic markers and breath noises 
is then played by the audiovisual text-to-speech synthesizer 
controlling Nina’s loudspeaker and facial movements [18]. 

Arm gestures. While the human interviewer was displaying 
word items and scoring using sheets of paper, we decided to 
use tablets to display items and pretend to trigger the display 
and take notes (see Figure 4). In fact, subjects project human 
skills and capabilities onto agents – including mnesic 
capabilities – and would be very disturbed if the artificial 
interviewer does not take any notes despite the fact that its 
processing power does not require such a physical display. 
Such a behavior is thus clearly imposed by social rules. 

Arm displacements and finger clicks are programmed to 
trigger display on the subject’s tablet (show/hide items) and 
take notes (monitor correct responses). The arm gesture 
controller uses the iCub Cartesian Interface [19], which enables 
the control of the robot’s arm directly on operational space by 
providing the desired position and orientation of one end-
effector (here the index finger of the right hand). The arm 
controller also provides task-specific movements: preparing to 
click, clicking, and going back to rest position. Figure 4 
illustrates the position of robot’s right arm while scoring and 
resting. In the experiment, the left arm remains fixed. It holds 
the scoring tablet, while the right arm movements are adapted 
so as to follow the timing of the writing gestures of the human 
interviewer. 

   
Figure 4. Robot’s arm while (left) scoring and (right) resting. 

Gaze. We distinguish three main regions of interest of the 
interviewer’s gaze: (1) the subject’s face; (2) the scoring tablet 
(i.e. the scoring sheet and chronometer used in the original 
HHI); (3) the subject’s tablet (i.e. the notebook used in HHI 
demonstrations). Note that all arm gestures are performed with 
visuomotor supervision: since robot motion is often slower 
than human motion, all arm motions are preceded by one 
fixation towards the target if any and accompanied by gaze 
smooth pursuit till completion. This visuomotor supervision 
supersedes the original fixation patterns. 

The gaze gesture controller uses the iCub gaze controller 
[20], which provides direct control of saccades, fixations and 
smooth pursuit while implementing the binoccular vergence, 

the oculo-collic and vestibule-ocular reflexes. These gestures 
can be performed by a parametrized combination of neck and 
eyes movements. For simplicity, the Cartesian gaze controller 
is provided with the 3D position of the current region of 
interest and a fixed contribution of neck movements of 50%. 
Figure 5 presents robot in two positions: (a) look at subject’s 
face, (b) look at scoring tablet. 

Eyelids. Although we did not track eyelids’ movements, we 
developed a specific eyelids gesture controller in order to 
provide Nina’s behavior with additional socio-communicative 
cues such as blinking as well as redundant cues such as the 
coupling of eyelids aperture with eyes elevation [21] [22] and 
speech articulation [23]. Figure 6 illustrates the coupling of 
eyelids aperture with eyes elevation. 

   
Figure 5. Robot’s gaze looking at subject’s face and scoring tablet. 

   
Figure 6. Robot’s eyelids with gaze looking down (left) or straight (right). 

III.  EVALUATION  

These complex and coordinated behaviors should be 
perceived and interpreted correctly by subjects. We have 
shown that the morphology and appearance of effectors can 
strongly impair the perception of planned gestures [14]. We 
thus ask third parties to rate the final rendering of our HHI 
multimodal score by our robotic embodiment in order to check 
if the reconstructed behavior of our human demonstrator is still 
relevant and if the mapping between discrete events and 
gestures are correctly performed by our gestural controllers. 

A. State of the art 

Most subjective evaluations of HRI behavior have been 
performed using questionnaires, where subjects or third parties 
are asked to score specific dimensions of the interaction on 
Likert scale. For example, Fasola et al [1] rated several aspects 
such as pleasure, interest, satisfaction, entertainment and 
excitation of a SAR monitoring physical exercises. Huang et 
al [9] assessed a narration humanoid robot along several 
dimensions such as immediacy, naturalness, effectiveness, 
likability and credibility. Zheng et al [24] compared control 
strategies for robot arm gestures along dimensions such as 
intelligibility, likeability, anthropomorphism and safety. 



Although delivering very useful information notably for 
sorting between competing control policies or settings, these 
questionnaire-based evaluations provide developers with poor 
information about faulty behaviors: the evaluation is in fact 
performed off-line and questions mostly address global 
properties of the entire interaction. 

B. Designing and performing an on-line evaluation 

In line with online evaluation methods deployed for audio 
[25] and video [26], we designed an on-line evaluation 
technique that consists in asking raters to immediately signal 
faulty behaviors when they observe them. We will use the term 
“yuck response” used by de Kok [27] for evaluating the 
adequacy of automatically generated backchannels. 

Since raters cannot both experience and rate an interaction, 
we ask them to put themselves in the place of subjects who 
have previously experienced the interaction. The technique 
thus consists in replaying a recorded interaction previously 
performed by a Guinea pig and asking subjects to rate the 
adequacy of the SAR’s behavior with regards to the Guinea 
pig’s verbal behavior.  Note that this on-line evaluation task 
can also be performed by the Guinea pigs who have previously 
experienced the interaction. 

This online evaluation can be performed in front of the 
robot itself – with the benefit of physical presence but the 
challenge of coping with the active perception of each rater 
who may change his/her viewing position – or in front of a 
video recorded from the Guinea pigs’ perspective. We adopt 
here the latter option, i.e. we filmed the robot replaying the 
situated interaction using a camera placed approximatively at 
the mean position of the Guinea pigs’ eyes. 

We created a website1 where we ask people to press the 
“ENTER” key anytime they feel the robot behavior is 
incorrect. This provides a time-varying probability density 
function of incorrect behaviors. The maxima of the density 
function provide when cues, i.e. time-intervals for which a 
majority of raters estimate the behavior is inappropriate or 

                                                           
1 http://www.gipsa-lab.fr/~duccanh.nguyen/assessment/ 

hinders the interaction. Further diagnostic of what cues cause 
these faulty behaviors has to be performed by roboticists and 
system designers. This on-line evaluation task is preceded by a 
quick screening of subjects (age, sex and mother tongue) and a 
familiarization exercise, and followed by a questionnaire that 
asks the subjects’ judgements (five-level Likert) on nine points: 

1. Did the robot adapt to the subject? 
2. Did the subject adapt to the robot? 
3. Did you feel relaxed? 
4. Did you feel secure? 
5. Was the rhythm of the robot’s behavior well adapted? 
6. Was the interaction pleasant? 
7. Was the multimodal behavior appropriate? 
8. Did the robot pay attention while speaking? 
9. Did the robot pay attention while listening? 

C. Results 

We report here the objective and subjective scores of 53 
French natives, who performed the entire evaluation. 29 are 
males and 24 females. The average age of the participants is 32 
±12 years. Figure 7 shows the weighted cumulated yuck 
responses of our participants. Most maxima of this density 
function have clear interpretations. We further used Elan (see 
Figure 8) to associate these major yuck responses with 
multimodal events. Here are the 25 most signaled events: 

• 1, 4, 6 & 7: the robot here performs clicking gestures on 
its tablet to show or hide items onto the subject’s display 
that was not available to raters. Such ungrounded gestures 
are thus perceived as distractors by subjects. These yuck 
responses are located at the beginning of the interview, 
during the learning phase. 

• 2, 3, 5, 9, 17, 20, 21, 24 & 25: participants also detected 
that gaze towards the subject was missing or too much 
delayed with reference to the interviewee’s answers to 
questions or when delivering instructions. While such a 
behavior is quite legible when performed by the 
interviewer – who did not want to interfere with the 
subject’s thoughts – it seems completely unacceptable 
when performed by a SAR, whose intentions are much 
less readable. 

 
Figure 7. Density of yuck responses for our replayed interaction. Each yuck response is weighted by a Hanning window of 5s in order to smooth the density of 
responses and overlapped/added to the others. Maxima of this time-dependent histogram reveal multimodal behaviours that are judged inadequate by a majority 
of raters. The 25 main maxima are commented in the text. 

Learning phase Test phase 



• 10, 11, 12, 13, 16, 18, 19 & 23: the robot remains still – 
with the exception of quasi-periodic blinks – for too long, 
notably during periods of poor interactive activity of the 
interviewee such as reverse counting or covert thinking. 
This absence of input observations results in no generated 
movements. We are currently working on a more lively 
default listening behavior that will cope with periods of 
poor external stimulation. 

• 14 & 15: these particular misbehaviors are explained by 
the persistence of a large mouth opening well after 
finishing speaking. This failure is now identified and has 
been corrected: it was due to a faulty audiovisual segment 
that was improperly articulated during a silent pause. 

• 22: In several places, the subject joked and laughed. The 
lack of SAR response to this strong call for social support 
during episodes of embarrassment is here rightly 
penalized by raters. 

• 8: We did not found any obvious explanation for this 
particular yuck response in the learning phase. 

Figure 9 shows the global subjective judgements 
performed at the end of the online evaluation. Raters strongly 
agree that the robot displays a rather decent behavior with 
regards to the task it is assigned to. This noteworthy 
evaluation is confirmed by the free comments given before 
closing each session: nearly all raters declared to be impressed 
by the overall quality and relevance of the robot’s behaviors. 
Three other criterions also reach a large consensus: the robot 
pays attention to her interlocutors when speaking, the SAR is 
perceived as secure and adapts to its interlocutors. Three 
dimensions receive a lower consensus: attention during 
listening is impaired by several failures that have been 
identified and commented above while the interaction is 
judged not so relaxed and pleasant. We also need to work out 
the speed: several raters reported that speech intelligibility 
would have been improved by a lower speech rate at the 
beginning of the interview. 

In the free comments, several raters mention the rather 
directive style of our female interviewer and the absence of 
emotional vocal and facial displays on our SAR – e.g. laughs 
and smiles. We plan to add such segments in our audiovisual 
speech repository in complement to breath noises and 
humming. We will also urge the design of articulated 
eyebrows. 

 
Figure 9. Global subjective judgements. 

IV.  COGNITIVE ROBOTICS AND 

INFOCOMMUBNICATIONS 

Experienced professional pilots here transfer their task-
specific socio-communicative skills to a SAR by mediating 
their usual HHI practice though a robotic embodiment. No 
doubt that this mediation strongly affects behaviors of pilots 
and subjects. We face here a challenging situation where pilots 
have to co-evolve both with SAR expressive and performative 
capabilities and with the adaptation of their human 
interlocutors to the affordances of the artificial agent. These 
themes have a strong relevance to the field of cognitive 
infocommunications, notably because cognitive robots are 
right at the crossroads of technology and humankind: pilots, 
subjects and SAR build an unprecedented ecosystem that 
might benefit from a long-term co-evolution in order to ease 
short-term interactions. 

V. CONCLUSIONS 

We here gave an overview of the SOMBRERO framework 
for collecting, modeling, controlling and evaluating SAR. All 
the building blocks are almost operational and have been 

 
Figure 8. Using ELAN [15] to diagnose the possible causes of major yuck responses. 



evaluated separately. We notably put forward an original 
framework for the online evaluation of interactive behavior that 
offers subsequent glass-box assessment: post-hoc reverse 
engineering should be performed by the SAR designers to 
identify the potential causes of the most consensual yuck 
responses. We will verify that the correction are well accepted 
and do not generate new errors. 

One of the major missing features of our current control 
policy concern head movements that are now just contributing 
to the gaze direction of the SAR, i.e. the head remains still is 
no gaze shifts are programmed. In the same vein as our eyelids’ 
controller, we plan to combine contributions of head 
movements to gaze with their co-verbal contributions – notably 
as encoders of audiovisual prosody. 

In the mid-term, we plan to conduct robot-mediated HHI 
using immersive teleoperation very soon and see what parts of 
this framework should be corrected. One of the key challenges 
is the system’s adaptation. Mihoub et al [11] have shown that a 
subject-independent gaze model may be parameterized to adapt 
to specific social profiles. We will see if this approach scales to 
multimodal behavior planning and control. 
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VII.  APPENDIX 

The multimodal data and label files are freely available at: 
www.gipsa-lab.fr/projet/SOMBRERO/data 
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