
HAL Id: hal-01385653
https://hal.science/hal-01385653v1

Submitted on 21 Oct 2016 (v1), last revised 4 Jul 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Elimination of Redundancies in Polyhedra
using Raytracing

Alexandre Maréchal, Michaël Périn

To cite this version:
Alexandre Maréchal, Michaël Périn. Efficient Elimination of Redundancies in Polyhedra using Ray-
tracing. Verification, Model Checking, and Abstract Interpretation (VMCAI), David Monniaux;
Ahmed Bouajjani, Jan 2017, Paris, France. �hal-01385653v1�

https://hal.science/hal-01385653v1
https://hal.archives-ouvertes.fr

Efficient Elimination of Redundancies
in Polyhedra using Raytracing1

Alexandre Maréchal†, Michaël Périn‡

Verimag Research Report no 6

October 2016

∗This work was partially supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.
†alex.marechal@imag.fr
‡michael.perin@imag.fr

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UGA
Bâtiment IMAG
Université Grenoble Alpes
700, avenue centrale
38401 Saint Martin d’Hères
France
tel : +33 4 57 42 22 42
fax : +33 4 57 42 22 22
http://www-verimag.imag.fr/

http://erc.europa.eu/
http://stator.imag.fr
http://www-verimag.imag.fr

Efficient Elimination of Redundancies in Polyhedra using
Raytracing4

Alexandre Maréchal∗, Michaël Périn†

October 2016

Abstract

Polyhedra are used in verification and automatic parallelization to capture linear
relations between variables. A polyhedron can be represented as constraints, gen-
erators or both in the double description framework. Whatever the representation,
most polyhedral operators spend a significant amount of time to maintain minimal
representations. To minimize a polyhedron in constraints-only representation, the
redundancy of each constraint must be checked with respect to others. Each of
these redundancy tests generally implies solving a linear programming (LP) prob-
lem using the simplex algorithm. We present an algorithm that replaces most LP
problem resolutions by distance computations. The geometric intuition is simple:
consider ray traces starting from a point within the polyhedron and orthogonal to its
faces. A face first encountered by one of these rays is an actual face of the polyhe-
dron. It is therefore an irredundant constraint. Since this procedure is incomplete,
LP problem resolutions are required for the remaining undetermined constraints.
Experiments show that our algorithm drastically reduces the number of calls to the
simplex, resulting in a considerable speed improvement. In addition, our algorithm
generates by construction a certificate for each constraint: redundancy is estab-
lished by exhibiting a nonnegative linear combination of contraints that yields the
removed constraint, whereas irredundancy is shown by exhibiting a point outside
of the polyhedron which is excluded only by the kept constraint. To follow the ge-
ometric interpretation, the algorithm is explained in terms of constraints but it can
also be used to minimize generators.

Keywords: Polyhedra, Minimization, Linear Programming

Reviewers: Nicolas Halbwachs

How to cite this report:

@techreport {Verimag-RR-2016-6,
title = {Efficient Elimination of Redundancies in Polyhedra using Raytracing},
author = {Alexandre Maréchal, Michaël Périn},
institution = {{Verimag} Research Report},
number = {6},
year = {2016}

}

§This work was partially supported by the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.
∗alex.marechal@imag.fr
†michael.perin@imag.fr

http://erc.europa.eu/
http://stator.imag.fr

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

Contents

1 Redundancy in Polyhedra 1

2 Notations 3

3 Certifying a Minimization of Polyhedra 3

4 An Efficient Minimization Algorithm 5
4.1 The Frontier Detection Criterion . 5
4.2 Irredundancy Certificates . 7
4.3 Minimizing Generators . 9
4.4 Using Floating Points in Raytracing . 9

5 Experiments 10

6 Conclusion & Future Work 12

A Proofs 14

1 Redundancy in Polyhedra

Polyhedra are used in static analysis [2] and automatic parallelization [6] to capture linear inequalities of
the form

∑n
i=1 aixi ≤ b relating the program variables x1, . . . , xn. A polyhedron P can be defined as the

set of points x = (x1, . . . , xn) that satisfy a system of inequalitiesAx ≤ b. The `th row of the augmented
matrix [A| − b] is a vector C` = (a`1, . . . , a`n,−b`) which encodes the constraint

∑n
i=1 a`i xi ≤ b`.

A constraint C` defines a polyhedron facet as the hyperplane normal to C` and shifted by b` (see Fig. 1).
Alternatively the same set of points can be defined as the convex combination of generators (vertices and

rays), i.e. {x | x =
v∑

i=1

βivi +
r∑

i=1

λiRi, βi, λi ≥ 0,
∑
βi = 1} whereRi’s and vi’s denote respectively

rays and vertices. Fig. 1 shows two polyhedra Pa and Pb defined in double description as the set of
constraints {C1 :x2 − x1 ≤ 1, C2 :x2 − x1 ≥ −2, C3 :x1 ≥ 1, C4 :x1 + x2 ≥ 2} and the set of
generators {v1 : (1, 2), v2 : (1, 1), v3 : (2, 0), R1 : (1, 1)} for Pa; respectively as {C1,C2,C

′ :x1 ≥ 3 }
and {v′1 : (3, 4), v′2 : (3, 1), R1 } for Pb.

The addition of new constraints or generators introduces redundancies which must be removed to re-
duce memory consumption and avoid useless computations in subsequent operations. In constraint-only
representation, redundant constraints tend to grow exponentially during the computation of a projection by
Fourier-Motzkin elimination [16]. For a description by generators the same pitfall occurs when a polyhe-
dron is sliced with a constraint [8]. The emergence of redundancies is illustrated by Fig. 1: when constraint
C ′ is added into Pa to form Pb, constraints C3 and C4 become redundant. Conversely, the addition of
vertices v1,v2,v3 into Pb generates Pa and makes v′1 and v′2 redundant.

Characterization of Redundancy. Formally, a generator gk is redundant if it is a convex combination of
the other generators, i.e. gk =

∑
i βivi +

∑
i λiRi for some βi, λi ≥ 0 with

∑
βi = 1 and βk = 0

if gk is the vertex vk and λk = 0 if gk is the ray Rk. Back to our running example, the equations
v′1 = 1× v1 + 2×R1 and v′2 = 1× v3 + 1×R1 proves the redundancy of v′1 and v′2 in Pa. Therefore,
they account for certificates of redundancy.

Intuitively, a constraint is redundant if it is useless, in the sense that adding it does not change the
geometrical space delimited by the polyhedron. Formally, a constraintCk is redundant if it is a nonnegative
combination of other constraints. As we did for generators, we can find equations that prove the redundancy
of C3 and C4 in Pb, but we need to consider the tautological constraint C0 : 1 ≥ 0 as being part of the
system in order to exactly fit the constant b of the redundant constraint.

Verimag Research Report no 6 1/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

Figure 1: Emergence of redundant constraints and generators in polyhedra

Example. The equations C3 = 1 × C ′ + 2 × C0 and C4 = 2 × C ′ + 1 × C2 + 2 × C0 are called
the Farkas decomposition of C3 and C4. They act as certificates of redundancy. Indeed, C3 :x1 ≥ 1 ≡
(x1 ≥ 3)⊕ 2× (1 ≥ 0) and C4 :x1 + x2 ≥ 2 ≡ 2× (x1 ≥ 3)⊕ (x2 − x1 ≥ −2)⊕ 2× (1 ≥ 0) where
(l ≥ r)⊕ (l′ ≥ r′) def

= l + l′ ≥ r + r′.
If only one representation is available – as generators or as constraints – discovering redundancy re-

quires solving linear programming (LP) problems of the form “does it exist nonnegative scalars satisfying
some linear equations?”:

∃λ0, . . . , λc ≥ 0, Ck =
∑c

i=0 λiCi ∧ λk = 0 (1) for constraints

∃β1, . . . , βv, λ1, . . . , λr ≥ 0, gk =
v∑

i=1

βivi +
r∑

i=1

λiRi (2) for generators

∧
v∑

i=1

βi = 1 ∧ (βk = 0 if gk = vk) ∧ (λk = 0 if gk = Rk)

Polyhedral Cones. The way to reconcile the two definitions of redundancy is to switch to polyhedral
cones to get a homogeneous system of constraints and only rays as generators. The trick for changing a
polyhedron P into a cone is to associate an extra variable η to the constant term b as follows [17]: Ax ≤

b ≡ η(Ax) ≤ ηb ≡ A(ηx) − ηb ≤ 0 ≡ [A| − b]
(
ηx
η

)
≤ 0 for any η > 0. It can be proved [9] that

x ∈ Qn belongs to P if and only if
(
x
1

)
∈ Qn+1 belongs to the cone

{
x′ ∈ Qn+1 | A′x′ ≤ 0

}
where

A′ = [A|−b]. Using this transformation, operators on polyhedra can be implemented as computations on
their associated cones producing a cone that, once intersected with the hyperplane η = 1, is the expected
polyhedron.

Considering cones simplifies the presentation: terms b and V disappear from definitions, hence the
same goes for the tautological constraint C0 in (1) and the β coefficients in (2). We end up with a unique
definition of redundancy of a vector as the existence of a nonnegative combination of others vectors. A
constraint Ck (resp. a rayRk) is redundant if

∃λ1, . . . , λc ≥ 0, Ck =
∑c

i=1 λiCi ∧ λk = 0 (1’) for constraints
∃λ1, . . . , λr ≥ 0, Rk =

∑r
i=1 λiRi ∧ λk = 0 (2’) for rays

Deciding Redundancy. The redundant/irredundant status of a constraint or a ray depends on the satisfia-
bility of an existential problem (1’,2’) involving linear equations but also inequalities (

∧
i λi ≥ 0). Thus,

2/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

such a problem does not fall within the realm of linear algebra but in that of linear programming (LP) for
which the simplex algorithm is a standard solver [5]. In practice, the simplex performs much better than
its theoretical exponential complexity – but still remains a costly algorithm. So, much research has been
devoted to identifying many cases where the simplex can be avoided. Wilde [17] and Lassez et al. [12]
suggest several fast redundancy-detection criteria before switching to the general LP problem:

• The quasi-syntactic redundancy test considers pairs of constraints and looks for single constraint
redundancies of the form C ′ = λC with λ > 0, e.g. C ′ : 4x1 − 6x2 ≥ 2 is redundant with respect
to C :x1 − 3x2 ≥ 1 since C ′ = 2×C.

• The bound shifting test exploits the implication
∑n

i=1 ai xi ≤ b =⇒
∑n

i=1 ai xi ≤ b′ if b ≤ b′.
Hence, when the coefficients of two constraints C and C ′ only differ on b and b′ with b ≤ b′ then
C ′ is redundant and the certificate is C ′ = C + (b′ − b)×C0 where C0 is the tautology 0 ≤ 1.

• The combination of single variable inequalities such as x1 ≤ b1 and x2 ≤ b2. They entail for
instance the redundancy ofC : 2x1 + 3x2 ≤ b with 2b1 + 3b2 < b. and the corresponding certificate
is C = 2× (x1 ≤ b1)⊕ 3× (x2 ≤ b2)⊕ (2b1 + 3b2 − b)× (0 ≤ 1).

While these criteria can detect certain redundancies at low-cost, in this paper we investigate the other
side of redundancy: we provide a fast criterion to detect irredundant constraints. The combination of the
two approaches limits the usage of the simplex to those constraints that are neither decided by our criteria
nor those of Wilde and Lassez et al.

Contributions. We present an algorithm that replaces most LP problem resolutions by distance computa-
tions. It is detailed in §4, after introducing useful notations in §2. The geometric intuition of our irredun-
dancy criterion is simple: consider ray traces starting from a point within the polyhedron and orthogonal
to its faces. A face first encountered by one of these rays is an actual face of the polyhedron. It is therefore
an irredundant constraint. Since this procedure is incomplete, LP problem resolutions are required for the
remaining undetermined constraints. Experiments of §5 show that our algorithm drastically reduces the
number of calls to the simplex, resulting in a considerable speed improvement. In addition, our algorithm
generates certificates of correctness, precision and minimality which make it usable in a certified static
analyzer. Certificates are presented in §3. Redundancy is established by exhibiting a nonnegative linear
combination of constraints that yields the removed constraint, whereas irredundancy is shown by exhibiting
a point outside of the polyhedron which is excluded only by the kept constraint. To follow the geometric
interpretation, the algorithm is explained below in terms of constraints but it can similarly be used to mini-
mize generators. We conclude in §6 by a discussion of the potential benefit of integrating our algorithm in
the double description framework.

2 Notations
Vectors and matrices are written in boldface to be distinguished from scalars, e.g. 0 is a vector of 0. For
clarity and without loss of generality the rest of the paper will focus on polyhedral cones over rationals. A
polyhedral cone P of c constraints on n variables (x1, . . . , xn) is a conjunction (written as a set) of homo-
geneous linear constraints {C1, . . . ,Cc } of the form C` :

∑n
i=1 a`i xi ≤ 0 where C` = (a`1, . . . , a`n).

The inner product of vectors offers a convenient notation 〈C`,x〉 ≤ 0 for that inequality. Then, the
cone P corresponds to {x | Ax ≤ 0 } where the rows of the matrix A are vectors C1, . . . ,Cc. Fi-
nally, {C1, . . . ,Cc }, {x |

∧c
`=1 〈C`,x〉 ≤ 0 } or {x | Ax ≤ 0 } are three equivalent ways of denoting

a polyhedral cone P . We use [[P]] to specifically refer to the set of points defined by P . Given a cone
P = {x | Ax ≤ 0 }, the same system with a strict inequality defines P̊ , the interior of P , and x̊ denotes a
point of [[P̊]]

def
= {x | Ax < 0 }.

3 Certifying a Minimization of Polyhedra
Our minimization algorithm is part of the Verimag Polyhedra Library (VPL) which operates on polyhedra
in constraint-only representation, with rational coefficients. It was originally designed by Fouilhéet al. [7]

Verimag Research Report no 6 3/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

as an abstract domain for the VERASCO certified static analyzer whose soundness is proved in COQ [11].
VERASCO can collaborate with an external library in OCAML such as the VPL, provided that it produces
certificates of correctness, allowing a COQ-checker to verify the results computed in OCAML. In this
section we recall the algorithm used in the original VPL for minimizing a polyhedral cone represented as a
set of constraints. It is the standard algorithm but extended to produce on-the-fly certificates of correctness,
precision and minimality. We recall the fundamental theorem of linear inequalities due to Farkas (1894)
which ensures the existence of such certificates. Revisiting this theorem with a geometrical interpretation
reveals an efficient way to determine irredundant constraints, which will be the key of our algorithm (§4).

Minimizing a cone P consists in removing all redundant constraints such that the result, PM , represents
the same geometrical space, i.e. [[P]] = [[PM]]. Two certificates are needed to prove that equality: (1) one
for the inclusion [[P]] ⊆ [[PM]] which guarantees the correctness of the minimization and (2) another one for
[[PM]] ⊆ [[P]] which justifies the precision of the minimization. A third certificate (3) ensures the minimality
of the result showing that all constraints of PM are irredundant.

Certificate (1) must prove that each point of [[P]] belongs to [[PM]], which means that each constraint of
PM must be a logical consequence of the constraints of P . In the particular case of minimization, inclusion
(1) is trivial because PM is obtained by only removing constraints from P , which necessarily leads to a
larger set of points. A syntactic test is sufficient to retrieve the constraints of PM in P in order to prove
inclusion (1). By contrast, the existence of certificates (2) and (3) is not straightforward but the consequence
of the following theorem, which we rephrased in our constraint terminology to ease its interpretation.

Theorem 1 (Fundamental theorem of linear inequalities [15, 7.1 p.85]). LetC1, . . . ,Cp andC ′ be vectors
in a n-dimensional space. Then,

(I) either C ′ is redundant and there exists a Farkas decomposition of C ′ that is a nonnegative linear
combination of linearly independent vectors fromC1, . . . ,Cm, i.e. C ′ = λ1C1 + . . .+ λmCm for
some scalars λ1, . . . , λm ≥ 0.

(II) orC ′ is irredundant and there exists a n-dimensional vectorw such that 〈C′,w〉 > 0 and 〈C1,w〉 ,
. . . , 〈Cm,w〉 ≤ 0. Moreover, there exists a set {C | 〈C,w〉 = 0 } containing r − 1 linearly inde-
pendent vectors from C1, . . . ,Cm where r = rank{C1, . . . ,Cm,C

′}.

The standard algorithm (Algorithm 1) exploits the redundancy criterion (I) of the theorem which was
already illustrated in §1 Example 1. The existence of a Farkas decomposition of C ′ is decided by solving
a LP problem. If the simplex algorithm returns a solution λ then the couple (C ′,λ) is recorded as a
certificate of precision (2) which proves that the removed constraint was indeed redundant. To get rid of all
the redundancies, Algorithm 1 needs one execution of the simplex algorithm for each constraint.

Given an existential LP problem, the simplex can return either a solution or an explanation of the lack
of solution. The proof of Theorem 1 and the simplex algorithm have strong connections which result
in a interesting feature of the VPL3 simplex: calling simplex(∃λi ≥ 0, C ′ =

∑
i λiCi) returns either

SUCCESS(λ) or FAILURE(w) such that 〈C′,w〉 > 0
∧

i 〈Ci,w〉 ≤ 0. This feature is a consequence of
Theorem 1 and requires no additional computation.

When the simplex returns FAILURE(w), the irredundancy criterion (II) of the theorem tells that C ′ is
irredundant and must be kept in the set of constraints. Algorithm 1 builds the certificate of minimality (3)
by associating a witness point to each constraint of the minimized polyhedron PM .

While the standard algorithm focuses on criterion (I), we revisit the theorem paying attention to the
geometrical interpretation of criterion (II): when a constraint C ′ is irredundant, its associated facet is a
frontier of the polyhedron separating the inside from the outside. Part (II) of the theorem ensures that we
can exhibit a witness point w, out of [[P]], satisfying all constraints of P except C ′. The rest of the paper
is dedicated to an algorithm that efficiently discovers such witness points. To avoid the dimensionality
considerations of (II), we will focus on polyhedral cones with nonempty interior. Such cones have no
equalities, neither explicit nor implicit. Again, this simplifies the presentation and is not a loss of generality:
it is common practice to detect equalities, to keep them apart and to apply the corresponding substitution
to remaining constraints.

3Conversely, simplex
(
∃w, 〈C′,w〉 > 0

∧
i 〈Ci,w〉 ≤ 0

)
returns either SUCCESS(w) or FAILURE(λ) such that C′ =∑

i λiCi.

4/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

Algorithm 1: The standard minimization algorithm (used in VPL 1.0)
Input : A set of constraints {C1, . . . ,Cm}.
Output: PM = the irredundant constraints of {C1, . . . ,Cm}

(R, I) = the redundancy and irredundancy certificates

PM ← {C1, . . . ,Cm}
for C ′ in {C1, . . . ,Cm} do

switch simplex

(
∃λi ≥ 0, C ′ =

∑
Ci∈PM \C′

λiCi

)
do

case SUCCESS (λ): R← R ∪ { (C ′,λ) } ; PM ← PM \C ′
case FAILURE (w): I ← I ∪ { (C ′,w) }

return (PM , R, I)

4 An Efficient Minimization Algorithm
Building up on the geometric interpretation of Theorem 1, we present a new minimization algorithm for
polyhedral cones that brings two major improvements: it reduces the number of calls to the simplex algo-
rithm and limits the constraints they involve. The key idea of the algorithm is to trace rays starting from a
point in the interior of the cone. The first face encountered by a ray is a frontier of the polyhedron, thus an
irredundant constraint. Unfortunately, depending on the cone and the position of the interior point, some
frontiers can be missed. This raytracing procedure is thus incomplete and LP problem resolutions are still
required for the remaining undetermined constraints.

While the simplex algorithm is used in the standard minimization to discover Farkas decompositions,
we rather use it to get closer to a witness point, and only when all previous rays failed to prove the irredun-
dancy of a constraint. Of course, if the constraint is redundant, the simplex algorithm returns no point at all
but an explanation of its failure which is nothing else than a Farkas decomposition proving the redundancy.

4.1 The Frontier Detection Criterion
We now detail the process of finding witness points by raytracing. We consider a cone P with a nonempty
interior. Then, there exists a point x̊ in P̊ . The basic operation of our algorithm consists in sorting the
facets of P with respect to the order in which they are hit by a ray, i.e. a half-line starting at the interior
point x̊ and extending along a given direction d.

Consider the constraint 〈C,x〉 ≤ 0. The facet of the constraint is the hyperplane {x | 〈C,x〉 = 0}, i.e.
the set of points orthogonal to vector C. The ray starting at x̊ (but excluding it) and extending in direction
d is the set of points {x(t) | x(t) = x̊+ t× d, t > 0 }. Let us assume that the ray hits the C-facet at
point xc. Then, there exists tc > 0 such that xc = x̊ + tc × d and so, xc − x̊ = tc × d. Therefore,
the distance ||x̊ − xc|| is just a scaling by |tc| of the norm ||d|| which does not depend on C. Hence, by
computing |tc| for each constraint we will be able to know in which order the constraints are hit by the ray.
Now, we use the fact that xc ∈ {x | 〈C,x〉 = 0 } to get tc = − 〈C ,̊x〉

〈C,d〉 . Indeed,

0 = 〈C,xc〉 = 〈C, x̊+ tc × d〉 = 〈C, x̊〉+ tc × 〈C,d〉 .

Hence, the basic operation of our raytracing algorithm consists in two evaluations of each constraint C of
P at x̊ and d in order to compute the scalar tc. Let us explain how we exploit this information to discover
actual frontiers of P .

Note that any direction could be used to sort the constraints with respect to the order of intersection by
a ray. We chose successively for d the normal vector of each facet of P . This heuristic ensures that each
facet will be hit by at least one ray. As illustrated by Fig. 2, a direction d def

= −C necessarily intersects the
C-facet and may potentially cross many others constraints for some positive values of t. Now, considering
a direction di = −Ci, we sort the intersected constraints with respect to the increasing order of the scalar t
which is proportional to the distance between the interior point x̊ and the intersection point x(t) of a facet

Verimag Research Report no 6 5/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

Figure 2: The ray starting at the interior point x̊ and orthogonal to a constraint C meets C and possibly others
constraints.

Figure 3: Detection of some frontiers of a polyhedron by looking at their intersections with rays starting from an
interior point x̊ and orthogonal to a constraint. The thick lines are the discovered frontiers, confirmed by the doubly-
circled intersection points.

and the ray RAY(x̊,di). We obtain a sorted intersection list of couples (t, St) where St is the set of the
(possibly many) constraints null at x(t). The head couple provides the constraints which are encountered
first by the ray. At the heart of our algorithm is the following proposition: “If the head of an intersection
list is a couple (t, {C }) with a single constraint, thenC is a frontier of P ; otherwise we cannot conclude
from this list.” It will be proved in §4.2 (Proposition 1) when we will come to the generation of witness
points.

Example. Here are the intersection lists of sorted constraints obtained for the 6-constraints polyhedron of
Fig. 3. List Ii records the constraints met along RAY(x̊,−Ci) from x̊ orthogonally to the facet of Ci. It
satisfies ti < t′i < t′′i < t′′′i .

I1 = [(t1, {C1 }); (t′1, {C5,C6 }); (t′′1 , {C2 })] I2 = [(t2, {C2 }); (t′2, {C6 }); (t′′2 , {C3 }); (t′′′2 , {C1 })]
I3 = [(t3, {C3 }); (t′3, {C2 }); (t′′3 , {C4 })] I4 = [(t4, {C5 }); (t′4, {C4 }); (t′′4 , {C3 })]
I5 = [(t5, {C5 }); (t′5, {C1,C4 })] I6 = [(t6, {C1 }); (t′6, {C6 }); (t′′6 , {C2 })]

These lists reveal that C1, C2, C3 and C5 are frontiers of P ; C1 and C5 are even confirmed twice. Our
criterion fails to decide the status ofC4 andC6 because, in any of the considered directions, they are never
encountered first. This situation is legitimate for the redundant constraintC6 but also happens forC4 even
if it is a frontier of P .

At this point (line 10 of Algorithm 2), we run the simplex to determine the irredundancy of the re-
maining constraints. In order to keep LP problems as small as possible, we build them incrementally

6/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

as follows. Consider an undetermined constraint Ci and let Ii be the intersection list resulting from
the direction di = −Ci, as defined previously. We pose an LP problem to find a point x′i satisfying
〈Ci,x

′
i〉 > 0 ∧ 〈C ′,x′i〉 ≤ 0, where C ′ is the single4 constraint that appears at the head of Ii. As said

earlier, C ′ is a frontier because it is the first facet encountered by the ray. Two cases may occur: If the
existential LP problem of line 15 is unsatisfiable, the simplex returns FAILURE(λ), Ci is redundant with
respect to C ′ and the Farkas decomposition of Ci is λ × C ′. Otherwise, the simplex exhibits a point x′i
which satisfies 〈Ci,x

′
i〉 > 0 ∧ 〈C ′,x′i〉 ≤ 0. Here, we cannot conclude since x′i is a witness showing that

Ci is irredundant with respect to C ′ alone, but Ci could still be redundant in the cone.
To check the irredundancy of Ci, we launch a new ray from x̊ to x′i, i.e. in direction d = x′i − x̊,

denoted by RAY(x̊,x′i − x̊). As before, we compute the intersection list of this ray with all the constraints
but this time we know for sure that Ci will precede C ′ in the list. This property is shown in Proposition 2
of Appendix A, the proof is purely computational. Then, we analyze the head of the list: ifCi is the single
first element, then it is a frontier. Otherwise the first element, say C ′′, is added to the LP problem, which
is now asked for a point x′′i such that 〈Ci,x

′′
i 〉 > 0 ∧ 〈C ′,x′′i 〉 ≤ 0 ∧ 〈C ′′,x′′i 〉 ≤ 0 resulting in a new

RAY(x̊,x′′i − x̊). The way we chose rays guarantees that the previous facets C ′,C ′′, ... will always be
hit after Ci by the next ray. Therefore, ultimately the constraint Ci will be hit first by a ray, or it will be
proved redundant. Termination is guaranteed because the first constraint struck by the new ray is eitherCi

and we can conclude, or a not already considered constraint and there is a finite number of constraint in P .
Observe that this algorithm builds incremental LP problems which contain only frontiers that were between
x̊ and the facet of Ci at some step.

Example 2 (continued). In the above example, we found out that C1, C2, C3 and C5 were frontiers.
To determine the status of C4, we solve the LP problem ∃x′4, 〈C4,x

′
4〉 > 0 ∧ 〈C5,x

′
4〉 ≤ 0, because C5

is the head of I4. The simplex finds such a point x′4 and the next step is to compute the intersection list
corresponding to RAY(x̊,x′4 − x̊). This list will reveal C4 as an actual frontier.

Similarly, the intersection list I6 of the example suggests to solve the LP problem ∃x′6, 〈C6,x
′
6〉 >

0 ∧ 〈C1,x
′
6〉 ≤ 0 to launch a new ray toward C6. This problem is satisfiable and the simplex returns

SUCCESS(x′6). Again, the next step is to compute the intersection list corresponding to RAY(x̊,x′6 − x̊).
This time, the head of the list is C2. We thus add C2 to the previous LP problem and call the simplex on
∃x′′6, 〈C6,x

′′
6〉 > 0 ∧ 〈C1,x

′′
6〉 ≤ 0 ∧ 〈C2,x

′′
6〉 ≤ 0. This problem has no solution: the simplex returns

FAILURE(λ = (1, 1)) showing thatC6 is redundant and its Farkas decomposition isC6 = 1×C1+1×C2.

4.2 Irredundancy Certificates
Let us explain how we compute witness points from the intersection lists defined in the previous section.
From now on, we will denote a constraint by F if it is a frontier and by C when we do not know if it is a
redundant constraint or an actual frontier. Let us come back to the list of the intersections of facets of P
with a ray {x(t) | x(t) = x̊+ t× d, t > 0 } for a direction d.

Proposition 1. If the head of an intersection list contains a single constraintF , then we can build a witness
point satisfying the irredundancy criterion of Theorem 1 which proves that F is a frontier:

(a) For a list [(tF , {F })], we take the witness wa = x̊+ (tF + 1)× d

(b) For a list [(tF , {F }) ; (t′, S′) ; . . .] with at least two couples, we forge the witnesswb = x̊+ tF +t′

2 ×d.

Let us prove that those witness points attest that F is an irredundant constraint. According to Theo-
rem 1, it amounts to prove that

∧
C∈P\F

〈C,w〉 ≤ 0 ∧ 〈F ,w〉 > 0 for wa (resp. wb).

Proof. Let us first study the sign of 〈F ,x(t)〉 at point x(t) = x̊ + t × d. Note that 〈F ,x(t)〉 =

〈F , x̊+ t× d〉 (†)
= 〈F , x̊〉+t×〈F ,d〉 .By construction, 〈F ,x(tF)〉 = 0 then, by equation (†),−〈F , x̊〉 =

tF × 〈F ,d〉. Recall that tF > 0 and 〈F , x̊〉 < 0 because x̊ ∈ P̊ . Thus, 〈F ,d〉 is necessarily positive.
Finally, for a frontier F found in a direction d, 〈F ,x(t)〉 = 〈F , x̊〉+ t×〈F ,d〉 is positive for any t > tF .

4If the set at the head of Ii contains several constraints, we cannot know which one is a frontier. Thus, we add all of them in the
LP problem (lines 13-14 of Algorithm 2).

Verimag Research Report no 6 7/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

Algorithm 2: Raytracing algorithm

Input : A set of constraints P = {C1, . . . ,Cp} ; a point x̊ ∈ P̊
Output : PM : minimized version of P
Data : LP [i]: LP problem associated to Ci ; I[i]: intersection list of Ci

Function: intersectionList(d, {C1, . . . ,Cq}) returns the intersection list obtained by
intersecting {C1, . . . ,Cq} with ray d

1 Function updateFrontiers (I[i], PM , P)
2 if head (I[i]) = (tF , {F }) then
3 PM ← PM ∪ {F }
4 P ← P \ F
5 return (PM , P)

6 PM ← ∅ ; LP ← arrayOfSize(p) ; I ← arrayOfSize(p)

7 for Ci in P do /* First step of raytracing with orthogonal rays */
8 I[i]← intersectionList (RAY(x̊,−Ci), P)
9 (PM , P)← updateFrontiers (I[i], PM , P)

10 while P 6= ∅ do
11 for Ci in P do
12 (t, S)← head(I[i])
13 for C in S do
14 LP [i]← LP [i] ∧ 〈C,x′

i〉 ≤ 0

15 switch simplex (∃x′
i, 〈Ci,x

′
i〉 > 0 ∧ LP [i]) do

16 case SUCCESS (x′
i):

17 I[i]← intersectionList (RAY(x̊,x′
i − x̊), P ∪ PM)

18 (PM , P)← updateFrontiers (I[i], PM , P)

19 case FAILURE (λ): P ← P \Ci /* Ci is redundant */
20

21 return PM

Hence, in case (a) 〈F ,wa〉
def
= 〈F ,x(tF + 1)〉 > 0 and in case (b) 〈F ,wb〉

def
=
〈
F ,x(tF +t′

2)
〉
> 0 since

tF <
tF +t′

2 < t′.
Let us now study the sign of 〈C,x(t)〉 for constraints other than F :

(a) Consider the list [(tF , {F })]. By construction, it means that no other constraint C of P is struck by
the RAY(x̊,d), i.e. whatever the value t > 0, the sign of 〈C,x(t)〉 = 〈C, x̊〉 + t × 〈C,d〉 does not
change. As 〈C,x(t=0)〉 = 〈C, x̊〉 < 0 because x̊ ∈ P̊ , we can conclude that ∀t > 0, 〈C,x(t)〉 < 0.
Thus, in particular, 〈C,wa〉

def
= 〈C,x(tF + 1)〉 < 0 for any C ∈ P \ F .

(b) Consider now the list [(tF , {F }); (t′, S′); . . .]. A constraint C that appears in the set S′ is null at
point x(t′) with t′ > 0. The previous reasoning (†) (on F) based on equation 〈C,x(t)〉 = 〈C, x̊〉 +
t × 〈C,d〉 is valid for C, hence proving 〈C,d〉 > 0. Thus, 〈C,x(t)〉 is negative for t < t′ (null for
t = t′ and positive for t′ < t). Finally, 〈C,wb〉

def
=
〈
C,x(tF +t′

2)
〉
< 0 since tF +t′

2 < t′. The same
reasoning applies to any other couple (t, St) in the tail of the list.

Fig. 4(Pb) shows the irredundancy witness points w1, w2, w
′
1, w

′
2 of constraints C1,C2 and C ′. The

irredundancy of C ′ is confirmed three times by different rays respectively orthogonal to C ′, C3 and C4,
leading to witnesses w′1 (twice) and w′2.

8/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

Figure 4: Non-redundancy witnesses for generators of Pa and constraints of Pb

4.3 Minimizing Generators
So far, to ease the understanding, we presented our raytracing-based minimization for constraint-only poly-
hedra, but it works as well for generators. Indeed, we manipulated constraints as vectors and all our ex-
planations and proofs are based on the inner product of vectors. Moreover, Theorem 1 is not limited to
constraints, it holds for any vector space and can be rephrased for generators. This time the irredundancy
certificate for a generator g′ is a vector n such that 〈g1,n〉 , . . . , 〈gp,n〉 ≤ 0 and 〈g′,n〉 > 0. Such a
vector defines a hyperplane orthogonal to n, i.e. {x | 〈n,x〉 = 0 }. It is called a separating hyperplane
because it isolates generator g′ from the other ones. Fig. 4(Pa) shows the separating hyperplanes defined
by n1,n2,n3 and n4. They respectively justify the irredundancy of v1,v2,v3 andR1 in Pa.

4.4 Using Floating Points in Raytracing
It is possible to make raytracing even more efficient by using floating points instead of rationals. We ex-
perimented thereby floating points in both LP problem resolutions and distance computations. The rational
coefficients of constraints are translated into floating points. It introduces a loss in precision which does
not jeopardize the result because the certificate checking controls the minimization process. However, we
must pay attention to the generation of exact (i.e. rationals) certificates from floating point computations.
The solution we propose differs depending on the kind of certificate.

Witness Points. Checking a certificate of irredundancy consists in evaluating the sign of 〈Ci,w〉 for all
constraintsCi of P with the provided witness pointw. A witness pointw must then be given with rational
coefficients to avoid sign errors if 〈Ci,w〉 is too close to 0. Thus, the witness point wF obtained with
floating point computations is translated into a rational one wQ, without loss of precision. Then we check
the irredundancy certificate with wQ and the rational version of the constraints. If the verification passes,
thenwQ is indeed a witness point. In the rare case of failure, using the exact simplex of the VPL on the LP
problem will fix the approximation error by providing a rational witness point.

Farkas Decompositions. To prove a redundancy, we need to exhibit the Farkas decomposition of the
redundant constraint. To obtain an exact decomposition from the floating LP solution, we record which
constraint is actually part of the decomposition5. Then, we run the exact simplex on a LP problem involving
only those constraints to retrieve the exact Farkas decomposition.

5What is needed from the floating point solution is the set of basic variables and an ordering of the non null λi coefficients to
speed up the search in exact simplex.

Verimag Research Report no 6 9/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

(a) : C = 35, V = 10, D = 50%, R = [0%, 90%] (b) : C = [20, 50], V = 10, D = 50%, R = 50%

(c) : C = 100, V = 10, D = [10%, 80%], R = 50% (d) : C = 50, V = [2, 50], D = 50%, R = 50%

Figure 5: Execution time in milliseconds of SMA (blue), RRA (red) and FRA (green) depending on respectively (a)
redundancy, (b) number of constraints, (c) density and (d) number of variables.

5 Experiments
This section is devoted to the comparison of three minimization algorithms: the standard algorithm (SMA)
(Algorithm 1 of §3) and two versions of our minimization algorithm, the Rational raytracing algorithm (RRA)
and the Floating point raytracing algorithm (FRA). These three algorithms are all implemented in the cur-
rent version (2.0) of the VPL. They use the same datastructures (e.g. for constraints), allowing more
reliable timing comparisons between them. For computing the exact Farkas decomposition that proves a
constraint irredundancy, the three algorithms ultimately rely on the VPL simplex in rational.

The Standard Minimization Algorithm (SMA). The standard Algorithm 1 is available in the VPL since
version 1.0. It works on rationals and can generate certificates of precision, minimality and correctness.
The VPL implementation carries an optimization: the LP problem of Algorithm 1 is built only once before
testing the redundancy of each constraint. Initially it is composed of all the constraints. Then, each time a
redundant constraint is detected, it is removed from the LP problem used for testing other constraints.

The Rational Raytracing Algorithm (RRA). Since RRA and SMA share datastructures and use the same LP
solver, comparing their running time is relevant to estimate the efficiency of raytracing with respect to the
standard algorithm.

The Floating point Raytracing Algorithm (FRA). FRA implements raytracing with floating points as ex-
plained in §4.4. Here, LP problems are solved by GLPK (the GNU Linear Programming Kit) which provides
a simplex algorithm working with floating points.

To compare the three implementations, we asked them to minimize polyhedra that were generated
randomly from four parameters that will be detailed further: the number of variables (V), the number of
constraints (C), the redundancy rate (R) and the density rate (D). Throughout the paper, we focused
on cones to simplify both notations and explanations. However, our algorithm works for general convex
polyhedra and we build our experiments as follows. Each constraint is created by giving a random integer
between -100 and 100 to the coefficient of each variable, within the density rate. All constraints are attached
the same constant bound ≤ 20. Such polyhedra have a convex potatoid shape, shown on the right hand
side.

10/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

Fig. 5 shows the execution time (in milliseconds) of the three algorithms de-
pending on the four parameters (C, V,R,D). Each point of the curves is the aver-
age time obtained from the minimization of 50 polyhedra. Let us now detail each
parameter and their impact on execution time.

Redundancy Rate. The effect of redundancy on execution time is displayed on
Fig. 5(a). These measures come from the minimization of polyhedra with 10 vari-
ables and 35 constraints, and a redundancy rate ranging from 0% to 90% of the
number of constraints. To generate a redundancy constraint, we randomly pick
two constraints and produce a nonnegative combination of them. We took care of
avoiding redundancies that can be discarded by the fast detection criteria of §1. The graph clearly shows
that raytracing has a big advantage on polyhedra with few redundancies. This phenomenon was expected:
raytracing is good at detecting at low-cost irredundancy. SMA becomes similar to raytracing when the
redundancy rate is high. This is explained by the implementation details given in previous paragraphs:
when a redundant constraint is found, it is removed from the LP problem. Thus, if the redundancy rate
reaches very high level, the LP problem becomes smaller and smaller at each iteration, lowering the impact
of using floating points. Moreover, the heuristic used by our algorithm never hits if almost all constraints
are redundant, which makes the raytracing computations useless. To be fair between raytracing and the
standard algorithm, we set the redundancy rate at 50% in the other experiments.

Number of Constraints. Fig. 5(b) measures the minimization time depending on the number of constraints
for polyhedra with 10 variables. FRA and RRA scale better with respect to the number of constraints than
SMA: experiments show that when C ranges from 20 to 50 constraints, SMA has a quadratic evolution
compared to raytracing algorithms.

Density Rate. The density of a polyhedron is the (average) rate of nonnull coefficients within a constraint.
For instance, a density of 60% with 10 variables means that on average, constraints have 6 nonnull coef-
ficients. Fig. 5(c) shows the execution time for 10-dimensional polyhedra with 100 constraints, where the
density rateD goes from 10% to 80%. The raytracing algorithms are almost insensitive to density, whereas
the execution time of the standard algorithm blows up with density. Actually, having a lot of nonnull co-
efficients in constraints tends to create huge numerators and denominators because a pivot in the simplex
performs many combinations of constraints. The blow up does not happen in RRA because LP problems
are much smaller in the raytracing algorithms.

Number of Variables. The effect of the dimension on execution time is shown on Fig. 5(d). Whereas
raytracing seems linearly impacted by the dimension, SMA has a behaviour that may look a bit strange.
After a dramatic increase of execution time, the curve falls down when the dimension reaches about half
the number of constraints. It finally joins and sticks to FRA curve. This phenomenon may be explained
by the number of pivots needed to solve the LP problem. The closer is the dimension to the number of
constraints, the fewer pivots are needed, thus making SMA competitive even with more LP problems to
solve.

Table 1 shows results for several values of dimension and number of constraints. Again, each cell of
this table gives the average values resulting from the minimization of 50 convex potatoids, with a density
and a redundancy both fixed at 50%. For each couple (number of variables × number of constraints),
Table 1 gives the number of LP problems that were solved and their size (i.e. the number of constraints
they involve) on average. It contains also the computation time of the minimization in milliseconds and
the speed up of raytracing compared to SMA. Results of Table 1 show that for small polyhedra, either in
dimension or in number constraints, raytracing does not help. Indeed, for such small LP problems, the
overhead of our algorithm is unnecessary and leads to time losses. raytracing becomes interesting for
larger polyhedra, where the speed improvement is significant. For instance, FRA is 44.5 times faster with
10 variables and 100 constraints than SMA. The gain can be explained by the number of LP problems
solved and their average size, noticeably smaller in raytracing than in SMA. As expected, raytracing is
considerably faster with floating points.

Verimag Research Report no 6 11/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

Table 1: Time measures of the three minimization algorithms SMA, RRA and FRA for different values of variables and
constraints.

5 constraints 10 constraints 25 constraints 50 constraints 100 constraints

Var SMA RRA FRA SMA RRA FRA SMA RRA FRA SMA RRA FRA SMA RRA FRA

2

lp

lp size

time(ms)

speed up

2 0 0

3 3 3

0.05 0.03 0.02

- 1.8 1.9

3 1 1

4 3 4

0.04 0.05 0.09

- 0.77 0.48

6 2 2

6 3 4

0.10 0.14 0.14

- 0.74 0.73

9 5 5

8 3 4

0.27 0.30 0.34

- 0.90 0.79

15 11 11

12 3 5

0.83 0.71 0.80

- 1.2 1.0

5

lp

lp size

time(ms)

speed up

5 2 2

5 3 4

0.09 0.15 0.18

- 0.61 0.51

10 6 6

9 3 5

0.29 0.45 0.50

- 0.65 0.59

24 16 16

20 4 7

3.8 2.0 1.8

- 1.9 2.1

46 34 34

36 5 8

29.8 7.1 5.4

- 4.2 5.5

90 72 73

65 5 9

178 26.0 18.8

- 6.8 9.5

10

lp

lp size

time(ms)

speed up

5 2 2

5 3 4

0.18 0.30 0.32

- 0.59 0.55

10 5 5

9 4 5

0.60 1.1 0.86

- 0.57 0.70

25 13 13

22 7 7

17.6 10.8 6.0

- 1.6 2.9

50 28 28

44 10 8

811 65.9 23.5

- 12.3 34.5

100 58 58

87 13 11

14936336 64.0

- 44.5 233

6 Conclusion & Future Work
In this paper, we present a new algorithm to minimize the representation of a polyhedron. It is based on
raytracing that provides an efficient irredundancy check in which LP executions are replaced by distance
computations. The raytracing procedure is incomplete and LP problem resolutions are still required for
deciding the redundancy of the remaining constraints. However, our algorithm reduces not only the number
of LP problems solved along the minimization, but also their size by an incremental approach. Moreover,
it is usable for polyhedra in single representation, whatever it is : as constraints or as generators. This
algorithm is available in the VPL. It can be used either with rational or floating coefficients. In both cases,
it can produce certificates of correctness, precision and minimality.

Parallelizing. Our raytracing algorithm is well-suited to parallelization: computing the intersection lists
could be done by as many threads as rays. These computations boil down to matrix multiplications for
which there exist efficient libraries, e.g. the LAPACK library [1]. Actually, to fully benefit from paral-
lelism, the algorithm should be implemented in C because OCAML does not support native concurrency
yet. Exploiting multi-cores, the number of ray traces could be greatly increased, and applying the raytracing
principle from several interior points would allow us to discover frontiers even more easily.

Redundancy in the Double Description Framework (DDF). Our algorithm has been designed to minimize
polyhedra in single representation, but the principle of raytracing can be reused in the double description
framework, where it could fastly detect irredundant constraints. Redundancy is easier to detect when the
two representations of a polyhedron are available. Let the couple (C ,G) denote the set of constraints and
the set of generators of a polyhedron in Qn and (CM ,GM) be its minimal version. A constraint C ∈ C
is irredundant if it is saturated by at least n irredundant generators, i.e. ∃g1, . . . , gn ∈ GM , 〈C, gi〉 = 0.
Similarly, a generator g ∈ G is irredundant if it is the intersection of at least n irredundant constraints i.e.
∃C1, . . . ,Cn ∈ CM , 〈Ci, g〉 = 0. Think for instance of a line in 2D being defined by two points and a
point being the intersection of at least two lines. The principle of the minimization algorithm is the follow-
ing [10]: build the boolean saturation matrix S of size |C |×|G | defined by S[C][g] := (〈C, g〉 = 0), then
iteratively remove constraints (and the corresponding rows of S) which are insufficiently saturated and do
the same for generators (and columns of S) until reaching a stable matrix. The remaining constraints and
generators form the minimal version (CM ,GM) which mutually justify the irredundancy of each others.
This algorithm is appealing compared to its counterpart in single representation but the number of evalu-
ation of 〈C, g〉 is huge when each variable xi ranges in a interval [li, ui]. Such a product of intervals can

12/14 Verimag Research Report no 6

An Efficient Minimization of Polyhedra Alexandre Maréchal, Michaël Périn

be represented by 2n constraints (two inequalities li ≤ xi ∧ xi ≤ ui per variable) which corresponds to
2n vertices6 [3]. Therefore, the size of S is n2n+1. To limit the computations, the saturation matrix is not
fully constructed. Let us summarize the improved algorithm [17]: (1) Some constraints are removed by
the fast redundancy detection recalled in §1. (2) The irredundant generators of GM are constructed from the
remaining constraints using Chernikova’s algorithm [4] with some optimized adjacency criteria [13, 8, 18].
The adjacency criterion ensures that the construction cannot produce redundant generators [14]. (3) Fi-
nally, the saturation matrix is built to remove the constraint redundancies but a row is only completed if the
constraint never finds enough saturating generators, otherwise the computation of the row is interrupted.

We believe that our orthogonal raytracing phase can be used at Step (3) to fastly discover irredundant
constraints, which therefore do not have to be confirmed by the saturation matrix. The cost of this initial
raytracing is reasonable: C rays and 2 × |C | evaluations per ray resulting in 2 × |C |2 computations of
inner products. It could therefore benefit to minimization in the DDF especially when |C | << |G | as in
hypercubes.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999. 6

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the analysis and
verification of hardware and software systems. Theoretical Computer Science, 410(46):4672–4691,
2009. 1

[3] F. Benoy, A. King, and F. Mesnard. Computing convex hulls with a linear solver. TPLP:Theory and
Practice of Logic Programming, 5(1-2):259–271, 2005. 6, 6

[4] N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear programming
problem. USSR Computational Mathematics and Mathematical Physics, 1968. 2

[5] V. Chvatal. Linear Programming. Series of books in the Mathematical Sciences. W. H. Freeman,
1983. 1

[6] P. Feautrier and C. Lengauer. Polyhedron model. In Encyclopedia of Parallel Computing, volume 1,
pages 1581–1592. Springer, 2011. 1

[7] A. Fouilhé, D. Monniaux, and M. Périn. Efficient certificate generation for the abstract domain of
polyhedra. In Static Analysis Symposium, 2013. 3

[8] K. Fukuda and A. Prodon. Double description method revisited. In Combinatorics and Computer
Science, volume 1120 of LNCS, page 91–111. Springer, 1996. 1, 2

[9] A. J. Goldman and A. W. Tucker. Polyhedral convex cones. In Linear inequalities and related systems,
volume 38 of Annals of Mathematics Studies, pages 19–40. Princeton University Press, 1956. 1

[10] N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables d’un
programme. PhD thesis, Université scientifique et médicale de Grenoble, 1979. (in french). 6

[11] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-verified C static analyzer.
In ACM Principles of Programming Languages (POPL), pages 247–259. ACM Press, January 2015.
3

[12] J.-L. Lassez, T. Huynh, and K. McAloon. Constraint logic programming. chapter Simplification and
Elimination of Redundant Linear Arithmetic Constraints, pages 73–87. MIT Press, 1993. 1

[13] H. Le Verge. A note on Chernikova’s algorithm. Research Report RR-1662, INRIA, 1992. 2

6The opposite phenomena (2n vertices corresponding to 2n constraints) also exists but hardly ever occurs in practice [3].

Verimag Research Report no 6 13/14

Alexandre Maréchal, Michaël Périn An Efficient Minimization of Polyhedra

[14] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In
Contributions to the theory of games, volume 2 of Annals of Mathematics Studies, pages 51–73.
Princeton University Press, 1953. 2

[15] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in discrete math-
ematics and optimization. Wiley, 1999. 1

[16] A. Simon and A. King. Exploiting Sparsity in Polyhedral Analysis. In Static Analysis Symposium
(SAS), volume 3672 of LNCS, pages 336–351. Springer-Verlag, 2005. 1

[17] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISA Technical Report PI 785, Rennes,
France (1993). 1, 1, 6

[18] N. Y. Zolotykh. New modification of the double description method for constructing the skeleton of
a polyhedral cone. Computational Mathematics and Mathematical Physics, 52(1):146–156, 2012. 2

A Proofs
Proposition 2. Let Ci,C

′ be two constraints of a polyhedron P , and let x̊ ∈ P̊ . Let x′i be a point such
that 〈Ci,x

′
i〉 > 0 and 〈C ′,x′i〉 ≤ 0. Then RAY(x̊,x′i − x̊) intersects Ci at some point x(tCi

). Moreover,
assume it crosses C ′ at x(tC′), then tCi

< tC′ .

Proof. Because 〈Ci, x̊〉 < 0 and 〈Ci,x
′
i〉 > 0 then RAY(x̊,x′i− x̊) necessarily crossesCi, say at x(tCi

).
Then, 〈Ci,x(tCi

)〉 = 0 = 〈Ci, x̊〉︸ ︷︷ ︸
<0

+ tCi︸︷︷︸
>0

× 〈Ci,x
′
i − x̊〉. Thus, 〈Ci,x

′
i − x̊〉 > 0 (‡).

We supposed that RAY(x̊,x′i − x̊) intersects C ′ at x(tC′) then, similarly,〈
C ′,x(tC′)

〉
= 0 = 〈C ′, x̊〉︸ ︷︷ ︸

<0

+ tC′︸︷︷︸
>0

× 〈C ′,x′i − x̊〉 . Thus, 〈C ′,x′i − x̊〉 > 0 (‡′).

The computation of intersection with a RAY(x̊,x′i − x̊) is explained in §4.1. It gives

tC′
def
= − 〈C ′, x̊〉
〈C ′,x′i − x̊〉

and tCi

def
= − 〈Ci, x̊〉
〈Ci,x′i − x̊〉

.

Let us now show that 0 < tC′ − tCi
.

tC′ − tCi
= − 〈C′,x̊〉

〈C′,x′
i−x̊〉

+ 〈Ci,x̊〉
〈Ci,x′

i−x̊〉
=
−〈C′,x̊〉〈Ci,x

′
i−x̊〉+〈Ci,x̊〉〈C′,x′

i−x̊〉
〈C′,x′

i−x̊〉〈Ci,x′
i−x̊〉

=
−(〈C′,x̊〉〈Ci,x

′
i〉−〈C′,x̊〉〈Ci,x̊〉)+(〈Ci,x̊〉〈C′,x′

i〉−〈Ci,x̊〉〈C′,x̊〉)
〈C′,x′

i−x̊〉〈Ci,x′
i−x̊〉

=
−〈C′,x̊〉〈Ci,x

′
i〉+〈Ci,x̊〉〈C′,x′

i〉
〈C′,x′

i−x̊〉〈Ci,x′
i−x̊〉

Let us now study the sign of each term:

1. The denominator 〈C ′,x′i − x̊〉 〈Ci,x
′
i − x̊〉 is positive, as a consequence of (‡′) and (‡).

2. By definition of the interior point x̊, 〈Ci, x̊〉 < 0 and 〈C ′, x̊〉 < 0. By construction of x′i,
〈Ci,x

′
i〉 > 0 and 〈C ′,x′i〉 ≤ 0. Thereby, the numerator is positive as −〈C ′, x̊〉︸ ︷︷ ︸

<0

〈Ci,x
′
i〉︸ ︷︷ ︸

>0

> 0

and 〈Ci, x̊〉︸ ︷︷ ︸
<0

〈C ′,x′i〉︸ ︷︷ ︸
≤0

≥ 0.

Finally, we have proved that the fraction is positive, hence tCi
< tC′ .

14/14 Verimag Research Report no 6

	Redundancy in Polyhedra
	Notations
	Certifying a Minimization of Polyhedra
	An Efficient Minimization Algorithm
	The Frontier Detection Criterion
	Irredundancy Certificates
	Minimizing Generators
	Using Floating Points in Raytracing

	Experiments
	Conclusion & Future Work
	Proofs

