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Efficient Equilibrated Flux Reconstruction in
High Order Raviart -Thomas Space for
Discontinuous Galerkin methods

Igor Mozolevski and Edson Luiz Valmorbida

Abstract We develop an efficient and computationally cheap method of equilibrated
fluxes reconstruction for high - order dG solutions to elliptic problems using a spe-
cific computational basis in high order Raviart - Thomas space. The computational
basis is designed in such a way that coordinates of equilibrated fluxes with respect
to this basis can be easy calculated from the moments of the numerical fluxes of dG
method. Some applications of this method in implementation of a posteriori error
estimators for elliptic boundary value problems are considered.

1 Introduction

Equilibrated fluxes reconstruction in Raviart -Thomas space is used in finite element
methods for development of fully computable (not involving unknown constants),
efficient and reliable a posteriori error error estimates for elliptic, convection-
diffusion and parabolic problems, see e.g [19, 13, 14, 7, 8, 4, 22, 15]. As an another
important application the equilibrated velocity recuperation from a discontinuous
Galerkin solution to the Darcy equation in the multiphase flow in heterogeneous
porous media should be mentioned, see [12, 11]. One of the attractive properties of
the equilibrated fluxes a posteriori error error estimates is the robustness in respect
to the order of polinomial approximation (cf. [4],[15]), whereas the efficiency of
residual type estimates can decrease with the degree (cf. [20], [5]).

Owing to the local conservation properties, the discontinuous Galerkin (dG) fi-
nite element methods allow easy flux reconstruction in Raviart-Thomas space by
locally prescription of the numerical flux moments as the degrees of freedom, cf.
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[9]. Such an approach offers cheap and efficient computational algorithm for imple-
mentation of flux reconstruction in lowest order Raviart-Thomas space.

Nevertheless, reconstruction of equilibrated fluxes from the prescribed moments
of discrete numerical fluxes in higher order Raviart-Thomas space can be compu-
tationally involved procedure. In this article we introduce a specific modal basis
in high order Raviart-Thomas space such that calculation of reconstructed flux co-
efficients in respect to this from the prescribed moments is extremely easy owing
to orthogonal properties of edge elements of the basis. Using this tool we develop
an efficient and computationally cheap method of equilibrated fluxes reconstruc-
tion from high-order dG solutions to elliptic problems. To demonstrate the potential
of the method we consider an application to adaptive mesh refinement, where the
method is used for equilibrated fluxes calculation needed for a posteriori error esti-
mator.

2 Modal basis in high order Raviart-Thomas space

Let Ω be a polygonal domain in R2. Let us denote by Hk(Ω) the Sobolev space
of order k ∈ N0. The space of vector functions u ∈ [L2(Ω)]2 with weak divergence
∇ ·u in L2(Ω) is denoted by H(div ,Ω) . The reader is referred to [1] and [3] among
others, where standard properties of the Sobolev and H(div ) spaces are exposed.

For discrete approximation of H(div ) spaces let us define in Ω a shape regular
family Th of triangular meshes (see e.g. [6]), where h = max

T∈Th
h(T ) denotes the mesh

size and h(T ) is the diameter of the mesh element T . We denote the set of all mesh
edges as E and decompose it in the set E i of all interior edges (interfaces between
adjacent mesh elements) and the set of all boundary faces E ∂ . Next we define vector
field nE : E → R2 of edge normals, where nE (E) = nE is the fixed unit vector
orthogonal to E which coincides with the external normal to ∂Ω on the boundary
edges. We also denote as nT the external normal to ∂T for any mesh element T . For
E ∈ E we denote by TE = {T ∈Th : E ⊂ ∂T} the set of all mesh elements sharing
the edge E.

For any triangle T ∈Th the local Raviart-Thomas space is defined by

RTk(T ) = [Pk(T )]2 +
(

x
y

)
Pk(T ), (1)

where Pk(T ) denotes the space of polynomials in T of degree less on or equal to
k ∈ N0. For u ∈ RTk(T ) the degrees of freedom are given by∫

∂T
(u ·nT )p, ∀p ∈ Pk(∂T ); (2)∫

T
u ·q, ∀q ∈ [Pk−1(T )]2 if k ≥ 1. (3)
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Associated with the triangulation Th the global Raviart-Thomas finite element
space is defined as

RTk(Th) = {uh ∈ H(div ,Ω) | uh|T ∈ RTk(T ), ∀T ∈Th}. (4)

The computational implementation of RT0 elements is typically included in fi-
nite element software packages and it was carefully discussed in [2]. Here we aim at
introducing a computational basis in high order RTk(Th) such that the coordinates
of an element in this basis can be easily calculated from its degrees of freedom (2)
- (3). We start with the definition of the basis in the master element and then extend
the definition to any T ∈Th using Piola transformation.

Let us consider the reference triangle T̂ with vertexes

v̂1 = (−1,−1)′, v̂2 = (1,−1)′, v̂3 = (−1,1)′;

T̂ = {v̂1, v̂2, v̂3}= {(r,s)′ | r,s≥−1; r+ s≤ 0}.

For any T ∈ Th, T = {v1,v2,v3}, v1 = (x1,y1)
′,v2 = (x2,y2)

′,v3 = (x3,y3)
′

we fix the canonical affine application πT : T̂ → T as:

πT (r,s) =−
r+ s

2
v1 +

r+1
2

v2 +
s+1

2
v3 = (x(r,s),y(r,s))′. (5)

The Piola transformation corresponding to πT is defined for û ∈ [L2(T̂ )]2 by

PT û(x,y) =
1

|detJT |
JT û(πT (r,s)), (6)

where JT denotes the Jacobian matrix of πT .

Lemma 1 (Properties of Piola transformation, see e.g. [3]) For any u∈H(div ,T )
and v ∈ H1(T ) we have ∫

T
(∇ ·u)v =

∫̂
T
(∇̂ · û)v̂;

∫
T

u ·∇v =
∫̂
T

û · ∇̂v̂;∫
∂T

u ·nT v =
∫

∂ T̂
û · n̂T̂ v̂,

where û = P−1
T u and v̂ = π

−1
T v.

Now we are ready to formulate the theorem that provides a construction of the basis.

Theorem 1 In the local Raviart-Thomas space RTk(T ), k ∈ N0, T ∈ Th, T =
{v1,v2,v3} there exists a basis {Φ∂T

i,l ,Ψ T
m }, i = 1,2,3, l = 1, . . . ,k + 1, m =

1, . . . ,2M, M = k(k+1)
2 such that
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(B1)

Φ∂T
i,l ·n

T
i′ |Ei′ = δi,i′Li

l , i, i′ ∈ {1,2,3}, l ∈ {1, . . . ,k+1},

where Ei denotes the triangle’s edge opposite to the vertex vi, nT
i is the unit nor-

mal to the edge Ei external to T and {Li
l}k

l=0 is orthonormal system of Legendre
polynomials in L2(Ei) .

(B2) Ψ T
m , m = 1, . . . ,2M form basis in L2([Pk−1(T̂ )]2) and

Ψ
T

m ·ni|Ei = 0, i ∈ {1,2,3}, m ∈ {1, . . . ,2M};

Proof. Following [16] let us consider in the master element T̂ vector functions

e1(r,s) =
1
2

(
r+1
s+1

)
, e2(r,s) =

1
2

(
r−1
s+1

)
, e3(r,s) =

1
2

(
r+1
s−1

)
, (7)

t1(r,s) =
s+1

2

(
r+1
s−1

)
, t2(r,s) =

r+1
2

(
r−1
s+1

)
. (8)

We define

Φ̂i,l(r,s) = Ll−1(s)ei(r,s), i = 1,2, Φ̂3l(r,s) = Ll−1(r)e3(r,s), l ∈ {1, . . . ,k+1},

where {Ln}k
n=0 are (normalized) Legendre polynomials that form an orthonormal

system in L2([−1,1]) . Since Φ̂i,l satisfies the property

e1 ·n j|Ê j
=

√
2

2
δ1 j, ei ·n j|Ê j

= δi j, i ∈ {2,3}, j ∈ {1,2,3}

we obtain

Φ̂∂ T̂
i,l′ ·n

T̂
i′ |Êi′

= δi,i′Li
l .

Note that∫
Êi

(Φ̂∂ T̂
i,l′ · n̂i)(Φ̂

∂ T̂
i,l · n̂i) = δll′ , l, l′ ∈ {1, . . . ,k+1}, i ∈ {1,2,3}. (9)

Next we define Ψ̂m = p̂m(r,s)t1(r,s), m = 1, . . . ,M and Ψ̂m = p̂m−M(r,s)t2(r,s),
m = M + 1, . . . ,2M, where polynomials p̂m form the orthonormal Dubiner basis in
Pk−1(T̂ ), cf. [10]. Since

t j(r,s) ·ni|Êi
= 0, j ∈ {1,2}, i ∈ {1,2,3},

we have Ψ̂m · ni|Êi
= 0. Using the Piola transformation the respective basis in

RTk(T ),T ∈Th is defined as

Φ
∂T
i,l = P◦Φil ◦π

−1
T , Ψ

T
m = P◦Ψ̂m ◦π

−1
T
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and the required properties (B1) - (B2) follow directly from Lemma 1. ut

Next we will demonstrate how to recuperate the coefficients in respect to this
basis from the degrees of freedom of a finite element in RTk space.

Let us consider in [Pk−1(T )]2 a basis
{

PT
m
}2M

m=1,

PT
m =

(
pm
0

)
, m = 1, . . . ,M; PT

m =

(
0

pM−m

)
j = M+1, . . . ,2M;

where polynomials pm form the Dubiner basis in Pk−1(T ).

Lemma 2 Assume that for uh ∈ RTk(Th)

uT = uh|T = ∑
i′,l′

c∂T
i′,l′Φ

∂T
i′,l′ +∑

m′
cT

m′Ψ
T

m′ (10)

be local representation in respect to the basis {Φ∂T
i,l ,Ψ T

m } in RTk(T ).
Let

µ∂T
i,l (uT ) =

∫
Ei
(uT ·ni)Li

l , i ∈ {1,2,3}, l ∈ 1, . . . ,k+1; (11)

µT
m(uT ) =

∫
T uT ·Pm, m ∈ {1, . . . ,2M}, (12)

be the degrees of freedom of uT . Then

c∂T
i,l = µ

∂T
i,l (uT ), i ∈ {1,2,3}, l ∈ 1, . . . ,k+1 and cT = G−1

T FT , (13)

where cT = (cT
1 , . . . ,c

T
2M)′,

GT =

[∫
T

Ψ
T

i ·PT
j

]
2M×2M

, FT =

[
µ

T
m(u)−∑

i,l
µ

∂T
i,l

∫
T

Φ
∂T
i,l ·P

T
m

]
1×2M

.

Proof. From the edge moments (11) of (10) we have:

µ∂T
i,l (uT ) = ∑

i′,l′
c∂T

i′,l′
∫

Ei
(Φ∂T

i′,l′ ·ni)Li
l +∑

m′
cT

m′
∫

Ei
(Ψ T

m′ ·ni)Li
l

= c∂T
i,l′
∫

E Ll′Ll = c∂T
i,l

owing to (B1), (B2) and orthogonality of the Legendre polynomials (9). Similarly
from the element’s moments (12) we obtain:

µ
T
m(uT ) = ∑

i′,l′
c∂T

i′,l′

∫
T

Φ
∂T
i′,l′ ·P

T
m +∑

m′
cT

m′

∫
T

Ψ
T

m′ ·P
T
m,

that is GT cT = FT . ut
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Note 1 Let us note that Lemma 2 provides extremely cheap method for the flux
recuperation from the moments: in each element of the mesh we only need to solve
a small linear system.

Note 2 Since
∫

T Ψ T
m′ ·Ψ

T
m = |JT |

∫
T̂ PTΨ T

m′ ·PTΨ T
m =

∫
T̂ (JT J′T )/|JT |Ψ̂m′ ·Ψ̂ T

m , we im-
mediately obtain cT

m = µT
m(uT )−∑i,l µ∂T

i,l (uT )
∫

T Φ∂T
i,l ·Ψ

T
m , m ∈ 1, ...,2M for tri-

angles where (JT J′T )/|JT | = Id. This situation occurs for rectangular equilateral
elements for example, so for such structured triangular meshes the flux reconstruc-
tion can be calculated directly from the moments and does not require a solution of
the local systems.

3 Equilibrated flux reconstruction for discontinuous Galerkin
method

Let us present an application of the computational basis introduced in previous sec-
tion to equilibrated fluxes reconstruction from discrete gradient of discontinuous
Galerkin approximation to a solution of elliptic boundary value problem.

We consider in Ω next model problem:

−∇ · (D∇u) = f in Ω , (14)
u = g on ∂Ω .

Here the diffusion coefficient D > 0 is supposed to be constant in Ω , f ∈ L2(Ω) and
g ∈ H3/2(∂Ω).

For a shape regular family Th of triangular meshes in Ω we introduce the (dis-
continuous) finite element spaces V k

h as:

V k
h := {vh ∈ L2(Ω) : vh|T ∈ Pk(T ), ∀T ∈Th}.

Symmetric version of the interior penalty dG method is formulated as:
find uh ∈ V k

h such that

Bh(uh,vh) = F(vh), ∀vh ∈ V k
h , (15)

where

Bh(uh,vh) =
∫
Th

D∇huh ·∇hvh−
∫
E

{{nE ·D∇huh}}[[vh]]

+
∫
E

(−{{nE ·D∇hvh}}+ γE [[vh]]) [[uh]],

F(v) =
∫

Ω

f v+
∫
E ∂

(−{{n ·D∇hvh}}+ γE [[vh]])g.
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Here we are using standard definition (see e.g. [9]) for discrete gradient, mean value
and jump at the edges; the penalty parameter γE |E = 2.5D(k+1)2h−1

E is considered
to be reasonable ([17]) for the stabilization.

For v ∈ H1(Th)+V k
h we define the energy norm associated with the dG method

by

|||vh|||dG =

‖D 1
2 ∇hvh‖2

L2(Ω)+
∫
E

γE [[vh]]
2

 1
2

. (16)

For the energy norm of the error in dG approximation the following a priori estimate
holds true, see e.g.[18].

Theorem 2 Let u ∈ Hk+1(Ω) be a weak solution to (14) and uh ∈ V k
h be the dG

finite element approximation of u. Then the estimate

|||u−uh|||dG ≤Chk‖u‖Hk+1(Ω) (17)

holds with a constant C > 0 independent of h.

We will term the potential the weak solution u ∈H1(Ω) to the problem (14) and the
flux σ(u) =−D∇u ∈ H(div ,Ω). Similarly, the dG solution uh ∈ V k

h to (15) is said
to be discrete dG potential and the discrete dG flux is defined as σh(u) =−D∇huh.

Definition 1. A vector field sh ∈H(div ,Ω) is called equilibrated up to order l ∈N0
if div sh− π l

h( f ) = 0, where π l
h : L2(Ω)→ V l

h denotes the orthogonal projection
operator.

Following [13], let us consider a flux tk−1
h (uh) ∈ RTk−1(Th) with the degrees of

freedom of (11) and (12) locally prescribed by :

k ≥ 1 : µ
∂T
i,l (tk−1

h (uh)) =
∫

Ei

(
−{{n ·D∇huh}}+ γE [[uh]]g

)
Li

l ,

Ei ∈ ∂T, i ∈ {1,2,3}, l ∈ 1, . . . ,k; (18)

k ≥ 2 : µ
T
m(t

k−1
h (uh)) =−

∫
T

D∇huh ·Pm (19)

+∑
i

∫
Ei

χe(Ei)D(Pm ·ni)[[uh]]g,

m = 1, . . . ,2M,

where

[[uh]]g =

{
[[uh]]|E , for E ∈ E i,

uh|E −g, for E ∈ E D.

Note that this definition is correct since the numerical fluxes of dG method are
uniquely defined at the edges of the mesh. Moreover, we will refer to the following
lemma.

Lemma 3 Let u be a weak solution to (14) and uh ∈ V k
h be the dG finite element

approximation of u. The flux tk−1
h (uh), defined by (18) - (19), is equilibrated up to
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order k−1 and there exists a constant C > 0, independent of h, such that

‖D
1
2 ∇u−D−

1
2 tk−1

h (uh)‖L2(Ω) ≤C|||u−uh|||dG. (20)

See [13] for the proof and more details.
For computational reconstruction of tk−1

h (uh) from the prescribed moments (18)
and (19) we use the algorithm presented in Lemma 2.

4 Numerical examples

To demonstrate a potential of the suggested algorithm we consider an application to
adaptive mesh refinement in dG approximation of elliptic boundary value problems,
where the equilibrated fluxes are used in a posteriori error estimator in the energy
norm (16).

We consider the error estimator introduced in [15]

η
2(uh) = ∑

T∈Th

η
2(T ) = ∑

T∈Th

((ηO(T )+η∇(T ))
2 +η

2
H (T ))

where ηO(T )= ‖ f−∇ ·th(uh)‖L2(T ) is the oscillations term, η∇(T )= ‖D−
1
2 (σh(uh)−

th(uh))‖L2(T ) measures the deviation of the discrete flux σh(uh) from H(div,Ω)

and ηH (T ) = ‖D 1
2 (∇h(uh)−∇h(uO

h ))‖L2(T ) measures the deviation of uh from
H1(Ω). Here uO

h ∈ H1(Ω) is Oswald interpolator of uh and the equilibrated flux
tk−1
h (uh) is reconstructed by prescription from (18) - (19) in the computational basis
{Φ∂T

i,l ,Ψ T
m } in RTk(T ). This type of estimator has proven to be reliable, efficient

and robust with respect to polynomial order of approximation space, see [4],[15].
The quality of the error estimator η is assessed in terms of the effectivity index
Iη = η(uh)

‖D
1
2 (∇u−∇huh)‖L2(Ω)

evaluated on sequences of uniformly and adaptively re-

fined meshes.

4.1 Test case 1: uniform mesh refinement

Firstly we confirm the order of approximation of the exact flux by the reconstructed
flux for a smooth solution to elliptic problem. So let us consider the model problem
(14) in Ω = (0,1)2 with D = 1, the right-hand side and the homogeneous Dirichlet
boundary condition corresponding to the exact solution u(x,y) = sin(πx)sin(πy).
The model problem was solved numerically using the dG method of order k =
1,2,3,4 on a sequence of meshes obtained by successive uniform bisection from
the initial unstructured mesh of 48 elements.
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Let us denote by e(uh) = ‖D−
1
2 (σ(u)−σh(uh))‖L2(Ω) the error in dG approx-

imation, by e(th) = ‖D−
1
2 (σ(u)− th(uh))‖L2(Ω the error in approximation of the

exact flux by the reconstructed Raviart-Thomas flux and by e(∇ · th) = ‖ f −∇ ·
th(uh)‖L2(Ω) the error in equilibration of the reconstructed flux. In Table 1 we show
the errors and the convergence rates of the dG method and of the equilibrated flux,
reconstructed from discrete solution using suggested computational basis. We ob-
serve that the dG method accurately approximate the exact solution to the problem
and exhibits the optimal order of convergence k predicted in the Theorem 2. The
error in approximation of the exact flux by reconstructed equilibrated flux is also of
order k, which is the optimal order of approximation of the exact flux by dG method
and the optimal order of the projection of the exact flux on the Raviart-Thomas
space RTk−1. Finally, the order of convergence of ∇ · th→ f is k+1, that is the flux
th is equilibrated up to order k−1 .

Table 1 Convergence rates o(e(uh)) and o(th(uh)) for different orders of approximation calculated
for the refinement of order Nr .

k Nr e(uh) o(e(uh)) e(th) o(e(th)) e(∇ · th) o(e(∇ · th))

1

1 2.779×10−1 2.951 3.664×10−1 2.605 6.013×10−2 5.544
2 1.394×10−1 0.995 1.879×10−1 0.964 1.521×10−2 1.983
3 6.984×10−2 0.997 9.425×10−2 0.995 3.813×10−3 1.996
4 3.495×10−2 0.999 4.711×10−2 1.000 9.540×10−4 1.999
5 1.749×10−2 0.999 2.354×10−2 1.001 2.385×10−4 2.000

2

1 2.480×10−2 5.058 3.184×10−2 4.275 3.725×10−3 8.005
2 6.227×10−3 1.994 7.819×10−3 2.026 4.685×10−4 2.991
3 1.561×10−3 1.996 1.944×10−3 2.008 5.864×10−5 2.998
4 3.910×10−4 1.998 4.852×10−4 2.003 7.332×10−6 3.000
5 9.783×10−5 1.999 1.212×10−4 2.001 9.165×10−7 3.000

3

1 1.011×10−3 7.457 1.294×10−3 6.806 2.743×10−4 9.262
2 1.294×10−4 2.965 1.648×10−4 2.973 1.697×10−5 4.015
3 1.623×10−5 2.995 2.050×10−5 3.007 1.059×10−6 4.003
4 2.029×10−6 3.000 2.547×10−6 3.008 6.613×10−8 4.001
5 2.536×10−7 3.001 3.172×10−7 3.005 4.133×10−9 4.000

4

1 6.619×10−5 8.177 8.910×10−5 7.072 8.448×10−6 11.581
2 4.042×10−6 4.033 5.414×10−6 4.041 2.801×10−7 4.915
3 2.514×10−7 4.007 3.371×10−7 4.005 8.856×10−9 4.983
4 1.570×10−8 4.001 2.109×10−8 3.999 2.775×10−10 4.996
5 9.812×10−10 4.000 1.319×10−9 3.999 1.161×10−11 4.579

4.2 Test case 2: adaptive mesh refinement

Inspired by propagation of saturation front in a two-fase flow in porous me-
dia, we consider here the model problem (14) in Ω = (0,1)2 with the solution
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u(x,y) = x(x− 1)y(y− 1)arctan
(

60
√
(x−5/4)2 +(y+1/4)2)−1

)
, that exhibits

a steep front in the interior of the domain. This example is commonly used for test-
ing adaptive refinement algorithms for elliptic equations, c.f. [21]. Here we also
consider D = 1, and the right-hand side and the homogeneous Dirichlet boundary
condition correspond to the exact solution.

Meshes are adapted from the same initial mesh, using a refinement strategy based
on the method proposed by Dörfler, whereby the elements in a minimal set M ⊂Th,
such that ∑

T∈M
η(T ) ≥ θ ∑

T∈Th

η(T ), are refined. Elements are refined using the

longest edge bisection technique and additional refinements of the mesh are con-
sidered in order to eliminate hanging nodes.

Figure 1 displays in the first column the energy norm of the error and the conver-
gence order calculated for uniform and adaptive mesh refinements with θ = 0.25,
θ = 0.5 and θ = 0.75 in the Dörfler marking as a function of DOF on a logarith-
mic scale for order of dG method k = 1 to k = 4. The second column shows the
respective effectivity indices and the third column presents the adaptively refined
meshes corresponding to the error ≈ 0.01 for θ = 0.25. We can see that for given
order of dG method the energy norm of the errors are very close for all values of
the parameter in the Dörfler marking and asymptotically exhibit the optimal conver-
gence rates. The effectivity indices remain above 1 and are asymptotically close to 1
even the order of approximation increases. We observe also that the number of DOF
necessary to achieve the same global approximation error decreases with increasing
polynomial degree k.

5 Conclusions

A specific modal computational basis, in which the coordinates of the equilibrated
fluxes can be easy calculated from the numerical fluxes of dG method, is designed
for high order Raviart-Thomas space. Optimal convergence of equilibrated fluxes
and the robustness of the reconstruction method in respect to the order of dG method
are confirmed numerically. Adaptive mesh refinement, guided by the equilibrated
error estimator calculated in this basis, exhibits robust effectivity index and provides
final meshes with less DOF for the same error tolerance for higher orders of the dG
method.
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Fig. 1 The energy norm of error, the convergence order (left column) and the effectivity index
(middle column) as a function of the degrees of freedom (DOF) on a logarithmic scale for various
θ in the Dörfler marking and for various orders of dG method. Right column: adaptively refined
meshes, corresponding to the error ≈ 0.01 in the energy norm, with DOF number NDOF = 104991
for k = 1, NDOF = 7692 for k = 2, NDOF = 4270 for k = 3 and NDOF = 3930 for k = 4.
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