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Volume Integral Formulation Using Face Elements
for Electromagnetic Problem Considering

Conductors and Dielectrics
Jonathan Siau, Gérard Meunier, Olivier Chadebec, Jean-Michel Guichon, and Rémy Perrin-Bit

Abstract—A new integral formulation is presented, enabling the
computation of resistive, inductive, and capacitive effects consid-
ering both conductors and dielectrics in the frequency domain.
The considered application allows us to neglect any propaga-
tion effects and magnetic materials. In this paper, we will show
how to improve the unstructured-partial element equivalent cir-
cuit approach to consider dielectric materials, keeping the same
benefits. Results obtained with this formulation are compared
to results from an industrial finite-element method software and
measurements.

Index Terms—Dielectric materials, magneto-harmonic,
unstructured-PEEC, volume integral equation.

I. INTRODUCTION

FOR solving Maxwell’s equations, many numerical methods
and formulations can be found depending on the restraint

assumptions. Finite-element methods (FEMs) are very popular
for solving electromagnetic problems [1]–[3], allowing us to
assemble only sparse matrices, so any memory issues can be
avoided. On the other hand, integral equation methods [4]–[6]
(IEMs) lead to assembling and storing full matrices. In the past,
full matrices were really problematic due to the technological
limitations. But the main advantage of IEM is that we need to
mesh only the active regions, whereas the FEM requires mesh-
ing the surrounding air in addition. As a consequence, the IEM
should be well suited to studying electromagnetic compatibility
(EMC) problems. EMC applications mostly consist in studying
distant components (such as wireless charging applications) or
compact devices (such as printed circuit boards) and both have
a large amount of air. So, using the FEM necessitates having a
dense mesh in the air region around the devices, leading to prac-
tical issues (such as meshing difficulties or insufficient memory
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available). Also, the IEM enables us to compute the electromag
netic fields everywhere in space using only the active regions,
so far interactions can be easily studied. Moreover, nowadays
the IEM has regained interest due to new technologies and com
pression techniques. Many compression techniques exist, like
clustering techniques such as the FMM [7] or the H-matrices
[8].

The applications of many electromagnetic formulations are
often academic and their use for industrial purposes can be really
a handful. A difficulty in modeling industrial applications in the
electrical engineering domain is adding external electric com
ponents (like supply sources). A method has been proposed by
Ruehli based on integral equations to solve efficiently electro
magnetic problems coupled with an external circuit: the partial
element equivalent circuit (PEEC) [9]. It consists in transform
ing a meshed electromagnetic device into its equivalent circuit
made of lumped RLC elements and sources, so the coupling
with the external circuit is natural. The classical PEEC was lim
ited to structured meshes, but this limitation has recently been
overcome  by  a  Nonorthogonal  PEEC  formulation  [10]  or  by
using face elements [11], [12] for general meshes. This major
improvement enables the treatment of more complex geome
tries and devices [13]. In practice, the PEEC method is mostly
used to model conductors and resistive, inductive and capacitive
effects [14]–[16]. A few previous publications have considered
dielectric materials [18], [19], which have limitations. For in
stance, in [19] the magnetoquasistatic and electrostatic prob
lems are solved separately, so the phenomena are not strongly
coupled. Moreover, the user has to define macroelements manu
ally (which are a group of elements of the mesh) for the electro
static solution, which may add some inaccuracy to the electrical
phenomena.

The  contribution  of  this  paper  is  to  propose  a  formulation
which extends the PEEC method to take into account resistive,
inductive, and capacitive effects in the presence of conductors
and  dielectric  materials.  Only  one  solution  is  needed  here  to
solve  the  whole  problem  and  the  capacitive  regions  are  sup
ported by the mesh, so we have overcome the limitations of the
previous literature. Moreover, the only assumptions here are that
we neglect propagation effects (low frequencies) and that there
is no magnetic material. Therefore, we will be using the free
space Green’s function which does not take into account any
delay. However, these assumptions are usual for lowfrequency
applications.

In the first section, we present the proposed formulation, start
ing from Maxwell’s equations. Then, a practical formulation is
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introduced to overcome a limitation of the last one, in which
a few assumptions will be stated. Last, the validation of the
formulation is done with two examples. In the first one, we will
compare the results of an industrial FEM software with the prac-
tical formulation, and in the second, the results are compared to
real measurements. Note that the formulations will be expressed
in the frequency domain, but they can be easily written in the
time domain.

II. FORMULATION

Let us start by defining the following regions: ΩJ and ΩD

contain, respectively, the conductors and the dielectrics, and
Ω = ΩJ ∪ ΩD . Their borders are defined as Γ = ∂Ω, ΓJ =
∂ΩJ , and ΓD = ∂ΩD .

A. Maxwell’s Equations

In a problem with conductors, dielectrics and without any
magnetic material, we have the following constitutive laws:

⎧
⎪⎪⎨

⎪⎪⎩

J = σE in ΩJ ,

D = εE = ε0E + P in ΩD ,

B = μ0H

(1)

where J is the current density, E the electric field, σ the conduc-
tivity, D the displacement current, P the polarization density,
B the magnetic induction, ε the permittivity, and H the elec-
tromagnetic field. These quantities are expressed in SI units.
According to Maxwell’s equations, we get

rotE = −jωB = −μ0jωH (2)

rotH = J + jωD = (J + jωP) + ε0jωE (3)

with j the imaginary unit, ω = 2πf , and f the frequency. As in
a vacuum, we can also write the potentials in the presence of
dielectrics using the Lorentz gauge, as follows:

A =
μ0

4π

∫

Ω

J + jωP
r

dΩ (4)

jωV =
1

4πε0

∫

Ω
(J + jωP) ∇

(
1
r

)

dΩ (5)

where A and V are the magnetic vector potential and the scalar
electric potential, respectively, and r is the distance between the
testing and the integration points. We can note that only the jωP
term has been added from the original expression.

A previous formulation was presented in [12] to take into
account resistive and inductive effects in the presence of con-
ductors. The choice was made to use the current density J as the
unknown. Moreover, as the current density’s normal component
is preserved between two elements, it seems natural to use the
face element discretization. This also permits overcoming the
structured mesh limitation of the classical PEEC.

Now, we want to take into account capacitive effects and di-
electric materials, so we have to use another unknown having the
same conservative property in order to keep the same benefits.
We choose the total current density Jtot as the new unknown:

Jtot = J + jωD = σ∗E (6)

with σ∗ = σ + jωε, which can be seen as a complex conductiv-
ity varying in the matter. Jtot obviously keeps the same benefits
in the conductors, and in the dielectric Jtot = jωD verifies the
same property.

Thus, this integral equation formulation consists in matching
the electrical constitutive law (6) everywhere in the materials
(conductors and dielectrics) with

E = −jωA − ∇V (7)

resulting in

Jtot

σ∗ = −jωA − ∇V. (8)

To express the potential based on Jtot, we use the second con-
stitutive law and (6) to write

Jtot = J + jωP + jωε0E (9)

so we can deduce

J + jωP =
σ∗ − jωε0

σ∗ Jtot. (10)

And by substituting (10) into (4), we can write (8) as

Jtot

σ∗ + jω
μ0

4π

∫

Ω

σ∗ − jωε0

σ∗
Jtot

r
dΩ = −∇V. (11)

B. Discretization

To be able to treat unstructured meshes, we use the same test
and trial functions as in [12]. So, we discretize Jtot using the
face elements wj as follows:

Jtot =
∑

k

wkIk (12)

with Ij the current flowing through the face j.
Finally, applying a standard Galerkin projection to (11) with

the same functions leads to the matrix system

([Rt ] + jω[Lt ]) {I} = {δVint} (13)

[Rt ]i ,j =
∫

Ω

wiwj

σ∗ dΩ (14)

[Lt ]i ,j = jω

∫

Ω
wi

∫

Ω

σ∗ − jωε0

σ∗
wj

r
dΩdΩ (15)

(δVint)i = −
∫

Ω
wi∇V dΩ (16)

with [Rt ] a sparse matrix which represents the resistive effect
in the conductor and capacitive effects in the dielectrics, and
[Lt ] is the inductive dense matrix. We can see an example of an
equivalent circuit representation inFig. 2 of the mesh in Fig. 1.
Note that Fig. 2 shows only the self-element contribution (not
the mutuals), but the complete circuit can be easily constructed
using [14, Fig. 1]. We are going to investigate the meaning of
δVint, and we start by using the Divergence Theorem:

−(δVint)i =
∫

Ω
wi∇V dΩ =

∫

Γ
(wi · n)V dΓ −

∫

Ω
(∇ · wi )V dΩ.

(17)



Fig. 1. Example of a topology at the border between a conductor and a
dielectric. Each face of the primal mesh corresponds to a dual branch and the
black (circuit) nodes correspond to volume elements and border faces.

Fig. 2. Simplified equivalent circuit (the mutuals are hidden) of the geometry
shown in Fig. 1.

Considering an inner face, we have

(δVint)i =
∫

Ω
(∇ · wi)V dΩ (18)

and we know that the support of the face element wi is shared
by two elements (e1 and e2 , see Fig. 1), so we have

(δVint)i =
∫

e1

V

Vol(e1)
dΩ −

∫

e2

V

Vol(e2)
dΩ (19)

knowing that ∇ · wi = Vol(ei)−1 , with Vol(ei) giving the vol-
ume of the element ei . We can see that (19) represents the
difference of averaged potential between two inner elements.
So, from a circuit approach, we can assimilate this as the ap-
plied voltages.

Let’s consider a face j on the border. Its support is only on
one element (e1 for example), so (17) gives

(δVint)j =
∫

Γ
(wj · n)V dΓ −

∫

e1

V

Vol(e1)
dΩ (20)

and knowing that (wj · n) = S−1
j , with Sj the surface of the

face j, we have

(δVint)j =
∫

Γj

V

Sj
dΓ −

∫

e1

V

Vol(e1)
dΩ (21)

also representing the potential difference between a border face
and its inner support.

So, the right-hand side vector is the potential difference be-
tween the dual mesh branches (see Fig. 1), where the dual mesh
represents the equivalent electrical circuit.

Finally, (13) corresponds to the incomplete circuit equations
(U = ZI): the circuit is not closed (see Fig. 1). So, we will
have to add new branches on the border faces, and to express
their contributions. For example, we have to add four capacitive
branches in Fig. 2 (linking the nodes N2 , N3 , N5 , and N6 to
the common node ∞) in order to close the circuit. To complete
the equations, we have to express the difference of potential
between the border faces, so we introduce the common node ∞
and

(δVext)j = VΓj
− V∞ (22)

with VΓj
and V∞ the potential of the border face j and of

the common node ∞, respectively. Actually, we have already
expressed VΓj

in the previous case:

VΓj
=

∫

Γj

V

Sj
dΓj . (23)

We suppose that the node ∞ has null potential (V∞ = 0), which
leads to

(δVext)j = VΓj
. (24)

Last, we can use (5) to get

(δVext)j =
1

4πε0

∫

Γ

1
Sj

∫

Ω

σ∗ − jωε0

jωσ∗ Jtot∇
(

1
r

)

dΩdΓ (25)

and using the same discretization procedure, we can write

{δVext} =
1
jω

[Pt ]{I} (26)

with

[Pt ]i,j =
1

4πε0

∫

Γ

1
Si

∫

Ω

σ∗ − jωε0

σ∗ wj∇
(

1
r

)

dΩdΓ. (27)

Here, we have managed to express the difference of potential on
the border faces, which can be assimilated as capacitive effects.
Last, we have to solve the equation:

(

[Rt ] + jω[Lt ] +
1
jω

[Pt ]
)

{I} = {δV } (28)

with δV = δVint + δVext the difference of potential of all the
branches.

We saw that (28) actually corresponds to a circuit equation, so
we can solve it using a circuit solver. The main advantage is that
this permits ensuring the conservation of current (Kirchhoff’s
first law) in the problem. The solver circuit we chose uses the
independent loop search approach, instead of the modified nodal
approach (usually picked in the literature [20]). This choice was
made to minimize of the number of unknowns. However, the
final equation to solve is

[M]
(

[Rt ] + jω[Lt ] +
1
jω

[Pt ]
)

[M]T Im = 0 (29)

with [M] the change of basis matrix from the branches to the
independent-loop basis and Im the loop current vector.



At this point, we have presented a general approach to include
dielectric materials and the capacitive effects. This formulation
needs matrices with a dependency on the frequency (σ∗ and
σ ∗ − jωε0

σ ∗ for instance). This necessitates assembling each matrix
once for each frequency we want to study. So, for a frequency
study, this is a critical disadvantage, and necessitates using a
more practical formulation.

III. PRACTICAL FORMULATION

In this section, we will present a more practical formulation
using the same approach, but making a few more assumptions
to overcome the last critical point.

First, we assume that

σ � ωε0 (30)

so the previous unknown Jtot becomes

J̃tot =

{
J in ΩJ

jωD in ΩD

.

Following the same protocol as in Section II, we write the
Ampère–Maxwell equation (7) as

E + jω
μ0

4π

∫

Ω

J + jωP
r

dΩ = −∇V (31)

and we can also write

J + jωP =

⎧
⎪⎨

⎪⎩

J = J̃tot in ΩJ

jωP =
ε − ε0

ε
J̃tot in ΩD

(32)

using (1). In consequence, (31) can be rewritten as

E + jω
μ0

4π

(∫

ΩJ

J̃tot

r
dΩ +

∫

ΩD

ε − ε0

ε

J̃tot

r
dΩ

)

= −∇V.

(33)
Now, we can apply the Galerkin projection with the interpo-

lation functions wi :

∫

Ω
wiEdΩ + jω

μ0

4π

∫

Ω
wi

(∫

ΩJ

J̃tot

r
dΩ

+
∫

ΩD

ε − ε0

ε

J̃tot

r
dΩ

)

dΩ = −
∫

Ω
wi · ∇V dΩ. (34)

And we can easily see from the first two constitutive laws that

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J̃tot

σ
in ΩJ

J̃tot

jωε
in ΩD

and, by using the same discretization as (12), we finally have
(

[R̃] + jω[L̃] +
1
jω

[C̃]
)

{I} = {δVint} (35)

with

[R̃]i ,j =
∫

Ω J

wiwj

σ
dΩ (36)

[C̃]i ,j =
∫

ΩD

wiwj

ε
dΩ (37)

[L̃]i ,j =
μ0

4π

∫

Ω
wi

(∫

Ω J

wj

r
dΩ+

∫

ΩD

ε − ε0

ε

wj

r
dΩ

)

dΩ. (38)

We can see that we have one more matrix than for (13)
([C̃]). In fact, the previous matrix [Rt ] has been simplified to
[R̃] + 1

jω [C̃]. So, even if we have added a matrix, the actual
amount of memory needed has been divided by 2, because [Rt ]
is complex while [R̃] and [C̃] are real matrices. We can make
the same remark about [L̃] and [Lt ], so the whole storage has
been globally divided by 2.

At this point, we still have to complete the circuit equation
to close the equivalent circuit, and to take into account the
capacitive effects. The protocol is exactly the same, so let’s
begin with (24):

(δVext)j = VΓj
=

∫

Γj

V

Sj
dΓj . (39)

Using (32) in (5) leads to

(δVext)j =
1

4πε0

1
jω

∫

Γ

1
Sj

(∫

ΩJ

J̃tot∇
1
r
dΩ

+
∫

ΩD

ε − ε0

ε
J̃tot∇

1
r
dΩ

)

dΓ. (40)

In this case, we can simplify the first twofold integral:
∫

Γ

1
Si

∫

ΩJ

J̃tot∇
1
r
dΩdΓ =

∫

Γ

1
Si

∫

ΓJ

(J̃tot · n)
1
r
dΓdΓ (41)

using the Divergence Theorem and knowing that divJ̃tot = 0. In
addition, assuming that the dielectrics are linear (which implies
divP = 0 in ΩD ), we can reapply the Divergence Theorem to
simplify the second twofold integral

∫

Γ

1
Sj

∫

ΩD

ε − ε0

ε
J̃tot∇

1
r
dΩdΓ

=
∫

Γ

1
Sj

∫

ΓD

ε − ε0

ε
(J̃tot · n)

1
r
dΓdΓ. (42)

Now, we use the same discretization on J̃tot and we can write

{δVext} =
1
jω

[P̃]{I} (43)

with

[P̃]i,j =
1

4πε0

∫

Γ

1
Si

(∫

ΓJ

1
Sj

1
r
dΓ

+
∫

ΓD

ε − ε0

ε

1
Sj

1
r
dΓ

)

dΓ. (44)

Here, we have managed to complete the circuit equations with a
matrix considering only boundaries. This matrix is much smaller
than [Pt ], so it requires less memory and can be assembled
faster.



Fig. 3. Studied device: Microcoil with three spires.

Fig. 4. |J̃tot| isovalues at 100 MHz computed using the FEM.

At the end, we have the next equation
(

[R̃] + jω[L̃] +
1
jω

(
[C̃] + [P̃]

))

{I} = {δV } (45)

to solve. We can note that the matrices do not have any depen-
dency on the frequency, so we have overcome the last critical
point. Moreover, we managed to save more than the half of the
memory required before. And also, we note that the matrices
are purely real, so, using real-assembly codes permits lowering
the assembly time.

We also note that the full matrices ([L̃] and [P̃]) are classical
in the theory of integral equations and can be compressed. So,
this could allow us to solve bigger problems.

IV. VALIDATION

The validation of the practical formulation is done comparing
the impedances obtained for two examples: a microcoil and a
real device. The first example will compare our results to those
from an industrial software, and the second will compare our
results against measurements.

A. Case 1: Microcoil

The considered microcoil (see Fig. 3) is made of three con-
ductive spires with a dielectric between the I/O. This validation
is done comparing the impedances from the formulation and an
industrial finite element software: Flux 3D [21]. Flux3D takes
advantage of the symmetry plane on XY , while our integral
code cannot. So, the results will show only a half of the device
on Figs. 4 and 5, even though the practical formulation used the
entire mesh.

Fig. 5. |J̃tot| isovalues at 100 MHz using the “practical formulation.”

Fig. 6. Impedance modulus versus frequency. In blue (dashed): The reference
(FEM), in red: the simulation results.

For a matter of ease, the Flux3D uses a structured mesh for
the active regions (conductor and dielectric) composed of 9579
hexahedra and an usual mesh is used in the air with 92 049
elements. For the proposed formulation, we used a mesh of
4822 tetrahedra.

The solution of this formulation was done using an FGMRes
solver and a Block lower–upper (LU) preconditioner. The FEM
solutions used an ICCG solver, so the computational time cannot
be fairly compared. The computations have been made using a
Dell Precision M4800 with an Intel(R) Core(TM) i7-4800MQ
CPU @2.70 GHz and 32Go RAM.

The numerical results are presented in Fig. 6 for the
impedance modulus and in Fig. 7 for the impedance phase.
In the last two figures, “FEM” stands for the results provided by
Flux 3D, which are published in [22].

According to the IEEE standard [23], the comparison and the
qualification of the last curves is done using the FSV techniques
[24], [25] via the stand-alone software FSV tool [26]. We ap-
plied the amplitude difference measure (ADM) and the feature
difference measure (FDM) techniques to the impedance modu-
lus curves [see Fig. 8(a) and (b)] and to the impedance phase
curves [see Fig. 9(a) and (b)].

We can see in Figs. 6 and 7 that the results of both methods
are very similar. This is also supported by the FSV technique



Fig. 7. Impedance phase versus frequency. In blue (dashed): The reference
(FEM), in red: the simulation results.

Fig. 8. (a) Results of the ADM applied to the impedance modulus curves. (b)
Results of the FDM applied to the impedance modulus curves.

Fig. 9. (a) Results of the ADM applied to the impedance phase curves. (b)
Results of the FDM applied to the impedance phase curves.

results [Figs. 8(a), 8(b), 9(a) and 9(b)] which rates the match of
the curves as excellent.

B. Case 2: Real Device

Let’s now consider a real device made of two layers of cop-
per 35 μm thick separated by a layer of dielectric FR4 with
a thickness of 1.47 mm (see Fig. 10). Two cases have been
considered to do the measurements: The short-circuit case con-
sisting of connecting each layer by a corner (see Fig. 11) and
the open-circuit case which consists in leaving the layers with-
out a connexion between them (see Fig. 12). Both cases are
considered from 1 to 100 MHz.

The same mesh has been used for all the studies and is made of
3210 hexahedra which leads to 16 951 faces/degrees of freedom.

Fig. 10. Picture and dimensions of the studied device.

Fig. 11. Current density isovalues of the short-circuit case at 1 MHz, with the
circuit connexions drawn. The modulus |J̃tot| and the real part �(J̃tot) of the
current density are represented by the colored elements and vectors, respectively.

Fig. 12. Current density isovalues of the open-circuit case at 1 MHz, with the
circuit connexions drawn.

We are using a structured mesh because the geometry is well-
suited and the conductors are very thick, but an unstructured
mesh could also have been used. The thickness of each layer
is discretized with only one element, because the skin depth is
greater than the thickness for the studied frequencies.

The solutions were done using a classical LU factorization,
due to the ill-conditioning of the problem. The computations
were done on the same laptop as in the previous section. The
numerical results are presented in Figs. 13 and 14 for the short-
circuit and the open-circuit case, respectively.

On one hand, both cases show a good accuracy regarding the
first peak frequency. On the other hand, the amplitude of the
peaks are underestimated. But overall, we see a good match
between the curves. To quantify this, we have used the same
FSV technique as before (using the FSV Tool). The results
are shown in Fig. 15(a) and (b) for the open-circuit case and in
Fig. 16(a) and (b) for the short-circuit case. The ADM technique
rates both case mostly from good to excellent, whereas the FDM
rates them mostly as excellent.



Fig. 13. Impedance modulus versus frequency for the short-circuit case. In
blue (dashed): The reference (measurements), in red: the simulation results.

Fig. 14. Impedance modulus versus frequency for the open-circuit case. In
blue (dashed): The reference (measurements), in red: the simulation results.

Fig. 15. (a) Results of the ADM applied to the impedance modulus curves for
the open-circuit case. (b) Results of the FDM applied to the impedance modulus
curves for the open-circuit case.

Fig. 16. (a) Results of the ADM applied to the impedance modulus curves for
the short-circuit case. (b) Results of the FDM applied to the impedance modulus
curves for the short-circuit case.

V. CONCLUSION

We have presented a new formulation to consider resistive,
inductive, and capacitive effects in the presence of conductors
and dielectrics, with very few assumptions. We pointed out that
its generality also spoils its efficiency, due to the frequency
dependency of its matrices. So, to solve a problem for multiple
frequency one should use the second formulation.

To overcome this dependency, we have presented the practical
formulation with a few more assumptions. We have pointed out
that these additional restrictions allow us to assemble simpler
matrices and to greatly reduce the required storage compared to
the general formulation.

The practical formulation has been validated considering two
cases. The first consisted in comparing the impedance of a vir-
tual device against an industrial FEM software. The results of
both methods show a great match and have been qualified as
excellent by the software FSV Tool. The last case consisted
in comparing the computed impedances against measurements
on a real devices, and the curves show a great match, rated as
good to excellent. Further research will compare the proposed
formulation to others regarding the computational cost and time.
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School, “Communauté Université Grenoble Alpes,” Grenoble, France.

Olivier Chadebec was born in 1973. He received
the Diploma in electrical engineering and the Ph.D.
degrees from the Grenoble Institute of Technology,
Grenoble, France, in 1997 and 2001, respectively.

He is currently the CNRS Senior Researcher (di-
recteur de recherche CNRS) and leads the Models,
Methods, and Methodologies Applied to Electrical
Engineering Research Group, G2ELab, University of
Grenoble, Grenoble, France. He has been a Visiting
Scientist at the Technology Centre of the Federal Uni-
versity of Santa Catarina, Brasil, during 2012–2013.

His research interests include computational electromagnetism (finite element
and integral methods), equivalent magnetic sources identification by solving
inverse problems, and low magnetic fields measurements. He has coauthored
more than 140 papers published in international journals and conference pro-
ceedings.

Jean-Michel Guichon was born in 1975. He received
the Diploma degree in electrical engineering and the
Ph.D. degree from the Grenoble Institute of Tech-
nology, Grenoble, France, in 1998 and 2001, respec-
tively.

He is an Associate Professor at the Universite
Grenoble Alpes. He is has been with the Grenoble
Electrical Engineering Laboratory, Grenoble, France,
since 2003, working in the field of electromagnetic
modelization for power electronics. He is focused in
the development of numerical tools to compute the

electromagnetic field and the electrical behavior in low frequency (without prop-
agation).
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