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Fan-Beam Reconstruction Under Motion and Data
Truncation: Mapping Analytic and Iterative

Approaches
Jan Hoskovec, Fabien Momey, Rolf Clackdoyle, Laurent Desbat and Simon Rit

Abstract—In this paper we propose comparisons and corre-
lations between analytic and iterative fan-beam reconstruction
approaches when object’s rigid motion and data truncation occur
during a circular scan. Based on our recent work presenting an
exact analytic reconstruction method, we are able to predict the
field of theoretically reconstructible points and transform the
problem from a dynamic to a static point a view where the
source trajectory is virtually modified taking into account the
known rigid motion. We implement the iterative reconstruction
as the convex minimization of a data-fidelity term under non-
negativity constraint and regularization to solve this virtually
static inverse problem. We compare the reconstructed field of
view by the two methods on 2D fan-beam Shepp-Logan phantom
simulations. Our results show that both methods validate the
predicted reconstructible zone and are in good correlation in
terms of reconstruction quality. The iterative reconstruction
also demonstrates that in certain cases it is possible to recover
structures beyond the analytic strict frontier of reconstructibilty.

Index Terms—Tomography, Region-Of-Interest Tomography,
Dynamic Tomography.

I. INTRODUCTION

In [2] we reported a method for performing exact analytic
2D fan-beam reconstruction when the object of interest has
undergone a perfectly known rigid translation during the
circular scan, also involving data truncation. Such an object’s
perturbation transforms the circular source trajectory into a
virtual one which also involve data truncation. The method
proposes to take advantage of data redundancy from the 2π
source trajectory to extend the field of reconstructible points
by cleverly selecting the needed lines of response to be able to
perform Differentiated Back-Projection with Hilbert filtering
(DBP-H) approach [6]. The algorithm has been tested in a
proof-of-concept study on Shepp-Logan phantom simulations
with several motion cases and detector sizes.

In this paper, we propose to map the results given by
our analytic resolution with an iterative resolution of the
inverse problem, particularly in terms of the predicted field of
reconstructible points. Our results from Shepp-Logan phantom
simulations show a very good match regarding the almost
perfectly reconstructed zone of the phantom, and highlight
possibilities for the iterative method to reconstruct beyond the
predicted field of view.
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BS01-0018). Jan Hoskovec was supported by an Allocation de Recherche
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II. MATERIALS AND METHODS

A. Geometry
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Fig. 1. The fan-beam projection geometry. The source is at ~vβ and the trajec-
tory radius is R. A measured ray in the fan-beam geometry is parametrized
by (α, β). Also shown are the equivalent parameters (s, θ) expressing the
same ray in the parallel projection geometry.

Our work takes place in the context of 2D fan-beam
reconstruction from a circular scan around the object. The
geometry is illustrated in Fig.1. Fan-beam projections can be
written as:

p(α, β) =

∫ ∞
−∞

f(~vβ − t~αβ)dt (1)

with β the polar angle of the source from the vertical axis,
~vβ = R~β = R(− sinβ, cosβ)T the source position and ~αβ =
(− sinα+ β, cosα+ β)T , α being the fan angle. The angular
conventions taken here are illustrated Fig. 1.
p(α, β) can be related to equivalent parallel-beam projec-

tions p̄(s, θ) via the following change of variables:

θ = α+ β − π

2
(2)

s = R sinα, (3)



therefore
p(α, β) = p̄(R sinα, α+ β − π

2
). (4)

B. DBP-H Formula

We summarize here our analytical reconstruction method,
which is clearly presented in [2]. This method belongs to
the DBP-H family, sometimes called simply DBP, or BPF,
for Backprojection-Filtration. More specifically, the DBP-H
algorithm used here is of the “backproject first” approach
[10], which begins with performing two backprojections of
the unprocessed sinogram data onto the target pixel grid.
Then, via a simple sum of partial derivatives of each weighted
backprojection, we can obtain the same Hilbert image of the
object of interest as if we had performed a differentiation along
the flat detector before backprojecting.

The general DBP-H reconstruction formula is given by

Hφf(~x) =
−1

2π
bφ(~x) =

−1

2π

∫ φ+π

φ

∂

∂s
p̄(s, θ)

∣∣∣
s=~x·~θ

dθ. (5)

where Hφf denotes a 1D Hilbert transform along the vector
~φ⊥ = (cosφ, sinφ)T . With the “backproject first” approach,

we obtain bφ(~x) by the following relation (see [2] or [10] for
full derivation):

bφ(~x) =
∂

∂x

∫ φ+π

φ

p̄(~x · ~θ, θ)(− sin θ)dθ (6)

+
∂

∂y

∫ φ+π

φ

p̄(~x · ~θ, θ)(cos θ)dθ

1) Handling motion and truncation for DPB-H reconstruc-
tion: The “backproject first” DBP-H algorithm is useful in
the context of motion-compensated reconstruction, since all
motion corrections can be included before the sinogram data
is processed in any manner. Our algorithm from [2] does just
that when it rearranges motion contaminated full-scan fan-
beam data into an equivalent, static, parallel-beam geometry.

When the object undergoes a rigid translation, the sinogram
data can become truncated (a part of the object “leaves” the
scanner’s field-of-view during a part of the scan). Since a
rigid displacement of the object (described by a vector ~dβ
parametrized by the gantry angle) is equivalent to a deforma-
tion of the X-Ray source trajectory by substracting the same
vector from its regular path, static truncation (due to a reduced
width of the detector) and dynamic truncation (induced by
object motion) can be handled as the same problem.

Observing the virtual trajectory ~vβ − ~dβ , we recall that
with the DBP-H methods, a point’s Hilbert image can be
recovered if the point is observable during a portion of the
scan long enough for the trajectory to contain two endpoints
of a segment on which the point lays [6][7][9]. (Such a point
becomes theoretically reconstructible via (5).) We refer to this
type of point as a Hilbert point.

Taking advantage of the data redundancy inherent to a fan-
beam full-scan, our algorithm can also recover points for
which such a segment of the virtual trajectory is not available,
but where data from the opposite side of the scan can fill in
the gap. See [2] for details.

In practice, to reconstruct the object, we need to be able to
invert the Hilbert transform on the Hilbert points we obtain.
This is not trivial because the Hilbert transform is an infinite
support operation. However, with a small a priori about the
image, we can invert Hilbert points using the finite-support
Hilbert transform inversion formula from [4] on all segments
of Hilbert points which cross the entire object support.

C. Iterative reconstruction method for solving the virtually
static inverse problem

Our iterative reconstruction takes the form of an inverse
problem, the goal of which is to seek the static image f which
minimizes the least square criterion - data-fidelity term - under
non-negativity constraint, with a regularization term:

f+ = arg min
f>0

{∥∥∥Rβ̄ · f − pβ̄
∥∥∥2

2
+ µJprior(f)

}
, (7)

where pβ̄ = {pβ̄k |k = 1 . . . Nβ} stands for the set of
Nβ fan-beam projections, and Rβ̄ is the projection model
approximating the Radon transform, calibrated by the virtual
(perturbed) source trajectory at the virtual angular positions
{β̄k|k = 1 . . . Nβ}.

The data-fidelity term ensures consistency of the model with
the data. A non-negativity constraint is also handled as the ob-
ject to be reconstructed is known to have positive values. The
term Jprior accounts for prior information. The constraint and
the regularizer are necessary for the reconstruction algorithm
to effectively converge to a relevant solution by avoiding arti-
facts amplifications and noise. The hyperparameter µ controls
the tradeoff between data fitting and regularity.

We chose an edge-preserving smoothness regularizer ex-
pressed as a relaxed total variation (TV) prior [8]:

Jprior(f) =
∑
i

√
‖∇i · f‖22 + ε2 , (8)

with ε > 0 the relaxation parameter and ∇i a finite difference
operator approximating the spatial gradient at position i.

The minimization of (7) is carried out by the VMLM
algorithm [5], a limited memory quasi-Newton method, for
which we have added the handling of the non-negativity
constraint.

III. SIMULATIONS AND RECONSTRUCTIONS

We simulated two cases for getting the projection data of
an off-centered slice of the 3D Shepp-Logan phantom [3].
Each case corresponds to a given rigid translation of the
phantom during a circular scan of radius R = 360 mm with
a flat detector at 480 mm from the source with 0.5 mm pixel
spacing. We will refer to these two cases as motion 1 and
motion 2. The rigid motions, as well as the equivalent source
trajectories if the object remained static, are illustrated Fig.2.

In this study the motion is perfectly known, so is the
corresponding virtual trajectory which is used to calibrate
the iterative reprojection model Rβ̄ . For both methods, we
have reconstructed an image of 510 × 510 pixels large with
a sampling rate of 1 mm in both directions. For the iterative
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Fig. 2. Top left: Representation of motion 1. Bottom left: Representation
of motion 2. Top right and bottom right: virtual trajectory, static FOV and
regions of Hilbert points (in black) obtained respectively with the motions 1
and 2.

reconstruction, the value of ε was chosen to be 10−3, i.e. 1/10
of the minimum contrast value of the Shepp-Logan phantom.
Therefore structures in the image involving constrasts superior
to this value will be preserved in the image, and smoothed
otherwise. The hyperparameter µ was carefully tuned “by
hand” until a satisfactory reconstruction quality was reached.
The typical value found is µ = 103. The quality of the
iterative reconstruction hardly depends on the injected amount
of regularization. A weak value of µ or no regularization will
cause errors due to reprojection model approximations or noise
to be amplified. Thus it is absolutely mandatory to regularize
the solution, and preliminary results tend to verify this claim
(cf. Fig. 3). We also observed in our reconstructions that the
non-negativity constraint was also mandatory, and that it acts
quite as a support constraint to force the algorithm to “put the
information” in the right zones cf. Fig. 3(c-d)).

Fig. 4 shows the reconstructions obtained with both meth-
ods. Fig. 5 displays horizontal profiles taken across different
parts the phantom. We can see that the reconstruction is
accurate in the predicted field of view. For the iterative
reconstruction, we can notice that the efficiency of the re-
construction seems to go beyond this strict frontier between
reconstructible and not reconstructible points, even if the error
is higher in the zone of uncertainties (cf. Fig. 4(g-h) and
Fig. 5). This is probably due to the fact that the points
located in the uncertainty zone are partially covered by the
scanning geometry, although not well enough to allow for an
analytic solution. Therefore a sufficient information can be
brought to the iterative algorithm to retrieve some structures,
also helped by the regularization. Obviously the quality of
such extrapolation is hardly object-dependent, and some lines
of response can bring more information than others if the
structures are oriented in suitable directions. We also notice

a) b)

c) d)

Fig. 3. Reconstructions of simulated cases motion 1 (first column) and
motion2 (second column) with the iterative reconstruction method. (a-b)
Reconstruction without non-negativity constraint and without regularization.
(c-d) Reconstruction with non-negativity constraint and without regularization.

that injecting regularization causes some bias in the recovered
values of the finer structures regarding the ground truth. This is
a typical known behaviour which can be avoided by decreasing
the value of the hyperparameter µ, but at the cost of a dramatic
increase of the variance of errors as we can see in Fig. 3. Hence
regularizing can be seen as nothing but a trade-off between
bias and variance on the final solution. However we can
observe that the unregularized reconstructions in Fig. 3(c-d)
make appear two different regions with two different levels of
errors: one which remains almost stable regarding the ground
truth and one which seems to completely diverge. The zone
with the weaker error matches perfectly the predicted field
of reconstructible points. This observation tend to show that
regions of uniqueness and stability of the solution can be
identified by the iterative reconstruction, if we put aside the
amplifications of modelization errors. A finer model would
probably have yielded a finer solution in these regions, and
would have allowed to reduce the amount of regularization
needed to erase these artifacts, reducing at the same time the
bias.

IV. DISCUSSION AND CONCLUSION

The results of our simulations show good coherence before
the region-of-interest predicted by the analytic method and the
part of the image where the reconstruction by the iterative
method is quantitatively successful. The iterative method,
however, manages to “make up” certain features outside that
region in a way which is still readable.

Our results also show that a priori information injected in
the inverse problem - regularization, non-negativity constraint
- is absolutely mandatory for the iterative reconstruction to be
in good correlation, meaning a good tradeoff between bias and
variance of the error.
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Fig. 4. Reconstructions of simulated cases motion 1 (first column) and
motion2 (second column) with both the analytic and iterative reconstructions
methods. (a-b) Predicted FOV of reconstructible points. (c-d) Reconstruction
with the analytic DBP-H method. (e-f) Iterative reconstruction. (g-h) Absolute
value of the difference’s map between ground truth image and iterative
reconstruction, superimposed with the predicted FOV (in cyan).

The analytic method’s potential is constrained by the need
to have Hilbert points aligned on a segment crossing the
object support entirely in order to be able to recover that
part of the image. Implementing an iterative one-sided Hilbert
transform inversion method alongside the analytic backprojec-
tion could lead to a reconstruction method where the whole
reconstructible region is recovered, while the uncertain regions
are discarded.
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