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An original integral formulation dedicated to the high frequency modeling of electromagnetic systems without magnetic materials
is presented. The total current density (i.e. conduction plus displacement currents) is approached by facet elements so that resistive,
inductive and capacitive effects are all modeled. The method avoids moreover the volume mesh of the conductors, which is too dense
at high frequencies, due to the skin and proximity effects appearing e.g. in wound inductors. Surface impedance boundary conditions
are employed to that end. The formulation is general and suitable for non simply connected domains. It is first compared with
the finite element method on an academic test case, and is then experimentally validated on a coreless wound inductor, using an
impedance analyzer.

Index Terms—Computational electromagnetics, Integral equations, Electromagnetic compatibility

I. Introduction

C
URRENT progresses in power electronics are enabling

the use of higher switching frequencies, up to several

MHz [1]. This permits to reduce the volume and the mass

of the passive components, which is critical for transporta-

tion applications. This frequency range is also used for the

design of wireless power transfer systems [2] (wireless battery

charging [3], transcutaneous energy transmitters [4], etc.).

At such frequencies, parasitic capacitive effects cannot be

neglected, as they may induce ElectroMagnetic Compatibility

(EMC) problems, or influence the resonant frequency of a

wireless power transmitter. These effects are moreover strongly

influenced by the geometry of the wound component (i.e. the

position of the wires in the winding window). Appropriate

numerical tools, allowing broadband analyses with acceptable

computational costs, need therefore to be proposed to the

engineering community.

Several attempts have been made in the literature. In [5], a

full wave Finite Element (FE) formulation, modified in order

to enhance numerical stability at low frequencies, has been

proposed. A FE method requires however a full mesh of the

geometry, including the air. Such a mesh may become very

large, and is moreover not easy to obtain in 3D, particularly for

wound components, where structured and unstructured meshes

may be present simultaneously. A broadband integral formula-

tion, which is based on a volumetric loop-star decomposition, is

presented in [6]. It does not need a mesh of the air, but requires

a volume mesh of the active materials. Moreover, it does not

provide a direct circuit interpretation of the field equations,

which is an important asset when modeling the physical

component in its direct electrical environment. Reference [7]
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establishes direct links between FE formulations and circuit

representations, but suffers from the drawback associated to a

FE approach.

The Partial Element Equivalent Circuit (PEEC) method,

initially proposed for high frequency problems including time

retardation, offers a framework for the efficient modeling of

such physical phenomena [8], [9]. It is an integral method

which associates an RLC circuit to a meshed geometry, and

which does not require the mesh of the air. An adaptation to

unstructured meshes, based on the use of facet elements, has

recently been proposed in the pure magnetodynamic case [10].

This approach requires a full volume mesh of the conductors.

However, the skin and proximity effects, which appear in

the conductors at such frequencies, lead to very fine meshes.

Therefore, in this paper, the formulation of [10] is adapted so

as to include Surface Impedance Boundary Conditions (SIBCs

[11]). By doing so, the volume mesh of the conductors is

avoided. The capacitive effects are moreover taken into account

using the formalism presented in [12].

The original formulation is first described in the pure mag-

netodynamic case in Section II, and is compared with the Finite

Element Method (FEM) on an torus submitted to an external

uniform magnetic flux density aligned with its main axis. A

particular attention is paid to the modeling of the eddy current

losses. The formulation is then extended to take capacitive

effects into account in Section III, and is experimentally

validated on a coreless wound inductor, characterized by an

impedance analyzer.

II. Magnetodynamic formulation using Surface Impedance

Boundary Conditions

A. Formulation

The pure magnetodynamic formulation is presented in this

section. The magnetic vector and electric scalar potentials, A

and V respectively, are first expressed in their integral form:
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A(x) =
µ0

4π

(∫

ΩJ

J

r
dΩ

)

, (1)

jωV(x) =
1

4πǫ0

(∫

ΩJ

Jgrad
1

r
dΩ

)

, (2)

in the frequency domain, with j the imaginary number, ω the

angular frequency, J the conduction current density, µ0 the

magnetic permeability of vacuum, r the distance between the

field sources and point x. The integrals are defined on ΩJ,

namely the domain containing the massive conductors. Scalar

and vector fields are complex quantities in this paper.

The potentials are injected into the electric field E equation:

E + jωA + gradV = 0 (3)

A Galerkin procedure is then applied on eq. (3), by using

the current density J = σE, with σ the electrical conductivity,

as the problem unknown. First order facet elements defined on

ΩJ are employed:

J|ΩJ
=

∑

i∈FJ

wiIi, (4)

where wi is a volume facet basis function (in [m−2]), and Ii

the current crossing the facet i ∈ FJ (in [A], with FJ the set

of facets in domain ΩJ). By doing so, the field equations are

translated into circuit equations supported by the dual mesh

[10]. This leads to the resolution of the following system of

circuit equations:

([R] + jω[L]) {I} = {∆V}, (5)

with {I} the branch currents crossing the facets, and {∆V} the

branch voltages. [R] is a sparse finite element resistance matrix,

and [L] the full inductance matrix [10]:

Ri j =

∫

ΩJ

wiw j

σ
dΩJ, Li j =

µ0

4π

∫

ΩJ

wi

∫

ΩJ

w j

r
dΩ2

J, (6)

with i, j ∈ FJ. However, at high frequencies, the skin and

proximity effects in the massive conductors lead to very fine

meshes of ΩJ, which drastically increases the size of matrixes

[R] and [L]. Therefore, in this paper, the formulation (5) is

extended so as to avoid the volumic mesh of the conductors.

To that end, the current density J is expressed on the

boundary ΓJ of ΩJ:

J|ΓJ
=

∑

i∈EJ

wS ,iIS ,i (7)

with wS ,i the surface facet basis functions (in [m−1]), EJ the

set of edges of ΓJ , and IS ,i the line current crossing an edge i

(in [Am−1], see Figure 1).

The total current Ii in the skin layer (i.e. the current crossing

the surface S i in ΩJ , supported by the edge i of ΓJ) needs

to be expressed as a function of the edge currents IS ,i. To

that end, a first order Leontovitch SIBC is employed [11]: the

air-conductor interface is approached by a semi-infinite plane

excited by tangential fields. By solving the Maxwell equations

ΓJ

0

ΩJ

z li(z)

i ∈ EJ(= li(z = 0))

IS,i[A/m]

Ii[A]

Si

Air

Fig. 1. Focus on an element of ΓJ .

on this simplified case, it is shown that the electrical quantities

decay exponentially in the skin depth [11]. We have therefore:

Ii =

∫ ∞

0

Ili(z)dz =

∫ ∞

0

IS ,ie
−

1+ j

δ
zdz =

δ

1 + j
IS ,i, (8)

with δ the skin depth and z the distance inside the conductor.

The current density J of equation (7) becomes:

J =
∑

i∈EJ

wS ,i

1 + j

δ
Ii (9)

The potentials (1) and (2) are injected in equation (3), which

is then projected on ΓJ with the surface facet basis functions

wS ,i, i ∈ EJ:

∫

ΓJ

wS ,i

J

σ
dΓ + jω

µ0

4π

∫

ΓJ

wS ,i

(∫

ΩJ

J

r
dΩ

)

dΓ

+

∫

ΓJ

wS ,igradVdΓ = 0 (10)

The volume integral on ΩJ in (10) is approached by:

∫

ΩJ

J

r
dΩ =

∫

ΓJ

∫ ∞

0

J(z = 0)

r
e−

1+ j

δ
zdzdΓ ≃

δ

1 + j

∫

ΓJ

J

r
dΓ

(11)

The last term in equation (10) corresponds moreover to the

branch voltages ∆Vi between elements of ΓJ (Fig. 2). Indeed,

by applying the divergence theorem, we have:

∫

ΓJ

wS ,igradVdΓJ = −

∫

∂ΓJ

(wS ,i.n)Vd(∂ΓJ) +

∫

ΓJ

divwS ,iVdΓJ,

(12)

with ∂ΓJ the line boundary of ΓJ , if it exists, and n its

normal. The surface facet basis functions respect the following

properties, depending on the element orientation:

divwS ,i = ±
1

Si

, (13)

wS ,i.n = ±
1

Li

, (14)

with Si the surface of the element containing the edge i, and

Li the length of edge i.
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If i corresponds to an edge inside ΓJ, the first term of

the second hand of (12) vanishes. Knowing (13), equation

(12) represents therefore the difference between the averaged

voltages of the elements sharing the edge i. If i corresponds to a

border edge, (12) becomes the difference between the averaged

voltage on edge i and the averaged voltage on the elements to

whom edge i belongs, knowing (13) and (14).

ΓJ ∆Vi
∆Vi

i ∈ EJ∂ΓJ

Centroids of elements
on ∂ΓJ

on ΓJ

Centroids of elementsi ∈ EJ

Fig. 2. Primal (plain lines) and dual (dotted lines) meshes of the boundary
ΓJ of the conducting domains modeled using SIBCs.

A system of equations similar to (5) can therefore be written,

with the same circuit interpretation. Matrixes [R] and [L] read:

Ri j =

∫

ΓJ

wS ,iwS , j

σ∗
dΓJ , Li j =

µ0

4π

∫

ΓJ

wS ,i

∫

ΓJ

wS , j

r
dΓ2

J , (15)

with σ∗ = σδ/(1+ j) an equivalent complex conductivity. Eddy

current losses are given by:

Peddy =

∫

ΩJ

σ−1|J|2dΩJ =

∫

ΓJ

∫ ∞

0

σ−1|J(z = 0)e−
(1+ j)

δ
z|2dzdΓ

=

∫

ΓJ

σ−1|J|2
(∫ ∞

0

|e−
z
δ e−

jz

δ |2dz

)

dΓ =
1

2

∫

ΓJ

σ−1|J|2δdΓ

(16)

B. Test case

The method is validated on a 0.1 m diameter torus, made

of 0.02 m copper wire, submitted to an external magnetic

flux density aligned with its main axis (see left of Figure 3).

A 2D axisymmetric finite element model has been used as

a reference. Figure 3 on the right depicts the eddy current

losses in the torus as a function of the frequency, for the two

models (namely the 2D FEM reference and the PEEC surface

formulation). A good agreement is observed betwen the two

models (less than 3.5% relative error), which validates the

proposed formulation. The surface PEEC model generates 1153

unknowns (or independent loops), which can be compared to

25921 unknowns for the PEEC volume formulation of [10].

III. Adding the capacitive effects

A. Formulation

The formulation of the previous section is here extended

so that capacitive effects are taken into account, based on the

approach presented in [12]. The magnetic vector and electric

scalar potentials are first re-written:

Fig. 3. Torus submitted to an external magnetic flux density (left), and eddy
current losses in the torus, obtained using a 2D FE model and the proposed
PEEC formulation.

A(x) =
µ0

4π

(∫

ΩJ

J

r
dΩ +

∫

ΩD

jω
P

r
dΩ

)

, (17)

jωV(x) =
1

4πǫ0

(∫

ΩJ

Jgrad
1

r
dΩ +

∫

ΩD

jωPgrad
1

r
dΩ

)

, (18)

with P the electric polarization, ǫ0 the electric permittivity of

vacuum, and ΩD the domain containing the dielectrics.

The total current density Jt is taken here as the unknown:

Jt = J + jωD = J + ǫ jωE = (σ + jωǫ)E, (19)

with D the electric flux density. First order volume facet

elements defined on Ω = ΩJ∪ΩD are employed, but compared

to [12], the conduction current density J is expressed on ΓJ

instead of ΩJ, using a first order SIBC. Volume elements are

on the other hand employed in ΩD. By assuming that σ = 0

in ΩD and σ >> ωǫ in ΩJ , we have therefore:

Jt = Jt |ΩD
︸︷︷︸

= jωD

+ Jt|ΓJ
︸︷︷︸

=J

=
∑

k∈FD

wkIk +
∑

i∈EJ

wS ,i

1 + j

δ
Ii, (20)

with FD the set of facets of domain ΩD. Again, a Galerkin

procedure is applied on equation (3), but with the expressions

(17) and (18) for the potentials, and with the discretization (20)

for Jt. The following system of equation is obtained [12]:

(

[R] + jω[L] +
1

jω
([C] + [P])

)

{I} = {∆V} (21)

As explained in [12], [C] is a sparse FE matrix which

models capacitive effects inside the domain ΩD. Matrix [P]

is dense, and represents capacitive interactions outside domain

ΩD. It is defined by adding capacitive branches between the

facets belonging to the external border Γext and an external

reference node V∞. Figure 4 shows for instance the cross

section of a winding wire: a volume mesh is depicted for the

insulation surrounding the wire, whereas the conducting part

is not meshed.

The matrixes [C] and [P] remain unchanged compared to

[12]. On the other hand, it can easily be shown that matrixes

[R] and [L] are similar to equations (15), except for the surface-

volume coupling terms. Indeed, if i ∈ EJ and j ∈ FD, the

inductive terms read:

Li j =
µ0

4π

∫

ΓJ

wS ,i

(∫

ΩD

ǫ − ǫ0

ǫ

w j

r
dΩ

)

dΓ, (22)
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Fig. 4. Mesh of the cross section of a winding wire. A volume mesh is
observed for the insulation layer surrounding the wire, xhereas the conducting
part is not meshed.

with ǫ the electric permittivity of the dielectric.

B. Experimental validation

The capacitive formulation is tested on a 19-turn, 2 layer

coreless wound inductor, with conductors of radius 0.1 mm

surrounded by an insulating layer of 0.0215 mm, with ǫr = 2.5.

The coilformer is characterized by an ǫr = 3. The radius of

the former is equal to 12.5 mm. A circuit solver has been

employed to solve the system (21), leading to 18735 unknowns

(or independent circuit loops). This has to be compared to the

52000 unknowns of the full volumic formulation [12], which

shows the interest of the proposed method.

3.5 cm

Fig. 5. Impedance of the test coil, measurement and capacitive model.

An impedance analyzer Agilent 4294A has been used to

measure the impedance of the component. Figure 5 depicts the

module of the impedance of the test coil, in the case of the

measurement (plain lines) and the model (dotted lines). One

can see that the position of the first resonance is quite similar

for the two curves, which is less valid for the higher order

resonances. This can be associated to uncertainties regarding

the parameters of the test coil (geometry as well as material

parameters). Indeed, it is difficult to know exactly the value of

the relative permittivity of the insulation surrounding the wires

(manufacturer catalogs give usually a tolerance of +-30% on

that value, and it is sometimes even not available). The position

of the wires in the winding window influences moreover greatly

the parasitic capacitances, and these positions are usually not

known accurately. Nevertheless, the resonance/anti-resonance

patterns of the measured impedance curve are well reproduced

by our model.

Moreover, the amplitude of the peaks appears to be higher

with the model, which may be due to an inaccurate estimation

of the coil resistance with the first order SIBC. Higher order

SIBCs will be investigated in a future work.

IV. Conclusion

An unstructured PEEC formulation which takes capacitive

effects into account, and make use of Surface Impedance

Boundary Conditions in the conductors, has been proposed in

this paper. The formulation is valid for non simply connected

domains. A volume mesh of the dielectrics is required, whereas

a surface mesh of the conductors is sufficient. By doing so,

dense meshes, which are needed at high frequencies due to

the skin and proximity effects in the conductors, are avoided.

A numerical validation of the Surface Impedance formulation

has first been proposed on a torus in pure magnetodynamics,

by comparing with the FEM. The capacitive formulation has

then been tested on a 19 turn coreless inductor, and com-

pared with experimental data obtained using an impedance

analyzer. A good agreement with measurements was obtained.

The observed deviations can be attributed to uncertainties

related to wound components (geometry as well as material

characteristics). This will be studied in a future work. The

method will also be extended to higher order SIBCs. A full

surface formulation (i.e. which relies on a surface mesh of the

dielectrics as well) will also be proposed.
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