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Robust Markowitz mean-variance portfolio selection

under ambiguous volatility and correlation ∗

Amine ISMAIL † Huyên PHAM‡

October 21, 2016

Abstract

This paper studies a robust continuous-time Markowitz portfolio selection problem
where the model uncertainty carries on the variance-covariance matrix of the risky
assets. This problem is formulated into a min-max mean-variance problem over a set
of non-dominated probability measures that is solved by a McKean-Vlasov dynamic
programming approach, which allows us to characterize the solution in terms of a
Bellman-Isaacs equation in the Wasserstein space of probability measures. We provide
explicit solutions for the optimal robust portfolio strategies in the case of uncertain
volatilities and ambiguous correlation between two risky assets, and then derive the
robust efficient frontier in closed-form. We obtain a lower bound for the Sharpe ratio
of any robust efficient portfolio strategy, and compare the performance of Sharpe ratios
for a robust investor and for an investor with a misspecified model.

MSC Classification: 91G10, 91G80, 60H30

Key words: Continuous-time Markowitz problem, volatility uncertainty, ambiguous corre-
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1 Introduction

The Markowitz mean-variance portfolio selection problem [16], initially considered in a
single period model, is the cornerstone of modern portfolio allocation theory. Investment
decisions rules are made according to the objective of maximizing the expected return for
a given financial risk quantified by the variance of the portfolio, and lead to the concept of
efficient frontier, which proposes a simple illustration of the trade-off between return and
risk. The use of Markowitz efficient portfolio strategies in the financial industry has become
quite popular mainly due to its natural and intuitive formulation.

In a continuous-time dynamic setting, the nonstandard feature of the mean-variance
criterion involving in a nonlinear way the expected terminal wealth due to the variance term,
and inducing the so-called time inconsistency, has generated various resolution approaches.
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this author is part of the ANR project CAESARS (ANR-15-CE05-0024), and also supported by FiME and the
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A first approach in [25] consists in embedding the mean-variance problem into an auxiliary
standard control problem that can be solved by using stochastic linear quadratic theory.
A second approach relies on the observation that the dynamic mean-variance problem can
be reformulated as a control problem of McKean-Vlasov type, where the cost functional
may depend nonlinearly on the law of the wealth state process. It has then been solved
in [1] where the authors have derived a version of the Pontryagin maximum principle.
More recently, the paper [19] has developed a general dynamic programming approach
for the control of McKean-Vlasov dynamics and applied their method for the resolution
of the mean-variance portfolio selection problem. We also mention the recent paper [10],
where the mean-variance problem is viewed as the McKean-Vlasov limit of a family of
controlled many-component weakly interacting systems. These prelimit problems are solved
by standard dynamic programming, and the solution to the original problem is obtained
by passage to the limit.

In the above cited papers, the continuous-time Markowitz problem was essentially stu-
died in the framework of a Black-Scholes model, and abundant research has been conducted
to extend this setup by including models with random parameters. Among this large
literature, we cite the recent paper [7] which uses a stochastic correlation model for taking
into account the correlation risk between risky assets. In all these works, it is assumed that
investors have a perfect knowledge of the stochastic dynamics governing the price process,
that is a “correct" model has to be first specified, and then the parameters have to be
accurately estimated or calibrated. However, in finance, a model is clearly an approximation
of the reality, and moreover within a model, the estimation problem is a difficult issue. For
example, it is known that the estimation of correlation between assets may be extremely
inaccurate due to asynchronous data. On the other hand, optimal portfolios are typically
sensitive to the model and the parameters, and may perform badly when the parameters are
not sufficiently accurate. Therefore, the impact of model misspecification, due to erroneous
models and measurements, is an important issue in the practical implementation of trading
strategies, and is usually refereed to as model risk.

In order to address the model risk related to uncertainty or ambiguous model parame-
ters, the robust approach, which consists in taking decisions under the worst-case scenario,
so that resulting solutions are expected to be less sensitive to model misspecification, is a
notable research direction in mathematical finance. A common robust modeling is to con-
sider a family of probability measures representing all the prior beliefs of the investor on
the model parameters. For example, drift uncertainty is modeled via Girsanov’s theorem
by a set of dominated probability measures, and has been first considered in the context of
portfolio selection in [12], and then largely studied in the literature, see the recent paper
[13] and the references therein.

We focus here on uncertainty or ambiguity on the variance-covariance matrix of the
risky assets. Uncertain volatility models have been considered in [2], [15], or [9] in the
context of option pricing, and in [17] for robust portfolio optimization with expected utility
criterion. As in [11], we are also interested in a setting with ambiguous correlation between
two risky assets since, as already mentioned above, the correlation parameter is hard in
practice to infer with accuracy from market information.

In this paper, we investigate the robust Markowitz mean-variance portfolio selection
under uncertainty on the volatilities and correlation of the risky assets. We adopt the
probabilistic framework in [8], related to the theory of G-expectation [18] (see also [23]), in
order to capture model uncertainty and ambiguity on the variance-covariance matrix, which
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leads to a set of non-dominated probability measures for the prior probabilities. From a
mathematical viewpoint, and compared to robust problem with expected utility, we face two
additional difficulties: (i) it cannot be tackled a priori by classical stochastic differential
game approach due to the nonlinear variance term, (ii) moreover, since the worst-case
scenario is not the same for the mean and the variance, it is not straightforward that it
can be put into a min-max problem. We then use the following methodology. We consider
a robust mean-variance criterion, which is actually formulated as a min-max problem, and
show a posteriori how it is connected to the robust Markowitz problem. We tackle the former
problem by a McKean-Vlasov dynamic programming approach: we first reformulate the
robust mean-variance problem into a deterministic differential game problem with the law
of the wealth process under a prior probability measure as state variable. Then, adapting
optimality arguments from dynamic programming principle, and using recent chain rule for
flow of probability measures derived in [4] and [6], we state a verification theorem which
gives the optimal strategy and performance in terms of a Bellman-Isaacs equation in the
Wasserstein space of probability measures. We next apply this analytic partial differential
equation characterization of the solution to the robust mean-variance problem in order
to provide closed-form expressions for the optimal portfolio strategies in two situations:
uncertain volatilities and ambiguous correlation between two risky assets (the case with
more than 2 assets and involving uncertainty on a correlation matrix is postponed to a
future research), and we are then able to derive explicitly the corresponding robust efficient
frontier. In particular, we obtain a lower bound for the Sharpe ratio of any robust efficient
portfolio strategy, which is independent of any modelling on the variance-covariance matrix.

How robust mean-variance portfolio strategies can help to improve performance of in-
vestors? We address this question by using simulations to evaluate and compare the Sharpe
ratio of a robust investor and a simple investor who implements mean-variance strategies
with a misspecified model in two examples: (i) in the first example, the true dynamics
of the stock price is assumed to be governed by a Heston stochastic volatility model, and
the simple investor considers that the risky asset is governed by a Black-Scholes model
with constant volatility, (ii) in the second example, the two-assets price is given in reality
by a stochastic correlation model, but the simple investor considers a constant correla-
tion between the risky assets. Our results show that the robust Sharpe ratio can perform
noticeably better than the misspecified Sharpe ratio.

The rest of the paper is organized as follows. Section 2 formulates the probabilistic
framework for the robust Markowitz mean-variance problem. We present in Section 3 the
McKean-Vlasov dynamic programming approach for solving our problem. In Section 4, we
derive explicit solutions in the context of uncertain volatilities and ambiguous correlation.
Section 5 is devoted to the derivation of the robust efficient frontier in closed form, and the
last Section 6 discusses the benefit of a robust investor compared to a misspecified investor.

2 Problem formulation

We consider a financial market with one risk-free asset, assumed to be constant equal to
one (zero interest rate), and d risky stocks on a finite investment horizon [0, T ]. We model
the uncertainty about the volatility matrix of the risky assets by using the probabilistic
setup as in [9], [18] or [23]. We define the canonical state space by Ω = {ω = (ω(t))t∈[0,T ] ∈
C([0, T ];Rn) : ω(0) = 0} representing the continuous paths driving d risky assets, and
possibly m (non tradable) factor processes (n = d + m), by F its Borel σ-field, and denote
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by B̄ = (B̄t)t∈[0,T ] the canonical process, i.e. B̄t(ω) = ω(t), by P0 the Wiener measure, i.e.

making B̄ a n-dimensional Brownian motion under P0, and by F = (Ft)0≤t≤T the canonical
filtration, i.e. the natural filtration generated by B̄. We distinguish the d-dimensional
components of B̄, denoted by B, and representing the continuous paths of the risky assets.

The investor knows (or has estimated) the constant drift b = (b1, . . . , bd) ∈ R
d of the

assets, but is uncertain about the volatility matrix (possibly random) of the d risky assets.
We adopt the concept of ambiguous volatility as defined in [8], which means that the
investor only knows that the variance-covariance matrix belongs to some prior compact set
Γ of Sd

>+, the set of strictly positive definite matrices in R
d×d. We assume that Γ = Γ(Θ) is

parametrized by a prior convex set Θ of Rq, that is there exists some measurable function Σ
: Rq → S

d
>+ s.t. any Σ ∈ Γ is in the form Σ = Σ(θ) for some θ ∈ Θ (by misuse of notation,

we keep the same notations Σ). For any Σ ∈ Γ, we denote by σ = Σ
1

2 its square-root matrix,
and we shall often identify a variance-covariance matrix with its square-root matrix called
volatility matrix. Here are some examples of this modeling:

Example 1 (uncertain volatilities). In dimension d = 1, this is modelled through Γ
= Θ = [σ2, σ̄2] with positive constants 0 < σ ≤ σ̄ < ∞, see [2], [15]. The extension to

the multivariate assets case with zero correlation is modelled through Θ =
d
∏

i=1

[σ2
i , σ̄2

i ] with

0 < σi ≤ σ̄i < ∞, i = 1, . . . , d, and

Σ(θ) =







σ2
1 . . . 0
...

. . .
...

0 . . . σ2
d






, for θ = (σ2

1 , . . . , σ2
d).

Example 2 (ambiguous correlation). The uncertainty about the correlation between
risky assets in dimension d = 2 has been recently considered in [11], and can be formalized
here with Θ = [̺, ¯̺] ⊂ (−1, 1), and

Σ(θ) =

(

σ2
1 σ1σ2θ

σ1σ2θ σ2
2

)

,

for some known positive constants σ1 and σ2 representing the marginal volatilities of the
assets, and where θ represents the unknown correlation parameter varying between ̺ and
¯̺. The extension to multivariate assets for d ≥ 2 can also be done within our framework
with a parametric form for the correlation matrix using for instance d(d − 1)/2 angular
coordinates as in [20].

We denote by VΘ the set of F-progressively measurable processes Σ = (Σt) valued in Γ
= Γ(Θ), and introduce the set of prior probability measures PΘ:

PΘ =
{

P
σ : Σ ∈ VΘ

}

,

where P
σ is the probability measure on (Ω, FT ) induced by P0 via:

P
σ := P0 ◦ (Bσ)−1, with σt := Σ

1

2

t , Bσ
t :=

∫ t

0
σsdBs, 0 ≤ t ≤ T, P0 − a.s.

Under any P
σ, Σ ∈ VΘ, the process B is a martingale, hence admits from [14], a quadratic

variation, which is given by:

d < B >t = Σtdt.
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Remark 2.1 Ambiguity in volatility leads to a set of prior probabilities in PΘ, which
are non-equivalent, actually mutually singular. Such a specification for the set of prior
probabilities P

σ is closely connected to the theory of G-Brownian motion introduced in
[18], and requires tools from quasisure analysis as pointed out in [9], and further studied in
[23]. In particular, we say that a property holds PΘ-quasisurely (PΘ − q.s. in short), if it
holds P

σ − a.s. for all Pσ ∈ PΘ. �

The price process S of the d risky assets is given by

dSt = diag(St)
(

bdt + dBt), 0 ≤ t ≤ T, PΘ − q.s.

Remark 2.2 Under each P
σ ∈ PΘ, for Σ ∈ VΘ, we have dBt = σtdW σ

t where W σ is a
Brownian motion under P

σ, and so the price process is governed under P
σ by

dSt = diag(St)
(

bdt + σtdW σ
t ), 0 ≤ t ≤ T, P

σ − a.s.

�

A portfolio strategy α = (αt)0≤t≤T , representing the amount invested in the d risky
assets, is a d-dimensional F-progressively measurable process, valued in some closed convex
set A of Rd, satisfying the integrability condition

sup
Pσ∈PΘ

Eσ

[

∫ T

0
α⊺

t Σtαtdt
]

< ∞,

and denoted by α ∈ A. Here ⊺ denotes the transpose of a matrix, and Eσ denotes the
expectation under P

σ. Given a portfolio strategy α ∈ A, and an initial capital x0 ∈ R, the
evolution of the self-financing wealth process Xα is given by

dXα
t = α⊺

tdiag(St)
−1dSt = α⊺

t

(

bdt + dBt), 0 ≤ t ≤ T, Xα
0 = x0, PΘ − q.s.

Remark 2.3 For α ∈ A, and from Remark 2.2, we see that the evolution of Xα under any
P

σ ∈ PΘ, Σ ∈ Vθ, is given by

dXα
t = α⊺

t(bdt + σtdW σ
t ), 0 ≤ t ≤ T, Xα

0 = x0, P
σ − a.s. (2.1)

where W σ is a Brownian motion under P
σ, and we have

sup
Pσ∈PΘ

Eσ

[

sup
0≤t≤T

|Xα
t |2
]

< ∞.

�

Given a risk aversion parameter λ > 0, the worst-case mean-variance functional under
ambiguous volatility is

Jwc(α) = sup
Pσ∈PΘ

(

λVarσ(Xα
T ) − Eσ[Xα

T ]
)

< ∞, α ∈ A,

where Varσ(X) denotes the variance of X under Pσ, and the robust mean-variance portfolio
selection problem is then formulated as

V0 = inf
α∈A

Jwc(α) = inf
α∈A

sup
Pσ∈PΘ

(

λVarσ(Xα
T ) − Eσ[Xα

T ]
)

. (2.2)
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A related problem to the robust mean-variance portfolio selection problem is the robust
Markowitz problem, which is formulated as follows: given a variance risk ϑ > 0,

{

maximize over α ∈ A, E(α) := infPσ∈PΘ Eσ[Xα
T ]

subject to R(α) := supPσ∈PΘ Varσ(Xα
T ) ≤ ϑ.

(2.3)

A solution α̂ϑ to (2.3), when it exists, is called robust efficient portfolio strategy with respect
to ϑ. In other words, a robust efficient portfolio strategy maximizes the worst case expected
terminal wealth given a financial risk measured by the worst case variance of the terminal
wealth. The pair (R(α̂ϑ), E(α̂ϑ)) is called a robust efficient point, and the set of all robust
efficient points, when varying ϑ, is called robust efficient frontier. By standard convex
optimization theory, the constrained optimization problem (2.3) is connected by duality to
the Lagrangian optimization problem, which is defined as

inf
α∈A

[

λR(α) − E(α)
]

= inf
α∈A

{

λ sup
Pσ∈PΘ

Varσ(Xα
T ) − inf

Pσ∈PΘ
Eσ[Xα

T ]
}

.

Notice that this Lagrangian optimization problem is equal to problem (2.2) when PΘ is a
singleton, but differs a priori in general from (2.2). We shall solve in the two next sections
the robust mean-variance portfolio selection problem (2.2), and show in the last section
that it is actually equal by duality to the Lagrangian optimization problem, and so leads
to the solution of the robust Markowitz problem (2.3) and the construction of the robust
efficient frontier.

3 McKean-Vlasov approach

Problem (2.2) can be viewed as a zero-sum stochastic differential game problem with
gain/cost functional

J(α, σ) = λVarσ(Xα
T ) − Eσ[Xα

T ], α ∈ A, Σ ∈ VΘ, (3.1)

so that V0 = infα∈A supΣ∈VΘ
J(α, σ). The peculiarity of this differential game problem is

the nonlinear dependence of the law of the state process via the variance term, making the
problem a priori time inconsistent. Following the idea in [3] and [19] for control problem,
we first reformulate our problem into a deterministic differential game problem, taking into
account the uncertainty about the probability law governing the risky asset. For any α ∈
A, and t ∈ [0, T ], let us denote by ρα,σ

t = P
σ
Xα

t

the law of Xα
t under P

σ, Σ ∈ VΘ, which

defines a deterministic process valued in the Wasserstein space P
2
(R) of square-integrable

probability measures on R, which is a metric space when equipped with the Wasserstein
distance W

2
:

W
2
(µ, µ′) = inf

{(

∫

R×R

|x − y|2π(dx, dy)
)

1

2
: π ∈ P

2
(R × R) with marginals µ and µ′

}

We also set ‖µ‖
2

:= W
2
(µ, δ0) =

( ∫

|x|2µ(dx)
)

1

2 .
We also introduce the following convenient notations: for any µ ∈ P

2
(R), we denote by

µ̄ :=

∫

R

xµ(dx), Var(µ) :=

∫

R

(x − µ̄)2µ(dx).
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We can then rewrite the functional in (3.1) and the worst-case mean-variance functional as

Jwc(α) = sup
Σ∈VΘ

J(α, σ) = sup
Σ∈VΘ

[

λVar(ρα,σ
T ) − ρα,σ

T

]

, α ∈ A. (3.2)

The robust mean-variance portfolio selection problem is therefore reformulated as a deter-
ministic differential game problem with controlled state variable ρα,σ valued in the infinite-
dimensional space P

2
(R). To solve this problem, we use general dynamic programming

optimality principle, which takes the following formulation in our context:

Optimality principle

Let {V α,σ, α ∈ A, Σ ∈ VΘ} be a family of deterministic processes in the form V α,σ
t =

v(t, ρα,σ
t ) for some real-valued measurable function v on [0, T ] × P

2
(R) satisfying

(i) v(T, µ) = λVar(µ) − µ̄, for any µ ∈ P
2
(R)

(ii) t ∈ [0, T ] 7−→ supΣ∈VΘ
V α,σ

t is nondecreasing for all α ∈ A

(iii) t ∈ [0, T ] 7−→ supΣ∈VΘ
V α∗,σ

t is nonincreasing (hence constant) for some α∗ ∈ A.

Then, α∗ is an optimal control for the robust mean-variance problem (2.2) with optimal
value

V0 = v(0, δx0
) = Jwc(α

∗). (3.3)

Indeed, observe that at time t = 0, ρα,σ
0 = δx0

for any α ∈ A, Σ ∈ VΘ, since Xα
0 is equal

to the constant x0, which implies that V α,σ
0 = v(0, δx0

) does not depend on α ∈ A, Σ ∈ VΘ.
From properties (i) and (ii), we then have for all α ∈ A,

v(0, δx0
) = sup

Σ∈VΘ

V α,σ
0 ≤ sup

Σ∈VΘ

V α,σ
T = sup

Σ∈VΘ

v(T, ρα,σ
T ) = sup

Σ∈VΘ

J(α, σ) = Jwc(α),

by (3.2). Since α is arbitrary in A, this gives: v(0, δx0
) ≤ infα∈A Jwc(α) = V0. Similarly,

from properties (i) and (iii), we obtain v(0, δx0
) = supΣ∈VΘ

J(α∗, σ) = Jwc(α
∗) ≥ V0, which

proves (3.3).

In order to construct a process V α,σ
t = v(t, ρα,σ

t ) satisfying the above conditions (i),
(ii), (iii) for the optimality principle, we shall rely on the recent notion of derivatives in
the Wasserstein space introduced by P.L. Lions, and the corresponding chain rule (Itô’s
formula) for flow of probability measures, that we recall in the appendix. The derivative
(when it exists) of a function ϕ(µ) on P

2
(R) is denoted by ∂µϕ(µ), and is a function from

R into R, which is in L2(µ), and when a version of the function x ∈ R 7→ ∂µϕ(µ)(x) is
differentiable, we denote by ∂x∂µϕ(µ)(x) its derivative. Assuming that v is smooth on
[0, T ] × P

2
(R), we have by Itô’s formula (A.2) (recalling (2.1)):

dV α,σ
t = dv(t, ρα,σ

t ) = Dα,σ
t dt, (3.4)

where

Dα,σ
t = ∂tv(t, ρα,σ

t ) + Eσ

[

H(∂µv(t, ρα,σ
t )(Xα

t ), ∂x∂µv(t, ρα,σ
t )(Xα

t ), αt, Σt)
]

, (3.5)

with H the function defined on R × R × R
d × S

d
>+ by

H(p, M, a, Σ) = pa⊺b +
1

2
Ma⊺Σa. (3.6)

We state some easy properties for the function H, which allows us to introduce some
useful notations.
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Lemma 3.1 For all (p, M) ∈ R × (0, ∞), a ∈ A, we have

sup
Σ∈Γ

H(p, M, a, Σ) = H(p, M, a, Σ̂(a)) < ∞, with Σ̂(a) ∈ arg max
Σ∈Γ

a⊺Σa.

There exists a measurable function (p, M) ∈ R × (0, ∞) 7→ a∗(p, M) ∈ A such that

H∗(p, M) := inf
a∈A

sup
Σ∈Γ

H(p, M, a, Σ) = sup
Σ∈Γ

H(p, M, a∗(p, M), Σ). (3.7)

Proof. For fixed (p, M) ∈ R × (0, ∞), a ∈ A, it is clear that the continuous function Σ 7→
H(p, M, a, Σ) attains its maximum on the compact set Γ at some point Σ̂(a) which does
not depend on (p, M), from the expression of H, and given by Σ̂(a) ∈ arg maxΣ∈Γ a⊺Σa.
By convexity of the function a 7→ |a|2, it is clear that the function a ∈ A 7→ H̄(p, M, a) :=
supΣ∈Γ H(p, M, a, Σ) is also convex. Moreover, since H̄(p, M, a) ≥ pa⊺b + 1

2Ma⊺Σa, with Σ
positive definite, we see that H̄(p, M, a) goes to infinity when |a| goes to infinity. It follows
that a 7→ H̄(p, M, a) attains its infimum on the closed convex set A at some a∗(p, M) which
can be chosen measurable by continuity of H and measurable selection argument. �

We can now state an analytic verification theorem for the robust mean-variance portfolio
selection problem, which provides a characterization of the optimal portfolio strategy.

Theorem 3.1 (Verification theorem)
Suppose that v is a smooth function on [0, T ]×P

2
(R) with ∂x∂µv(t, µ)(x) > 0 for all (t, x, µ)

∈ [0, T ) × R × P
2
(R), solution to the Bellman-Isaacs partial differential equation (PDE):







∂tv(t, µ) +

∫

R

H∗
(

∂µv(t, µ)(x), ∂x∂µv(t, µ)(x)
)

µ(dx) = 0, (t, µ) ∈ [0, T ) × P
2
(R)

v(T, µ) = λVar(µ) − µ̄, µ ∈ P
2
(R),

(3.8)
s.t. the function (x, µ) ∈ R × P

2
(R) 7→ â(t, x, µ) := a∗(∂µv(t, µ)(x), ∂x∂µv(t, µ)(x)) is Lip-

schitz, for any t ∈ [0, T ], and
∫ T

0 |â(t, 0, δ0)|2dt < ∞. Then, the portfolio strategy defined
by

α∗
t = â(t, X∗

t , ρ∗
t ) = a∗

(

∂µv(t, ρ∗
t )(X∗

t ), ∂x∂µv(t, ρ∗
t )(X∗

t )
)

, 0 ≤ t ≤ T, PΘ − q.s.

(here X∗ = Xα∗
is the wealth process associated to the feedback control â, and ρ∗ = ρα∗,σ

the corresponding law under Pσ ∈ PΘ) lies in A, and is optimal for (2.2), i.e. V0 = Jwc(α
∗),

and we have V0 = v(0, δx0
).

Proof. Let us consider the McKean-Vlasov SDE under PΘ:

dX∗
t = â(t, X∗

t , ρ∗
t )[bdt + dBt], 0 ≤ t ≤ T, X∗

0 = x0, PΘ − q.s.,

which means that for all Σ ∈ Vθ,

dX∗
t = â(t, X∗

t ,Pσ

X∗
t

)[bdt + σtdW σ
t ], 0 ≤ t ≤ T, X∗

0 = x0, P
σ − p.s. (3.9)

Under the Lipschitz condition on â and the square-integrability condition of â(., 0, δ0), it
is known (see e.g. [22]) that there exists a unique solution X∗ to (3.9), which is square
integrable under P

σ, for all Σ ∈ VΘ, and we have:

sup
Pσ∈PΘ

Eσ

[

sup
0≤t≤T

|X∗
t |2
]

≤ C(1 +

∫ T

0
|â(t, 0, ρ∗

t )|2dt
)

< ∞,
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for some positive constant C depending on the Lipschitz condition on x 7→ â(t, x, ρ∗
t ). This

implies that the process α∗
t = â(t, X∗

t , ρ∗
t ), 0 ≤ t ≤ T , lies in A, and by definition of the

self-financing wealth process, we have X∗ = Xα∗
.

Let us now check that the family of (deterministic) processes V α,σ
t , 0 ≤ t ≤ T , with

v solution to the PDE (3.8), satisfies the conditions of the optimality principle with α∗.
Condition (i) is already satisfied and in view of (3.4), it suffices to check that (ii) for all α
∈ A, there exists Σ̄ (depending eventually of α) ∈ Vθ s.t. Dα,σ̄

t ≥ 0, 0 ≤ t ≤ T , and (iii)

Dα∗,σ
t ≤ 0, 0 ≤ t ≤ T , for all Σ ∈ VΘ, hold true. Given α ∈ A, consider the process Σ̄ ∈

VΘ defined by Σ̄t = Σ̂(αt), 0 ≤ t ≤ T , where Σ̂(.) is defined in Lemma 3.1. Recalling the
expression of Dα,σ̄ in (3.5), we have for all t ∈ [0, T ],

Dα,σ̄
t = Eσ̄

[

∂tv(t, ρα,σ̄
t ) + H(∂µv(t, ρα,σ̄

t )(Xα
t ), ∂x∂µv(t, ρα

t )(Xα
t ), αt, Σ̂(αt))

]

= Eσ̄

[

∂tv(t, ρα,σ̄
t ) + sup

γ∈Γ
H(∂µv(t, ρα,σ̄

t )(Xα
t ), ∂x∂µv(t, ρα,σ̄

t )(Xα
t ), αt, γ)

]

≥ Eσ̄

[

∂tv(t, ρα,σ̄
t ) + H∗(∂µv(t, ρα,σ̄

t )(Xα
t ), ∂x∂µv(t, ρα,σ̄

t )(Xα
t ))
]

= 0,

where the second equality comes from the definition of Σ̄t = Σ̂(αt), the inequality ≥ from
the fact that H∗(p, M) ≤ supγ∈Γ H(p, M, a, γ) for all a ∈ A, and the last equality = 0 from

the PDE (3.8) satisfied by v at point (t, ρα,σ̄
t ) and recalling that ρα,σ̄ is the law of Xα

t under
P

σ̄. This proves the condition (ii). On the other hand, we have for all Σ ∈ VΘ, and t ∈
[0, T ],

Dα∗,σ
t = Eσ

[

∂tv(t, ρα∗,σ
t ) + H(∂µv(t, ρα∗,σ

t )(X∗
t ), ∂x∂µv(t, ρα∗ ,σ

t )(X∗
t ), α∗

t , Σt)
]

≤ Eσ

[

∂tv(t, ρα∗,σ
t ) + sup

γ∈Γ
H(∂µv(t, ρα∗,σ

t )(X∗
t ), ∂x∂µv(t, ρα∗ ,σ

t )(X∗
t ), α∗

t , γ)
]

= Eσ

[

∂tv(t, ρα∗,σ
t ) + H∗(∂µv(t, ρα∗,σ

t )(X∗
t ), ∂x∂µv(t, ρα∗,σ

t )(X∗
t ))
]

= 0,

where the second equality follows from the definition of α∗ and relation (3.7). This proves
condition (iii), and ends the proof of this theorem. �

4 Explicit solutions

We provide in this section explicit solutions to the Bellman-Isaacs PDE (3.8), hence to
the robust mean-variance portfolio selection problem (2.2), when A = R

d, and under the
following Isaacs condition

(IC) For all (p, M) ∈ R × (0, ∞), we have

H∗(p, M) := inf
a∈Rd

sup
Σ∈Γ

H(p, M, a, Σ) = sup
Σ∈Γ

inf
a∈Rd

H(p, M, a, Σ)

As we shall check later, condition (IC) is satisfied in the applications we are developing
below for uncertain volatilities and ambiguous correlation.

Lemma 4.1 Let condition (IC) hold. Then, for all p ∈ R, M > 0, we have

H∗(p, M) = −1

2

p2

M
b⊺(Σ∗)−1b (4.1)

= H(p, M, a∗(p, M), Σ∗)

9



where Σ∗ is a constant in Γ defined by

Σ∗ ∈ arg min
Σ∈Γ

[

b⊺Σ−1b
]

. (4.2)

Moreover, the pair (a∗, Σ∗) is a saddle-point for H i.e. for all p ∈ R, M > 0,
{

H(p, M, a∗(p, M), Σ) ≤ H(p, M, a∗(p, M), Σ∗) = H∗(p, M), ∀Σ ∈ Γ,
H(p, M, a, Σ∗) ≥ H(p, M, a∗(p, M), Σ∗) = H∗(p, M), ∀a ∈ R

d.
(4.3)

Proof. By square completion, we can rewrite the function H in (3.6) as:

H(p, M, a, Σ) =
M

2

(

a +
p

M
Σ−1b

)

⊺

Σ(a +
p

M
Σ−1b

)

− 1

2

p2

M
b⊺Σ−1b,

from which we get

inf
a∈Rd

H(p, M, a, Σ) = −1

2

p2

M
b⊺Σ−1b, (4.4)

and then the explicit expression of H∗(p, M)

H∗(p, M) = sup
Σ∈Γ

inf
a∈Rd

H(p, M, a, Σ) = −1

2

p2

M
inf
Σ∈Γ

b⊺Σ−1b = −1

2

p2

M
b⊺(Σ∗)−1b.

Let us now check the saddle-point property of (a∗, Σ∗). By definition of a∗(p, M), we have

sup
Σ∈Γ

H(p, M, a∗(p, M), Σ) = inf
a∈Rd

sup
Σ∈Γ

H(p, M, a, Σ)

= sup
Σ∈Γ

inf
a∈Rd

H(p, M, a, Σ) = H∗(p, M)

= inf
a∈Rd

H(p, M, a, Σ∗) ≤ H(p, M, a, Σ∗), ∀a ∈ R
d,

where we used in the second equality Isaacs condition, and noticed in the last equality that
Σ∗ attains the supremum of Σ 7→ infa∈Rd H(p, M, a, Σ) by (4.4). We then deduce

H(p, M, a∗(p, M), Σ∗) ≤ sup
Σ∈Γ

H(p, M, a∗(p, M), Σ) = H∗(p, M)

≤ H(p, M, a, Σ∗), ∀a ∈ R
d,

which shows the second inequality in (4.3). Similarly, we have

inf
a∈A

H(p, M, a, Σ∗) = sup
Σ∈Γ

inf
a∈Rd

H(p, M, a, Σ)

= inf
a∈Rd

sup
Σ∈Γ

H(p, M, a, Σ) = H∗(p, M)

= sup
Σ∈Γ

H(p, M, a∗(p, M), Σ) ≥ H(p, M, a∗(p, M), Σ), ∀Σ ∈ Γ,

which implies that

H(p, M, a∗(p, M), Σ∗) ≥ inf
a∈Rd

H(p, M, a, Σ∗) = H∗(p, M)

≥ H(p, M, a∗(p, M), Σ), ∀Σ ∈ Γ.

This proves the first inequality in (4.3), hence the saddle-point property, and also that
H∗(p, M) = H(p, M, a∗(p, M), Σ∗). �

10



Remark 4.1 Under condition (IC), and if the conditions of the verification theorem 3.1
are satisfied with a solution v to the Bellman-Isaacs PDE (3.8), and an optimal feedback
control α∗, then we see from the saddle-point relation (4.3), that the drift Dα,σ

t of the
deterministic process V α,σ

t = v(t, ρα,σ
t ) satisfies for all α ∈ A, Σ ∈ VΘ,

Dα,σ∗

t ≥ Dα∗,σ∗

t = 0 ≥ Dα∗,σ
t , 0 ≤ t ≤ T, a.s.,

where σ∗ = (Σ∗)
1

2 . This means that the process (i) V α,σ∗

t is nondecreasing for all α ∈ A,

(ii) the process V α∗,σ
t is nonincreasing for all Σ ∈ VΘ, from which we easily deduce the

min-max property:

V0 = v(0, δx0
) = inf

α∈A
sup

Σ∈VΘ

J(α, σ) = sup
Σ∈VΘ

inf
α∈A

J(α, σ) = J(α∗, σ∗).

This shows in particular that σ∗ is an optimal worst-case volatility for the robust mean-
variance problem. �

Proposition 4.1 Assume that (IC) holds. Then, the function defined on [0, T ] × P
2
(R)

by

v(t, µ) = K(t)Var(µ) − µ̄ + χ(t), (4.5)

with
{

K(t) = λ exp
(

− b⊺(Σ∗)−1b(T − t)
)

χ(t) = − 1
4λ

[

exp
(

b⊺(Σ∗)−1b(T − t)
)

− 1
]

, 0 ≤ t ≤ T,
(4.6)

is solution to the Bellman-Isaacs PDE (3.8).

Proof. We look for a function solution to (3.8) in the form:

v(t, µ) = K(t)Var(µ) + Y (t)µ̄ + χ(t), (4.7)

for some continuously differentiable functions K > 0, Y and χ on [0, T ]. Such function is
smooth and we have

∂µv(t, µ)(x) = 2K(t)(x − µ̄) + Y (t), ∂x∂µv(t, µ)(x) = 2K(t) > 0,

From the expression of H∗ in (4.1), we then get

∂tv(t, µ) +

∫

R

H∗
(

∂µv(t, µ)(x), ∂x∂µv(t, µ)(x)
)

µ(dx)

= K̇(t)Var(µ) + Ẏ (t)µ̄ + χ̇(t)

− 1

2
b⊺(Σ∗)−1b

∫

4K(t)2(x − µ̄)2 + Y (t)2 + 4K(t)Y (t)(x − µ̄)

2K(t)
µ(dx)

=
[

K̇(t) − b⊺(Σ∗)−1bK(t)
]

Var(µ) + Ẏ (t)µ̄ + χ̇(t) − 1

4
b⊺(Σ∗)−1b

Y (t)2

K(t)
.

It follows that v in (4.7) satisfies the Bellman-Isaacs PDE (3.8) iff K, Y and χ satisfy the
system of ordinary differential equations:

K̇(t) − b⊺(Σ∗)−1bK(t) = 0, K(T ) = λ

Ẏ (t) = 0, Y (T ) = −1

χ̇(t) − 1

4
b⊺(Σ∗)−1b

Y (t)2

K(t)
= 0, χ(T ) = 0,

which leads to the explicit solution Y = −1, K, χ as in (4.6). �
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4.1 Uncertain volatility

We consider the uncertain volatility model as presented in Example 1.

• We first consider the one-dimensional case d = 1: Γ = [σ2, σ̄2] with 0 < σ ≤ σ̄ < ∞.

Notice that in this case, the function H is convex in a, and linear (hence concave) in Σ lying
in the convex-compact set Γ. Hence, it satisfies the conditions of the minimax theorem (see
e.g. Theorem 45.8 in [24]), and the Isaacs condition (IC) holds, i.e.

inf
a∈R

sup
Σ∈Γ

H(p, M, a, Σ) = sup
Σ∈Γ

inf
a∈R

H(p, M, a, Σ). (4.8)

Moreover, the element Σ̂(a) in Lemma 3.1 is equal to σ̄2, hence do not depend on a, i.e.

sup
Σ∈Γ

H(p, M, a, Σ) = H(p, M, a, σ̄2), (4.9)

and is also equal to Σ∗ defined in (4.2). We then have for (p, M) ∈ R × (0, ∞):

a∗(p, M) = arg min
a∈R

H(p, M, a, σ̄2) = − p

M

b

σ̄2
.

From Proposition 4.1, a solution to (3.8) is then given by (4.5) for which

â(t, x, µ) := a∗(∂µv(t, µ)(x), ∂x∂µv(t, µ)(x))

= − b

σ̄2
(x − µ̄) +

b

2λσ̄2
exp

( b2

σ̄2
(T − t)

)

.

This function is clearly Lipschitz in (x, µ) ∈ R× P
2
(R), and so by the verification theorem

3.1, we deduce that the optimal portfolio strategy for (2.2) is given by

α∗
t = − b

σ̄2
(X∗

t − ρ̄∗
t ) +

b

2λσ̄2
exp

( b2

σ̄2
(T − t)

)

, 0 ≤ t ≤ T, PΘ − q.s.

This expression of the optimal portfolio strategy can be written more explicitly, as shown
more generally below in the multivariate case.

• Extension to the multivariate case with zero correlation: Θ =
d
∏

i=1

[σ2
i , σ̄2

i ] with 0 < σi ≤

σ̄i < ∞, i = 1, . . . , d, and

Σ(θ) =







σ2
1 . . . 0
...

. . .
...

0 . . . σ2
d






, for θ = (σ2

1 , . . . , σ2
d).

In this case, for all (p, M) ∈ R × (0, ∞), a = (a1, . . . , ad) ∈ R
d, θ = (θ1, . . . , θd) ∈ Θ, we

have

H(p, M, a, Σ(θ)) = pa⊺b +
1

2
M

d
∑

i=1

a2
i θi =: H̃(p, M, a, θ).

The function H̃(p, M, ., .) is convex in a ∈ R
d, and linear (hence concave) in θ lying in the

convex-compact set Θ, and by the min-max theorem

inf
a∈Rd

sup
θ∈Θ

H̃(p, M, a, θ) = sup
θ∈Θ

inf
a∈Rd

H̃(p, M, a, θ),

12



which means that the Isaacs condition (IC) holds. Moreover, the element Σ̂(a) in Lemma
3.1 is equal to Σ(θ̄) with θ̄ = (σ̄2

1 , . . . , σ̄2
d), hence do not depend on a, and is also equal to

Σ∗ defined in (4.2). We then have for (p, M) ∈ R × (0, ∞):

a∗(p, M) := arg min
a∈R

sup
Σ∈Γ

H(p, M, a, σ) = arg min
a∈R

H(p, M, a, Σ(θ̄))

= − p

M
Σ̄−1b, where Σ̄ := Σ(θ̄) =







σ̄2
1 . . . 0
...

. . .
...

0 . . . σ̄2
d






.

The optimal portfolio strategy for (2.2) is then given by

α∗
t = −Σ̄−1b(X∗

t − ρ̄∗
t ) +

1

2λ
Σ̄−1b exp

(

b⊺Σ̄−1b(T − t)
)

, 0 ≤ t ≤ T, PΘ − q.s.(4.10)

and thus the optimal mean process under any P
σ, Σ ∈ VΘ, is governed by

dEσ[X∗
t ] =

1

2λ
b⊺Σ̄−1b exp

(

b⊺Σ̄−1b(T − t)
)

dt, 0 ≤ t ≤ T,

hence explicitly given by

ρ̄∗
t = Eσ[X∗

t ] = x0 +
1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

[

exp
(

b⊺Σ̄−1bt
)

− 1
]

, 0 ≤ t ≤ T.(4.11)

Plugging into (4.10), we obtain the explicit optimal portfolio strategy for the robust mean-
variance problem under uncertain volatility:

α∗
t = Σ̄−1b

[

x0 +
1

2λ
exp

(

b⊺Σ̄−1bT
)

− X∗
t

]

, 0 ≤ t ≤ T, PΘq.s.

This corresponds to the optimal mean-variance portfolio strategy in a multidimensional
Black-Scholes model with uncorrelated assets of drift b and variance-covariance matrix Σ̄,
as derived in [25] and [10]. The financial interpretation is natural: the worst-case scenario
corresponds to the highest variance Σ̄, and the risk-averse investor makes her/his portfolio
decision by referring to this case. Moreover, the optimal cost is given by

V0 = v(0, δx0
) = − 1

4λ

[

exp
(

b⊺Σ̄−1bT
)

− 1
]

− x0.

Remark 4.2 Notice from (4.11) that the expected optimal wealth under any prior proba-
bility measure P

σ does not depend on Σ ∈ VΘ. �

4.2 Ambiguous correlation

We consider the model of Example 2 for a two-risky assets model with ambiguous correla-
tion, i.e. Θ = [̺, ¯̺] ⊂ (−1, 1), and

Σ(θ) =
( σ2

1 σ1σ2θ
σ1σ2θ σ2

2

)

, θ ∈ Θ,

for some known positive constants σ1 > 0 and σ2 > 0. In this case, we have for all (p, M)
∈ R × (0, ∞),

H(p, M, a, Σ(θ)) = pa⊺b +
1

2
M(a2

1σ2
1 + a2

2σ2
2 + 2θa1a2σ1σ2) (4.12)

=: H̃(p, M, a, θ), for a = (a1, a2) ∈ R
2, θ ∈ Θ = [̺, ¯̺].
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Notice that the function H̃(p, M, ., .) is convex in a ∈ R
2, and linear (hence concave) in θ

lying in the convex-compact set Θ. Thus, by the minimax theorem, we have

inf
a∈R2

sup
θ∈Θ

H̃(p, M, a, θ) = sup
θ∈Θ

inf
a∈R2

H̃(p, M, a, θ),

which means that the Isaacs condition (IC) holds.
Let us now introduce the extremal covariance matrices

Σ̄ := Σ(¯̺) =
( σ2

1 σ1σ2 ¯̺
σ1σ2 ¯̺ σ2

2

)

, Σ := Σ(̺) =
( σ2

1 σ1σ2̺
σ1σ2̺ σ2

2

)

,

and their corresponding variance risk ratios:

Σ̄−1b =
1

1 − ¯̺2





b1

σ2
1

− b2 ¯̺
σ1σ2

b2

σ2
2

− b1 ¯̺
σ1σ2



 =:
( κ̄1

κ̄2

)

, Σ−1b =
1

1 − ̺2





b1

σ2
1

− b2̺

σ1σ2

b2

σ2
2

− b1̺

σ1σ2



 =:
( κ1

κ2

)

.

The explicit computation of

a∗(p, M) := arg min
a∈R2

sup
Σ∈Γ(Θ)

H(p, M, a, Σ) = arg min
a∈R2

sup
θ∈[̺, ¯̺]

H(p, M, a, Σ(θ))

is given in the following Lemma1.

Lemma 4.2 Fix (p, M) ∈ R × (0, ∞). Then a∗(p, M) is given by

(1) If κ̄1κ̄2 > 0 and κ1κ2 < 0, then

a∗(p, M) =

{

− p
M

Σ̄−1b if b⊺Σ̄−1b ≥ b⊺Σ−1b
− p

M
Σ−1b otherwise

(2) If κ̄1κ̄2 > 0 and κ1κ2 ≥ 0, then

a∗(p, M) = − p

M
Σ̄−1b.

(3) If κ̄1κ̄2 ≤ 0 and κ1κ2 < 0, then

a∗(p, M) = − p

M
Σ−1b.

(4) If κ̄1κ̄2 ≤ 0 and κ1κ2 ≥ 0, then

a∗(p, M) =







(0, − p
M

b2

σ2
2

) if
b2

2

σ2
2

≥ b2
1

σ2
1

(− p
M

b1

σ2
1

, 0) otherwise.

1By misuse of notation, we write indifferently a = (a1, a2) or a =
(

a1

a2

)

for an element in R
2.
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Proof. Fix (p, M) ∈ R × (0, ∞). From (4.12), we have

sup
Σ∈Γ(Θ)

H(p, M, a, Σ) = H(p, M, a, Σ(¯̺))1a1a2>0 + H(p, M, a, Σ(̺))1a1a2≤0 (4.13)

=
[M

2

(

a − ā(p, M)
)

⊺

Σ̄(a − ā(p, M)
)

− 1

2

p2

M
b⊺Σ̄−1b

]

1a1a2>0

+
[M

2

(

a − a(p, M)
)

⊺

Σ(a − a(p, M)
)

− 1

2

p2

M
b⊺Σ−1b

]

1a1a2≤0,

after square completion, where

ā(p, M) := − p

M
Σ̄−1b, a(p, M) := − p

M
Σ−1b.

Let us then consider the functions defined on R
2 by: H̄(a) = H(p, M, a, Σ(¯̺)), H(a) =

H(p, M, a, Σ(̺)), and introduce the sets A+ = {a = (a1, a2) ∈ R
2 : a1a2 > 0}, A− =

{a = (a1, a2) ∈ R
2 : a1a2 > 0}, A0 = {a = (a1, a2) ∈ R

2 : a1a2 = 0}, Ā± = A± ∪ A0.
Since for a ∈ A0, H(p, M, a, Σ(θ)) does not depend on θ, we notice that H̄(a) = H(a) (=
H(p, M, a, Σ(0))) for a ∈ A0, and so by (4.13),

inf
a∈R2

sup
Σ∈Γ(Θ)

H(p, M, a, Σ) = min
[

inf
a∈Ā+

H̄(a), inf
a∈Ā−

H(a)
]

. (4.14)

Step 1. From the expression of H̄ in (4.13), it is clear that the function H̄ is strictly convex,
and thus achieves its infimum over the closed convex set Ā+ at ā(p, M) whenever ā(p, M)
∈ A+, or at a point of the boundary A0 of Ā+. Therefore,

(i+) If ā(p, M) ∈ A+, then

inf
a∈Ā+

H̄(a) = H̄(ā(p, M)) = −1

2

p2

M
b⊺Σ̄−1b.

(ii+) If ā(p, M) /∈ A+, then

inf
a∈Ā+

H̄(a) = inf
a∈A0

H̄(a) = min
[

inf
a1∈R

H(p, M, (a1, 0), Σ(0)), inf
a2∈R

H(p, M, (0, a2), Σ(0))
]

= min
[

H(p, M, (a∗
1, 0), Σ(0)), H(p, M, (0, a∗

2), Σ(0))
]

= −1

2

p2

M
max

[ b2
1

σ2
1

,
b2

2

σ2
2

]

,

where a∗
i = − p

M
bi

σ2
i

, from the expression of H in (4.12).

Similarly, for the search of the infimum of H on Ā−, we have two cases:

(i-) If a(p, M) ∈ A−, then

inf
a∈Ā−

H(a) = H(a(p, M)) = −1

2

p2

M
b⊺Σ−1b.

(ii-) If a(p, M) /∈ A−, then

inf
a∈Ā−

H(a) = inf
a∈A0

H(a) = min
[

inf
a1∈R

H(p, M, (a1, 0), Σ(0)), inf
a2 ∈R

H(p, M, (0, a2), Σ(0))
]

= min
[

H(p, M, (a∗
1, 0), Σ(0)), H(p, M, (0, a∗

2), Σ(0))
]

= −1

2

p2

M
max

[ b2
1

σ2
1

,
b2

2

σ2
2

]

.
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Step 2. First, observe that when p = 0, the infimum of a 7→ supΣ∈Γ(Θ) H(p, M, a, Σ) is
clearly attained from (4.13) for a∗(p, M) = 0, and infa∈R2 supΣ∈Γ(Θ) H(p, M, a, Σ) = 0.
Moreover, from the definition of ā(p, M) and a(p, M), observe that

ā(p, M) ∈ A+ ⇐⇒ p 6= 0, and κ̄1κ̄2 > 0,

a(p, M) ∈ A− ⇐⇒ p 6= 0, and κ1κ2 < 0.

Hence, from (4.14) and Step 1, the search of the infimum of a 7→ supΣ∈Γ(Θ) H(p, M, a, Σ),
i.e., the determination of a∗(p, M), leads us to consider the following four cases:

(1) κ̄1κ̄2 > 0 and κ1κ2 < 0. When p 6= 0, we are then in cases (i+) and (i-) of Step 1,
and thus

inf
a∈R2

sup
Σ∈Γ(Θ)

H(p, M, a, σ) = min
[

H̄(ā(p, M)), H(a(p, M))
]

= −1

2

p2

M
max

[

b⊺Σ̄−1b, b⊺Σ−1b
]

,

which gives the expression of a∗(p, M) in the assertion (1) of the Lemma. This also
holds true when p = 0 since a∗(p, M) = 0.

(2) κ̄1κ̄2 > 0 and κ1κ2 ≥ 0. When p 6= 0, we are then in cases (i+) and (ii-) of Step 1,
and we notice that

inf
a∈Ā−

H(a) = inf
a∈A0

H(a) = inf
a∈A0

H̄(a) ≥ inf
a∈Ā+

H̄(a).

From (4.14), this shows that infa∈R2 supΣ∈Γ(Θ) H(p, M, a, Σ) = infa∈Ā+
H̄(a) = H̄(ā(p, M)),

i.e. a∗(p, M) = ā(p, M). This also holds true when p = 0 since a∗(p, M) = 0.

(3) κ̄1κ̄2 ≤ 0 and κ1κ2 < 0. By similar arguments as in the previous case (2), we
have infa∈R2 supΣ∈Γ(Θ) H(p, M, a, Σ) = infa∈Ā−

H(a) = H(a(p, M)), i.e. a∗(p, M)
= a(p, M).

(4) κ̄1κ̄2 ≤ 0 and κ1κ2 ≥ 0. We are then in cases (ii+) and (ii-) of Step 1, and thus

inf
a∈R2

sup
Σ∈Γ(Θ)

H(p, M, a, Σ) = min
[

H(p, M, (a∗
1, 0), Σ(0)), H(p, M, (0, a∗

2), Σ(0))
]

= −1

2

p2

M
max

[ b2
1

σ2
1

,
b2

2

σ2
2

]

,

which shows the result in case (4) of the Lemma.

�

We investigate further the occurrence corresponding to the cases in Lemma 4.2 in order
to provide an explicit description of the optimal strategy under ambiguous correlation.
We denote by βi = bi

σi
, i = 1, 2, the Sharpe ratio of each risky asset. When the asset Si

is a stock, its sharpe ratio is usually positive (otherwise it would perform less than the
riskless bond). We may also want to consider the case when βi is nonpositive, which would
correspond typically to the case when the asset Si is a spread between two stocks. In
the sequel, we shall assume w.l.o.g. that (β1, β2) 6= (0, 0) (in this trivial case, the optimal
portfolio strategy is clearly to never trade, i.e. α∗ ≡ 0), and we set:

̺+
0 :=

min(|β1|, |β2|)
max(|β1|, |β2|) ∈ [0, 1], ̺+

0 := −̺+
0 . (4.15)
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Theorem 4.1 The solution to problem (2.2) is explicitly described through the following
cases:

I. If β1β2 > 0, and

1. ¯̺ < ̺+
0 , then the optimal feedback control is

â(t, x, µ) = −(x − µ̄)Σ̄−1b +
1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

Σ̄−1b,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ̄−1bT
)

− X∗
t

]

Σ̄−1b, 0 ≤ t ≤ T, PΘq.s.,

and the optimal cost

V0 = − 1

4λ

[

exp
(

b⊺Σ̄−1bT
)

− 1
]

− x0.

2. ̺ > ̺+
0 , then the optimal feedback control is

â(t, x, µ) = −(x − µ̄)Σ−1b +
1

2λ
exp

(

b⊺Σ−1b(T − t)
)

Σ−1b,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ−1bT
)

− X∗
t

]

Σ−1b, 0 ≤ t ≤ T, PΘq.s.,

and the optimal cost

V0 = − 1

4λ

[

exp
(

b⊺Σ−1bT
)

− 1
]

− x0.

3. ̺ ≤ ̺+
0 ≤ ¯̺, then the optimal feedback control is

â(t, x, µ) =































(

−(x − µ̄) b1

σ2
1

+ 1
2λ

exp
(

β2
1(T − t)

)

b1

σ2
1

0

)

, when β2
1 > β2

2 ,

(

0

−(x − µ̄) b2

σ2
2

+ 1
2λ

exp
(

β2
2(T − t)

)

b2

σ2
2

)

, when β2
2 > β2

1 ,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =











































[

x0 + 1
2λ

exp
(

β2
1T
)

− X∗
t

]

b1

σ2
1

0



 , 0 ≤ t ≤ T, PΘq.s., when β2
1 > β2

2 ,





0
[

x0 + 1
2λ

exp
(

β2
2T
)

− X∗
t

]

b2

σ2
2



 , 0 ≤ t ≤ T, PΘq.s., when β2
2 > β2

1 .

and the optimal cost

V0 = − 1

4λ

[

exp
(

max(β2
1 , β2

2)T
)

− 1
]

− x0.
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I’. If β1β2 ≤ 0, and

1’. ¯̺ < ̺−
0 , then the optimal feedback control is

â(t, x, µ) = −(x − µ̄)Σ̄−1b +
1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

Σ̄−1b,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ̄−1bT
)

− X∗
t

]

Σ̄−1b, 0 ≤ t ≤ T, PΘq.s.,

and the optimal cost

V0 = − 1

4λ

[

exp
(

b⊺Σ̄−1bT
)

− 1
]

− x0.

2’. ̺ > ̺−
0 , then the optimal feedback control is

â(t, x, µ) = −(x − µ̄)Σ−1b +
1

2λ
exp

(

b⊺Σ−1b(T − t)
)

Σ−1b,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ−1bT
)

− X∗
t

]

Σ−1b, 0 ≤ t ≤ T, PΘq.s.,

and the optimal cost

V0 = − 1

4λ

[

exp
(

b⊺Σ−1bT
)

− 1
]

− x0.

3’. ̺ ≤ ̺−
0 ≤ ¯̺, then the optimal feedback control is

â(t, x, µ) =































(

−(x − µ̄) b1

σ2
1

+ 1
2λ

exp
(

β2
1(T − t)

)

b1

σ2
1

0

)

, when β2
1 > β2

2 ,

(

0

−(x − µ̄) b2

σ2
2

+ 1
2λ

exp
(

β2
2(T − t)

)

b2

σ2
2

)

, when β2
2 > β2

1 ,

for (t, x, µ) ∈ [0, T ] ×R× P
2
(R), corresponding to the optimal portfolio strategy

α∗
t =











































[

x0 + 1
2λ

exp
(

β2
1T
)

− X∗
t

]

b1

σ2
1

0



 , 0 ≤ t ≤ T, PΘq.s., when β2
1 > β2

2 ,





0
[

x0 + 1
2λ

exp
(

β2
2T
)

− X∗
t

]

b2

σ2
2



 , 0 ≤ t ≤ T, PΘq.s., when β2
2 > β2

1 .

and the optimal cost

V0 = − 1

4λ

[

exp
(

max(β2
1 , β2

2)T
)

− 1
]

− x0.
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Proof. For any θ ∈ Θ = [̺, ¯̺], denote by κ1(θ), κ2(θ) the components of the variance risk
ratio Σ(θ)−1b, i.e.

κ1(θ) =
1

1 − θ2

( b1

σ2
1

− b2θ

σ1σ2

)

, κ2(θ) =
1

1 − θ2

( b2

σ2
2

− b1θ

σ1σ2

)

,

so that κ̄i = κi(¯̺), and κi = κi(̺), i = 1, 2. We have

κ1(θ)κ2(θ) =
1

σ1σ2(1 − θ2)2
f(θ), with f(θ) = β1β2(1 + θ2) − (β2

1 + β2
2)θ.

Let us introduce the function:

B(θ) := b⊺Σ(θ)−1b =
1

1 − θ2

(

β2
1 + β2

2 − 2β1β2θ
)

,

so that Σ∗ defined in (4.2) of Lemma 4.1, is Σ∗ = Σ(θ∗) with θ∗ ∈ arg minθ∈Θ B(θ), and
notice that the derivative of B is given by B′(θ) = −2σ1σ2κ1(θ)κ2(θ). Let us also consider
the smooth function v defined in (4.5) of Proposition 4.1, solution to the Bellman-Isaacs
PDE (3.8), given by

v(t, µ) = λ exp
(

− B(θ∗)(T − t)
)

Var(µ) − µ̄ − 1

4λ

[

exp
(

B(θ∗)(T − t)
)

− 1
]

,

for (t, x, µ) ∈ [0, T ]×R×P
2
(R), and the candidate for the optimal feedback control according

to the verification Theorem 3.1

â(t, x, µ) = a∗(∂µv(t, µ)(x), ∂x∂µv(t, µ)(x)).

It is convenient to introduce the so-called risk tolerance function:

R(t, x, µ) := − ∂µv(t, µ)(x)

∂x∂µv(t, µ)(x)
= −(x − µ̄) +

1

2λ
exp

(

B(θ∗)(T − t)
)

.

I. We first consider the case when β1β2 > 0. In this case, the function f is a strictly convex

parabolic function attaining its infimum on R at θ̄ =
β2

1
+β2

2

2β1β2
≥ 1, which implies that f is

strictly decreasing on (−∞, θ̄] hence on Θ. Therefore, we could not have simultaneously
f(̺) < 0 and f(¯̺) > 0, i.e., κ1κ2 < 0 and κ̄1κ̄2 > 0, which means that case (1) in Lemma
4.2 is empty. On the other hand, since f(0) = β1β2 > 0, f(1) = −(β1 − β2)2 ≤ 0, there
exists a unique ̺+

0 ∈ (0, 1] s.t. f(̺+
0 ) = 0, which is exactly given by the expression in (4.15).

We are then led to distinguish the following cases:

1. ¯̺ < ̺+
0 .

In this case, recalling that f is strictly decreasing on Θ = [̺, ¯̺], we see that for all θ ∈ Θ,

f(θ) > f(̺+
0 ) = 0, i.e. κ1(θ)κ2(θ) > 0, and thus: κ1κ2 > 0 and κ̄1κ̄2 > 0. We are then

in Case (2) of Lemma 4.2, and so a∗(p, M) = ā(p, M) := − p
M

Σ̄−1b. We also observe that
B′(θ) < 0 on Θ, i.e. B is decreasing on Θ, and thus: θ∗ = arg minθ∈Θ B(θ) = ¯̺, Σ∗ = Σ(¯̺),
B(θ∗) = b⊺Σ̄−1b. We then have for (t, x, µ) ∈ [0, T ] × R × P

2
(R),

â(t, x, µ) = R(t, x, µ)Σ̄−1b

= −(x − µ̄)Σ̄−1b +
1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

Σ̄−1b,
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which is clearly Lipschitz in (x, µ), and by the verification theorem 3.1, we deduce that the
optimal cost is

V0 = v(0, δx0
) = − 1

4λ

[

exp
(

b⊺Σ̄−1bT
)

− 1
]

− x0,

while the optimal portfolio strategy for (2.2) is given by

α∗
t = −(X∗

t − ρ̄∗
t )Σ̄−1b +

1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

Σ̄−1b, 0 ≤ t ≤ T, PΘ − q.s.(4.16)

It follows that the optimal mean process under any P
σ, Σ ∈ VΘ, is governed by

dEσ[X∗
t ] =

1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

b⊺Σ̄−1bdt, 0 ≤ t ≤ T,

hence explicitly given by

ρ̄∗
t = Eσ[X∗

t ] = x0 +
1

2λ
exp

(

b⊺Σ̄−1b(T − t)
)

[

exp
(

b⊺Σ̄−1bt
)

− 1
]

, 0 ≤ t ≤ T.

Plugging into (4.16), we obtain the explicit form of the optimal portfolio strategy:

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ̄−1bT
)

− X∗
t

]

Σ̄−1b, 0 ≤ t ≤ T, PΘq.s.

2. ̺ > ̺+
0 . In this case, f(¯̺) ≤ f(̺) < f(̺+

0 ) = 0, and thus: κ1κ2 < 0 and κ̄1κ̄2 < 0. We
are then in Case (3) of Lemma 4.2, and by similar arguments as in the previous case, we
find that θ∗ = arg minθ∈Θ B(θ) = ̺, and the optimal feedback control is given by

â(t, x, µ) = R(t, x, µ)Σ−1b

= −(x − µ̄)Σ−1b +
1

2λ
exp

(

b⊺Σ−1b(T − t)
)

Σ−1b.

We conclude as above that the optimal portfolio strategy and optimal cost are given by the
explicit form in the result of Case 2..
3. ̺ ≤ ̺+

0 ≤ ¯̺, i.e. ̺+
0 ∈ Θ. Notice that in this case, ̺+

0 is strictly smaller than 1 (recall

that ¯̺ < 1), and thus β1 6= β2. Again, since f is decreasing, we have f(θ) ≥ f(̺+
0 ) = 0, i.e.

κ1(θ)κ2(θ) ≥ 0, for θ ∈ [̺, ̺+
0 ], and f(θ) ≤ f(̺+

0 ) = 0, i.e. κ1(θ)κ2(θ) ≤ 0, for θ ∈ [̺+
0 , ¯̺],

hence: κ1κ2 ≥ 0 and κ̄1κ̄2 ≤ 0. We are then in Case (4) of Lemma 4.2, and so

a∗(p, M) =







(0, − p
M

b2

σ2
2

) if |β2| > |β1|
(− p

M
b1

σ2
1

, 0) if |β1| < |β2|.

We deal only with the case when |β2| > |β1| since the other case is similar. We see that
B′(θ) ≤ 0 for θ ∈ [̺, ̺+

0 ], i.e. B is decreasing on [̺, ̺+
0 ], and B′(θ) ≥ 0 for θ ∈ [̺+

0 , ¯̺], i.e.

B is increasing on [̺+
0 , ¯̺], and thus θ∗ = arg minθ∈Θ B(θ) = ̺+

0 = |β1|/|β2|. We compute
easily B(̺+

0 ) = β2
2 , and so â(t, x, µ) = (0, â2(t, x, µ)) with

â2(t, x, µ) = R(t, x, µ)
b2

σ2
2

= −(x − µ̄)
b2

σ2
2

+
1

2λ
exp

(

β2
2(T − t)

) b2

σ2
2

.

Then, arguing similarly as in Case 1., we conclude that the optimal portfolio strategy and
optimal cost are given by the explicit form in the result of Case 3..
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I’. We finally consider the case when β1β2 ≤ 0. When β1β2 < 0, the function f is a strictly

concave parabolic function attaining its infimum on R at θ̄ =
β2

1
+β2

2

2β1β2
≤ −1, and when β1β2

= 0, f is a linear function with strictly negative slope. In any case, the function f is strictly
decreasing on [θ̄, ∞) hence on Θ. Again as in Case I., we could not have simultaneously
f(̺) < 0 and f(¯̺) > 0, i.e., κ1κ2 < 0 and κ̄1κ̄2 > 0, which means that case (1) in Lemma
4.2 is empty. On the other hand, since f(0) = β1β2 ≤ 0, f(−1) = (β1 + β2)2 ≥ 0, there
exists a unique ̺−

0 ∈ [−1, 0] s.t. f(̺−
0 ) = 0, which is exactly given by the expression in

(4.15), i.e. ̺−
0 = −̺+

0 . Then, by distinguishing the cases when ̺−
0 > ̺, ̺−

0 < ̺ and ̺−
0 ∈

Θ, and proceeding by the same arguments as in Case I., we obtain the results described in
1’, 2’ and 3’. �

Remark 4.3 In the particular case when there is no ambiguity on the correlation, i.e. ̺
= ¯̺ = ̺, then the different cases in Theorem 4.1 give the explicit form for the optimal
mean-variance strategy given by the unified expression:

α∗
t =

[

x0 +
1

2λ
exp

(

b⊺Σ(ρ)−1bT
)

− X∗
t

]

Σ(ρ)−1b, 0 ≤ t ≤ T. (4.17)

Notice indeed that when ̺ = ̺+
0 (in the case β1β2 > 0, and to fix the idea |β1| > |β2|),

then the second component κ2(ρ) of Σ(ρ)−1b is zero, and the expression (4.17) coincides
with the one in Case I.3. of Theorem 4.1. We then recover the expression of the optimal
mean-variance strategy obtained in [7]. �

Remark 4.4 As in the example of the uncertain volatility model (see Remark 4.2), we
notice from the above calculations for the ambiguous correlation case that the expected
optimal wealth at time t under any prior probability measure P

σ does not depend on σ ∈
VΘ. Its value ρ̄∗

t is given by

ρ̄∗
t = x0 +

1

2λ
exp

(

B(θ∗)(T − t)
)

[

exp
(

B(θ∗)t
)

− 1
]

, 0 ≤ t ≤ T,

where B(θ) = b⊺Σ(θ)−1b, and θ∗ = arg minθ∈Θ B(θ) is explicitly given according to the
following cases:

I. If β1β2 > 0, and

1. ¯̺ < ̺+
0 , then θ∗ = ¯̺,

2. ̺ > ̺+
0 , then θ∗ = ̺,

3. ̺+ ∈ Θ = [̺, ¯̺], then θ∗ = ̺+
0 , and B(θ∗) = max(β2

1 , β2
2).

I’. If β1β2 ≤ 0, and

1’. ¯̺ < ̺−
0 , then θ∗ = ¯̺,

2’. ̺ > ̺−
0 , then θ∗ = ̺,

3’. ̺− ∈ Θ = [̺, ¯̺], then θ∗ = ̺−
0 , and B(θ∗) = max(β2

1 , β2
2).

�
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Remark 4.5 (Financial interpretation)
To fix the idea, we focus on the usual case of two stocks when β1 > 0, β2 > 0. The coefficient
̺+

0 can be viewed as a measure for the “proximity" between the two stocks: a small ̺+
0

(close to zero) means that one stock is much better than the other one in the sense that
it has a much larger Sharpe ratio, while large ̺+

0 (close to one) means that the two stocks
are similar in terms of Sharpe ratio.

When ¯̺ < ̺+
0 , this means that no stock is “dominating" the other one, and it is optimal

to invest in both assets with a directional trading, that is buying or selling simultaneously
(recall that in this case κ̄1κ̄2 > 0), and the worst-case scenario refers to the highest corre-
lation ρ̄ where the diversification effect is minimal. The optimal strategy corresponds to
the optimal mean-variance portfolio strategy in a market with constant covariance-variance
matrix Σ̄.

When ̺ > ̺+
0 , this means that one asset is clearly dominating the other one, and it

is optimal to invest in both assets with a spread trading, that is buying one and selling
another (recall that in this case κ1κ2 < 0), and the worst-case scenario corresponds to the
lowest correlation where the profit from the spread trading is minimal.

When ̺ ≤ ̺+
0 ≤ ¯̺, it is optimal to invest in either one of the stocks, but not both,

since the directional trading is not optimal for high correlation and the spread trading is
not optimal for low correlation. The selection for the risky asset is then naturally made on
the one with the highest Sharpe ratio.

Similar interpretation was derived in [11] for robust portfolio optimization with utility
function, but here the different cases are explicitly described in terms of the correlations
¯̺, ̺, and ̺+

0 . We also notice that their last case: both directional and spread trading, i.e.,
κ̄1κ̄2 > 0 and κ1κ2 < 0, can never happen as shown in the proof of Theorem 4.1. �

5 Robust efficient frontier

Let us denote by U0(ϑ) the optimal worst-case expected terminal wealth given a worst-case
variance risk ϑ > 0, i.e.,

U0(ϑ) = sup
{

E(α) : α ∈ A, R(α) ≤ ϑ},

where we recall the notations from the robust Markowitz problem (2.3):

E(α) := inf
Pσ∈PΘ

Eσ[Xα
T ], R(α) := sup

Pσ∈PΘ

Varσ(Xα
T ).

By the linearity of Xα w.r.t. α lying in the convex set A, the convexity (resp. the linearity)
of X ∈ L2(FT ,Pσ) 7→ Varσ(X) (resp. Eσ[X]), it is easily seen that the function U0 is concave
w.r.t. ϑ ∈ (0, ∞).

We now put in the framework of Section 4 (cases of uncertain volatilities or ambiguous
correlation), and emphasize the dependence of V0 = V0(λ), and α∗ = α∗,λ, for the optimal
cost and optimal portfolio strategy to the robust mean-variance portfolio selection problem
(2.2) with risk-aversion parameter λ:

V0(λ) = inf
α∈A

sup
Pσ∈PΘ

(

λVarσ(Xα
T ) − Eσ[Xα

T ]
)

= sup
Pσ∈PΘ

(

λVarσ(Xα∗,λ

T ) − Eσ[Xα∗,λ

T ]
)

.
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From the results of Section 4, we recall that

V0(λ) = − 1

4λ

[

exp
(

B(θ∗)T
)

− 1
]

, (5.1)

where B(θ) = b⊺Σ(θ)−1b, and θ∗ = arg minθ∈Θ B(θ). Moreover, a crucial observation (see
Remarks 4.2 and 4.4) from the explicit solutions found in Section 4 is that the expected

optimal terminal wealth Eσ[Xα∗,λ

T ] under any prior probability measure P
σ does not depend

actually on Σ ∈ VΘ, and thus

E(α∗,λ) = Eσ[Xα∗,λ

T ] =: ρ̄∗,λ
T , ∀Σ ∈ VΘ, (5.2)

with

ρ̄∗,λ
T = x0 +

1

2λ

[

exp
(

B(θ∗)T
)

− 1
]

. (5.3)

By adapting standard arguments from convex optimization theory, we show the duality
relation between the robust mean-variance problem and the robust Markowitz problem,
namely:

V0(λ) = infϑ>0

[

λϑ − U0(ϑ)
]

, ∀λ > 0,
U0(ϑ) = infλ>0

[

λϑ − V0(λ)
]

, ∀ϑ > 0.
(5.4)

Indeed, for fixed ϑ > 0, and for any ε > 0, there exists an ε-optimal control for U0(ϑ), that
is a control α̃ε ∈ A s.t. U0(ϑ) ≤ E(α̃ε) + ε, and R(α̃ε) = ϑ. It follows that for all λ > 0,

V0(λ) ≤ sup
Pσ∈PΘ

(

λVarσ(Xα̃ε

T ) − Eσ[Xα̃ε

T ]
)

≤ λ sup
Pσ∈PΘ

Varσ(Xα̃ε

T ) − inf
Pσ∈PΘ

Eσ[Xα̃ε

T ] = λR(α̃ε) − E(α̃ε)

≤ λϑ − U0(ϑ) + ε.

Since ε is arbitrary, and the above relation holds for any fixed ϑ > 0, this shows that

V0(λ) ≤ inf
ϑ>0

[

λϑ − U0(ϑ)
]

, ∀λ > 0. (5.5)

Conversely, for fixed λ > 0, let us consider the optimal control α∗,λ ∈ A for V0(λ), and set

ϑλ := R(α∗,λ) which is strictly positive since the terminal wealth Xα∗,λ

T is not constant.
Then, by definition of U0(ϑλ), we have E(α∗,λ) ≤ U0(ϑλ), and so by (5.2)

V0(λ) = sup
Pσ∈PΘ

(

λVarσ(Xα∗,λ

T ) − Eσ[Xα∗,λ

T ]
)

= λR(α∗,λ) − E(α∗,λ) (5.6)

≥ λϑλ − U0(ϑλ).

Together with (5.5), this shows the first duality relation in (5.4), i.e., V0 is the Fenchel-
Legendre transform of U0, and ϑλ attains the infimum in this transform:

V0(λ) = inf
ϑ>0

[

λϑ − U0(ϑ)
]

= λϑλ − U0(ϑλ). (5.7)

By concavity of U0, we deduce (see e.g. [21]) the second duality relation in (5.4), i.e., U0 is
the Fenchel-Legendre transform of V0.
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Next, observe from the explicit expression of V0 in (5.1), that V0 is a strictly concave
C1 function on (0, ∞), with V ′

0(0+) = ∞, V ′
0(∞) = 0. Then, for any fixed ϑ > 0, there

exists a unique λϑ > 0 that attains the infimum of λ ∈ (0, ∞) 7→ λϑ − V0(λ), characterized
by V ′

0(λϑ) = ϑ, and explicitly given by

λϑ =

√

exp
(

B(θ∗)T
)

− 1

4ϑ
. (5.8)

Relation (5.8) gives the explicit link between the variance risk in the robust Markowitz
problem and the Lagrange multiplier in the robust mean-variance problem. This Lagrange
multiplier λ is then interpreted as a risk-aversion parameter: the larger is λϑ, the lower is
the variance risk ϑ. From the duality relation (5.4), we then have:

V0(λϑ) = λϑϑ − U0(ϑ) = inf
ϑ′>0

[λϑϑ′ − U0(ϑ′)],

which means that ϑ attains the infimum of ϑ′ ∈ (0, ∞) 7→ λϑϑ′ −U0(ϑ′). Since V0 is strictly
concave, its Fenchel-Legendre transform U0 is also strictly concave (see e.g. [21]), and thus
this infimum is unique. Recalling (5.7), this shows that ϑ = ϑλϑ

= R(α∗,λϑ). Together
with (5.6), we then obtain:

U0(ϑ) = λϑϑ − V0(λϑ)

= λϑR(α∗,λϑ) −
[

λϑR(α∗,λϑ) − E(α∗,λϑ)
]

= E(α∗,λϑ),

which proves that α̂ϑ = α∗,λϑ is a solution to the robust Markowitz problem U0(ϑ), i.e., a
robust efficient portfolio strategy given a worst-case variance risk ϑ > 0. From (5.2), (5.3)
and (5.8), we get the explicit form of the robust efficient frontier:

U0(ϑ) = E(α̂ϑ) = ρ̄∗,λϑ

T

= x0 +
√

ϑ
√

exp
(

B(θ∗)T
)

− 1, ϑ > 0 (5.9)

= x0 +
√

R(α̂ϑ)
√

exp
(

B(θ∗)T
)

− 1.

To summarize the above discussion, we have the following result:

Theorem 5.1 The efficient frontier of the robust Markowitz problem (2.3) is explicitly
given by the relation (5.9).

The relation (5.9) determines explicitly the tradeoff between the worst-case mean (re-
turn) and worst-case variance (risk), and can be inverted: given an expected return level
m > x0, the risk that the robust investor can take is:

ϑ̂(m) = U−1
0 (m) =

(m − x0)2

exp
(

B(θ∗)T
)

− 1
, m > x0.

Notice that the robust efficient frontier (5.9) involves a square-root shape as in the classical
efficient frontier in Markowitz problem, see e.g. [25].

Let us consider the Sharpe ratio for a portfolio strategy α ∈ A, defined by

S(α) =
E[Xα

T ] − x0
√

Var(Xα
T )

,
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that is the excess of the expected return per unit of the standard deviation, evaluated under
the true historical probability measure. By definition of the robust Markowitz problem, and
from the relation (5.9), we have a lower bound for the Sharpe ratio of any robust efficient
portfolio strategy α̂ϑ:

S(α̂ϑ) ≥ E(α̂ϑ) − x0

R(α̂ϑ)
=
√

exp
(

B(θ∗)T
)

− 1 =: S.

In other words, a robust investor can achieve a Sharpe ratio at least greater than S > 0,
and this lower bound is robust to any model misspecification on the variance-covariance
matrix.

6 Robust Sharpe ratio vs model misspecification

In this section, we illustrate through two examples how robust mean-variance portfolio
strategies may help to protect the investor from model misspecification, and actually can
increase the Sharpe ratio.

6.1 A Heston-type stochastic volatility model

We consider a market with one risky asset, and assume that the true dynamics of the stock
price is given by a Heston-type stochastic volatility model

{

dSt = St(bdt + σtdWt)

dσ2
t = κ(σ2

∞ − σ2
t )dt + η

√

(σ2
t − σ2)(σ̄2 − σ2

t )dW̃t

(6.1)

where W, W̃ are two Brownian motions under the real probability measure P, with negative
correlation ̺ representing the leverage effect, κ > 0, σ∞ ∈ [σ, σ̄], 0 < σ ≤ σ̄ < ∞. Compared
to the original Heston stochastic volatility model where the variance σ2

t follows a Cox-
Ingersoll-Ross process, and is thus valued in (0, ∞), we consider here a variation where the
variance follows a Wright-Fisher dynamics, and is bounded, valued in [σ2, σ̄2].

We now consider a simple investor who knows the drift b but specifies incorrectly the
volatility by considering that it is equal to a constant σ̃0. In other words, she/he believes
that the stock price is governed by a Black-Scholes model of parameters (b, σ̃0). Therefore,
from the result in [25] or as a particular case of our paragraph 4.1 when Θ is reduced to the
singleton {σ̃2

0}, the optimal mean-variance portfolio strategy of this “misspecified" investor
with risk-aversion parameter λ > 0, and initial capital x0 is given by:

α̃t = − b

σ̃2
0

(X̃t − Eσ̃0
[X̃t]) +

b

2λσ̃2
0

exp
( b2

σ̃2
0

(T − t)
)

,

=
b

σ̃2
0

[

x0 +
1

2λ
exp

( b2

σ̃2
0

T
)

− X̃t

]

, 0 ≤ t ≤ T, (6.2)

where X̃t is the wealth process with feedback strategy α̃, and Eσ̃0
is the expectation under

the Black-Scholes model of parameters (b, σ̃0). Notice that the evolution of the wealth
process X̃ under the real probability measure P is

dX̃t = α̃t
dSt

St
= α̃tbdt + α̃tσtdWt,
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which implies that its expected return under P is governed by

dE[X̃t] = bE[α̃t]dt =
b2

σ̃2
0

[

x0 +
1

2λ
exp

( b2

σ̃2
0

T
)

− E[X̃t]
]

dt.

where we used (6.2). This shows that the dynamics of E[X̃t] is the same as the one of
Eσ̃0

[X̃t], and thus the excess expected return under P is also the excess expected return
under Pσ̃0

, explicitly given by

E[X̃T ] − x0 = Eσ̃0
[X̃T ] − x0 =

1

2λ

[

exp
( b2

σ̃2
0

T
)

− 1
]

.

The variance risk of X̃T under P is not explicit, but can be approximated by N Monte-Carlo
simulations (X̃i)i=1,...,N of X̃ under P via:

Var(X̃T ) ≃ 1

N

N
∑

i=1

(

X̃i
T − E[X̃T ]

)2
.

We can then compute the Sharpe ratio S(α̃) = E[X̃T ]−x0√
Var(X̃T )

for the “misspecified" investor.

The model parameters used in the simulations for the bounded Heston stochastic vola-
tility model (6.1) are given in Table 1. We fix an investment horizon T = 1 year, a
risk-aversion parameter λ = 5, and use N = 500000 simulations for each set of parameters.

On the other hand, let us consider a robust investor with risk-aversion parameter λ,
initial capital x0, who knows only the bounds σ, σ̄ of the volatility, and then follows a
robust efficient portfolio strategy α∗ = α∗,λ given by

α∗
t =

b

σ̄2

[

x0 +
1

2λ
exp

( b2

σ̄2
T
)

− X∗
t

]

, 0 ≤ t ≤ T.

Her/his excess expected return under P is then explicitly given by

E[X∗
T ] − x0 =

1

2λ

[

exp
( b2

σ̄2
T
)

− 1
]

.

The variance risk of X∗
T under P is approximated by Monte-Carlo simulations of X∗ under

P, and we then compute the Sharpe ratio S(α∗) =
E[X∗

T
]−x0√

Var(X∗
T

)
for the robust investor, which

is known a priori to be larger than S =
√

exp
(

b2

σ̄2 T
)

− 1. Notice that the optimal stra-
tegy of the robust investor corresponds to the optimal strategy of a simple investor with
misspecified volatility σ̄.

Table 2 and Figure 1 show the Sharpe ratios of the robust investor and of the simple
investor when varying the misspecified volatility σ̃0. Since the Sharpe ratios are computed
by Monte-Carlo simulations, we also put in Table 2 a confidence interval. We see that
the Sharpe ratio of the robust investor can perform noticeably better than the one of the
simple investor who uses a misspecified volatility: this gap is all the more important that
the misspecified volatility is far from the stationary value σ∞ of the true volatility, for
example when σ̃0 = σ. On the other hand, we notice that the Sharpe ratio of the simple
investor is obviously equal to the one of the robust investor when the misspecified volatility
σ̃0 is equal to the worst-case scenario of volatility σ̄.
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b κ η σ σ∞ σ̄ ρ

20% 2 1 15% 30% 45% -0.7

Table 1: Parameter values used in the bounded Heston stochastic volatility model.

σ̃0 σ 20% σ∞ σ̄ 50%

S 0.4673 0.4673 0.4673 0.4673 0.4673

S(α∗) 0.6831 0.6831 0.6831 0.6831 0.6831

95% confidence interval for S(α∗) [0.6817,0.6844] [0.6817,0.6844] [0.6817,0.6844] [[0.6817,0.6844] [0.6817,0.6844]

S(α̃) 0.1666 0.1839 0.64 0.6831 0.6809

95% confidence interval for S(α̃) [0.1662,0.1669] [0.1835,0.1842] [0.6387,0.6412] [0.6817,0.6844] [0.6795,0.6822]

Table 2:

Sharpe ratios S(α∗) of the robust investor and S(α̃) of the investor for different
misspecified values of σ̃0.
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Figure 1: Sharpe ratio S(α̃) for different values of σ̃0
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6.2 A stochastic correlation model

We consider a market with two risky assets, and motivated by the model in [7], assume
that the true dynamics of the stock price S = (S1, S2) is governed by

dSt = diag(St)
[

bdt + γ(̺t)dWt

]

=

(

S1
t

[

b1dt + σ1

√

1 − ̺2
t dW 1

t + σ1̺tdW 2
t

]

S2
t

[

b2dt + σ2dW 2
t

]

)

, (6.3)

where b = (b1, b2), σ1 > 0, σ2 > 0 are known constants, and (̺t) is a stochastic correlation
process valued in [0, ¯̺], with a known positive constant ¯̺ < 1, and governed by a Wright-
Fisher dynamics

d̺t = κ(̺∞ − ̺t)dt + η
√

̺t(¯̺ − ̺t)dW̃t, (6.4)

where κ ≥ 0, ̺∞ ∈ [0, ¯̺], η > 0, and W̃ is a Brownian motion, assumed here for simplicity,
to be independent of the two dimensional Brownian motion W = (W 1, W 2) under the real
probability measure P.

We now consider a simple investor who knows the drifts bi, the volatilities σi, hence the
corresponding Sharpe ratios βi = bi/σi, of the two assets i = 1, 2, but specifies incorrectly
the correlation by considering that it is equal to a constant ˜̺0 ∈ (−1, 1). Therefore, from
the result in [7] (see also Remark 4.3), the optimal mean-variance portfolio strategy of this
“misspecified" investor with risk-aversion parameter λ > 0, and initial capital x0 is given
by:

α̃t =
[

x0 +
1

2λ
exp

(

B̃0T
)

− X̃t

]

Σ̃−1
0 b, 0 ≤ t ≤ T,

where

Σ̃0 := Σ(˜̺0) =
( σ2

1 σ1σ2 ˜̺0

σ1σ2 ˜̺0 σ2
2

)

, Σ̃−1
0 b =

1

1 − ˜̺2
0

(

β1−β2 ˜̺0

σ1
β2−β1 ˜̺0

σ2

)

B̃0 := b⊺Σ̃−1
0 b =

1

1 − ˜̺2
0

(

β2
1 + β2

2 − 2β1β2 ˜̺0
)

,

and X̃ is the wealth process with feedback strategy α̃, governed under the real probability
measure P by

dX̃t = α̃⊺

t bdt + α̃⊺

tγ(̺t)dWt.

Its expected return under P is then governed by

dE[X̃t] = b⊺
E[α̃t]dt = B̃0

[

x0 +
1

2λ
exp

(

B̃0T
)

− E[X̃t]
]

dt,

which gives the excess of expected return at T :

E[X̃T ] − x0 =
1

2λ

[

exp
(

B̃0T
)

− 1
]

.
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The variance risk of X̃T under P is not explicit, but can be approximated by N Monte-Carlo
simulations (X̃i)i=1,...,N of X̃ under P via:

Var(X̃T ) ≃ 1

N

N
∑

i=1

(

X̃i
T − E[X̃T ]

)2
.

We can then compute the Sharpe ratio S(α̃) = E[X̃T ]−x0√
Var(X̃T )

for the “misspecified" investor.

The model parameters used in the simulations of X̃ in the stochastic correlation model
(6.3)-(6.4) are given in Table 3. We fix an investment horizon T = 1 year, a risk-aversion
parameter λ = 5, and use N = 500000 simulations for each set of parameters.

On the other hand, let us consider a robust investor with risk-aversion parameter λ,
initial capital x0. By taking the parameters in Table 3, we notice that ̺+

0 = β2/β1 ∈ [0, ¯̺],
and thus from the result in Theorem 4.1, her/his robust efficient portfolio strategy α∗ =
α∗,λ is given by

α∗
t =





[

x0 + 1
2λ

exp
(

β2
1T
)

− X∗
t

]

b1

σ2
1

0



 , 0 ≤ t ≤ T,

and her/his wealth process X∗ is governed under the real probability measure P by

dX∗
t = (α∗

t )⊺bdt + (α∗
t )⊺γ(̺t)dWt

=
[

x0 +
1

2λ
exp

(

β2
1T
)

− X∗
t

]

β2
1dt +

[

x0 +
1

2λ
exp

(

β2
1T
)

− X∗
t

]

β1

√

1 − ρ2
t dW 1

t

+
[

x0 +
1

2λ
exp

(

β2
1T
)

− X∗
t

]

β1ρtdW 2
t . (6.5)

The excess of expected return under P is explicitly given by

E[X∗
t ] − x0 =

1

2λ

[

exp
(

β2
1T
)

− exp
(

β2
1(T − t)

)]

, 0 ≤ t ≤ T. (6.6)

and we can actually compute explicitly in this case the variance risk of X∗
t under the real

probability measure. Indeed, denoting by Y ∗
t = X∗

t − E[X∗
t ], we see from (6.5)-(6.6) that

dY ∗
t = −β2

1Y ∗
t dt +

( 1

2λ
eβ2

1
(T −t) − Y ∗

t

)[

β1

√

1 − ρ2
t dW 1

t + β1ρtdW 2
t

]

,

so that by Itô’s formula, and taking expectation under P:

dE|Y ∗
t |2 =

(

− β2
1E|Y ∗

t |2 +
β2

1

4λ2
e2β2

1
(T −t))dt.

It follows that

Var(X∗
t ) = E|Y ∗

t |2 =
e2β2

1
(T −t)

4λ2

(

eβ2
1

t − 1
)

, 0 ≤ t ≤ T.

In particular, we deduce the Sharpe ratio of the robust investor:

S(α∗) =
E[X∗

T ] − x0
√

Var(X∗
T )

=
√

exp
(

β2
1T
)

− 1 = S,
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β1 β2 ¯̺ κ ̺∞ η

1.5 0.5 0.95 5 0.7 20%

Table 3: Parameter values used in the stochastic correlation model

˜̺0 0.1 ̺+
0 = 1/3 ̺∞ 0.8

S(α∗) = S 2.9134 2.9134 2.9134 2.9134

S(α̃) 2.1085 2.9134 4.2008 5.6798

95% confidence interval for S(α̃) [2.1043,2.1126] [2.9076,2.9191] [4.1925,4.2090] [5.6686,5.6909]

Table 4:

Sharpe ratios S(α∗) of the robust investor and S(α̃) of the investor for different
misspecified values of ˜̺0.

which means that in the case when ̺+
0 ∈ [0, ¯̺], the Sharpe ratio attains its lower bound S.

Notice that the optimal strategy of the robust investor is equal to the optimal strategy of
a simple investor with misspecified correlation ˜̺0 = ̺+

0 .
Table 4 and Figure 2 show the Sharpe ratios of the robust investor and of the simple

investor when varying the misspecified correlation ˜̺0 (since the Sharpe ratio of the simple
investor is computed by Monte-Carlo simulations, we also put in Table 4 its confidence
interval at level 95%). They obviously coincide by definition when the misspecified corre-
lation ˜̺0 is equal to ̺+

0 (here equal to β2/β1 = 1/3). On the other hand, we see that the
Sharpe ratio of the robust investor may perform worse than the one of the simple investor,
especially when the misspecified correlation ˜̺0 is close from the true stationary correlation
̺∞, but performs better when ˜̺0 is smaller than ̺+

0 .
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Figure 2: Sharpe ratio S(α̃) for different values of ˜̺0
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A Appendix: Differentiability on Wasserstein space and Itô’s

formula

We first recall the notion of derivative with respect to a probability measure, as introduced
by P.L. Lions in his course at Collège de France, and detailed in the lecture notes [5].

This notion is based on the lifting of functions u : P
2
(R) → R into functions U defined on

L2(G;R) = L2(Ω, G,P;R) (the set of square-integrable random variables on some probability
space (Ω, G,P)) by U(X) = u(L(X)), where L(X) is the law of X on (Ω, G,P). We say that
u is differentiable (resp. C1) on P

2
(R) if the lift U is Fréchet differentiable (resp. Fréchet

differentiable with continuous derivatives) on L2(G;R). In this case, the Fréchet derivative
[DU ](X), viewed as an element DU(X) of L2(G;R) by Riesz’ theorem: [DU ](X)(Y ) =
E[DU(X).Y ], can be represented as

DU(X) = ∂µu(L(X))(X), (A.1)

for some function ∂µu(L(X)) : R → R, which is called derivative of u at µ = L(X).
Moreover, ∂µu(µ) ∈ L2(µ) for µ ∈ P

2
(R) = {L(X), X ∈ L2(G;R)}. We say that u is

partially C2 if it is C1, and one can find, for any µ ∈ P
2
(R), a continuous version of the

mapping x ∈ R 7→ ∂µu(µ)(x), such that the mapping (µ, x) ∈ P
2
(R) × R 7→ ∂µu(µ)(x)

is continuous at any point (µ, x) such that x ∈ Supp(µ), and if for any µ ∈ P
2
(R), the

mapping x ∈ R 7→ ∂µu(µ)(x) is differentiable, its derivative being jointly continuous at any
point (µ, x) such that x ∈ Supp(µ). The gradient is then denoted by ∂x∂µu(µ)(x).

For example, consider a linear function: u(µ) =
∫

ϕ(x)µ(dx). Its lifted function is U(X)
= E[ϕ(X)], whose Fréchet derivative is given by: [DU ](X)(Y ) = E[Dxϕ(X).Y ], from which
we see that ∂µu(µ) = Dxϕ, and thus ∂x∂µu(µ) = D2

xϕ. In particular, when ϕ(x) = x, i.e.,
u(µ) = µ̄, then ∂µu(µ) = 1. Another example used in this paper is a function u(µ) =
Var(µ) :=

∫

(x − µ̄)2µ(dx). In this case, its lifted function is U(X) = Var(X), from which
we see that DU(X) = 2(X − E[X]), and thus ∂µu(µ)(x) = 2(x − µ̄), ∂x∂µu(µ)(x) = 2.

We next recall a chain rule (or Itô’s formula) for functions defined on P
2
(R), proved

independently in [4] and [6]. Let us consider a real-valued Itô process

dXt = btdt + σtdWt, X0 ∈ L2(F0;R),

where (bt) and (σt) are progressively measurable processes with respect to the filtration
generated by the d-dimensional Brownian motion W , valued respectively in R

d and R
d×d,

and satisfying the integrability condition: E

[

∫ T
0 |bt|2 + |σt|2dt

]

< ∞. Let u ∈ C2(P
2
(R)).

Then, for all t ∈ [0, T ],

u(L(Xt)) = u(L(X0)) +

∫ t

0
E
[

∂µu(L(Xs))(Xs).bs

+
1

2
tr
(

∂x∂µu(L(Xs))(Xs)σsσ⊺

s

)]

ds. (A.2)
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