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A comparative study of low sampling non intrusive
load dis-aggregation

Kaustav Basu, Ahmad Hably, Vincent Debusschere, Seddik Bacha, Geert Jan Dirven, Andres Ovalle

Abstract—Non-intrusive load monitoring (NILM) deals with
the identification and subsequent energy estimation of the indi-
vidual appliances from the smart meter data. The state of the art
applications typically runs once per day and reports the detected
appliances. In this work, data driven models are implemented for
two different sampling rates (10 seconds and 15 minutes). The
models are trained for 20 houses in the Netherlands and tested for
a period of 4-weeks. The results indicate that the disaggregation
methods is applicable for both sampling cases but with different
use-case.

Index Terms—Non-intrusive load monitoring, load disaggre-
gation, Signal Processing, Smart Meters, Energy Management,
Smart Grids.

I. INTRODUCTION

Smart meters are getting deployed worldwide on a large
scale. This large scale generation of digital energy data
mandates a deeper look inside the consumption patterns of
different appliances present inside the house. The insight into
the residential load consumption has advantages for both the
energy utility provider as well as for the consumer. In the
context of smart grids, insights on the energy consumption
patterns through appliance usage helps to manage the energy
distribution [1], [2], especially for the integration of more
fluctuating energy sources (i.e. renewable). The strategies
commonly employed are demand response to reduce peak
demand by eliminating electricity use, or by shifting it to
non-peak times [3], [4]. The time of use pricing has also
been successfully employed to this end. From the point of
view of energy providers, load identification can also play
an important part in future prediction of usages of particular
appliances where the process of historical data collection is
made as less intrusive as possible [5], [6]. The current smart
meters are capable to report the total electrical load, to further
develop energy management strategies, appliance usage insight
needs to be provided. The appliances in the residence could be
directly monitored but the associated cost and inconvenience
to be used are the primary reasons that smart meters are unable
to succeed in the market. Non-intrusive methods propose an
attractive alternative with reduced cost and manual overheads.

To achieve this goal new data analysis mechanisms have
to be proposed to inhabitants for their satisfaction and energy
costs reduction. Just a transfer from an analogue to a digital
system is not good enough for the customers. A comprehensive
and qualitative data analysis mechanism has to be proposed
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coupled with the subsequent load management strategies. The
residential building’s sector is mainly considered in this work
but the tools and methodology are fully applicable to any other
kind of buildings. Next to the efforts necessary on the data-
acquisition side, it is equally important to develop necessary
insights in consumer needs. The NILM technologies heavily
rely on the granularity of data. This work primarily digs deep
into the two commonly found sampling rates and highlights
the use cases that can be generated from it. The methodology
used is data driven and focuses on the fundamental signal
parameters that differentiates between appliances.

II. PAST WORK

The NILM can broadly segmented into six data flow phases
[7], namely, data acquisition followed by data processing,
event detection, feature extraction, event classification and
finally energy computation.
In the early 90’s one of the pioneering work in load dis-
aggregation was published [8]. It proposed to identify ap-
pliances by their respective ON/OFF transitions. It tried to
consider power consumption changes (i.e. events) both in the
active and reactive power of the signal. The current output
of a NILM algorthm, indentfying the various high consuming
appliances in the residence is shown in Fig. 1. Methods were

Fig. 1: Non-Intrusive Load Monitoring (blue: no appliances
detected).

then proposed to identify individual appliances from their
On/Off transitions. From that time, most of the approaches
were event-based and at a high sampling rate, typically less
than one second. Even though is considered one field, there are
two fundamentally different directions. The main difference



is in the granularity of the energy data that is considered,
which drives the use of tools and analysis techniques. The
two granularities are approximately:

• High sampling rate ≥50 Hz (≤ 0.02 s) (up to several
kHz).

• Low sampling rate ≤1 Hz (≥ 1 s).
Signals are primarily analysed using event and non-event based
techniques. All high sampling rate data are generally analysed
using event based techniques but in the low sampling case it is
analysed by both event based and non-event based techniques.
These techniques are discussed in details in the following
sections.

1) High sampling rate NILM (event based): High-
frequency measurements allow the analysis of not just the
energy used, but also the analysis of the structure of the
current-voltage waveform itself [9]. Running different appli-
ances introduce different signatures of disturbances of the
pure sine waveform, which can be used to disaggregate
them. Getting this high-frequency data requires specializing
measuring equipment such as current clamp. In [10], a method
has been proposed to generate signatures based on the active
power range, reactive power range, harmonic content range,
with or without spike, single phase or double-phase and
searching time. Approaches typically consist of identifying
the steady state or in some cases transient state features [11],
[12]. Subsequently, these signatures are matched with earlier
learned models using a pattern recognition algorithm [13],
[14]. The drawbacks of these approaches are mainly hardware
requirement due to high sampling rates and the impracticality
of the process being totally non-intrusive [15], [16]. These
methods do not fit well into the smart meter sampling rate, so
separate device has to be installed for training, visualisation
and communication to the grid. This is a major drawback for
these methods, commercially and practically speaking. The
load separation at a high sampling rate of all the appliances
also raise privacy concerns as user activity can be easily
detected, interpreted and monitored [7]. The techniques rely
on first identifying the power level transition of different
appliances which in the NILM literature is called events. In
Fig. 2 the event based technique is shown. Fig. 2a shows the
generic appliance On/Off locations which are identified and
subsequently matched to detect the appliance.

2) Low sampling rate NILM (event and non-event based):
Low-frequency measurements obviously complicate the dis-
aggregation process, but have one major advantage: They
are easily available from smart meters from all over the
world. Typically, these meters supply whole-home electricity
usage every 1s, 10s or more. Since all the information of the
waveform is lost, and typically only active power is available
(and not reactive power), different techniques are required for
disaggregation. The major issue at low sampling rate is that
low energy consuming devices are difficult to be detected as
the switching events are not very prominent. However, high
energy consuming appliances, such as water heater or washing
machine can still be identified with reasonable precision even
at sampling rate of 15 minutes for example [17], [18]. In
[19], [20] the states of various residential appliances were
identified for consumption reading every 10-minutes in France.

The results indicated that high consuming appliances specially
water heater could be identified even at that rate. The above
methods were based on energy consumption reading above
10-minutes.
Considering the constraint of low sampling rate, the differ-
entiation of the methods is directly dependent on the choice
of algorithms. Algorithms have further been implemented and
tested in the field of load monitoring at 1 or 10 seconds. [21]
has proposed a method generating appliance feature using the
eigen vectors and during testing time using a pattern recogni-
tion to match the signatures. A method partially disaggregating
total household electricity usage into five load categories has
been proposed at a low sampling rate in [22] where different
sparse coding algorithms are compared and a Discriminative
Disaggregation Sparse Coding algorithm is tested. A feature-
based Support Vector Machine classifier accuracy is also
mentioned but is not presented. The method of [22] is an
implementation of the blind source separation problem, which
aims at disaggregating mixture of sources into its individual
sources. A classic example for this would be the problem
of identifying individual speakers in a room having multiple
mikes placed at different locations. In the NILM context, the
problem is undermined as there is only one mixture and a
large number of sources. Another issue using blind source
separation is the assumption of no prior information about the
sources. On the contrary, in the NILM context, the sources
(appliances) do have separate usage patterns which could
be used. Nevertheless, blind source separation still remains
a promising direction of research in this domain. Temporal
graphical models such as Hidden Markov Models (HMM)
also have been promisingly used in this domain as they are
a classical method for sequence learning [23]. They have
been successfully used in many domains, especially speech
recognition. In the NILM context, the problem is to learn
the model parameters given the set of observations as input
sequence and appliances states as output. HMM also considers
sequential patterns in consumption but in the NILM context,
at a very low sampling rate it seems to have a sensibility to
training noise.

[24] proposed a technique using subtractive clustering and
the maximum likelihood classifier. The features used to iden-
tify appliances are the power levels and the ON/OFF durations.
The power levels are computed using a normal distribution
and the ON/OFF duration using a Weibull distribution. On
average for the six appliances under consideration, the average
accuracy is 86%. In the proposed work the technique is
enhanced to take into account the various power levels or
states at which the appliance operate and consider temporal
correlation among them. It is tested for a commercially viable
solution considering all the practical challenges encountered
during implementation. The remainder of the paper concerns
the identification of electrical appliances usages from the smart
meter monitoring. The main objective of this work is to
compare NILM techniques for both 10 second and 15 minutes
data.The proposed algorithm at 10-second sampling is a novel
event based algorithm which improves the existing literature
by modelling temporal relations between appliances electrical
components. This work implements the one proposed in [19],



(a) NILM event based (generic). (b) The On/Off events generated from raw data.

Fig. 2: Event based NILM, both generic and practical example.

[25] for consumption readings at 15-minutes for houses in
the Netherlands and training the model on benchmark Dutch
houses using plugs. The results obtained from the data at
these commonly observed sapling rates are then compared. In
Fig. 3 the non-event based method is shown and the electrical-
signature of a washing machine at 15-minutes.

III. DATABASE ARCHITECTURE

The database is provided from Greeniant B.V, which is
a smart meter analytics company based in the Netherlands.
The database consists of more than three thousand residential
customers with the corresponding meter reading hosted in
cloud based server. The training of the proposed model is
built on a subset of the Greeniant B.V database (approx.
20 houses) with plugs for various appliance reading. For the
purpose of validation the technology, four new houses were
selected with additional plugs for the appliance power reading
were installed. The database corresponded to varying houses
in terms of consumption level, number of inhabitants and area
of the house. The results are the average for appliances across
all the houses.

IV. METHODOLOGY

The methodology can be described as a part based data
driven approach. The meter reading is a time series from which
daily overlapping sub-sequences are generated. The time se-
ries, sub-sequence and sliding time windows are described as
follows:

Time Series: Ordered set of n real-valued variables
T = t1, . . . , tn.
Sub-sequence: For a given time series T of length
n, a sub-sequence Ck of T is a sampling of length
w ≤ n of contiguous position from T , that is, Ck =
tk, . . . , tk+(w−1) for 1 ≤ k ≤ n− (k + 1).
Sliding Time Window: Given a time series T of length
n and a subsequence length of w, a matrix M of all
possible subsequence can be built by “sliding time
window” across T and placing subsequence Ck in
the kth row of M . The size of matrix M is (n−k+
1)/n× w.

An appliance is identified to be used in a particular day if
it starts before the end of the day (24:00). Four hours of
additional time overlap at the end of the day is taken for the

cross-over cases. The raw training data consists of 10-seconds
active power reading together with the energy consumption
during the period. The 10-second active power reading is
used for the 10-second analytics whereas the 15-minutes
consumption reading is used for the 15-minutes analytics.

A. 10-second analytics

The 10-second smart meter analytics consists of the follow-
ing stages:

1) Preprocessing of the data.
2) Element generation from the ON/OFF events.
3) Appliance-wise filter parameter generation from training

database. (Both smart meter and appliance data)
4) Element detection based on trained filter parameters
5) Calculation of start time and energy after appliance

detection.
1) Pre-processing: At the preprocessing stage the signal

noise such as data spikes and outages are processed and
removed.

It is important to remove the spikes as they interfere with
element detection. The spikes are removed using a median
filter. In the data received from the server if the outage
in the data is above a pre-defined threshold then appliance
identification during the period is not considered.

2) Element generation from the ON/OFF events: The event
is registered when the change in power level is above 35 W.
This minimum threshold is chosen to reduce event complexity
and to reduce the error of minor fluctuations. In Fig. 4, low
power fluctuation seen in some smart meter data is shown.

The delta calculation can be expressed by the following
equation:

∇(ti) = P (ti)− P (ti − 1)

∇(ti) > 35W

}
ti ∈ [0, w] (1)

where ‘w’ is the window size. In Fig. 5 the events generated
for a typical 10 second smart meter reading is shown. It
can be seen clearly that the generated events correspond to
various appliance states. The blue color corresponds to ‘no
appliance indentification’ and the other colors are for ‘detected
appliances’.

Element generation: Within the time-window (experimen-
tally set to four hours based on maximum appliance duration),
a list of consecutive positive events are sorted, and a list



(a) NILM non-event based (generic).
(b) The 15-minutes smart-meter and washing machine consump-
tion.

Fig. 3: Non-event based NILM, both generic and practical example.

Fig. 4: 32 W fluctuation in the meter-data.

Fig. 5: Events generated from the three consecutive use of
washing machine (In red).

of consecutive negative events are sorted that come after
the last positive. One negative event at a time is taken and
subsequently matched with a positive event in the list of
positive event. The events matched are removed and the
process followed iteratively.

3) Appliance signature parameter calculation: Once the
elements are generated the subsequent step is to generate its
features or signature. The features are evaluated to consider
the power levels, duration, number of occurrence and gaps
within appliance states.

• Mean and Standard deviation of the ON and OFF duration
in the window.

• Number of occurrences within the window.
• Mean and standard deviation of the power level.

• Time difference between the various appliance electrical
elements.

As previously stated the power level based clustering roughly
corresponds to various states or elements of a multi-state
appliance and helps us to consider the temporal relation
between the various states.

4) Training of part based model parameters: In Fig. 6 it can
be seen how the grouped elements roughly can be interpreted
as appliance states. Once the features are generated for each
time-window, it becomes training instance for the classifier and
all the training instances are generated using the sliding time
window (typically window jump of 30-minutes). The output
or appliance state is taken to be ON if the appliance is 100 %
present in the time-window. Once, the training instances are
generated, the task is to learn a classifier function which can
best map the input to the output (appliance state).

Fig. 6: The generated elements relation to appliance states.

B. 15 minutes NILM

The 15-minutes load dis-aggregations algorithm is trained
from the consumption reading at 15-minutes. The data is
only pre-processed for outlier removal but no thresholding is
performed.

1) The aggregate energy readings are extracted for the 20
houses at a sampling rate of 15 minutes.

2) Multiple sub-sequences and one class output are gener-
ated from each data-set using temporal sliding window
with a window size of 6 units.

3) The classifier is trained with the generated features as
input attributes and high energy appliances as output
classes [19].



4) The model is trained from the 20 houses for a period of
4-weeks.

A simplified graphical work-flow of this approach is illus-
trated in Fig. 7 from step one to four.

Fig. 7: Methodology: 15-minutes load disaggregation.

The features generated step is implemented from the [19]
article but the sampling rate are different.

V. RESULT

In this section, firstly, the measure used to evaluate the per-
formance is discussed followed by the observed performance
metrics using two different sampling rates.

A. Measures

Given a dataset of labelled instances, supervised machine
learning algorithms seek a hypothesis that will correctly pre-
dict the class of future unlabelled instances. In order to com-
pare structures of predictors, we need indicators that will give
a quantitative way of assessing the classifier performances.
While comparing these indicators values, the best predictor
can be found for a given appliance.

In order to properly define the performance indices of the
classification algorithms used for prediction, we introduce the
confusion matrix [26].

A confusion matrix contains information about the actual
and the predicted results obtained by a classification system.
The performances of such systems are commonly evaluated
using the data contained in this confusion matrix. Table I
shows the confusion matrix for a two-class classifier. The
classes that can be predicted are “positive” or “negative”
instances, which in this case signifies the appliance consumes
or does not consume energy.

TABLE I: Confusion matrix

Predicted
Negative Positive

Actual Negative a b
Positive c d

In the context of this study, the entries defined in the con-
fusion matrix reported in Table I have the following meaning:

a : is the number of correct predictions where an in-
stance is negative,

b : is the number of incorrect predictions where an
instance is positive,

c : is the number of incorrect of predictions where an
instance negative,

d : is the number of correct predictions where an in-
stance is positive.

Several standard terms have been defined for this 2 class
matrix:

The true positive rate (recall): is the proportion
of positive cases that were correctly identified, as
calculated using the equation TP = d/(c + d).
Represents the ratio between the predicted positives
states of the appliances (ON) and the total number
of correct positives states of the appliances.
The precision: is the proportion of the predicted pos-
itive cases that were correct, as calculated using the
equation P = d/(b + d). Represents the fraction of
the positives states (ON) of the appliances correctly
predicted.

A correct appliance identification is defined as being one
where the start time is +/- thirty minutes of the actual start
time and for the correct appliance. The false-positive impact
for use-cases is much more than the impact of false-negative
thereby the precision scores are presented.

B. Dis-aggregation performance
In Table II the appliance-wise dis-aggregation performance

is shown for the major white goods appliances present in a
typical Dutch residence. The washing machine is present in
all the houses and the electric oven in just one as in most
residence it is run on gas. It can be observed from the results
that the performance is better for the washing machine and
dish washer, it reduces significantly for the clothes dryer and
particularly electric oven. In case of 15 minutes sampling
rate, the washing machine and dish-washer are considerably
reduced and are mostly detected during the non-peak times.
The major cases of error are also the clothes drier vis-a-vis
Oven error due to mis-labelling. This can be improved by
taking context into account, e.g. a Drier is generally used after
the washing machine.

TABLE II: Dis-aggregation performance, Precision (measure).

Sampling Rate Appliances

Washing
Machine

Clothes
Drier

Dish
Washer

Electric
Oven

10 second .89 .64 .79 .50
15 minutes .5 .6 .5 .32

C. Discussion
The proposed method is an industrial application at 10-

second and 15-minutes sampling showing the pros and cons



of using load dis-aggregation in residences. The existing
literature is based on acquired dataset but not actual customers,
which is a challenge in itself, addressed in this work. This
method is an implementation of existing methods enhanced
by the data-processing and a large training database. This
work also emphasizes the gap between the trained models in
a benchmark dataset and the intricacies of an application to
actual people who have different appliances combinations and
usages.

VI. CONCLUSION

NILM has acquired considerable amount of interest in the
smart-energy domain and this work presents a comparison of
results for two sampling rate for various appliances present in a
typical house. It is observed that the performance is correlated
to the number of appliances being present in the house as
the signal of appliances other than the one which is being
identified is considered noise.

The results also highlight the fact that performance of load
dis-aggregation decrease as we move from the laboratory
setting to the real residences. This may happen due to error
at various stages; data acquisition, inter-appliance similarity,
presence of previously unobserved appliances etcetera. The
recording of household meta-data (appliances present in the
house) could be used to reduce mis-labelling among appliances
and thereby increase the performance. Finally, the results
indicate that the proposed 10-second NILM algorithm is
deployable for majority of houses (> 80 %) with a use case
for the customer. In case of 15 minutes consumption data, the
appliances detection are limited to the non-peak periods of the
day.
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